
Disentangling Continuous Volatility from Jumps in Long-Run

Risk-Return Relationships

Eric Jacquier

HEC Montreal and MIT Sloan

Cédric Okou

University of Quebec at Montreal

This draft: March 19, 2013

Abstract

Realized variance can be broken down into continuous volatility and jumps. We show that these two

components have very different predictive powers on future long-term excess stock market returns.

While continuous volatility is a key driver of medium to long-term risk-return relationships, jumps

do not predict future medium- to long-term excess returns. We use inference methods robust

to persistent predictors in a multi-horizon setup. That is, we use a rescaled Student-t to test

for significant risk-return links, give asymptotic arguments and simulate its exact behavior under

the null in the case of multiple regressors with different degrees of persistence. Then, with Wald

tests of equality of the risk-return relationship at multiple horizons, we find no evidence against

a proportional relationship, constant across horizons, between long-term continuous volatility and

future returns. Two by-products of our analysis are that imposing model-based constraints on long-

term regressions can improve their efficiency, and short-run estimates are sensitive to short-term

variability of the predictors.
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The predictability of stock returns is a fundamental topic in empirical asset pricing. Since the

initial work of Fama and French (1988), many papers have presented evidence of predictability

in long-term excess returns. Others express some healthy degree of skepticism, as for example

Boudoukh et al. (2008) and Goyal and Welch (2008). In the literature that doubts predictability, a

running theme is that many of the predictors result from data mining. In sharp contrast, expected

future volatility is a prime candidate predictor of future returns for economic reasons provided by

numerous asset pricing models of the link between risk and return. See for example Merton (1971,

1980) and Bansal and Yaron (2004). Lettau and Ludvigson (2010) report strong evidence that

conditional expected volatility can predict future returns. Bandi and Perron (2008), hereafter BP,

find that realized market variance can be a stronger predictor of long-term future excess returns

than the dividend yield or the consumption-to-wealth ratio.

Realized variance, as used by BP, has tremendous appeal as an estimator of the unobservable

variance, see for example Andersen, Bollerslev, Diebold and Labys (2003). However, in the presence

of jumps in returns, realized variance contains both a continuous volatility and a jump components,

see, Andersen, Bollerslev and Diebold (2010) for a survey. Huang and Tauchen (2005) find that

jumps are not negligible, accounting for seven percent of the stock market daily variance. Thus,

jump-diffusion models are now widely used to describe the stock returns dynamics. Further, jump

risk is now a fundamental premise of the option pricing literature, see for example Johannes (2004),

Eraker, Johannes and Polson (2003), Carr and Wu (2003a,b), Bates (2000), Kim, Oh and Brooks

(1994). If jump risk is priced in options, one would expect it to be priced in the underlying returns

themselves. Back (1991) shows that jump risk will be priced if the state price density jumps

simultaneously with the security. Yan (2011) proposes a model where stocks earn a premium for

systematic jumps that are more negatively correlated with jumps in the stochastic discount factor.

On the other hand, jump risk would not be priced if one assumes, as in Merton (1976), that

the jumps of individual securities diversify cross-sectionally, because these sharp discontinuities in

individual stocks prices may be unsystematic. The impact of past jump risk on future long-term

risk premiums remains an open question.

Continuous volatility and jumps do display distinct features. For instance, Andersen et
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al. (2007) show that continuous volatility is more persistent than the jumps, and disentangling

these two components improves the out-of-sample volatility forecasts. If disentangling jumps from

continuous volatility results in better volatility forecasts, it is natural to ask whether these “better”

forecasts can lead to better forecasts of future returns. Bollerslev and Todorov (2010) disentangle

systematic diffusive and jump risks (betas). Using a large cross-section of stocks, they show that

jump betas are typically larger but less persistent than diffusion betas. The implication of this

result on whether there is a premium for jump risk is unclear. Thus far, there is little evidence of

whether jumps allow to predict the risk premium, especially for the longer term.

In this article, we investigate whether disentangling the market index continuous volatility

and jumps allows to better predict future excess return at different horizons. Namely, we separate

continuous volatility from jumps before analyzing the multi-horizon risk vs. return trade-offs. We

rely on a nonparametric decomposition of the realized variance as in Huang and Tauchen (2005).1

The contribution of this paper is two-fold. First, we explore the predictive power of the

continuous and jump components of realized variance in forecasting long-term market excess return.

We focus on the term structures of risk-return trade-offs for these two components, as they may have

different implications on the pricing and hedging of long-horizon derivatives, or on asset allocation.

Our empirical results indicate that medium- to long-term market excess returns are strongly related

to past continuous volatility. In contrast, we do not find a significant link between long-term market

excess returns and past jumps. This is consistent with the view that jumps intrinsically characterize

short term dynamics. Continuous volatility is the key driver of risk-return trade-offs at medium to

long horizons, consistent with evidence as in Jarrow and Rosenfeld (1984).

Second, the paper performs equality restrictions tests on the term structure of risk-return

trade-offs, after extracting jumps from the past market realized variance. This allows us to explore

a possible horizon effect. To do this, we develop a normalized version of the classical Wald test

statistic. We derive its asymptotic distribution and provide the necessary simulated critical values.

1A thorough justification for a model-free decomposition of realized variance can be found in Aı̈t-Sahalia (2004),
Barndorff-Nielsen and Shephard (2004, 2006). Other nonparametric jump detection methods are discussed in An-
dersen, Dobrev and Schaumburg (2012), Lee and Hanning (2010), Aı̈t-Sahalia and Jacod (2009), Lee and Mykland
(2008), Jiang and Oomen (2005).
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Our inference explicitly accounts for persistence in the predictor variable in a multi-horizon setup.

The empirical evidence is consistent with a flat term structure of trade-offs between continuous

volatility and future market excess returns.

This paper is also related to the literature on intertemporal capital asset pricing models

(ICAPM). Scruggs (1998) successfully uses a two-factor ICAPM to analyze hedging demand re-

quirements. Bali and Engle (2010) estimate an intertemporal CAPM using stocks and equity

portfolios. Looking at possible shifts in investment opportunities, Campbell and Viceira (2005)

characterize the term structure of risk-return trade-offs. Bollerslev, Tauchen and Zhou (2009) ar-

gue that the variance risk premium can substantially account for the time variation in future excess

returns at long horizons. Bollerslev, Sizova and Tauchen (2012) build on the long-run risk frame-

work of Bansal and Yaron (2004) to develop an equilibrium model which accounts for volatility

asymmetries and dependencies. However, while these papers explore intertemporal risk-return re-

lationships, they do not distinguish between jump and diffusion risk across different horizons. We

provide general inference methods and new insights about the term structures of jump and diffusion

risk-return trade-offs.

The remainder of this paper is as follows. Section 1 presents estimators for total quadratic

variation, continuous volatility and jumps. Section 2 describes the data. Section 3 discusses

estimation results, inference and simulated critical values for the rescaled t-statistic. Section 4

proposes a specification linking market excess return only to past market continuous volatility.

Relying on a normalized version of the Wald test statistic, denoted the rescaled Wald statistic, we

test the equality of slope coefficients over different horizons. Section 5 concludes.

1 Realized Variance, Continuous Volatility and Jumps

In this section, we introduce the estimators to be used in lieu of the unknown latent variables to

estimate the relationship:

Rt,t+h = ah + bhCt−h,t + γhJ 2
t−h,t + et,t+h, (1)
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where Rt,t+h denotes the market log-excess return over months t + 1 to t + h, Ct−h,t and J 2
t−h,t

are the continuous volatility and the jump components over months t − h to t, and et,t+h is the

prediction error. We will run these regressions for h varying from 1 to 120 months. The no-intercept

version of Eqn.(1) is consistent with risk vs. return models as in Merton (1980). It is therefore

preferable for estimation efficiency, see Campbell and Thompson (2008). We run both the intercept

and the no-intercept versions of Eqn. (1).

1.1 Realized Variance

The continuous volatility Ct−h,t and the jump component J 2
t−h,t are embedded in the quadratic

variation. So, we first introduce realized variance, the estimator of quadratic variation. Say that

month t contains nt daily returns denoted rt,i, where rt,1 and rt,nt are the returns on the first and

last days of the month. Similarly, we write h(t), the set of h months, t− h+ 1 to t, and nh(t), the

number of days in these h months. Realized variance (RV) is a simple and consistent estimator of

the second-order path variation of the log-returns, aka quadratic variation. RV over a given time

interval is the sum of squared high frequency returns over that interval. With daily returns as high

frequency returns, and a h-month interval, the h-month realized variance is therefore

RVt−h,t =

nh(t)∑
i=1

r2
h(t),i. (2)

For a given interval, as the sampling frequency increases, RV is a consistent estimator of the

quadratic variation of the log-price process log(pt), over this interval. In the presence of infrequent

jumps, the quadratic variation [·] of log(pt), contains two elements, the integrated continuous

variance and the discontinuous squared jumps process:

[log p]t−h,t =

∫ t

t−h
σ2
sds+

∑
t−h≤s≤t

(log (ps)− log (ps−))2 , (3)

with log (ps−) = limε↓0 log (ps−ε) . We now discuss how to estimate these two components.
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1.2 Disentangling Jumps and Continuous Volatility

Barndorff-Nielsen and Shephard (2004, 2006), hereafter BNS, provide theoretical and empirical

motivation for the bipower variation as an estimator robust to jumps of the integrated continuous

volatility, the first term on the right-hand side of Eqn.(3).2 The bipower variation (BV) is a scaled

sum of cross-products of adjacent absolute returns. Tauchen and Zhou (2011) expand the use of

BV to a formal jump detection framework, testing for significant jumps and estimating parameters

such as the jump intensity, mean and variance.

