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Abstract

The basic univariate stochastic volatility model specifies that conditional volatility follows a
log-normal auto-regressive model with innovations assumed to be independent of the innovations in
the conditional mean equation. Since the introduction of practical methods for inference in the basic
volatility model (JPR (1994)), it has been observed that the basic model is too restrictive for many
financial series. We extend the basic SVOL to allow for a so-called ”leverage effect” via correlation
between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A
Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus
far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We
develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling
experiments reveal little loss in precision from adding the model extensions but a large loss from using
the basic model in the presence of mis-specification. There is overwhelming evidence of a leverage
effect for weekly and daily equity indices. The evidence in favor of fat-tails is very strong for daily
exchange rate and equity indices, but less so for weekly data. We also find that volatility estimates
from the extended model are markedly different from those produced by the basic SVOL.
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1 Introduction

Stochastic volatility (hereafter, SVOL) models offer a natural alternative to the GARCH family
of time-varying volatility models. SVOL models allow for separate error processes for the conditional
mean and conditional variance. The basic SVOL model specifies a log-normal auto-regressive process
for the conditional variance with independent innovations in the conditional mean and conditional
variance equations. There is evidence that SVOL models offer increased flexibility over the GARCH
family, e.g. Geweke (1994b) and Fridman and Harris (1998).

The basic SVOL model can be extended in two natural ways: 1. with a fat-tailed distribution
of the conditional mean innovations and 2. with a ”leverage” effect, in which the conditional mean
and conditional variance innovations are correlated. Evidence in favor of fat-tails has been uncovered
by Gallant, Hsieh and Tauchen (1997) and Geweke (1994c). Negative correlations between mean and
variance errors can produce a ”leverage” effect in which negative (positive) shocks to the mean are
associated with increases (decreases) in volatility. This effect has been documented by Black (1976).
It is captured in the EGARCH approach of Nelson (1991) and the modified GARCH of Glosten,
Jagannathan and Runkle (1993). Dumas et al. (1997) report that volatility estimates implied by
index option prices are negatively correlated with the underlying index return.

Jacquier, Polson and Rossi (1994) (hereafter, JPR) develop a Bayesian Markov Chain Monte
Carlo method for the basic SVOL model. This allows for exact finite sample inference, prediction and
smoothing. Here we extend their method to handle SVOL models with both fat-tailed and correlated
errors, providing the first likelihood-based procedure for SVOL models with correlated errors. We
develop Bayes factors to assess the extent of sample evidence in favor of these extensions. The direct
evaluation of Bayes factors as ratios of marginal likelihoods is computationally intensive and can
be numerically unstable for latent variable models. Rather, we show how to rewrite the marginal
likelihood ratios as simple functions of posterior quantities. Therefore we only require the already
produced MCMC posterior output to compute Bayes factors.

To document evidence in support of the extended SVOL model as well as to investigate per-
formance issues, both simulated and equity index/exchange rate series are analyzed. Using simulated
data, we show that assuming the basic SVOL specification in the presence of fat-tails has severe con-
sequences for both parameter and volatility estimation. All but one of the financial series show strong
evidence of fat-tailed conditional mean errors, albeit weaker for the weekly series. All equity indices,
weekly and daily, display a leverage effect. The Bayes factors display overwhelming evidence in favor
of the extensions of the basic SVOL model. The extended SVOL model produces estimates and fore-
casts of volatility that are markedly different from the basic model, showing that the extensions are
of practical relevance.

The paper is organized as follows. Section 2 outlines the basic SVOL model and extensions
with details of the MCMC algorithm and Bayes Factor computations. Section 3 documents the
performance of the method in parameter estimation and smoothing or volatility inference. Section 4
presents the results of application of the model to financial time series. Section 5 provides evidence on
prior sensitivity analysis and convergence of the MCMC method. Section 6 offers concluding remarks.
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2 Extensions of the basic SVOL model

2.1 The basic model

2.1.1 Model

This paper presents extensions of the basic log-normal autoregressive SVOL below:

yt =
√
ht εt, (1)

log ht = α+ δ log ht−1 + σvvt, t = 1, . . . , T

(εt, vt) ∼ N(0, I2).

Here I2 is the two-dimensional identity matrix. Let ω denote the vector of parameters of the basic
SVOL, (α, δ, σv), where α is the intercept, δ is the volatility persistence and σv is the standard devi-
ation of the shock to log ht. We can view the model as a hierarchical structure of three conditional
distributions, p(y|h), p(h|ω), p(ω), where y and h are the vectors of data and volatilities. The dis-
tribution of the data given the volatilities is p(y|h). Beliefs about the evolution of volatility, here a
log-normal AR(1) are modelled by p(h|ω) models. p(ω) reflects beliefs about the parameters of the
volatility process. In both the basic and the extended SVOL, the support of the prior p(ω) restricts
log ht to the region of stationarity.

2.1.2 Priors

We use a Normal-Gamma prior for p(ω) as in standard Bayesian analysis of regression models.

For σv, we use p(σv) ∝ e−ν0s
2
0/2σ

2
/σν0+1, an inverse gamma with ν0 = 1 degrees of freedom

and a very small sum of squares of s = 0.005. This is a very flat prior over the relevant posterior
range.

We use α ∼ N(0, 100) and δ ∼ N(0, 10). α and δ are a priori independent. The prior on δ is
essentially flat over [0,1]. We impose stationarity for log ht by truncating the prior of δ. Christoffersen
and Diebold (1997) find evidence in favor of stationarity in a model free context. Here we believe for
substantive reasons that a non-stationary stochastic volatility is unrealistic. For example, it would
mean that portfolio managers should permanently re-balance their portfolios, or traders permanently
adjust long-term option values, after a volatility shock. Other priors for δ are possible. Geweke (1994a)
proposes alternate priors to allow the formulation of odds ratios for non-stationarity. Kim et al. (1998)
center an informative Beta prior around 0.9. We use a flat prior as we have no prior view on δ, other
than stationarity.

2.1.3 Algorithm

The MCMC algorithm JPR developed for the basic SVOL model exploits the hierarchical
structure of the model by augmenting the parameter space to include h. Using a proper prior for for
(h, ω), the JPR MCMC algorithm provides inference about the joint posterior p(h, ω|y). As noted in
JPR (1994), the transition kernel is irreducible and aperiodic, and, due to the time reversibility of the
general Metropolis chain, the resulting posterior is the unique invariant distribution of the chain, see
also Tierney (1994). This will hold for the extensions considered here as the additional parameters
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have proper priors. Thus the chain for the extensions has the same convergence properties as in
JPR (1994).

MCMC algorithms such as Gibbs and Metropolis construct Markov chains with equilibrium
distribution equal to the joint posterior distribution of the parameters given the data. Consider a
partition of a parameter vector θ into r blocks. The Gibbs algorithm draws the n+1st θi from the

conditional p(θ
(n+1)
i |θ(n+1)

1 , .., θ
(n+1)
i−1 , θ

(n)
i+1, .., θ

(n)
r ) or p(θ

(n+1)
i |θ(n)

−i ), for i = 1, .., r. For the basic SVOL
in (1), JPR break the joint posterior density p(ω,h|y) into two Gibbs blocks: p(ω|h,y) and p(h|ω,y).

• p(ω|y,h): p(ω|y,h) = p(ω | h) is the posterior from a linear regression. Using standard analyt-
ical results, direct draws can be made. Stationarity is imposed via our prior on δ. We simply
reject MCMC draws larger than one. Such draws are truly exceptional, occurring at a rate of
less than one in several hundred thousand.

