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Interest in models with stochastic volatility dates at least
to the work of Clark (1973), who proposed an iid mixture
model for the distribution of stock-price changes. Unobserv-
able information flow produces a random volume of trade in
the Clark approach. Tauchen and Pitts (1983) and Gallant,
Hsieh, and Tauchen (1991) noted that if the information flows
are autocorrelated, then a stochastic volatility model with
time-varying and autocorrelated conditional variance might
be appropriate for price-change series. Stochastic volatility
models also arise as discrete approximations to various diffu-
sion processes of interest in the continuous-time asset-pricing
literature (Hull and White 1987; Melino and Turnbull 1990;
Wiggins 1987).

The purpose of this article is to develop new methods for in-
ference and prediction in a simple class of stochastic volatility
models in which logarithm of conditional volatility follows an
autoregressive (AR) times series model. Unlike the autore-
gressive conditional heteroscedasticity (ARCH) and gener-
alized ARCH (GARCH) models [see Bollerslev, Chou, and
Kroner (1992) for a survey of ARCH modeling], both the
mean and log-volatility equations have separate error terms.
The ease of evaluating the ARCH likelihood function and the
ability of the ARCH specification to accommodate the time-
varying volatility found in many economic time series has
fostered an explosion in the use of ARCH models. On the
other hand, the likelihood function for stochastic volatility
models is difficult to evaluate, and hence these models have
had limited empirical application.

The current literature on inference and prediction for
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stochastic volatility models is brief. Rather than pursu-
ing a likelihood-based approach, Taylor (1986), Melino and
Turnbull (1990), and Vetzal (1992) relied on the method of
moments (MM} to avoid the integration problems associated
with evaluating the likelihood directly. As is well known, the
MM may be inefficient relative to a likelihood-based method
of inference. This problem is particularly severe in the case
of stochastic volatility models because the score function
cannot be computed to suggest which moments should be
used for MM estimation. Nelson (1988), Harvey, Ruiz, and
Shephard (1994), and Ruiz (1994) employed approximate
linear filtering methods to produce a quasi-maximum like-
lihood (QML) estimator. As Harvey et al. (1994) and Ruiz
(in press) pointed out, the accuracy of the normality approx-
imation used in the filtering approach will depend on where
the true parameters lie in the parameter space. Specifically,
the approximation will worsen as the volatility equation vari-
ance decreases. Finally, Danielsson (in press) and Danielsson
and Richard (1992) developed new methods for approximat-
ing the integral used in evaluating the likelihood function.
Without a direct and “error-free” method for evaluating the
likelihood, it is difficult to gauge the accuracy of the integral
approximations proposed in these articles.

In applications of stochastic volatility models to financial
data, prediction and filtering as well as parameter estimation
are major goals of the analysis. The literature only offers
approximate filtering solutions to the problem of inferring
about the unobservable volatilities and predicting future
volatility. Furthermore parameter estimates are routinely
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“plugged in” to multistep-ahead prediction formulas, and
often the contribution of parameter uncertainty to forecast
variability is not accounted for. Finally, all of the techniques
discussed in the stochastic volatility literature rely on asymp-
totic approximations to conduct inference.

We propose a new Bayesian approach in which the la-
tent volatility structure is directly exploited to conduct finite-
sample inference and calculate predictive distributions. We
augment the stochastic volatility parameters with the time
series of volatilities and construct a Markov chain that can
be used to draw directly from the joint posterior distribu-
tion of the model parameters and unobservable volatilities.
Our algorithm combines the idea of data augmentation as ad-
vanced by Tanner and Wong (1987) with a hybrid Metropolis
independence chain (see Tierney 1991). In less than one half-
hour of workstation central processing unit (CPU) time, we
compute simulation-based estimates of posterior quantities
of interest to a very high degree of accuracy.

The rest of the article is outlined as follows. Section 1
describes our algorithm and discusses its theoretical prop-
erties. Section 2 discusses the problem of smoothing and
developing predictive distributions of future variances. Sec-
tion 3 applies the method to analysis of stock-return data.
Section 4 reports sampling experiments that compare the per-
formance of our likelihood-based Bayes estimator with both
MM and QML procedures. Section 5 provides results on
filtering performance.