The h-month bipower variation, using the daily returns as high-frequency returns is then:

BVt−h,t =
π

2

nh(t)

nh(t) − 1

nh(t)∑
i=2

|rh(t),i−1||rh(t),i| (4)

BNS (2004) show that a consistent estimator of jumps is simply the difference between the realized

variance and the bipower variation. Namely,

lim
nh(t)→∞

(RVt−h,t −BVt−h,t) =
∑

t−h+1≤s≤t
J 2
s . (5)

While the difference in the left hand side of Eqn.(5) converges asymptotically to a non

negative quantity, it can however be negative for a given sample. Therefore, it can not be used in

this simple form. Huang and Tauchen (2005) design a significance test of the jump based on the

relative difference

RJt−h,t =
RVt−h,t −BVt−h,t

RVt−h,t
. (6)

Specifically, they compute the studentized relative difference

zt−h,t =
RJt−h,t√

(π2 )
2
+π−5

nh(t)
max

(
1,

TPt−h,t
BV 2

t−h,t

) , (7)

where TPt−h,t is the tripower quarticity, a consistent estimator of the integrated quarticity. The

2We obtain similar empirical results with the MedRV estimator of integrated variance proposed by Andersen,
Dobrev and Schaumburg (2012).
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integrated quarticity is the volatility of realized volatility. The multi-month tripower quarticity is

TPt−h,t = µ−3
4/3

n2
h(t)

nh(t) − 2

nh(t)∑
i=3

|rh(t),i−2|4/3|rh(t),i−1|4/3|rh(t),i|4/3, (8)

where µ4/3 = 22/3Γ
(

7
6

)
/Γ
(

1
2

)
. Hang and Tauchen show that zt, the studentized relative difference

between RV and BV is asymptotically a unit normal distribution. Their Monte Carlo simulations

indicate that the normal distribution is a good approximation of zt, with good size and power

properties.

The possible negativity of RV − BV in small sample, is addressed as follows. Andersen,

Bollerslev, and Diebold (2007) compute the significant jump, a shrinkage estimator based on a

chosen x% confidence level of zt. The significant jump is

J 2
t−h,t (x) = I (zt−h,t > ζx) [RVt−h,t −BVt−h,t] , (9)

where I (·) is an indicator function and ζx is the normal critical value for the x% confidence level.

The indicator guarantees the non-negativity of the significant jump estimator, coherently with a

significance level chosen for z. Note that when x = 50%, due to the standard properties of the

Gaussian distribution, the significant jump in Eqn.(9) is simply max [RVt−h,t −BVt−h,t, 0], initially

suggested to address the negativity issue in the early literature.

From Eqn.(9), we can estimate the continuous component of the quadratic variation as:

Ct−h,t (x) = I (zt−h,t ≤ ζx)RVt−h,t + I (zt−h,t > ζx)BVt−h,t. (10)

From hereon, we will refer to Ct−h,t as the continuous volatility. There is discussion in

the literature that realized volatility measures may be contaminated by high frequency market

microstructure noise, see Andersen, Bollerslev and Diebold (2010) for a survey. The impact here

should be minimal as our high frequency is not intra-day, but daily.
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2 Data

We use the NYSE / AMEX value-weighted index with dividends as the market proxy from January

2, 1952 to December 31, 2009. We obtained similar results with the S&P 500. For the risk-free rate,

we use the 30-day T-bill rate. Daily series are obtained from the CRSP database. We compute the

h-month continuously compounded excess return Rt,t+h by summing up the daily excess returns

over the months t+ 1 to t+ h.

For a given horizon h, regression (1) will be run with monthly observations of the h-month

left-hand side variable Rt,t+h, and the estimates J 2
t−h,t, and Ct−h,t of the unknown latent variables

in the right-hand side. This induces overlapping errors and their ensuing serial dependence, which

we will account for in the analysis. The efficiency gains of using overlapping returns despite the

related complication have been well known since Hansen and Hodrick (1980) seminal paper.

The high-frequency data in our analysis is daily, leading to about 22 observations per month.

However, the convergence of second order variation estimator is based upon limiting arguments of

increasingly finely sampled returns. This is commonly used in the framework of intraday data, but

an analogous asymptotics can be argued for in long-run analysis where the daily records constitute

the high frequency. French, Schwert and Stambaugh (1987) find evidence of a positive relation

between monthly expected risk premium and variance, using daily returns to estimate monthly

variance.

Table 1 presents descriptive statistics for the monthly market excess return, and the one-

month realized variance RV , continuous sample path volatility C, and squared jumps J 2. The

averages of these monthly series indicate that the significant jumps make a bit less than 10% of the

total quadratic variation. This is consistent with the possibility of significant but infrequent jumps

in the sample path. Higher moments of RV , C and J 2 series confirm their well-established right-

skewed, fat-tailed distributions. The summary statistics show important asymmetry and kurtosis

for the second order variation series as compared to the distribution of excess returns. Andersen,

Bollerslev and Diebold (2007) document similar empirical regularities for the daily S&P 500 index

from January 1990 through December 2002. Table 1 also reports the first-order autocorrelations
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for the full sample and two subsamples chosen to exclude 1987 and the post-2007 financial crash.

One could believe that crisis-related spikes in returns would “break” the dependence structure and

thus, largely decrease the persistence in second order variation. It appears not to be the case as

the subsample autocorrelations are only slightly lower than the full sample ones.

The goal of our paper is the estimation of the predictive power (of the components) of multi-

period realized variance on multi-period excess returns. This is different from the well explored

question of the ability of realized variance to predict itself. Andersen, Bollerslev and Meddahi

(2004) document the ability of past realized variance to predict future realized variance at short

horizons. Andersen, Bollerslev and Diebold (2007) regress realized variance on past values of itself

and past jumps, for horizons of 1 day, 1 week and 1 month. Their results show that jumps do

not have marginal predictive power over volatility beyond a week. Our horizons are far longer

than most of these studies, and so is our high frequency which is daily. It is therefore interesting

to compare stylized facts from these existing studies with our own constructs and horizons. We

regress realized variance on past continuous volatility and jumps for horizons of 1 to 120 months.

Our results are consistent with theirs: we detect no ability of past jumps to predict future realized

variance. Table 2 shows the regression of the logarithms of realized variance on past values of the

logarithm of continuous volatility. The slope coefficient is statistically significant at a conventional

5% level until a 3-year horizon. Beyond, both t-statistic and R-square collapse. This is consistent

with a strongly autocorrelated but stationary volatility.

Figure 1 plots the monthly market excess returns from January 1952 to December 2009.

Among these 696 monthly returns, we identify 73 significant jumps using the jump test statistic zt

at a 95% confidence level. Figure 2 plots the monthly realized variance (top panel) in logarithm

scale, and squared jumps (middle panel). The jumps seem to contribute a lot to quadratic variation

around the October 1987 crash and the 2008 financial crisis. However, the middle panel reveals two

other interesting facts. First, jump activity is much higher after 1980 than before, independently

of these crisis periods. Second, there is no evidence that jump activity is generally related to the

level of realized variance. To verify this, the third (bottom) panel of Figure 1 is a scatter plot

of continuous volatility vs. realized volatility. The 45 degree line shows all the months with no
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detected jump activity. Strikingly enough, this graph shows no evidence that months with higher

realized volatility are also months with more jump activity. To the contrary, months with jumps,

i.e. when Ct is less than RVt, seem to occur randomly through the whole range of RVt values.

As our high-frequency data are only daily, one may worry about the quality of the asymptotic

approximation for the test-statistic zt presented in the previous section. We therefore need to verify,

for our sampling scheme, the results in Huang and Tauchen (2005). Figure 3 is a normal probability

plot of the estimates of the jump test statistic zt, computed over the sample. It provides a visual

confirmation that the normal distribution is a good approximation for this statistic.

Finally, Figure 4 presents the autocorrelation function of RVt, as well as Ct and J 2
t obtained

with a 95% jump significance level. The top panel confirms that RVt has high autocorrelations

decaying slowly. The bottom panel shows that, in contrast, J 2
t has little or no persistence. This

is consistent with the view that the jump component captures occasional discontinuities in the

total quadratic variation. In contrast, Panel b reveals that the autocorrelation of the one-month

continuous volatility Ct is also high and tapers off only gradually. The autocorrelation of the

continuous volatility may be sensitive to the significance level used to compute Ct and J 2
t . Therefore

we conduct a sensitivity analysis to the significance level . Figure 5 shows the ACF of the continuous

volatility - panels (a-c), and jumps - panel (d), for significance levels 50%, 90% and 99%. There are

no notable differences in these ACFs. Thus, the dependence structure of the continuous volatility

and jump components is robust to the choice of the significance level.

3 Estimation

3.1 Risk-Return Trade-Off with Continuous Volatility Disentangled from Jumps

Since Fama and French (1988), the predictability of long-term returns has been a much discussed

stylized fact in empirical finance. For exogenous predictors, Stambaugh (1999) and Campbell (2001)

point out the effect of the persistence of the predictor on the evidence of long-run predictability.

BP show that long-term variance, measured by realized variance, can predict long-term returns.