• p(h | ω,y): JPR break p(h | ω,y) into T univariate conditional distributions

p(ht|ht−1, ht+1, α, δ, σv,y) ∝
1

h0.5
t

exp
−y2

t

2ht
× 1

ht
exp

−(log ht − µt)
2

2σ2
, t = 1, . . . ,T, (2)

where µt = (α(1 − δ) + δ(log ht+1 + log ht−1))/(1 + δ2) and σ2 = σ2
v/(1 + δ2). Let p denote the

un-normalized kernel in (2). Here we augment h with h0, hT+1. We integrate out h0 and hT+1 by
drawing from the AR(1) in (1), see Geweke (1994c). Given the time reversibility of the AR(1), we
draw log h0 by drawing v0 ∼ N(0, 1) and computing α + δ log h1 + σvv0. We use this method for the
extended model as well.

Efficient draws from p in (2) are critical to the performance of the MCMC algorithm. One
possible method is rejection sampling. It requires a blanket density q and a finite constant c such that,
p(h) ≤ cq(h) ∀h. Consider a draw h from q. Accept the draw with probability p(h)/cq(h). Otherwise,
draw again. This may be slow within the context of a MCMC sampler either due to the computation
of the integration constant in (2) at every iteration, or a high rejection rate. Another approach is the
independence Metropolis-Hastings algorithm. Make a candidate n+1st draw of ht, using a transition
kernel f(h). Accept the candidate draw with probability

min

(
p(h

(n+1)
t )/f(h

(n+1)
t )

p(h
(n)
t )/f(h

(n)
t )

, 1

)
. (3)

Otherwise, repeat h
(n)
t , and move to h

(n+1)
t+1 . The repeat rule adjusts for the difference between f and p.

Since (3) uses ratios, the integration constant of p is not needed. See Hastings (1970), Tierney (1994),
and Chib and Greenberg (1995) for discussion. JPR combine accept/reject and Metropolis-Hastings.
First, draw from q and accept the draw with probability min(p(h)/cq(h), 1). Repeat this until a draw is

retained. The candidate draw then enters a Metropolis-Hastings step. If h
(n+1)
t is not accepted, repeat

h
(n)
t and move to h

(n+1)
t+1 . Tierney (1994) points out that this amounts to using f(h) ∝ min(p(h), cq(h))

in (3).

The choice of q is critical to the efficiency of the algorithm. Fewer rejections and repeats result
if q(h) better approximates p(h). p in (2) is the product of an inverse gamma and log-normal kernels.

To build q, JPR approximate the log-normal kernel by an inverse gamma, ∝ h
−(φLN,t+1)
t e−θLN,t/ht ,

with the same mean and variance. This requires φLN = (1 − 2eσ
2
)/(1 − eσ

2
) and θLN,t = (φLN −
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0.5) exp (µt + 0.5σ
2). The inverse gamma kernel in (2) has parameters φ1 = −0.5 and θ1,t = y2

t /2.
The product of inverse gammas is an an inverse gamma. The resulting blanket q is

q(ht | .) ∝ h
−(φ+1)
t e−θt/ht ,

where φ = φ1 + φLN − 1 and θt = θ1,t + θLN,t. Alternative distributions for q such as log-normals
or mixtures of log-normal and inverse gamma were found to be less efficient in practice. Theoretical
convergence does not require q to have a fatter tail than p, as it does for a pure accept/reject. However,
the less efficient blankets all had thinner tails than the one used here.

Pure and accept/reject Metropolis have the same theoretical convergence properties, but they
differ slightly in practice. Rejections require more draws from q to obtain a given number of retained
draws. Repeats lead to a less informative sequence of draws. Our algorithm is fast and we are not
constrained by computing time. Thus, we favor sequences of retained draws with fewer repeats, i.e.
more information content. A larger c tilts the algorithm toward rejections and away from repeats.
This increases the acceptance probability (3). We choose c as 1.1 times the value of p/q at the mode
of q. This results in about 20% rejection rate and less than 1% repeat rate.

Other strategies have been proposed for p(h|ω,y). Geweke (1994c) notes that p in (2) is log-
concave, and therefore the algorithm in Wild and Gilks (1993) can be used. Carter and Kohn (1994)
propose another approach for the basic SVOL, see also Mahieu and Schotman (1998), and Shephard
and Kim (1994). They approximate the distribution of log ε2t with a discrete mixture of normals.
This allows a joint draw of the vector h. Our strategy does not use an approximation. While Chib et
al (1998) note that the approximation can be corrected by re-weighting, the discrete mixture approach
does not extend to the correlated case introduced below.

We now allow for fat-tails in εt and a correlation between εt and vt. We describe the fat-tail
and correlation extensions separately and then observe that they are easy to combine.

2.2 Fat-tailed departures from normality

2.2.1 Model

In the context of stochastic volatility models, Geweke (1994c) and Gallant, Hsieh and Tauchen
(1996) provide empirical evidence suggesting fat tails in the distribution of the conditional mean εt.
This has also been noted in the GARCH/EGARCH literature (c.f. Bollerslev (1987), Nelson (1991),
and Bollerslev et al. (1994)). A fat-tailed distribution for εt is easily obtained by a scale mixture. In
our approach, the realization of the scale mixture variable is a latent variable. The fat-tailed model is
as follows:

yt =
√
htεt =

√
ht
√
λtzt (4)

log ht = α+ δ log ht−1 + σvvt, t = 1, . . . , T

(zt, vt) ∼ N(0, I2)

λt ∼ p(λt | ν)

We assume that λt is distributed i.i.d. inverse gamma, or that ν/λt ∼ χ2
ν . This implies that

the marginal distribution of εt =
√
λtzt is Student-t(ν). This approach has been used by Carlin and

Polson (1991) with fixed ν, and Geweke (1993) who estimates ν for regression models. The Student-t
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allows for a wide range of kurtosis and approximates the tail behavior of the normal model for very
large values of ν. Allowing for fat-tails in εt extends the SVOL model in a manner similar to fat-tails
extensions of GARCH models. Fat tails could also be introduced in the distribution of vt, but in order
for yt to have finite moments, this would preclude the use of a Student-t distribution - no moments of
ev exist where v ∼ t.

The basic and fat-tailed SVOL’s differ markedly in their treatment of extreme observations or
outliers. In the basic SVOL, large |yt|’s are evidence that ht is high. In the fat-tailed model, λt provides
an additional source of flexibility. The fat-tailed model can deal with outliers by introducing a large
λt. Therefore, it will take a series of large |yt|’s before ht is increased. In fact, some have suggested
that a posterior analysis of λt might serve as an outlier diagnostic. In any case, the fat-tailed SVOL
can be viewed as more outlier resistant than the basic SVOL.

These differences in the treatment of large |yt|’s can have an important effect on volatility
estimates and forecasts. The intuition is that the basic SVOL model will result in a more variable
sequence of estimated ht’s than the fat-tailed model. Observations with a large |yt| will have much
greater effects on future volatility forecasts for the basic than for the fat-tailed SVOL. Figure 1 il-
lustrates this using the UK £/$ exchange rate. Panel (a) shows the time series of log-differences in
exchange rates in 1985. Panel (b) shows the smoothed estimates of ht computed with the MCMC algo-
rithms and priors outlined in sections 2.1, and 2.2.2 and 2.2.3 below, for both the basic and fat-tailed
models. As might be expected, the ht series resulting from the basic model is much more variable than
the series inferred from the fat-tailed model. This is because the fat-tailed model has the ability to
”resist” outliers by using a large value of λt. The high variability in the time series plot of st =

√
htλt

in Panel (b) further highlights the flexibility of the fat-tailed model. The observation for September
23rd also illustrates this point well. In the fat-tailed model, a large λt accommodates this observation,
which reduces its influence on the subsequent smoothed ht’s.