1. THE MODEL AND MARKOV-CHAIN
MONTE CARLO APPROACH

The general stochastic volatility model views the time
series of the data, y, as a vector generated from a prob-
ability model, p(y|h), where h is a vector of volatilities.
Each data point y, has variance k,, which is time depen-
dent. The volatilities # are unobserved and are assumed to
be generated by the probability mechanism, p(h|w). The
density of the data is a mixture over the A distribution,
p(y|w) = [ p(y| W)pth|w)dh.

Carlin, Polson, and Stoffer (1992) used a Gibbs sampling
procedure for analysis of nonlinear state-space models, al-
lowing for nonnormal error densities but with a time invari-
ant scale . Our focus here is on modeling variation in &
over time rather than elaborations of the process governing
the mean. McCulloch and Tsay (1993) considered a class of
priors for variance changes in which the ratios of volatilities
have a random-walk component based on an inverse gamma
innovation. Their focus was more on the filtering problem
with the process parameters specified a priori. In our ap-
proach, we wish to consider prediction and filtering with a
hierarchical structure in which we infer about the volatility
equation parameters rather than just fixing them to implement
a filtering procedure.

Uhlig (1991) introduced a different volatility model in
which the ratio of volatilities has a Beta distribution. Uhlig
also provided a multivariate model in which the covariance
structures have a generalized multivariate Beta distribution.

In Uhlig’s models, the range of possible variance ratios is re-
stricted to a finite interval and has a complicated interaction
with the variance of the volatility. The advantage of Uhlig’s
approach is that it provides exact expressions for the marginal
likelihood. One must rely on high-dimensional numerical
integration, however, to provide a solution to the problem of
inferring about the Beta distribution range parameters as well
as solving the prediction and filtering problem.

1.1 Simple Stochastic Volatility Models and
Comparisons to ARCH Approaches

To focus discussion on the key aspects of modeling and
estimating stochastic volatility models, we will start with
a simple model in which the conditional variance of a se-
ries {y,} follows a log-AR(1) process. Jacquier, Polson, and
Rossi (1993) considered priors and methods for the general
multivariate case: y, = Vhu, Inh, = a + 8lnh_y + ooy,
and (4, v;) ~ independent N(0, 1). Here o’ = (&, 6,0,). In
our Bayesian simulation framework, it will be a simple mat-
ter to introduce exogenous regressors into the mean equation
as well as to accommodate an AR(p) process for the log
variance.

Although the preceding model is quite parsimonious, it
is capable of exhibiting a wide range of behavior. Like
ARCH/GARCH models, the model can give rise to a high
persistence in volatilit; (sometimes referred to as “volatility
clustering”). Even if 6 = 0, the model is a variance mixture
that will give rise to excess kurtosis in the marginal distri-
bution of the data. In ARCH/GARCH models with normal
errors, the degree of kurtosis is tied to the roots of the vari-
ance equation; as the variances become more autocorrelated,
the degree of mixing also increases. In the ARCH/GARCH
literature, it has become common (e.g., see Nelson 1991)
to use nonnormal innovation densities to accommodate the
high kurtosis of various financial time series. In the stochas-
tic volatility model, the o, parameter governs the degree of
mixing independently of the degree of smoothness in the
variance evolution.

Jacquier et al. (1993) demonstrated how to accommodate
correlation between the mean and variance equations errors,
which will introduce an asymmetry into the conditional vari-
ance function of the sort documented in the EGARCH lit-
erature. Although adding correlation is an interesting ex-
tension, not all economic time series display a “leverage”
effect. Evidence from the EGARCH literature suggests that
the leverage effect is small for interest-rate and exchange-rate
series. Vetzal (1992) found a small and insignificant correla-
tion in his analysis of the treasury bill (T-bill) series. Gallant,
Rossi, and Tauchen (1992) found that the leverage effect in a
stock index series is sensitive to conditioning arguments and
outliers.

There are important differences between likelihood func-
tions for the standard GARCH and stochastic volatility mod-
els. To illustrate this point, we fit GARCH and stochastic
volatility models to weekly returns on a portfolio formed
of the smallest decile of listed New York Stock Exchange
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Figure 1. ACF of Squared Returns, Fitted GARCH, and SVOL
Models, Weekly Decile 1 Portfolio: Squared Returns, Points; GARCH
(1,1), Dotted Line; SVOL, Solid Line.