We extend their analysis, allowing for infrequent jumps in returns.
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Given estimates for Ct−h,t and Jt−h,t, we can now estimate the coefficients in Eqn. (1) which

links h-month excess returns to the previous h-month continuous volatility and jumps. Table 3

reports these point estimates, and below, the standard HAC corrected t-statistic, and the rescaled

t-statistic, t/
√
T . Valkanov (2003) shows that the standard t-statistic overstates the significance of

long-horizon relationships, and is not asymptotically normally distributed under the null hypothesis

of no predictability. Therefore, conventional critical values lead to incorrect inference. The rescaled

t-statistics remedies this problem. We show in the next subsection how to simulate critical values

for the rescaled t-statistics. We first discuss the empirical evidence.

The bottom panel of Table 3 shows the results with an intercept in the regression. As per

the rescaled t-statistic, the impact of the jump on future excess returns, γh, is insignificant at all

horizons. Curiously enough, the impact of continuous volatility, bh, is equally insignificant and

sometimes even negative, apart from at the very long horizons which are probably not reliable.3

In long-run regressions, with a horizon sizable relative to the sample period, the issue of

efficiency is crucial. Our regressions may simply lack precision. In their analysis of the predictability

of stock returns, Campbell and Thompson (2008) show that weak restrictions on the coefficients,

consistent with economic common sense, such as the need for a positive risk premium, generally

lead to better forecasts. In our case, a zero-intercept in Eqn. (1) should yield slope coefficient

estimates with increased precision. The zero-intercept restriction is consistent with Merton’s (1980)

proportional link between the conditional mean and variance of stock market returns.

The top panel in Table 3 displays the results of the no-intercept regressions. If this restric-

tion is reasonable, the slope coefficients are now estimated with increased precision. Indeed, the

estimates of the continuous volatility coefficients bh, are now positive at all horizons and both the

standard and rescaled t-statistics point at statistical significance for horizons above 3 months. Note

also how b̂h appears stable across horizon, remaining between 1.4 and 2.6 for all horizons including

the very long ones. This is in contrast with the bottom panel, regressions with intercept, showing

large swing in point estimates and large estimates for horizons above 6 years, all unreliable.

The jump coefficients γ̂h are however still insignificant across horizons. Yet they are larger

3We report these ultra-long horizons, e.g., above 8 years, for comparability with the existing literature.
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than the continuous volatility estimates b̂h, for example 8 versus 2 at a 6-year horizon. One needs

to keep in mind the economic magnitude of these point estimates. A 5-year continuous volatility

higher by 1%, implies a 5-year excess return higher by 2.1%. A 5-year jump higher by 1% implies a

5-year excess return higher by 5.4%. However, as Table 1 shows, the average monthly jump size is

less than a tenth of the continuous volatility. Further, jumps are far less persistent than continuous

volatility implying even smaller average multi-period jump sizes.

To summarize, the contribution of past jumps to the predictable part of medium- to long-

term excess returns is marginal relative to that of continuous volatility. These results seem to

suggest that realized jumps are not a state variable driving the risk premium dynamics. The

continuous component of the total quadratic variation appears to be the major determinant of the

risk-return trade-offs.

3.2 Critical Values of the Rescaled t-Statistic

We now explain how we compute the critical values of the rescaled t-statistic in Table 3. Long-run

regressions with overlapping errors are notorious for potentially overstating predictability. Valkanov

(2003) writes that “ long-horizon regressions will always reveal significant results, whether or not

there is a structural link between the underlying variables”. He argues that the rolling summation

of a stationary series creates a long-horizon variable behaving asymptotically as a series with a

stochastic trend. Consequently, standard test procedures for the detection of long-run relationships

are inaccurate, and new test statistics are required. An analytical inspection of the asymptotic

distribution of the usual Student-t, through the Functional Central Limit Theorem, shows that

it does not converge to a well-defined distribution. However, the rescaled t-statistic, that is, the

Student-t divided by the square root of the sample size, can be shown to be adequate for testing

long-horizon regressions. Furthermore, the simplicity of simulating the limiting distribution of the

rescaled t-statistic’s compensates for its asymptotic non normality.

While the continuous component of realized variance is serially correlated, the jump com-

ponent is distinctly less persistent, see Figure 4. These different dynamics may cause the rescaled

t-statistics for the slope estimators in the regression of long-term returns Rt,t+h on past continuous
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volatility Ct−h,t and jumps J 2
t−h,t to behave differently

A diagnostic of the statistical significance of slope coefficients based on rescaled t-statistics,

requires the simulation of critical values. To do this, we jointly simulate monthly excess returns,

continuous volatility and jumps under the assumption of no predictability. Then, we aggregate these

simulated monthly data and run the multi-period regression as on the market data. Specifically,

we simulate monthly variables as


Rt+1

Ct+1

J 2
t+1

 =


0

αC

αJ

+


0 b1 γ1

0 ρ11 ρ12

0 ρ21 ρ22




Rt

Ct

J 2
t

+


et+1

uCt+1

uJt+1

 . (11)

Under the null hypothesis ofH0 no predictability, b1 = 0, γ1 = 0, and the errors et+1, u
C
t+1, u

J
t+1

have no autocorrelation. They can however be contemporaneously correlated. We denote their

standard deviations (σe, σuC , σuJ ) and their covariances, (σeuC , σeuJ , σuCuJ ).

This extends BP’s (2008) parametric bootstrap. The use of a Normal VAR(1) to model

the joint dynamics of returns and the two components of realized variance is parsimonious in this

context. The VAR(1) model is not restrictive since a higher-order VAR system can be re-expressed

as a first order, see Campbell and Shiller (1988). However, we are aware that the normal errors

may be more suitable to the modeling of the logarithm of realized volatility and its components.

Our trivariate VAR(1) model is also related to the one in Busch, Christensen and Nielsen (2011),

who model the incremental information of implied volatility relative to both the continuous and

jump component of realized volatility for different markets. The analogy lies in specifying a VAR

model for the split components of realized volatility. However, there is a major difference: Busch et

al. (2011) investigate the link with implied volatility, they do not consider risk vs. return models.

We can now generalize BP’s local-to-unity framework to the case of two regressors with

different persistence. We assume the portion of overlap h = bλT c to be a non-trivial constant

fraction of the sample size where b.c denotes the lesser greatest integer operator. Then, we set

ρii = 1 + ci/T and ρ12 = ρ21 = 0. The parameters ci (i = 1, 2) controls the deviations from the
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unit root. Propositions 1 and 2 in Appendix A give the theoretical foundation to construct the

adequate test statistics and analizing their asymptotic properties.

We generate 10,000 paths of 696 months (58 years). In all the simulations, we have αC =

αJ = 0, ρ12 = ρ21 = ρ22 = 0. We set σuC = σuJ = 1, ρeuJ = −0.25 and ρuCuJ = 0.7. We conduct

two sets of simulations. In the first set, S1, the autocorrelation of the continuous volatility ρ11,

is 0.75, and the correlation between excess returns and continuous volatility shocks ρeuC , is −0.3,

consistent with the data. In the second set, S2, we have ρ11 = 0.99 and ρeuC = −0.7. The second

set induces more persistence in volatility and a higher (negative) value of ρeuC consistent with

some empirical findings, such as Jacquier, Polson and Rossi (2004). The negative correlation is a

well known feature of index volatility, sometimes denoted the leverage effect, a misnomer. Both

sets impart a small amount of negative correlation between jump and return shocks and a positive

correlation between jump and continuous volatility shocks.

Recall that the model in Eqn. (1) is estimated for horizons from 1 to 120 months. We

consider zero-intercept regressions, potentially more precise. We collect the 5% critical values for

both bh = 0 and γh = 0. Table 4 shows the critical values for t
b̂h
/
√
T and tγ̂h/

√
T . There is very

little difference between the two simulation sets S1 and S2. We use the values from set S1 to flag

the statistical significance of the rescaled t-statistic in Table 3.

For the unconstrained regressions, t
b̂h
/
√
T values suggest that the link between excess return

and past continuous volatility is insignificant at 5% level for all but the two extreme horizons 108

and 120 months. While we include these horizons for comparability with other studies, any evidence

at a 10 year horizon based on a 58 year sample should be looked upon with a healthy degree of

skepticism. When the intercept is constrained at 0, the rescaled t-statistics for the continuous

volatility in Table 3 are now outside their confidence bounds at all horizons beyond 3 months.

However, there is no such evidence for jump risk: all the tγ̂h/
√
T values lie inside their confidence

intervals. We fail to detect any significant impact of jumps on future market excess returns.

We now turn to joint restriction tests on the coefficients, using a Wald test statistic based

upon the joint asymptotic distribution of the slope coefficients for all hs.
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4 Horizon Effects in the Risk vs Return Relationship

Continuous volatility is the component of the realized volatility which explains a significant part

of medium- to long-term market excess returns. This suggests that diffusion risk is systematic;

investors require a premium for bearing this risk. We now focus on the estimation of the trade-off

intensity between the market excess return and the continuous volatility across horizons. The set of

slope coefficients estimated at various horizons is labeled as the “term structure of risk-return trade-

offs”. There is a horizon effect in the term structure when the trade-off intensities are significantly

different across horizons.

It is possible to relate our empirical characterization of the term structure of trade-offs to

Merton’s (1973) ICAPM implications. The absence of a horizon effect in the term structure of risk-

return trade-offs is consistent with an ICAPM with a constant proportionality between conditional

first and second moments of excess returns on the market portfolio. We now investigate the presence

of a horizon effect in the term structure of risk-return trade-offs.

4.1 Empirical Model

In Merton’s (1973) ICAPM, expected returns of individual assets depend on their covariances with

the market portfolio and with state variables that span the investment opportunity set. In the

aggregate, see Merton (1980), the conditional expected excess return of the market portfolio is

proportional to its conditional variance, namely Et [Rt+1] = A× V art [Rt+1]. The proportionality

constant A is the relative risk aversion of a representative investor with iso-elastic preferences.