Figure 1 here

The resistance to outliers has an influence on the future volatility predictions. Panel (c) of
figure 1 shows the out-of-sample forecasts of st, assuming that the time series stops on September
23rd. During the sample period, panel (c) plots the smoothed values of

√
ht for the basic and fat-

tailed models. The dotted lines after 9/23/85 show the forecasts of st. For each draw of (h, ω, ν),
we draw future h’s from the AR(1), see Geweke (1989, 1994c), and future λ’s from ν/χ2 if needed.
A draw of sT+k follows by computation of

√
hT+kλT+k. The forecasts differ markedly for the two

models with the basic SVOL model giving greater influence to the 9/23/85 observation. Note how the
estimation of ht on that 9/23 is affected by information on the upcoming low volatility period. The
fat-tailed SVOL with that information, panel b, attributes most of the shock on 9/23 to λ. Panel c,
where the model does not have future information, shows a higher estimate of ht on 9/23.

Estimates of ht differ when the fat-tailed model generates λt’s different from 1. This is espe-
cially true if ν is low, as is the case for the £/$ where the posterior mean of ν is 10. However, even
larger ν’s can allow some large λ’s. Thus, the fat-tail extension has important practical implications
on volatility estimation and forecasting.
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2.2.2 Priors

For ω, we employ the same priors as in section 2.1.2. A conjugate inverse gamma prior is used
for λt|ν.

p(λt | ν) ∝ λ
−[ ν2+1]
t e

−ν
2λt ∼ IG(ν/2, 2/ν) ∼ ν/χ2(ν), (5)

We use a uniform discrete prior on [3, 40] for ν. A lower bound at 3 enforces the existence of
a conditional variance. In practice, draws below 5 are very rare. We note that p(λ|ν) does not change
much for ν ∈ [41, 50]. Therefore, excluding this range does not restrict the flexibility of the fat-tailed
model. We conduct a sensitivity analysis with respect to the upper bound of the ν prior in section
5.1.

Geweke (1993) proposes an alternative prior, p(ν) ∝ e−gν . Our uniform discrete prior is
convenient for two reasons. First, the posterior p(ν|y) is proportional to the marginal likelihood
p(y|ν). This implies that the posterior can be interpreted as a marginal likelihood, and Bayes factors
for different values of ν can be directly computed. Second, the discreteness allows direct draws of ν
rather than possibly requiring a Metropolis step. It does mean that we can not study intervals shorter
than 1, but the data never have enough information on ν for this to be relevant. Typical posterior
standard deviations are between 2 and 6.

2.2.3 Algorithm

We now describe an MCMC algorithm for the fat-tailed model. The parameters now include ν
and the T latent variables λ. Consider simulating from the joint posterior distribution p(h, ω,λ, ν|y)
by cycling through the conditionals p(h, ω|λ, ν,y) and p(λ, ν|h, ω,y). We draw p(λ, ν|.) as a block,
p(λ|ν, .)p(ν|.), rather than with a Gibbs cycle [p(λ|ν, .) , p(ν|λ, .)], to avoid the problems documented
by Eraker et al. (1998), in which ν can get absorbed into the lower bound. The strategy for drawing
each set of conditionals is given by:

• p(h, ω|λ, ν,y): If we rewrite the model as y∗t = yt/
√
λt =

√
htzt, zt ∼ N(0, 1), then the

algorithm in 2.1.3 applies directly.

• p(λ|h, ω, ν,y): Note that p(λ | h, ω, ν,y) = ∏T
t=1 p(λt | yt, ht, ν). Then

p(λt|yt, ht, ν) ≡ p(λt |
yt√
ht
, ν) ∝ p(

yt√
ht
| λt, ν) p(λt | ν)

Using our natural conjugate priors in (5), the conditional posterior of λt is inverse gamma:

p(λt | yt, ht, ν) ∝ λ
−[ ν+12 +1]
t e

− (y2t /ht)+ν

2λt ∼ IG(ν + 1
2

,
2

(y2
t /ht) + ν

). (6)

• p(ν|h, ω,y): Note that (yt|ht, ν) ∼ t(ν). ν is discrete with probability mass proportional to the
product of t distribution ordinates:

p(ν|h, ω,y) ∝ p(ν) p(y|h, ν) = p(ν)
T∏

t=1

ν
ν
2Γ(ν+1

2 )

Γ(ν2 )Γ(
1
2)
(ν + y2

t/ht)
− ν+1

2 (7)
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2.3 Correlated errors and leverage effect

2.3.1 Model

The basic SVOL specifies zero correlation between εt and vt, the errors of the mean and variance
equations. The correlated errors model introduces a correlation parameter, ρ.

yt =
√
htεt (8)

log ht = α+ δ log ht−1 + ut, where ut = σvvt.

The covariance matrix of rt ≡ (εt, ut)′, is Σ∗

Σ∗ =

(
1 ρσv
ρσv σ2

v

)
. (9)

If the correlation ρ is negative, then a negative innovation in the levels, εt, will be associated with
higher contemporaneous and subsequent volatilities. On the other hand, a positive innovation εt is
associated with a decrease in volatility. This asymmetry has been dubbed the leverage effect. The
correlated SVOL can exhibit a large leverage effect even for moderate values of ρ. For example, if
ρ = −.6 and |εt| = 1.5, then E[ht] will be 60% higher for negative versus positive shocks.

The returns on common equity indices exhibit leverage effects. For example, volatility is 22%
higher in the ten days following returns more than 2 standard deviations below the mean than after
returns more than 2 standard deviations above the mean, using the daily equal-weighted CRSP index
(62-87).

The asymmetry in the correlated SVOL model also induces skewness in the marginal distri-
bution of the series. With ρ = −0.6 and δ = 0.95, data simulated from the correlated SVOL model
exhibit significant left-skewness. Returns more than 2.5 standard deviations below and above the mean
occur 1.85% and 0.85% of the time, respectively. This skewness is consistent with the non-parametric
evidence of Gallant, Hsieh and Tauchen (1997).

2.3.2 Priors

The major challenge in the correlated model is to formulate a prior for Σ∗. Σ∗ has its (1,1)
element fixed to 1. This means that standard inverted Wishart priors cannot be used. However, we
can transform the elements of Σ∗ so that conjugate priors can be used. We transform (ρ, σv) to (ψ,Ω)
as follows

Σ∗ =

(
1 ψ
ψ Ω+ ψ2

)

As a referee suggested, our transformation is motivated by observing that the volatility innovation ut
can be written as

ut = log ht − α− δ log ht−1 = σvρ εt + σv

√
1− ρ2 ηt, with (ηt, εt) ∼ N(0, I2). (10)

This is the regression of ut on εt, with slope ψ = σvρ and error variance Ω = σ2
v(1− ρ2). As observed

by McCulloch et al. (2000), one can use a normal prior for ψ and an inverse gamma for Ω. In this
paper, Ω ∼ IG(ν0 = 1, ν0t

2
0 = 0.005) and ψ | Ω ∼ N (ψ0 = 0,Ω/p0), where p0 = 2.
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Our prior on (ψ,Ω) induces a prior distribution over (ρ, σv) as shown in figure 2. This distri-
bution is diffuse on ρ, while ruling out very large correlations. The marginal prior on σv is very similar
to that used in the basic model.

Figure 2 here

2.3.3 Algorithm

The joint distribution of data and volatilities is

p(y,h|α, δ,Σ∗) ∝
T∏

t=1

h
− 3
2

t p(
yt√
ht
, log ht|ht−1, α, δ,Σ

∗) =
T∏

t=1

h
− 3
2

t |Σ∗|− 1
2 exp

(
−1
2
tr(Σ∗−1A)

)
. (11)

Here A =
∑
t rtr

′
t, is the residual matrix. The joint posterior is then

p(h,Σ∗, α, δ|y) ∝ p(Σ∗) p(α, δ)
T∏

t=1

h
− 3
2

t |Σ∗|− 1
2 exp

(
−1
2
tr(Σ∗−1A)

)
(12)

As discussed above, we transform (ρ, σv) to (ψ,Ω). Given this re-parameterization and the
posterior in (12), we can extend the JPR algorithm as follows.

• p(ψ,Ω|α, δ,h,y): Note that |Σ∗| = Ω, and rewrite Σ∗−1 as:

Σ∗−1 =
1

Ω

(
ψ2 −ψ
−ψ 1

)
+

(
1 0
0 0

)
≡ C

Ω
+

(
1 0
0 0

)
,

where aij is the ij element of A. Then tr(Σ
∗−1A) = tr(CA)/Ω + a11. Since a11 =

∑
t ε

2
t , it does

not involve ψ or Ω. So it follows from (12) that

p(ψ,Ω|α, δ,h,y) ∝ 1

ΩT/2
exp

(
−tr(CA)

2Ω

)
p(ψ,Ω).

Let a22.1 = a22−a2
12/a11 and ψ̂ = a12/a11. Both are functions of α, δ,h. We can write tr(CA) =

a22.1 + (ψ − ψ̂)2a11. The joint posterior follows by conjugacy of the prior:

p(ψ|Ω, α, δ,h,y) ∼ N
(
ψ̃,Ω/(a11 + p0)

)

p(Ω|α, δ,h,y) ∼ IG
(
ν0 + T − 1, ν0t

2
0 + a22.1

)
, (13)

where ψ̃ = (a11ψ̂ + p0ψ0)/(a11 + p0). A draw of (ψ,Ω) yields a draw of (ρ, σv) by computation
of σ2

v = ψ2 +Ω and ρ = ψ/σv.

• p(α, δ|ψ,Ω,h,y) is a linear regression as in the basic model. (see 2.1.3)

• p(h|ψ,Ω, α, δ,y): We break h into T components ht | ht−1, ht+1. The likelihood (11) implies

p(ht | ht−1, ht+1,Σ
∗, α, δ,y) ∝ h

− 3
2

t exp

(
−tr(Σ

∗−1rtr
′
t) + tr(Σ

∗−1rt+1r
′
t+1)

2

)
.
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After introducing (ψ,Ω), we obtain

p(ht|ht−1, ht+1, ψ,Ω,y) ∝
1

h

3
2
+
δψyt+1

Ω
√
ht+1

t

exp

(
−y2

t

2ht
(1 +

ψ2

Ω
)− (log ht − µt)

2

2Ω/(1 + δ2)
+
ψytut

Ω
√
ht

)
(14)

where µt = (α(1 − δ) + δ(log ht+1 + log ht−1))/(1 + δ
2), ut = vtσv. The density p in (14) has inverse

gamma and log-normal kernels. As before, we approximate the log-normal kernel by an inverse gamma
and combine with the inverse gamma kernel. The parameters of the resulting inverse gamma are

φt = φ1 + φLN + 1 =
ψδyt+1

Ω
√
ht+1

− 0.5 +
1− 2e

Ω
1+δ2

1− e
Ω

1+δ2

+ 1

θt = θ1 + θLN =
y2
t

2
(1 +

ψ2

Ω
) + (φLN − 1)eµt+.5

Ω
1+δ2 (15)

This would suggest the following inverse gamma blanket q1(ht) for the accept/reject Metropolis step:

q1(ht | ht−1, ht+1, ψ,Ω, yt) ∼ IG(φt, θt) ∝
1

hφt+1
t

e−θt/ht . (16)

q1 omits the third term in the exponent of (14). This should not affect the theoretical capability
of the algorithm to produce draws with invariant distribution p. However, in practice q1 produces an
inefficient algorithm. For example, with simulated data of sample size encountered in practice, the
sampler based on q1 produces a posterior with diffusion not much different from the prior. We now
discuss a simple modification of q1 that dramatically improves performance.

To illustrate the problem with q1, consider a model with ω = (−0.368, 0.95, 0.26), and ρ = −0.6.
For simulated samples, we plotted p and q1 for many observations and draws. Figure 3 shows one such
observation. Figure 3(a) shows a normalized p (solid line) and the approximating blanket q1 (dotted
line). The vertical bars are the 5th and 95th quantiles of p. q1 is clearly located far to the right of p.
The key to performance of accept/reject and Metropolis methods is the ratio p(h)/q(h) which drives
acceptance and repeat probabilities. The flatter p/q is, the more efficient the blanket, yet p/q1 is far
from flat as shown in Figure 3(b).

Figure 3 here

To improve upon q1, we must explore the third term, ut/
√
ht in (14). It involves log ht/

√
ht,

which is not present in the kernel of any standard density. We solve this problem by approximating
ut/
√
ht as a linear function of 1/ht. To do this, we compute ut/

√
ht at two points around the mode,

and use the slope s between these two points. Using this linearization of the third term, we can
combine the third term in the inverse gamma kernel. This results in a new blanket q2

q2(ht | ht−1, ht+1, ψ,Ω, yt) ∼ IG(φt, θ∗t ) ∝
1

hφt+1
t

e−θ
∗
t /ht . (17)

Here θ∗t = θt − sψyt/Ω. Figure 3 shows that q2 provides a much improved approximation to p. We
also computed a measure of p/q variability using the squared relative differences of p/q at the mode
versus one point on each side, averaged across draws and observations. Using q2 instead of q1 results
in a much less variable p/q ratio.
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2.4 Algorithm for fat-tails and correlation

The full model with both fat-tails and correlated errors is

yt =
√
ht λtzt, (18)

log ht = α+ δ log ht−1 + σvvt, t = 1, . . . , T

ν/λt ∼ χ2
ν

(zt, vt) ∼ N
(
0,

(
1 ρ
ρ 1

))
,

The hierarchical structure allows us to use the correlated errors algorithm in 2.3.3 with only minor
modifications. First, given λ, we replace yt with yt/

√
λt and apply the algorithm described in 2.3.3.

Second, given h, we draw from the posteriors in (6) and (7). The iteration of these two steps is the
algorithm of the full model.

2.5 Odds ratios

Bayesian comparison of alternative models are often made using posterior odds ratios (see
Kass and Raftery (1996) for a survey of the posterior odds literature). A posterior odds ratio is the
product of the ratio of the marginal densities of the data, called the Bayes factor, times the prior odds
ratio. The Bayes factor requires integrating out the model parameters. For example, if O1|2 and BF1|2
denote the posterior odds ratio and Bayes factor of model M1 over M2, then

O1|2 =
p(M1)

p(M2)
× p(y|M1)

p(y|M2)
= prior odds×BF1|2 and BF1|2 =

∫
p(θ1|M1) p(y|θ1,M1) dθ1∫
p(θ2|M2) p(y|θ2,M2) dθ2

. (19)

The direct computation of these marginal likelihood is intensive, possibly unstable for latent variables
models. Instead, a variety of methods have been proposed to use MCMC draws to approximate Bayes
Factors (c.f. Newton and Raftery (1994)).

In this section, we show how to use the special structure of our models and priors to compute
Bayes factors for comparing the basic SVOL model to the models with fat-tails and correlated errors.
Let B,F,C, and FC denote the basic, fat-tailed, correlated errors, and full SVOL models respectively.
We observe that BFB|FC = BFB|F × BFF |FC . In section 2.5.1, we show how to compute BFB|F .
Section 2.5.2 discusses the computation of BFF |FC .

2.5.1 Fat-tails

To compare the basic to the fat-tailed model, we can write the Bayes factor as the expectation
of the ratio of un-normalized posteriors with respect to the posterior under the fat-tailed model. We
are grateful to a referee for pointing this out.