The results of Section 3 show that jumps have a very marginal impact on medium- to long-

term excess returns. Hereafter, we use continuous volatility as the sole predictor of long-run excess

returns. To assess whether the relation between future market excess returns and past continuous

volatility varies with the investment horizon, we estimate the regressions

Rt,t+h = αh + βhCt−h,t + ηt,t+h, (12)
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where Rt,t+h is the excess return, Ct−h,t is the past market continuous volatility, and ηt,t+h is

the overlapping prediction error. In Eqn. (12), we use the past market continuous volatility as

the predictor instead of the lagged realized variance as in BP (2008). For the same reason as in

section 3.1, we perform a regression with no-intercept as well as one with intercept. We already

noted the beneficial effect of this constraint in Table 3. The coefficient βh is a h-horizon proxy

for a representative investor’s relative risk aversion. We can interpret the coefficients βh as a term

structure of market prices of diffusion risk, see Campbell and Viceira (2005) for a discussion of the

notion of term structure of risk-return trade-offs. Table 5 displays estimation results for Eqn. (12).

With respect to continuous volatility, the findings in Table 5 are similar to those in Table 3.

Again, the presence of an intercept renders the estimation quite noisy. In contrast, with the zero

intercept constraint, the slope coefficients are positive and statistically significant at all horizons

except for monthly and quarterly. Above the quarterly horizon, the slope coefficients take values

in a relatively tight range from 1.5 to 3.2, pointing to a possibly flat term structure. In the context

of Merton’s (1973) ICAPM, the slope coefficients in Table 5 point are consistent with reasonable,

perhaps even low, values for the relative risk aversion coefficient.

One may be puzzled by the absence of significant relationship at short (monthly and quar-

terly) horizons. This may come from high levels of volatility during some periods of financial

turmoil. For instance, monthly market variances in October 1987, the fourth quarter of 2008 and

the first quarter of 2009 were extreme, 40 to 50 times larger than the average variance for the entire

post-war period. Therefore, the empirical evidence of risk-return trade-off may be more sensitive to

extreme volatilities, at shorter than longer horizons. The 58 years in our empirical analysis contain

two major episodes of extreme volatility in the short run. This could make the assessment of the

risk-return trade-off very imprecise. To verify if this is the reason for our puzzling slope estimates

up to quarterly horizons, we repeat the regressions, now using a 99% winsorized continuous volatil-

ity. The bottom panel of Table 5 shows the results. Indeed, the coefficients at the monthly and

quarterly horizons now have magnitudes similar to the longer horizons estimates.
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4.2 Test of Equality of the Slope Coefficients Across Horizons

In this subsection, we present inference and simulation results for restriction tests on the term

structure of risk-return trade-offs. Campbell and Viceira (2005) show how to extract this term

structure from a parsimonious model of return dynamics. They use 50 years of post-war quarterly

data from the U.S. stock and bond markets to illustrate their approach. In our local-to-unity

framework, we rely on a normalized version of the classical Wald test statistic (of equality) to

conduct inference. This rescaled Wald statistic exhibits proper convergence properties and is

well-behaved in finite sample.

4.2.1 Inference

We consider a restricted version of the system in Eqn. (11), eliminating the jump variable. Specif-

ically, consider

Rt+1 = β1Ct + εt+1 (13)

and

Ct+1 = ρ0 + ρ1Ct + ut+1, (14)

with ρ0 = 0 and ρ1 = 1 + c/T. Deviations from the unit root are controlled by the parameter c at

the decreasing rate T and the condition limT→∞ h/T = λ is satisfied. The errors εt+1 and ut+1 are

as defined for Eqn. (11), with variances and covariances σ2
ε , σεu and σ2

u.

When the return and the continuous volatility follow the dynamics in Eqns. (13-14), under

the null hypothesis of no predictability (β1 = 0), we can derive the asymptotic distribution of the

term structure of risk-return trade-offs β̂ =
(
β̂h1 , . . . , β̂hK

)
. We can also compute the limiting

approximation of its covariance matrix V ar
(
β̂
)

. It is important to understand that one needs to

compute the asymptotics in order to identify the proper convergence rate for the test statistics. We

refer the reader to Propositions 3 and 4 in the APPENDIX A for technical details.
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For a given restriction R, the rescaled wald test statistic is computed as

T−1χ2
(R) = T−1

{(
Rβ̂
)′ [
RV ar

(
β̂
)
R′
]−1 (

Rβ̂
)}

.

Before looking at the horizon effect, we consider the joint test of no predictability H0 :

{βhi = 0 for i = 1, . . . ,K} against H1 : βhj 6= 0 for some horizon hj . Though it is common to as-

sess predictability in returns using separate rescaled t-statistics, an improvement of this procedure

is to rely on the rescaled Wald test statistic. The rescaled Wald statistic allows for a simultane-

ous inference. Thus, it helps circumvent the challenge of controlling for the test size in multiple

hypotheses testing. In this case, the K ×K identity matrix IK defines the set of restrictions. The

calculated rescaled Wald statistic T−1χ2
(IK) = 66.7 for the regressions in Eqn. (12), and is greater

than its simulated 5% right-tail critical value of 2.242. Similarly, T−1χ2
(IK) = 5.49 is larger than

its critical value of 1.39 for the zero-intercept regressions in Eqn. (12). These findings support

evidence against the null hypothesis of no predictability in the risk-return relationship.

One can compare slope coefficients across horizons by assessing the degree of statistical

discrepancy between the estimates. A flat term structure of risk-return trade-offs, which illustrates

the absence of a horizon effect, should imply statistically insignificant differences between slope

point estimates at various horizons. As a first attempt to the horizon effect detection, we look at

pairwise comparisons of slope coefficients from the term structure of risk-return trade-offs in Eqn.

(12). The rescaled Wald statistic for testing the difference between two trade-off slope coefficients

(H0 : βhi = βhj against the alternative H1 : βhi 6= βhj for i 6= j) is computed as a standard

restriction test statistic. Specifically, for the unrestricted regressions, we have:

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→ N

D
. (15)

For the restricted regressions αh = 0, we have:

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→ N

D
. (16)
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As the sample size grows to infinity (T → ∞), the rescaled Wald statistic for testing the

difference between slopes estimated at two distinct horizons has a non-degenerate distribution. We

propose a precise definition of the limiting distributions N
D

and N
D in the APPENDIX B.

Alternatively, a joint restriction test offers a unified answer when examining the horizon

effect in the term structure of risk-return trade-offs. In the case of a flat term structure, we should

not find enough evidence to reject the null hypothesis of trade-off intensities being equal across

horizons (H0 : βh1 = βh2 = · · · = βhK ). Under this assumption, the rescaled Wald statistic

T−1χ2
(R) characterizes K − 1 restrictions {βhi − βh1 = 0 for i = 2, . . . ,K}.

4.2.2 Empirical Results And Simulated Critical Values

We now report the results of these tests. Significance is obtained for test statistics that are greater

than their simulated critical values. Panel (a) in Table 6 presents rescaled Wald statistics of the

pairwise differences of slope coefficients int the NYSE/AMEX long-run regressions of Eqn. (12) for

horizons h from 1 to 120 months. Panel b shows the relevant right tail 5% critical values obtained

by simulation. We also use a Bonferroni correction to control for testing multiple dependent hy-

potheses, as for example in Campbell and Yogo (2006). The simulated data mimic the empirical

features of the NYSE/AMEX data under the null hypothesis. Notable variations in the slope val-

ues from horizon hi to horizon hj , should result in larger T−1χ2(
β̂hj−β̂hi

) possibly lying outside its

critical value.

For the unrestricted regressions, the empirical results in Panel (a) show insignificant differ-

ences between risk-return trade-off slopes up to 7 years. The rescaled Wald test statistics are all

within their simulated confidence bands for hi below 72 months and hj below 84 months. The only

significant rescaled Wald statistics are for hi less than 84 and hj = 96, 108, 120. These results are

in line with the evidence in Table 3 of much larger coefficients for the very long horizons above

84 months. For both very high hi and hj , the slope estimates are significant but close to each

other. Thus, the bottom right area in Panel (a) of Table 5 presents insignificant T−1χ2(
β̂hj−β̂hi

)
test statistics for hi = 96, 108, 120 and hj = 108, 120.
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Consider now the zero-intercept regressions that can deliver slope estimates with increased

precision. Interestingly, for the zero-intercept regressions, we notice significant, positive and similar

slope coefficients beyond the quarterly horizon. Panel (a) of Table 7 shows the estimates. Con-

sequently, we only find rejection of equality by our test statistic T−1χ2(
β̂hj−β̂hi

) for hi = 1, 3 and

hj = 6, ..., 120. This is consistent with a flat risk-return term structure beyond 3 months. The

significant difference between under versus over 3 months slope estimates could lead to the conclu-

sion that there is a horizon effect in the term structure of risk return trade-offs. However, recall

our sensitivity analysis in section 4.1, where we found the slope estimates below a quarter to be

sensitive to extreme short-term volatility values in the sample.

We verify this again by using the 99% winsorized continuous volatility in the zero-intercept

regression in (12). The weak short term risk-return slope coefficients are now larger, in fact positive

and statistically significant. The second and third panels in Table 5 show this remarkable increase

in monthly (quarterly) slope point estimate from -0.54 ( quarterly 0.49) to 1.97 (quarterly 2.49).