BFB|F =
p(y|MB)

p(y|MF)
= E

[
pB(θ|MB) pB(y|θ,MB)

pF (θ|ν,MF ) pF (y|θ, ν,MF)

]
. (20)

Here θ = (α, δ, σv,h), and E[.] refers to the expectation over the joint posterior of (θ, ν). (20) is
derived by first observing that p(y|MF) = pF(y|θ, ν)pF(θ, ν)/pF(θ, ν|y). It then follows that

BFB|F =

∫
pB(θ)pB(y|θ)dθ
p(y|MF)

=

∫

ν

∫

θ

pB(θ)pB(y|θ)
p(y|MF)

dθpF (ν)dν
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=

∫ ∫
pB(θ)pB(y|θ)pF(θ, ν|y)pF(ν)

pF (y|θ, ν)pF(θ, ν)
dθdν =

∫ ∫
pB(θ)pB(y|θ)

pF (y|θ, ν)pF(θ|ν)
pF (θ, ν|y)dθdν

Equation (20) simplifies further. Given our priors, pF (θ|ν) = pF (θ) = pB(θ), and p(ν) is
constant. So the Bayes factor is only the ratio

BFB|F = E
[
p(y|θ,MB)

p(y|θ, ν,MF)

]
. (21)

This expectation can be approximated by averaging over the MCMC draws.

Note that (21) extends to the computation of BFC|FC . With non-zero ρ, a draw of (ω, ht)

implies a draw of vt, and εt|vt ∼ N(ρvt, 1 − ρ2). So, in (21), we use y∗t = (yt − ρvt)/
√
1− ρ2 instead

of yt.

2.5.2 Correlated errors

To simplify the discussion, we first consider BFB|C and then show how to extend this approach
to compute BFF |FC . We use the Savage density ratio approach (Dickey (1971)) to compute BFB|C .
Let (ψ, φ) denote the parameters of the correlated model, where φ = (Ω, α, δ,h). The basic SVOL is
nested within the correlated model and sets ψ = 0. Let pB and pC be the priors under the basic and
correlated models. Then, if pB(φ) = pC(φ|ψ = 0), the Bayes factor is simply the ratio of posterior
over prior densities:

BFB|C =
pC(ψ|y)
pC(ψ)

∣∣∣∣
ψ=0

To compute the marginal posterior of ψ, we simply average the conditional posterior pC(ψ|φ) over
the draws of φ. Jacquier and Polson (2000) provide the details of the Savage density approach. They
analytically integrate out Ω. The resulting conditional posterior, pC(ψ|h, α, δ,y) is a Student-t. Given
G draws of the MCMC sampler, the Bayes factor can be approximated by

B̂FB/C =
Γ(ν0+T2 )Γ(ν02 )

Γ(ν0+T−1
2 )Γ(ν0+1

2 )

1

G

G∑

g=1

√√√√ 1 + a
(g)
11 /p0

1 + a
(g)
22.1/ν0t20


1 + ψ̃2

ν1t21/p1

(g)


− ν0+T

2

, (22)

where ψ̃ is defined for equation (13) and (g) refers to the gth draw of the sampler.

In the full model algorithm described in 2.4, fat-tails do not modify the conditional posteriors
of ψ and the other parameters. Replace y by y/

√
λ, and (22) applies directly for the computation of

BFF/FC , the Bayes factor of a pure fat-tail model F vs a full model FC.

3 Sampling performance of Bayes parameter and volatility estimates

Since likelihood-based inference has not been conducted for the extended model, we do not
know the sampling properties of Bayes estimators. In particular, we do not know how informative
the sample data can be about the new parameters, ν and ρ. In addition, the consequences of using
a mis-specified model, such as using the basic model in the presence of fat-tails, are unknown. In
this section, sampling experiments are conducted to gauge the performance of Bayes volatility and
parameters estimators.
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3.1 Parameter estimation

Table 1 documents the sampling performance of the posterior mean for data generated from
ω = (−0.368, 0.95, 0.26). These values imply Eh = .0009 and the squared coefficient of variation,
V ar(h)/E2

h = 1 and have been used by JPR and others. We also set ν = 10 and ρ = −.6; which
induces fat-tails and a reasonably large leverage effect. 500 samples of 1000 observations each are
simulated. For each sample, we generate 30,000 draws from the MCMC algorithm. Bayes estimators
are approximated by the average of the last 25,000 draws. It should be noted that samples of size 1000
are small by the standards of high frequency financial time series analysis so that the results presented
here represent a ”stress-test” of our method.

Table 1 here

Table 1 presents the sample average of the posterior means as well as their RMSE across the
500 samples. The regression parameters ω, and functions thereof, are recovered very precisely. The
estimators of ρ and ν appear to have moderate upward biases. Of course, Bayes estimators do not
have to be unbiased even with locally uniform priors. However, as the sample size increases this bias
must disappear unless the priors are dogmatic. Indeed, we experimented with samples of size 3000
(the approximate size of the data sets used in our empirical analysis below) and found that the bias
in estimation of ρ decreases dramatically.

The evidence proposed in table 1 shows that Bayes estimators have good sampling properties
for the extended model. In addition, the sampling performance provides indirect evidence that our
algorithm performs well with a modest number of draws. More direct evidence of the algorithm’s
convergence properties is given in section 5 below.

We now turn to the performance of estimators under mis-specification. Table 2 presents ev-
idence of the consequences of mis-specification. Panel (a) reports the performance of the Bayes es-
timator on data simulated from the basic SVOL model with normal errors. Panel (a) shows that
virtually no loss of precision is incurred when we fit the fat-tailed model to data generated from the
basic model. However, as is shown in panel (b), if the data has fat-tails, use of the basic SVOL model
imparts substantial biases to the estimation of model parameters. The parameters most affected are
σv, Eh, and Vh/E

2
h as the basic SVOL model raises both the level and the variability of volatility to

accommodate the observations which are ”outlying” relative to a normal distribution.

Table 2 here

3.2 Volatility estimation

Volatility estimation and prediction is one of the most important uses of the model. Table 3
documents the performance of the algorithm and the consequence of using the wrong model on the
estimates of volatility. For each observation of a simulated sample, we can examine the performance
of Bayes estimates of

√
ht and of the standard deviation st =

√
htλt. RMSE and the percentage Mean

Absolute Error, %MAE, are computed by averaging over the 1000 observations of the 500 samples.
The percentage absolute error is defined as 100|ŝt − st|/st.

Table 3 here
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The first column of table 3 reports on data generated by the basic SVOL model. The first
three rows document performance with estimates from the fat-tailed model, the next three rows present
results from the estimation of the basic model. Note that when estimating the basic model, st =

√
ht,

so the RMSE’s are equal. It is not so when ν is estimated. The two approaches have about the same
performance, e.g., an 18% relative MAE for

√
ht. Thus, the unnecessary estimation of the fat-tailed

model does not affect smoothing performance.

The last two columns document performance when the data are generated by the fat-tailed
model. The first of these columns uses all the observations. The RMSE for st is about the same
whether or not fat-tails are incorporated. Recall from the discussion of Figure 1 in section 2.2.1 that
the key in forecasting performance is the accuracy of the estimation of ht. If both models fit st equally
well, the basic model may not fit

√
ht as well since λt is incorrectly set to 1. The second and third rows

of results show the extent of this problem. In absolute and relative terms, the basic model performs
markedly worse than the fat-tailed model for

√
ht, e.g., a %MAE of 26% versus 21%, or a 25% higher

error. The last columns shows how performance is related to the size of the true λt. The worst fit
occurs for the observations with the larger λt’s. For the observations with λt in the top decile, the
%MAE for

√
ht is 31% for the basic SVOL versus 24% for the fat-tailed model, a 30% higher error.

These differences have significant economic implications. For example, at the money, a stochas-
tic volatility based option pricing model is approximately linear in the standard deviation when volatil-
ity is not priced, e.g., Hull and White (1987). Therefore, a reduction in RMSE of volatility may lead to
a commensurate reduction of option pricing RMSE. Note, however, that our results apply to one-day
ahead volatility forecasts while most option pricing studies look at longer horizons, over which the
reduction in RMSE may be less pronounced.

4 Empirical applications: equities and exchange rates

4.1 Data

We study both weekly and daily financial series. The weekly series used are the equal and value
weighted CRSP indices and the first, fifth and tenth deciles of size sorted portfolios, representing small,
medium and large firms. All the series are pre-filtered for AR(1) and monthly seasonals as in JPR.
The samples include 1539 weekly returns from 1962 to 1991.

The daily series include two stock indices and three exchange rates. One index is the S&P500,
2023 daily returns from 1980 to 1987, filtered to remove calendar effects as in JPR. The second is
the CRSP value weighted index, 6409 daily returns from 1962 to 1987, used by Nelson (1991) in
his EGARCH. The S&P500 contains only large firms while the CRSP contains all the firms on the
exchange. While there may be good reasons for a leverage effect in equities, it is less clear for exchange
rates. We study the exchange rates of the UK £ in US dollars per £, and the Deutsche Mark (DM),
and Canadian dollar (CAD) relative to the US dollar. The CAD includes 3010 daily observations from
January 1975 to December 1986. The £ and DM include 2613 daily observations from January 1980
to June 1990. We study the first difference of the logarithm of the exchange rate series, which removes
any autocorrelation.
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4.2 Posterior analysis

4.2.1 Weekly series

Table 4 summarizes the posterior distribution of the parameters. First, larger firms appear to
have a more persistent pattern of volatility than smaller firms; the posterior of δ shifts upward from
d1 to d10. Second, larger firms exhibit a lower variability of volatility as shown by σv and Vh/E

2
h.

Both these posteriors shift downward from d1 to d10. Finally, the posterior unconditional variance,
Eh, centers on 0.45 for d5, d10, EW and VW, about a 15% annualized standard deviation. It is
markedly higher, 0.6, for the smallest firm index d1. These patterns appear, but much weaker, when
comparing EW to VW. Recall that small firms are represented more heavily in EW than VW due to
the equal-weighting.

Table 4 here

Now consider the posterior evidence regarding ν and ρ. Large firms, VW and d10, have
posterior means of ν around 25 while the small firms, d1, d5, and EW, have means around 20. The
extent to which this supports fat-tailed error distributions is difficult to assess directly from ν. Section
4.4 provides more formal evidence using posterior odds. The posterior mean of ρ is large, below -0.4
for all but the small firm index d1 for which it is -0.15. ρ is estimated precisely with a standard
deviation around 0.06.

4.2.2 Daily series

Table 5 shows the results for the daily series. The posteriors of δ are located higher than
for the weekly series. This is consistent with temporal aggregation, as suggested by Meddahi and
Renault (2000). The highest mean is 0.988, for the full sample CRSP. All other posteriors have means
below 0.98 and often no appreciable mass above 0.99, despite a locally uniform prior around 1.0. As
with the basic SVOL, there is no apparent evidence of unit root in volatility. This is consistent with the
model free results in Christoffersen and Diebold (1997). But this differs from the typical persistence
reported in the GARCH literature. For example, the EGARCH estimates for these series are on the
edge of non-stationarity, see Nelson (1991) for the CRSP series.

Table 5 here

The posteriors for ν are centered between 10 and 15, at most 20 for the CRSP. The CAD is the
exception with a posterior mean of 32 and 95% of the draws above 20. Despite the clear evidence of
fat tails, there is no support for very low degrees of freedom of the Student-t distribution. In contrast,
GARCH estimates of ν for these series are much lower, 6.3, 9.8, 8.1, 6.3, 8.1 for EW, CRSP, S&P500,
£, CAD. GARCH models do not provide as much mixing as the basic SVOL and require lower degrees
of freedom in the resulting conditional distribution. The posteriors of ν are lower than for weekly
series for two possible reasons. First, temporal aggregation induces normality through a central limit
theorem effect. Second, the larger sample sizes of the daily series produce posteriors more informative
about a low ν.

The posteriors for the full sample CRSP and the S&P500, (cols. 1 and 3), are different, with
ν and Vh/E

2
h markedly higher for the CRSP. The leverage effect is also much stronger; ρ centered at
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-0.48 vs -0.2. With far more securities in the CRSP, one expects Eh to be smaller than for the S&P500.
The differences in the other parameters are a bit surprising. To match the S&P500 sample period,
column 2 reports estimates for the CRSP subperiod 80-87. The CRSP posteriors of δ, ρ, Vh/E

2
h are

now consistent with the S&P500. This indicates shifts in the parameters over the 38 year period.

Overall, the leverage effect is strong for both daily and weekly equity indices. The leverage
effect is significantly lower for exchange rates, -0.02 for the DM, -0.15 for the £. The CAD again differs
markedly with ρ around -0.29. A leverage effect in an exchange rate is conceivable. For example, if
Canada, small relative to the U.S., has a lot of US$ denominated debt, a decrease in the CAD may
be viewed as an increase in leverage. In any case, these results show leverage effects in exchange rate
volatility can not be ruled out.

4.3 Effect of the extensions on volatility estimates

Section 3 demonstrates that model mis-specification can induce substantial parameter bias
and error in inference about ht. We now examine the sensitivity of volatility estimates to model
specification for the weekly EW index. The results are similar for the other series. We study the fat-
tails and the leverage effect separately. In what follows, a ”ˆ” over a quantity denotes the posterior
mean. Consider the effect on ĥt of adding fat-tails to the basic model. The ratio of the two ĥt’s
produced by the fat-tailed and basic models, denoted F and B, is a good metric for this effect. The
higher λt in the fat-tailed model, the smaller the ratio is likely to be.

Figure 4(a) plots the ratio ĥt,F /ĥt,B versus
√
λ̂t for each observation. The higher λ̂t the more

the basic model overestimates ht relative to the fat-tailed model. For the observations with the 5%
highest λ̂t’s, this relative overestimation is above 15%. The basic model overestimates ht relative to
the fat-tailed model for a vast majority of the observations.

Figure 4 here

We now add the leverage effect. Consider the ratio of ĥt’s under the fat-tailed and full model
with both fat-tails and correlation, denoted FC. A negative ρ introduces an asymmetry between
observations with negative and positive εt. To illustrate this, we plot ĥt,FC/ĥt,F vs ε̂t,FC in figure
4(b). The smaller ε̂t is, the more the pure fat-tailed model underestimates ht relative to the full model.
The correlation between the ratio and ε̂t in the plot is -0.41. The average ratio for observations in the
first decile of εt (left tail) is 1.09 while the average ratio in the tenth decile (right tail) is 0.9 - a 20%
difference. This shows that the leverage model results in markedly different estimates of volatility for
a large fraction of the observations.

Nelson (1991) notes that the large outliers in the data are still very unlikely even after extending
an EGARCH with fat-tailed conditionals. Geweke (1994c) shows that the basic SVOL has the same
problem with the largest outlier, October 87. For the daily CRSP index, the standardized return on
October 19, 87 is -23.7. The basic and fat-tailed SVOL residuals ε̂t are -4.83 and -3.89. One expects
values larger than this once in 113 and once in 1.6 samples respectively. So the SVOL with fat-tails
can accommodate large outliers. However, a criterion for a successful model is not necessarily how
well it deals with the one or two worst outliers. We must also consider the relative performance of
various SVOL models for the entire data set. For this reason, we now compute posterior odds.
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4.4 Odds ratio analysis

Table 6 reports the estimated Bayes factors. The first and second columns recall the posterior
means of ν and ρ in the full model FC. The second column shows the Bayes factors, BFB|F , for
comparison of the basic to fat-tailed SVOL models. With the exception of CAD, the daily series
overwhelmingly favor the fat-tails. The weekly series all favor the fat tails though not as strongly.
The next column reports BFC|FC , the Bayes factor comparing the correlated model without and with
fat-tails. The odds are nearly identical, which shows that the evidence on fat-tails is robust to the
existence of a leverage effect. The next column shows the Bayes factors, BFF |FC , for the fat-tailed
versus the full model, testing the leverage effect. The evidence very strongly favors the leverage effect
for all equity indices and the CAD. It is against the leverage effect for the other two exchange rates, £
and DM. Finally, the last column shows the Bayes factors for the basic versus the full model, BFB/FC .
For all series, the Bayes factors overwhelmingly support the full model. This is because all series
exhibit either fat-tails or correlation, or both. The Bayes factors BFF |FC for the CRSP, 1962 to 1987,
and the S&P500 are very different. We also report these odds for the CRSP from 1980 to 1987, the
same sample period as for the S&P500. As was the case for the posterior distribution of ρ, the odds
for the CRSP and the SP500 are similar when computed over the same period.