The regressions at horizons longer than 3 months are more robust to extreme values in volatility, as

shown by the similar slope estimates in the middle and bottom panels of Table 5. Panel (b) of Table

7 shows the pairwise comparison tests based upon slope estimates from the winsorized continuous

volatility. We now fail to detect statistically significant differences between pairs of coefficients at

any horizons including monthly and quarterly. Table 8 contains the simulated critical values for

pairwise equality test statistic based upon zero-intercept regressions. The corresponding rescaled

Wald statistic T−1χ2
(R) for the joint restriction test, confirms this conclusion. Its calculated value

(0.068) is far less than its simulated 5% critical value (0.737). There is no evidence against a flat

term structure of risk-return trade-offs for the set of horizons considered in our analysis.

To summarize, the zero-intercept regressions are consistent with a positive and proportional

relationship between market excess return and past market continuous realized variance, constant

across horizons. Assuming that these variables are reasonable substitutes for the conditional ex-

pected excess return and continuous volatility of the stock market, these findings are consistent

with Merton’s (1973) ICAPM implications. When jumps are filtered out from the total quadratic

variation, we get a flat term structure of risk-return trade-offs. From our empirical results, there is
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no clear evidence that a representative investor with power utility preference modifies his relative

risk aversion as he undertakes longer term investments.

5 Conclusion

In this paper, we segregate past market variance into a continuous and a jump components. We use

the asymptotics of realized volatility to compute realized variance, realized continuous volatility,

and jump estimates. Our high frequency for the purpose of these computations is daily returns. We

compute these variables for multiple horizons from one to 120 months. We then estimate the link

between future market excess returns and past continuous variance and jumps at these horizons. We

provide the asymptotic analysis for the use of the rescaled t-statistic which is better behaved than

the standard heteroskedasticity and autocorrelation consistent (HAC) correction of the ordinary

t-statistic. We also simulate its exact sample distribution as the long horizons constitute a sizable

fraction of the sample size.

Relying on this inference, we find that the past jump component does not contribute the

time variation of future excess return at most horizons. The entirety of the previously documented

predictive power of realized variance on future excess returns is due to the continuous volatility.

Using continuous volatility, risk-return trade-offs are significant at medium to long horizons. These

findings point to continuous volatility as a central determinant of long-run risk-return relationships.

We then inspect the term structure of risk-return trade-offs after extracting jumps from the

market variances, that is, using only continuous realized variance as the predictor. We develop

a rescaled Wald statistic to test the presence of a horizon effect possibly induced by different

risk aversions for a representative investor facing different investment horizons. Our results are

consistent with a flat term structure of risk-return trade-offs, that is, the same risk aversion for

different horizons of a Merton style ICAPM.

We use regressions with and without intercept, where the zero-intercept constraint is consis-

tent with a return vs. risk model as in Merton (1980). The estimates arising from the unconstrained

regressions are unstable. This is a case where, as in Campbell and Thompson (2008), imposing a
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reasonable model-based constraint is beneficial. Further, even with a zero intercept, we initially

find a puzzling lack of connection between variance and returns at the shorter horizons. When

we repeat the estimation with a winsorized continuous volatility to attenuate some episodes of ex-

treme short-term volatility, the resulting short-horizon slope coefficients are in line with the longer

horizons. Indeed, at small horizons the empirical risk vs return relationship is unstable due to high

variability. Removing these sources of instability improves the estimation.

An interesting area of future research would be to study the out-of sample version of these

results, possibly using asset allocation to calibrate their economic significance. Also, it may be

interesting to explore the robustness of our findings on the (lack of) impact of past jumps on future

returns to the jump specification used. Our data analysis reveals a relatively small number of

months with jumps, and an interesting lack of connection between the size of realized variance

and the probability of occurrence of a jump (Figure 1 bottom panel). Our extraction technique is

adapted to finite activity jumps, and within this class we explored robustness with the significance

level of the z statistic. The link between risk and return might be interpreted differently if one

entertained for example infinite activity pure jump levy processes such as in Carr et al. (2002).

22



REFERENCES

Aı̈t-Sahalia, Y. (2004). “Disentangling Diffusion from Jumps.” Journal of Financial Eco-
nomics 74, 487–528.

Aı̈t-Sahalia, Y., and Jacod, J. (2009). “Testing For Jumps In a Discretely Observed Process.”
Annals of Statistics 37, 184–222.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007), “Roughing It Up: Including
Jump Components in the Measurement, Modeling and Forecasting of Return Volatility.” Review
of Economics and Statistics 89, 701-20.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2010). “Parametric and Nonparamet-
ric Volatility Measurement.” in Y. Ait-Sahalia (eds.) and L.P. Hansen, Handbook of Financial
Econometrics. Vol. 1, Elsevier Science, Amsterdam, The Netherlands, pp. 67–138.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). “Modeling and
Forecasting Realized Volatility.” Econometrica 71, 579–625.

Andersen, T. G., Bollerslev, T., and Meddahi, N. (2004). “Analytical Evaluation of Volatility
Forecasts.” International Economic Review 45, 1079–1110.

Andersen, T. G., Dobrev, D. P., and Schaumburg, E. (2012). “Jump-Robust Volatility
Estimation using Nearest Neighbor Truncation.” Journal of Econometrics 169, 75-93.

Back, K. (1991). “Asset Pricing For General Processes.” Journal of Mathematical Economics
20, 371–395.

Bali, T. G., and Engle, R. F. (2010). “The Intertemporal Capital Asset Pricing Model with
Dynamic Conditional Correlations.” Journal of Monetary Economics 57, 377–390.

Ball, C. A., and Torous, W. N. (1983). “A Simplified Jump Process for Common Stock
Returns.” Journal of Financial and Quantitative Analysis 18, 53–65.

Bandi, F. M., and Perron, B. (2008). “Long-Run Risk-Returns Trade-Offs.” Journal of
Econometrics 143, 349–374.

Bansal, R., and Yaron, A. (2004). “Risks for the Long-Run: a Potential Resolution of Asset
Pricing Puzzles.” Journal of Finance 59, 1481–1509.

Barndorff-Nielsen, O. E., and Shephard, N.(2004). “Power and Bipower Variation with
Stochastic Volatility and Jumps (with discussion).” Journal of Financial Econometrics 2, 1–48.

——– (2006). “Econometrics of Testing for Jumps in Financial Economics using Bipower
Variation.” Journal of Financial Econometrics 4, 1–30.

Bates, D. S. (2000). “Post-’87 Crash fears in the S&P 500 Futures Option Market.” Journal
of Econometrics 94, 181–238.

Bollerslev, T., Sizova, N., and Tauchen, G. (2012). “Volatility in Equilibrium: Asymmetries
and Dynamic Dependencies.” Review of Finance 16, 31–80.

Bollerslev, T., Tauchen, G., and Zhou, H. (2009). “Expected Stock Returns and Variance
Risk Premia.” Review of Financial Studies 22, 4463–4492.

Bollerslev, T., and Todorov, V. (2010). “Jumps and Betas: A New Framework for Disen-
tangling and Estimating Systematic Risks.” Journal of Econometrics 157, 220–235.

Boudoukh, J., Richardson, M., and Whitelaw, R.F. (2008). “The Myth of Long-Horizon

23



Predictability.” Review of Financial Studies 21, 1577–1605.

Busch, T., Christensen, B. J., and Nielsen, M. Ø. (2011). “The Role of Implied Volatility in
Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets.”
Journal of Econometrics 160, 48–57.

Campbell, J.Y. (2001). “Why Long Horizons? A Study of Power Against Persistent Alter-
natives.” Journal of Empirical Finance 8, 459–491.

Campbell, J. Y., Thompson, S. B. (2008). “Predicting the Equity Premium out of Sample:
Can Anything Beat the Historical Average.” Review of Financial Studies 21, 1509–1531.

Campbell, J. Y., and Shiller, R. (1988). “The Dividend-Price Ratio and Expectations of
Future Dividends and Discount Factors” Review of Financial Studies 1, 195–227.

Campbell, J. Y., and Viceira, L. (2005). “The Term Structure of the Risk-Return Trade-off.”
Financial Analysts Journal 61, 34-44.

Campbell, J. Y., and Yogo, M. (2006). “Efficient Tests of Stock Return Predictability.”
Journal of Financial Economics 81, 27–60.

Carr, P., Geman, H., Madan, D., and Yor, M. (2002) “The Fine Structure of Asset Returns:
An Empirical Investigation”, Journal of Business 75(2), 305–332

Carr, P., and Wu, L. (2003a). “The Finite Moment Log Stable Process And Option Pricing.”
Journal of Finance 58, 753–777.

Carr, P., and Wu, L. (2003b). “What Type of Process Underlies Options? A Simple Robust
Test.” Journal of Finance 58, 2581–2610.

Corsi, F. (2009). “A Simple Approximate Long-Memory model of Realized Volatility” Jour-
nal of Financial Econometrics 7, 174–196.

DeGennaro, R. P., and Zhao, Y. L. (1998). “Stock Returns and Volatility: Another Look.”
Journal of Economics and Finance 22, 5–18.

Eraker, B., Johannes, M., and Polson, N. (2003). “The Impact of Jumps in Volatility.”
Journal of Finance 58, 1269–1300.

Fama, E. F., and French, K. R. (1988). “Dividend Yields and Expected Stock Returns.”
Journal of Financial Economics 22, 3–25.

French, K. R., Schwert, W., and Stambaugh, R. F. (1987). “Expected Stock Returns and
Volatility.” Journal of Financial Economics 19, 3–29.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2005). “There Is a Risk-Return Trade-Off
After All.” Journal of Financial Economics 76, 509–548.