Table 6 here

5 Prior sensitivity and convergence

5.1 Sensitivity to prior specification

In all reported results, we use a uniform prior for ν on [3, 40]. To study the sensitivity of the
results to the upper bound on ν, we estimate the models with upper bounds at 30 and 60. For the
weekly series, an upper bound at 60 increases the posterior means by 5 to 7. For the daily series, a
higher bound hardly affects the posterior distribution (the only exception is CAD with a posterior
mean of 47). The posteriors of ρ and ω are largely unaffected. We also computed the odds ratios for
bounds at 30 and 60. They were largely unaffected and none of the conclusions from Table 6 changed.

Figure 5 shows the posterior distributions for ν and ρ, overlaid with the priors (dashed lines).
Figure 5(a) shows posteriors and the prior for ν. The posteriors are peaked relative to the prior.
Except for CAD, all posteriors put mass in a region well within the support of the prior. Figure
5(b) shows the posteriors for ρ. Again, the posteriors are very peaked over subsets of the parameter
domain, showing that their shape is not affected by the prior.

Figure 5 here

5.2 Convergence and efficiency

Experiments with different starting points show that initial conditions always dissipate ex-
tremely fast. A few hundred draws are more than enough for all parameters. The 5000 burn-in period
used appears more than adequate. Standard tests of convergence, such as the autocorrelation of the
draw sequences, confirm the high speed of convergence.

Figure 6 shows some of these diagnostics for two series. Results for other series are similar.
The left plots in figure 6 show diagnostics for ρ for the EW series. The top plot shows a sequence of
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4000 draws for EW. The results in the paper are based on 100,000 draws. The sampler clearly makes
large moves and navigates the parameter space. The middle plot shows the ACF of ρ. The first order
is 0.9 but decays quickly. For other series the first order is often lower. The bottom plot shows batched
boxplots of the draws, each with 20,000 draws, confirming the stability of the distribution.

Figure 6 here

The right plots of figure 6 shows diagnostics for ν for the DM series. The top plot, a time
series plots of the draws, shows that even though the distribution is clearly centered around small
values, the sampler can make large moves over the entire space. The first order autocorrelation of ν
is about 0.6. For a discrete parameter, such as ν here, one can easily compute an escape probability.
For ν(n) the nth draw of ν, the escape probability is Pr.(ν(n+1) 6= ν(n)). Escape probabilities are
inversely related to the probability of getting stuck in a subset of the parameter space, e.g., Diaconis
and Strook (1991), Eraker et al. (1998). The middle plot shows that the escape probabilities are always
high. This confirms the intuition of the time series plots that ν moves well through the parameter
space. Last, the batched boxplots in the bottom show that the posterior distribution of ν is stable.

The ACF of a sample of draws allows to compute standard errors for the Monte Carlo means.
Given the positive autocorrelation of the samplers, these standard errors are larger than those as-
suming zero autocorrelation. The ratio of these two quantities is the relative numerical efficiency, see
Geweke (1989b, 1992). Consider estimating the variance with 100 lags of the ACF and a triangular
window. For example for the VW series, the standard errors for the MCMC estimates of the posterior
means of δ, σv, ρ, ν are 0.0003, 0.0008, 0.0012, 0.14, with relative numerical efficiencies of 1/7, 1/9, 1/5.5
and 1/6.

The results for both simulated and actual data reported here show that our algorithm is fast
and converges rapidly with acceptable levels of numerical efficiency. As a practical matter, we can
obtain accurate estimates of posterior quantities even with a modest number of draws. It should be
emphasized that our sampling experiments provide strong evidence of convergence of the chain. The
autocorrelation function and associated numerical efficiencies of a sequence of draws is useful to assess
the accuracy of the Monte Carlo estimates of posterior quantities. However, it is not a substitute
for the evidence obtained from sampling experiments. For example, a chain that gets stuck in a sub-
space of the parameter space can exhibit low autocorrelation but may not navigate rapidly enough
for practical use, see Eraker et al. (1998) for an example with the block sampler. As researchers
develop other algorithms in the future, we encourage them to perform careful sampling experiments
to establish convergence across a wide range of empirically relevant parameter values.

6 Conclusion

We develop a MCMC algorithm to conduct inference in an extended SVOL model, featuring
fat-tails and a leverage effect. Since basic model parameters are augmented with both the conditional
volatilities ht and the scale-mixture parameters λt, exact finite sample smoothing is possible. In order
to assess the weight of the sample evidence in favor of the extensions, methods for computation of
Bayes Factors are introduced. Our Bayes factor computations are designed to use the MCMC draw
sequence without additional simulation.

The algorithm is shown to be reliable and fast. The extensions impose very little additional
computational burden over the basic SVOL model. For typical sample sizes, 100,000 draws of the full
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model are generated in about 30 minutes with a 400 Mhz workstation.

The performance of our method is illustrated with simulated data. The parameters of the ex-
tended model are estimated efficiently. We also illustrate the consequences of model mis-specification.
If the data is generated from the basic SVOL model, using the extended model imposes little cost in
terms of reduced precision. However, if the basic model is used in the presence of mis-specification
significant biases occur in both volatility and parameter estimation

Application of the model to equity index return and exchange rate time series provides ample
evidence in support of the extensions. All but one of the series require fat-tailed errors, although the
evidence is not as strong for the weekly as for the daily series. The equity indices and the Canadian
dollar exchange rate exhibit a strong leverage effect. Overall, the Bayes factors overwhelmingly support
the extended model. The fat-tailed model is more resistant to outliers than the basic model and
provides smaller conditional variance estimates in periods of high volatility. The leverage model leads
to higher conditional variance estimates when the shock to the conditional mean is negative. These
differences are often large enough to matter when variance forecasts are needed, as in asset allocation,
risk management, and option pricing.
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Table 1

Sampling properties of Bayes estimators: full model

δ σv Eh × 103 Vh/E
2
h ν ρ

True value 0.95 0.26 0.9 1 10 -0.6

Average 0.94 0.27 0.93 1.02 14 -0.42
RMSE (0.025) (0.039) (0.19) (0.34) (0.19)
Q1 , Q3 10 18

We simulate 500 samples of 1000 observations from the full model. For each sample, the
posteriors are based on 25000 draws of the sampler, after discarding 5000 draws. The rows
entitled ”Average” and ”RMSE” report the average and the Root mean squared errors of the
500 posterior means. For ν, however, we report the average of the 500 first and third posterior
quartiles.
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Table 2

Estimating the wrong model: effect on parameter estimates

Panel a: Data simulated from the basic SVOL with normal errors

δ σv Eh × 103 Vh/E
2
h ν

True value 0.95 0.26 0.9 1 ∞

Basic model fitted:
Average 0.93 0.29 0.94 1.09
RMSE (0.03) (0.05) (0.18) (0.42)

Fat-tail model fitted:
Average 0.94 0.27 0.88 1.03 28
RMSE (0.02) (0.04) (0.17) (0.40)
Q1 , Q3 23 35