Glosten, L.R., Jagannathan, R., and Runkle, D.E. (1993). “On the Relation Between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” Journal of Finance
48, 1779–1801.

Goyal, A. and Welch I. (2008).“A Comprehensive Look at the Empirical Performance of
Equity Premium Predictions.” Review of Financial Studies 21(4), 1455–1508.

Guo, H., and Whitelaw, R. (2006). “Uncovering the Risk-Return Relation in the Stock
Market.” Journal of Finance 61, 1433–1464.

Hansen, L. P., and Hodrick, R. J. (1980). “Forward Exchange Rates as Optimal Predictors

24



of Future Spot Rates: An Econometric Analysis.” Journal of Political Economy 88(5), 829–852.

Huang, X., and Tauchen, G. (2005). “The Relative Contribution of Jumps to Total Price
Variance.” Journal of Financial Econometrics 3, 456–499.

Jacquier, E., Polson, N. G., and Rossi, P. E. (2004). “Bayesian Analysis of Stochastic
Volatility Models with Fat-Tails and Correlated Errors.” Journal of Econometrics 122, 185–212.

Jarrow, R. A., and Rosenfeld, E. (1984). “Jump Risk and the Intertemporal Capital Asset
Pricing Model.” Journal of Business 57, 337–351.

Jiang, G. J., and Oomen, R. C. A. (2008). “Testing For Jumps When Asset Prices Are
Observed With Noise–A Swap Variance Approach.” Journal of Econometrics 144, 352–370.

Johannes, M. (2004). “The Statistical and Economic Role of Jumps in Continuous-Time
Interest Rate Models.” Journal of Finance 59, 227–260.

Kim, M. J., Oh, Y. H., and Brooks, R. (1994). “Are Jumps in Stock Returns Diversifiable?
Evidence and Implications for Option Pricing.” Journal of Financial and Quantitative Analysis
29, 609–631.

Lee, S. S., and Hanning, J. (2010). “Detecting Jumps From Lévy Jump Diffusion Processes.”
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Table 1: NYSE/AMEX value weighted index descriptive statistics.
Based on the index monthly returns Jan. 1952 to Dec. 2009. RVt, Ct and J 2

t are the realized
variance, the continuous realized variance and the jumps in monthly returns estimated with a
95% significance level for the z statistic in Eqn. (9) and (10). ρ1 is the first order autocorrelation
coefficient. Statistics are not annualized.

Rt RVt Ct J 2
t

Mean 0.0044 17E-4 16E-4 1.4 E-4
Variance 0.0018 16.44 E-6 10.1E-6 1.46 E-6
Skewness -0.803 11 8.4 16.7
Kurtosis 6.154 146 92 298
ρ1 0.10 0.50 0.62 -0.01
ρ1 1952-1986 0.06 0.54 0.54 -0.03
ρ1 1988-2007 -0.01 0.50 0.50 -0.02
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Table 7: pairwise equality test statistics - regressions with no intercept
The table shows the rescaled Wald test statistics T−1χ2

(β̂hj−β̂hi )
for the regression in Eqn. (12):

Rt,t+h = βhCt−h,t + ηt,t+h run with no intercept. Panel a reports the estimates of the Wald
statistic. ∗ indicates a significant rescaled Wald statistic value larger than the 95% critical value.
Panel b reports the estimates of the Wald statistic for regressions run with no intercept and 99%
winsorized continuous volatility.

Panel a: No intercept (αh = 0)

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.004
6 0.022∗ 0.010∗

12 0.028∗ 0.018∗ 0.002
24 0.039∗ 0.030∗ 0.005 0.001
36 0.047∗ 0.041∗ 0.010 0.002 0.000
48 0.054∗ 0.049∗ 0.015 0.004 0.001 0.001
60 0.064∗ 0.071∗ 0.026 0.010 0.006 0.006 0.005
72 0.075∗ 0.082∗ 0.038 0.015 0.015 0.015 0.016 0.005
84 0.083∗ 0.096∗ 0.050 0.021 0.019 0.025 0.025 0.012 0.003
96 0.087∗ 0.108∗ 0.056 0.025 0.023 0.027 0.025 0.016 0.005 0.001

108 0.090∗ 0.121∗ 0.058 0.026 0.025 0.029 0.027 0.016 0.006 0.002 0.000
120 0.093∗ 0.136∗ 0.063 0.028 0.028 0.033 0.032 0.016 0.008 0.004 0.002 0.001

Panel b: No intercept (αh = 0)- winsorized continuous volatility

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.000
6 0.000 0.000
12 0.000 0.001 0.000
24 0.000 0.001 0.000 0.000
36 0.000 0.000 0.000 0.000 0.000
48 0.000 0.000 0.000 0.001 0.001 0.001
60 0.001 0.000 0.001 0.004 0.007 0.007 0.006
72 0.002 0.001 0.005 0.011 0.019 0.020 0.022 0.009
84 0.002 0.001 0.005 0.012 0.018 0.025 0.024 0.010 0.000
96 0.003 0.001 0.006 0.014 0.021 0.026 0.023 0.013 0.001 0.001
108 0.003 0.002 0.006 0.014 0.024 0.028 0.025 0.013 0.002 0.001 0.000
120 0.003 0.002 0.007 0.016 0.026 0.031 0.029 0.013 0.003 0.003 0.001 0.000
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Table 8: Simulated critical values of the rescaled Wald statistic for regressions with no intercept.
We simulate returns and volatilities under the null hypothesis of no predictability. The simulation
setup is rt = εt, and Ct = 0.8Ct−1 + ut, corr(εt, ut) = −0.3. We simulate 10,000 samples of 696
months of continuously compounded excess returns and continuous volatilities under the assumption
of no predictability. The simulated series are aggregated over h months (from 1 to 120) and
the multi-period regressions are run without intercept.The table reports the critical value of the
distribution of T−1χ2

(β̂hj−β̂hi )
for a 5% test using a Bonferroni correction to account for multiple

testing.

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.005
6 0.006 0.004
12 0.010 0.010 0.013
24 0.016 0.023 0.042 0.032
36 0.022 0.034 0.062 0.067 0.038
48 0.027 0.042 0.081 0.094 0.068 0.041
60 0.034 0.063 0.099 0.120 0.109 0.077 0.040
72 0.041 0.077 0.119 0.144 0.143 0.106 0.080 0.041
84 0.048 0.085 0.139 0.170 0.175 0.152 0.123 0.085 0.040
96 0.056 0.094 0.160 0.198 0.209 0.194 0.155 0.127 0.083 0.037
108 0.064 0.109 0.179 0.223 0.246 0.237 0.204 0.165 0.128 0.080 0.036
120 0.073 0.117 0.202 0.252 0.278 0.272 0.247 0.199 0.168 0.124 0.077 0.035
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Figure 1: Monthly NYSE/AMEX excess return 1952-2009
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Figure 2: Monthly NYSE / AMEX realized variance, continuous volatility and squared jumps, from
Jan. 52 to Dec. 09.
The significance level for the jump test statistic is 0.95.
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Figure 4: Autocorrelation of realized variance, continuous volatility and squared jumps.
The significance level for the jump test statistic is 0.95, see Figure 5 for a robustness analysis.
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Figure 5: Robustness of the autocorrelation of continuous volatility to the significance level x.
Panels (a)-(c): autocorrelation function of continuous volatility for significance levels of the jump
test statistic equal to 0.5, 0.9, and 0.99. Panel (d): ACF of the jump process for the 0.5 significance
level.
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winsorized top 1% larger values
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APPENDIX A: Propositions

Proposition 1 (Unrestricted regressions). For dynamics in Eqn.(11), b1 = γ1 = 0, and Eqn. (1)
estimated for any generic horizon h, we have:

T

(
b̂h
γ̂h

)
L−→


σe
σ
uC

∫ 1−λ
λ J

2
c2

(s,−λ)ds
∫ 1−λ
λ W (s,λ)Jc1 (s,−λ)ds−

∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

∫ 1−λ
λ W (s,λ)Jc2 (s,−λ)ds∫ 1−λ

λ J
2
c1

(s,−λ)ds
∫ 1−λ
λ J

2
c2

(s,−λ)ds−
(∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

)2
σe

σ
uJ 2

∫ 1−λ
λ J

2
c1

(s,−λ)ds
∫ 1−λ
λ W (s,λ)Jc2 (s,−λ)ds−

∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

∫ 1−λ
λ W (s,λ)Jc1 (s,−λ)ds∫ 1−λ

λ J
2
c1

(s,−λ)ds
∫ 1−λ
λ J

2
c2

(s,−λ)ds−
(∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

)2

 ,

and

T 3V ar

(
b̂h
γ̂h

)
L−→ Ω

(1−2λ)∆

×

 σ2
e

σ2
uC

∫ 1−λ
λ J

2
c2 (s,−λ) ds −σ2

e
σ
uC

σ
uJ 2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

−σ2
e

σ
uC

σ
uJ 2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds σ2

e

σ2

uJ 2

∫ 1−λ
λ J

2
c1 (s,−λ) ds

 ,
where ∆ =

∫ 1−λ
λ J

2
c1 (s,−λ) ds

∫ 1−λ
λ J

2
c2 (s,−λ) ds−

(∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

)2
,

Ω =



∫ 1−λ
λ W

2
(s, λ) ds
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λ J
2
c2 (s,−λ) ds
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)2

−∆
−1 ∫ 1−λ

λ J
2
c1 (s,−λ) ds

(∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

)2

+2∆
−1 ∫ 1−λ

λ W (s, λ) Jc1 (s,−λ) ds
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λ Jc1 (s,−λ) Jc2 (s,−λ) ds
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λ W (s, λ) Jc2 (s,−λ) ds

 ,

W (t, λ) = {W (t+ λ)−W (t)} − 1
1−2λ

∫ 1−λ
λ (W (s+ λ)−W (s)) ds,

Jci (t,−λ) =
{∫ t

t−λ Jci (s) ds
}
− 1

1−2λ

∫ 1−λ
λ

(∫ t
t−λ Jci (s) ds

)
dt, i = 1, 2,

dJci (s) = ciJci (s) + dBi (s) , Jci (0) = 0 or Jci (s) = Bi (s) + ci
∫ s

0 e
ci(s−τ)Bi (τ) dτ, i = 1, 2,

and {W (s) , B1 (s) , B2 (s)} is a vector of standard Brownian motions with covariance
σεuC σ

εuJ 2σ
uCuJ 2/σεσuCσuJ 2 .

Proposition 2 (The restricted regressions). For dynamics as in Eqn. (11), b1 = γ1 = 0, and Eqn.
(1) estimated with αh = 0 for any generic horizon h, we have:
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σ
uC

σ
uJ 2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds σ2

e

σ2

uJ 2

∫ 1−λ
λ J2

c1 (s,−λ) ds

 ,
where

∆ =
∫ 1−λ
λ J2

c1 (s,−λ) ds
∫ 1−λ
λ J2

c2 (s,−λ) ds−
(∫ 1−λ

λ Jc1 (s,−λ) Jc2 (s,−λ) ds
)2
,

Ω =



∫ 1−λ
λ W 2 (s, λ) ds

−∆−1
∫ 1−λ
λ J2

c2 (s,−λ) ds
(∫ 1−λ

λ W (s, λ) Jc1 (s,−λ) ds
)2

−∆−1
∫ 1−λ
λ J2

c1 (s,−λ) ds
(∫ 1−λ

λ W (s, λ) Jc2 (s,−λ) ds
)2

+2∆−1
∫ 1−λ
λ W (s, λ) Jc1 (s,−λ) ds

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

,

W (t, λ) = W (t+ λ)−W (t) ,

Jci (t,−λ) =
∫ t
t−λ Jci (s) ds, i = 1, 2,

dJci (s) = ciJci (s) + dBi (s) , Jci (0) = 0 or Jci (s) = Bi (s) + ci
∫ s

0 e
ci(s−τ)Bi (τ) dτ, i = 1, 2,

and {W (s) , B1 (s) , B2 (s)} is a vector of standard Brownian motions with covariance
σεuC σ

εuJ 2σuCuJ 2/σεσuCσuJ 2 .

Proposition 3 (The unrestricted regressions). For dynamics Eqn. (13) and Eqn. (14), β1 = 0,
and Eqn. (12) estimated for any two generic levels of aggregation hi and hj (w.o.l.g), we have:

T

(
β̂hi
β̂hj

)
L−→ σε

σu


∫ 1−λi
λi

W (s,λi)Jc(s,−λi)ds∫ 1−λi
λi

J
2
c(s,−λi)ds∫ 1−λj

λj
W (s,λj)Jc(s,−λj)ds∫ 1−λj

λj
J
2
c(s,−λj)ds

 ,

T 3V ar

(
β̂hi
β̂hj

)
L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)  ,
where
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Avar
(
β̂hl

)
= σ2

ε
σ2
u

1
1−2λl

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

J
2
c(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(∫ 1−λl
λl

J
2
c(s,−λl)ds

)2 , l = i, j,

Acov
(
β̂hi , β̂hj

)
= σ2

ε
σ2
u

1
1−2λ(i∨j)



∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds∫ 1−λi
λi

J
2
c(s,−λi)ds

∫ 1−λj
λj

J
2
c(s,−λj)ds

−

(∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
)2 ∫ 1−λi

λi
W (s,λi)Jc(s,−λi)ds

∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds(∫ 1−λi
λi

J
2
c(s,−λi)ds

)2(∫ 1−λj
λj

J
2
c(s,−λj)ds

)2


W (t, λl) = {W (t+ λl)−W (t)} − 1

1−2λl

∫ 1−λl
λl

(W (s+ λl)−W (s)) ds, l = i, j,

Jc (t,−λl) =
{∫ t

t−λl Jc (s) ds
}
− 1

1−2λl

∫ 1−λl
λl

(∫ t
t−λl Jc (s) ds

)
dt, l = i, j,

dJc (s) = cJc (s) + dB (s) , Jc (0) = 0 or Jc (s) = B (s) + c
∫ s

0 e
c(s−τ)B (τ) dτ,

h(i∨j) ≡ max (hi, hj) and {W (s) , B (s)} is a vector of standard Brownian motions with covariance
σεu/σεσu.

Proposition 4 (The restricted regressions). For dynamics Eqn. (13) and Eqn. (14), β1 = 0, and
Eqn. (12) estimated with αh = 0 for any two generic levels of aggregation hi and hj (w.o.l.g), we
have:

T

(
β̂hi
β̂hj

)
L−→ σε

σu


∫ 1−λi
λi

W (s,λi)Jc(s,−λi)ds∫ 1−λi
λi

J2
c (s,−λi)ds∫ 1−λj

λj
W (s,λj)Jc(s,−λj)ds∫ 1−λj

λj
J2
c (s,−λj)ds

 ,

T 3V ar

(
β̂hi
β̂hj

)
L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)  ,
where

Avar
(
β̂hl

)
= σ2

ε
σ2
u

1
1−2λl

[∫ 1−λl
λl

W 2(s,λl)ds
∫ 1−λl
λl

J2
c (s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(∫ 1−λl
λl

J2
c (s,−λl)ds

)2 , l = i, j,

Acov
(
β̂hi , β̂hj

)
= σ2

ε
σ2
u

1
1−2λ(i∨j)



∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds∫ 1−λi
λi

J2
c (s,−λi)ds

∫ 1−λj
λj

J2
c (s,−λj)ds

−

(∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
)2 ∫ 1−λi

λi
W (s,λi)Jc(s,−λi)ds

∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds(∫ 1−λi
λi

J2
c (s,−λi)ds

)2(∫ 1−λj
λj

J2
c (s,−λj)ds

)2

 ,
W (t, λl) = W (t+ λl)−W (t) , l = i, j,
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Jc (t,−λl) =
∫ t
t−λl Jc (s) ds, l = i, j,

dJc (s) = cJc (s) + dB (s) , Jc (0) = 0 or Jc (s) = B (s) + c
∫ s

0 e
c(s−τ)B (τ) dτ,

h(i∨j) ≡ max (hi, hj) and {W (s) , B (s)} is a vector of standard Brownian motions with covariance
σεu/σεσu.

APPENDIX B: Proofs

B1: Proof of Proposition 1

Define Rh = 1
T−2h+1

T−2h+1∑
t=1

Rt,t+h, C−h = 1
T−2h+1

T−2h+1∑
t=1

Ct−h,t, and J 2
−h = 1

T−2h+1

T−2h+1∑
t=1

J 2
t−h,t.

Then:

1. T

(
b̂h
γ̂h

)
=


1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)2
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(J 2
t−h,t−J

2
−h

T 3/2

)
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(J 2
t−h,t−J

2
−h

T 3/2

)
1
T

T−2h+1∑
t=1

(
J 2
t−h,t−J

2
−h

T 3/2

)2


−1

×


1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(
Rt,t+h−Rh

T 1/2

)
1
T

T−2h+1∑
t=1

(
J 2
t−h,t−J

2
−h

T 3/2

)(
Rt,t+h−Rh

T 1/2

)


L−→


σe
σ
uC

∫ 1−λ
λ J

2
c2

(s,−λ)ds
∫ 1−λ
λ W (s,λ)Jc1 (s,−λ)ds−

∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

∫ 1−λ
λ W (s,λ)Jc2 (s,−λ)ds∫ 1−λ

λ J
2
c1

(s,−λ)ds
∫ 1−λ
λ J

2
c2

(s,−λ)ds−
(∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

)2
σe

σ
uJ 2

∫ 1−λ
λ J

2
c1

(s,−λ)ds
∫ 1−λ
λ W (s,λ)Jc2 (s,−λ)ds−

∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

∫ 1−λ
λ W (s,λ)Jc1 (s,−λ)ds∫ 1−λ

λ J
2
c1

(s,−λ)ds
∫ 1−λ
λ J

2
c2

(s,−λ)ds−
(∫ 1−λ
λ Jc1 (s,−λ)Jc2 (s,−λ)ds

)2



2. T 3V ar

(
b̂h
γ̂h

)
= S2

T


1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)2
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(J 2
t−h,t−J

2
−h

T 3/2

)
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(J 2
t−h,t−J

2
−h

T 3/2

)
1
T

T−2h+1∑
t=1

(
J 2
t−h,t−J

2
−h

T 3/2

)2


−1

where

S2 = 1
T−2h+1

[
T−2h+1∑
t=1

((
Rt,t+h −Rh

)
− b̂h

(
Ct−h,t − C−h

)
− γ̂h

(
J 2
t−h,t − J 2

−h

))2
]
.