Panel b: Data simulated from the fat-tailed SVOL

δ σv Eh × 103 Vh/E
2
h ν

True value 0.95 0.26 0.9 1 10

Basic model fitted:
Average 0.91 0.37 1.16 1.35
RMSE (0.05 ) (0.12) (0.34) (0.58)

Fat-tail model fitted:
Average 0.93 0.30 1.00 1.15 18
RMSE (0.03) (0.06) (0.22) (0.48)
Q1 , Q3 12 23

We simulate 500 samples of 1000 observations each from the basic model (table 2a), and
from the fat-tailed model (table 2b). For each sample, the posteriors are based on 25000 draws
of the sampler, after discarding 5000 draws. The rows entitled ”Average” and ”RMSE” report
the average and the Root mean squared errors of the 500 posterior means. For ν, we report
the average of the 500 first and third posterior quartiles.
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Table 3

Estimating the wrong model: effect on smoothing performance

Data generated from the
Basic model Fat-tailed model
All obs. All obs λt > λ.9

Fat-tailed model fit
RMSE(st) 0.00659 0.0104 0.0198
RMSE(

√
ht) 0.00656 0.0071 0.0076

%MAE(
√
ht) 18.3 21.4 23.7

Basic model fit
RMSE(st) 0.00658 0.0107 0.0198
RMSE(

√
ht) 0.00658 0.0082 0.0098

%MAE(
√
ht) 19.2 25.9 30.6

The sampling distributions are based on the 1000 samples of table 2. For each observation, we
compute the estimation error of the posterior mean of

√
ht and st =

√
ht × λt. We report the root

mean squared error, RMSE, and the average of the absolute values of % errors, %MAE. Under each
column titled ”All obs.”, the averages are computed over all the 500, 000 observations. When the
data are generated by the fat-tailed SVOL with ν = 10, we also report RMSE and %MAE for the
subsets of observations with true λt larger than the 90th percentile of p(λ | ν = 10).
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Table 4

Posterior analysis for weekly series

EW VW d1 d5 d10

δ 0.943 0.945 0.906 0.932 0.950
(0.015) (0.014) (0.023) (0.017) (0.014)

0.917, 0.965 0.920, 0.967 0.868, 0.942 0.902, 0.958 0.925, 0.971

σv 0.27 0.252 0.37 0.28 0.23
(0.03) (0.03) (0.05) (0.03) (0.03)

0.216, 0.327 0.203, 0.304 0.28, 0.44 0.23, 0.34 0.185, 0.29

Vh
E2
h

0.98 0.86 1.17 0.86 0.81

(0.23) (0.20) (0.24) (0.18) (0.19)
0.64, 1.52 0.56, 1.33 0.78, 1.70 0.58, 1.28 0.52, 1.26

103Eh 0.45 0.43 0.60 0.46 0.44
(0.06) (0.06) (0.07) (0.06) (0.06)
0.35, 0.58 0.34, 0.56 0.47, 0.74 0.37, 0.58 0.35, 0.58

ν 21 25 23 20 26
(8.5) (8.2) (9.1) (8.5) (8.1)

9, 18, 37 13, 25, 39 10, 22, 38 9, 18, 37 13, 26, 39

ρ -0.46 -0.47 -0.15 -0.44 -0.41
(0.06) (0.06) (0.06) (0.06) (0.07)

-0.55, -0.36 -0.57, -0.36 -0.25, -0.05 -0.53, -0.34 -0.53, -0.28

The first number is the posterior mean. The number between parentheses is the posterior
standard deviation. The two numbers below are the posterior 5th and 95th quantiles, and the
median for ν. The prior domain of ν is [3,40]. EW ≡ Equal-weighted NYSE; VW ≡ Value-
weighted NYSE; d1 ≡ small, d5 ≡ medium, d10 ≡ large firms; weekly returns, 7/62-12/91. T
= 1539. Returns have been prefiltered to remove AR(1) and monthly seasonals from the mean
equation.
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Table 5

Posterior analysis for daily series

CRSP CRSP SP500 U.K.£ DM CAD$
From: 07/2/62 1/2/80 1/2/80 1/2/80 1/2/80 1/2/75
To: 12/31/87 12/31/87 12/31/87 5/31/90 5/31/90 12/10/86
# Obs. 6409 2023 2023 2613 2613 3010

δ 0.988 0.977 0.980 0.980 0.966 0.956
(0.002) (0.01) (0.008) (0.007) (0.009) (0.009)
.984 .992 .960 .990 .967 .991 .967 .991 .950 .979 .940 .970

σv 0.131 0.129 0.118 0.116 0.167 0.246
(0.01) (0.024) (0.021) (0.022) (0.023) (0.025)
.116 .147 .09 .17 .09 .154 .084 .156 .132 .206 .21 .29

Vh
E2
h

1.18 0.48 0.48 0.44 0.53 1.07

(0.28) (0.14) (0.15) (0.12) (0.11) (0.19)
0.79 1.86 0.29 0.82 0.28 0.86 0.27 0.73 0.36 0.79 0.76 1.51

Eh ×104 ×104 ×1 ×104 ×104 ×105
0.62 0.69 0.99 0.39 0.42 0.52
(0.094) (0.10) (0.15) (0.05) (0.04) (0.06)
0.48 0.84 0.54 0.92 0.75 1.33 0.31 0.49 0.34 0.51 0.42 0.64

ν 21 10 15 10 12 32
(5.9) (3.3) (5.4) (2.3) (3.9) (6.1)
14 20 33 7 10 16 9 13 26 7 9 14 8 11 19 21 33 40

ρ -0.48 -0.22 -0.20 -0.15 -0.023 -0.29
(0.04) (0.09) (0.09) (0.08) (0.07) (0.05)

-0.54 -0.42 -0.36 -0.08 -0.35 -0.04 -0.28 -0.01 -0.14 0.09 -0.38 -0.19

The results shown are as in table 4. For Eh, as the series have different scales, the first row is the scale
factor used on the actual posterior. For example, the posterior mean of Eh for the first series is 0.62 x
104. The first two series are the CRSP daily VW returns. The third series is the daily change in log of the
S&P500-index, filtered to remove calendar effects, see Gallant, Rossi, and Tauchen (1992). The UK £ and
DM/$ daily noon spot rates (log change) from the board of Governors of the Federal Reserve System are
supplied by David Hsieh. The CAD$ daily noon interbank market spot rates from the Bank of Canada is
supplied by Angelo Melino.
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Table 6

Bayes factors

ν ρ BFB/F BFC/FC BFF/FC BFB/FC

EW 20 -0.46 .12 .17 1E-19 1E-20
VW 25 -0.47 .37 .33 2E-17 7E-18

D1 23 -0.15 .29 .20 .13 .04
D5 20 -0.44 .13 .07 1E-19 1E-20
D10 26 -0.41 .47 .91 2E-05 1E-05

CRSP 62-87 21 -0.48 7E-06 2E-04 1E-144 7E-150
CRSP 80-87 10 -0.22 1E-06 2E-05 .23 2E-07
SP500 15 -0.20 1E-03 1E-03 .72 7E-04

CAD 32 -0.29 3.9 1.7 4E-07 2E-06
UK 10 -0.15 3E-08 1E-08 1.25 4E-08
DM 12 -0.02 2E-05 1E-05 4.6 1E-04

B refers to the Basic model, F to the model with Fat tails only, C to the model with
leverage only, and FC to the full model. The columns ν and ρ report the posterior means
of ν and ρ for the full model. Fat tails are estimated with ν ∈ [3, 40].
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Figure 1: Differences between fat-tail and basic SVOL volatility forecasts
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Figure 4: Effect of fat tails and correlation on E(ht); weekly EW index
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Figure 5: Posteriors and priors for ν and ρ
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Figure 6: Diagnostics from the samples of draws of ν and ρ
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