Thus:
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S2

T = T
T−2h+1



1
T

T−2h+1∑
t=1

(
Rt,t+h−Rh

T 1/2

)2

+
(
T b̂h

)2
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)2

+ (T γ̂h)2 1
T

T−2h+1∑
t=1

(
J 2

t−h,t−J 2
−h

T 3/2

)2

+2T b̂hT γ̂h
1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(
J 2

t−h,t−J 2
−h

T 3/2

)
− 2T b̂h

1
T

T−2h+1∑
t=1

(
Ct−h,t−C−h

T 3/2

)(
Rt,t+h−Rh

T 1/2

)
−2T γ̂h

1
T

T−2h+1∑
t=1

(
J 2

t−h,t−J 2
−h

T 3/2

)(
Rt,t+h−Rh

T 1/2

)


.

Combining the Functional Central Limit Theorem (FCLT) and the Continuous Mapping The-
orem (CMT), it follows that:

S2

T
L−→ σ2

e
1−2λ



∫ 1−λ
λ W

2
(s, λ) ds

−∆
−1 ∫ 1−λ

λ J
2
c1 (s,−λ) ds

(∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

)2

−∆
−1 ∫ 1−λ

λ J
2
c2 (s,−λ) ds

(∫ 1−λ
λ W (s, λ) Jc1 (s,−λ) ds

)2

+2∆
−1 ∫ 1−λ

λ W (s, λ) Jc1 (s,−λ) ds
∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

 .

That is, S2

T
L−→ σ2

e
1−2λΩ , where

∆ =
∫ 1−λ
λ J

2
c1 (s,−λ) ds

∫ 1−λ
λ J

2
c2 (s,−λ) ds−

(∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

)2
,

and:

Ω =



∫ 1−λ
λ W

2
(s, λ) ds

−∆
−1 ∫ 1−λ

λ J
2
c1 (s,−λ) ds

(∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

)2

−∆
−1 ∫ 1−λ

λ J
2
c2 (s,−λ) ds

(∫ 1−λ
λ W (s, λ) Jc1 (s,−λ) ds

)2

+2∆
−1 ∫ 1−λ

λ W (s, λ) Jc1 (s,−λ) ds
∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

∫ 1−λ
λ W (s, λ) Jc2 (s,−λ) ds

 .

Finally:

T 3V ar

(
b̂h
γ̂h

)
L−→ σ2

e Ω
1−2λ

[
σ2
uC

∫ 1−λ
λ J

2
c1 (s,−λ) ds σuCσuJ2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

σuCσuJ2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds σ2

uJ2

∫ 1−λ
λ J

2
c2 (s,−λ) ds

]−1

,

or equivalently:

T 3V ar

(
b̂h
γ̂h

)
L−→ Ω

(1−2λ)∆

 σ2
e

σ2
uC

∫ 1−λ
λ J

2
c2 (s,−λ) ds

−σ2
e

σuCσ
uJ2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

−σ2
e

σuCσ
uJ2

∫ 1−λ
λ Jc1 (s,−λ) Jc2 (s,−λ) ds

σ2
e

σ2

uJ2

∫ 1−λ
λ J

2
c1 (s,−λ) ds

 .

B2: Proof of Proposition 2

The proof for Proposition 2 follows identical steps. However, since we consider zero-intercept regres-
sions, W (s, λ) and Jc (s,−λ) are replaced with their uncentered versions W (s, λ) and Jc (s,−λ) .

44



B3: Proof of Proposition 3

1. T β̂hl =

1
T

T−2hl+1∑
t=1

(
Ct−hl,t

−C−hl
T3/2

)(
Rt,t+hl

−Rhl
T1/2

)
1
T

T−2hl+1∑
t=1

(
Ct−hl,t

−C−hl
T3/2

)2

L−→ σε
σu

∫ 1−λl
λi

W (s,λl)Jc(s,−λl)ds∫ 1−λl
λl

J
2
c(s,−λl)ds

, for l = i, j,

2. T 3V ar

(
β̂hi
β̂hj

)
= T 3

 V ar
(
β̂hi

)
Cov

(
β̂hi , β̂hj

)
Cov

(
β̂hi , β̂hj

)
V ar

(
β̂hj

) 

T 3V ar
(
β̂hl

)
=

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
Ct−hl,t−C−hl

T 3/2

)2
)−1

, for l = i, j ,

where

S2
l =

1

T − 2hl + 1

[
T−2hl+1∑
t=1

(
Rt,t+hl −Rhl

)2 − β̂2
hl

T−2hl+1∑
t=1

(
Ct−hl,t − C−hl

)2]
.

Moreover:

T 3Cov
(
β̂hi , β̂hj

)
=

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
Ct−hi,t−C−hi

T3/2

)(
Ct−hj,t−C−hj

T3/2

)
(

1
T

T−2hi+1∑
t=1

(
Ct−hi,t−C−hi

T3/2

)2
) 1

T

T−2hj+1∑
t=1

(
Ct−hj,t−C−hj

T3/2

)2


 ,

where: Sij = 1
T−2h(i∨j)+1


T−2h(i∨j)+1∑

t=1

(
Rt,t+hi −Rhi

) (
Rt,t+hj −Rhj

)
−β̂hi β̂hj

T−2h(i∨j)+1∑
t=1

(
Ct−hi,t − C−hi

) (
Ct−hj ,t − C−hj

)
 represents the

covariance between the two regressions error terms and h(i∨j) ≡ max (hi, hj). Note that:

Rhl = 1
T−2hl+1

T−2hl+1∑
t=1

Rt,t+hl and C−hl = 1
T−2hl+1

T−2hl+1∑
t=1

Ct−hl,t, for l = i, j.

Again using the FCLT and the Continuous Mapping Theorem (CMT) it follows that:

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
Ct−hl,t−C−hl

T 3/2

)2
)−1

= T
T−2hl+1

[
1
T

T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)2

−(T β̂hl)
2 1
T

T−2hl+1∑
t=1

(
Ct−hl,t

−C−hl
T3/2

)2
]

1
T

T−2hl+1∑
t=1

(
Ct−hl,t

−C−hl
T3/2

)2

L−→ σ2
ε
σ2
u

1
1−2λl

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

J
2
c(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(∫ 1−λl
λl

J
2
c(s,−λl)ds

)2 , l = i, j

and

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
Ct−hi,t−C−hi

T3/2

)(
Ct−hj,t−C−hj

T3/2

)
(

1
T

T−2hi+1∑
t=1

(
Ct−hi,t−C−hi

T3/2

)2
) 1

T

T−2hj+1∑
t=1

(
Ct−hj,t−C−hj

T3/2

)2
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L−→ σ2
ε
σ2
u

1
1−2λ(i∨j)



∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds∫ 1−λi
λi

J
2
c(s,−λi)ds

∫ 1−λj
λj

J
2
c(s,−λj)ds

−

(∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
)2 ∫ 1−λi

λi
W (s,λi)Jc(s,−λi)ds

∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds(∫ 1−λi
λi

J
2
c(s,−λi)ds

)2(∫ 1−λj
λj

J
2
c(s,−λj)ds

)2

.

Hence, T 3V ar
(
β̂hl

)
L−→ Avar

(
β̂hl

)
, where

Avar
(
β̂hl

)
= σ2

ε
σ2
u

1
1−2λl

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

J
2
c(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(∫ 1−λl
λl

J
2
c(s,−λl)ds

)2 , for l = i, j.

Finally, T 3Cov
(
β̂hi , β̂hj

)
L−→ Acov

(
β̂hi , β̂hj

)
, where

Acov
(
β̂hi , β̂hj

)
= σ2

ε
σ2
u

1
1−2λ(i∨j)



∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds∫ 1−λi
λi

J
2
c(s,−λi)ds

∫ 1−λj
λj

J
2
c(s,−λj)ds

−

(∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds
)2 ∫ 1−λi

λi
W (s,λi)Jc(s,−λi)ds

∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds(∫ 1−λi
λi

J
2
c(s,−λi)ds

)2(∫ 1−λj
λj

J
2
c(s,−λj)ds

)2


and λ(i∨j) ≡ max (λi, λj) .

B4: Proof of Proposition 4

The proof for Proposition 4 is similar except that W (s, λ) and Jc (s,−λ) are replaced with their
uncentered versions W (s, λ) and Jc (s,−λ) .

B5: Proof of Equation (15)

The rescaled Wald statistic is used to test the hypothesis R

[
β̂hi
β̂hj

]
= 0 where R =

[
−1 1

]
.

Recall that:

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) =

[
T
(
β̂hj − β̂hi − 0

)]2

T 3
[
V ar

(
β̂hj

)
+ V ar

(
β̂hi

)
− 2Cov

(
β̂hi , β̂hj

)] .
By FCLT and CMT, we have:

[
T
(
β̂hj − β̂hi − 0

)]2 L−→ N , where

N =
σ2
ε

σ2
u

∫ 1−λj
λj

W (s, λj) Jc (s,−λj) ds∫ 1−λj
λj

J
2
c (s,−λj) ds

−
∫ 1−λi
λi

W (s, λi) Jc (s,−λi) ds∫ 1−λi
λi

J
2
c (s,−λi) ds

2

.
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Now focus on the denominator; from the same argument as before, we get:

T 3
[
V ar

(
β̂hj

)
+ V ar

(
β̂hi

)
− 2Cov

(
β̂hi , β̂hj

)]
L−→ D,

where D = Avar
(
β̂hi

)
+ Avar

(
β̂hj

)
− 2Acov

(
β̂hi , β̂hj

)
. Combining the numerator and the de-

nominator yields Eqn. (15). Eqn. (16) obtains in the same way, but W (s, λ) and Jc (s,−λ) are
replaced with their uncentered versions W (s, λ) and Jc (s,−λ).
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