(NYSE) stocks (see Sec. 3 for a complete analysis of other
portfolios and individual stocks). Based on the Schwarz cri-
terion, we select a GARCH(1, 1) model that was fitted by
maximum likelihood. The stochastic volatility model is fitted
using the Bayes estimators developed in this article (see Table
1, Sec. 3, for the estimates). Figure 1 compares the autocor-
relation of the squared returns with the implied theoretical
autocorrelations of the fitted stochastic volatility model (see
Appendix A for the expression) and the GARCH model [see
Bollerslev (1986) for derivation of GARCH autocorrelation
function (acf)]. The stochastic volatility and GARCH acf’s
are computed by inserting the Bayes or maximum likelihood
estimators (MLE’s) in the theoretical expressions. The fitted
GARCH and stochastic volatility models have very different
implied acf’s with the stochastic volatility model in closer
conformance with the data. This serves to illustrate that the
likelihood functions for the GARCH and stochastic volatil-
ity models put different weights on various moments func-
tions. This point of view is further corroborated by Hsieh’s
(1991) findings that ARCH/GARCH/EGARCH filters do not
remove all nonlinear dependencies in the series as measured
by a battery of BDS-inspired statistics. On the other hand,
Hsieh found that when an autoregressive stochastic volatility
filter is applied to the data, no remaining nonlinear depen-
dencies are found. Danielsson (in press) also provided some
goodness-of-fit evidence that the stochastic volatility model
may perform better than some variants of ARCH models in-
cluding the EGARCH model.

Our goal in this article is to provide a practical method
for analysis of stochastic volatility models and not to resolve
the controversy over whether ARCH or stochastic volatility
models provide a better approximation to the data-generating
process for economic and financial data. Practical difficulties
have kept investigators from using the stochastic volatility
model even though it offers a natural alternative to ARCH
and has some advantages in the smoothing and prediction of
unobserved variances. Itis our view that the limited evidence
available at this time suggests that stochastic volatility models
are a promising alternative to various ARCH variants.

1.2 The Marginal Likelihood Dilemma

As noted by many authors, the fundamental problem with
even the simplest stochastic volatility specification is that
the marginal likelihood over the parameters of the stochas-
tic volatility process is defined by a T-dimensional inte-
gral {w) = [ p(y|h)ph|w)dh, where o' = (a,8,0a,,p),
¥y = (y,...,yr) and ' = (hy,... hy). The stochastic
volatility model can be thought of as specifying a prior over
the sequence of {h;}. Our prior consists of the view that
the volatilities evolve smoothly (for large positive §) accord-
ing to the AR process. A naive strategy for approximating
£ would be to simulate from the “prior” p(h|w) and aver-
age the conditional likelihood, p(y|h), over these draws,
Z(w) = B,(y| hi)/H, where h; (i = 1,..., H) are simulation
draws from the p(h|w) model. In more than a few dimen-
sions, it is well known that this sort of integration strategy
will not work. Because we do not know where the likeli-
hood has mass, we are drawing from the prior to compute the
expectation of the conditional likelihood, p(y | #). The prior
may be centered far away from the conditional likelihood.
As we see in Section 1.3, one important advantage of our
Markov-chain simulation approach is that draws are made
from the posterior rather than prior distribution of 4 | w.

Inspired by the ideas of importance sampling, Danielsson
and Richard (1992) proposed a more accurate integration
strategy to calculate ¢(w). They approximated £ and then
used these approximations along with a derivative-free opti-
mizer to produce estimates. Although they were able to assess
the accuracy of their method in evaluating the likelihood for
§ = 0 (this is the iid mixing model), the unavailability of the
likelihood for any other value of the parameters makes it dif-
ficult to evaluate the accuracy of their methods for any other
value of 6. Even if it is possible to evaluate the marginal
likelihood with low error, asymptotic theory must be used
to approximate the sampling distribution of the approximate
MLE. Another alternative would be to use the Danielsson and
Richard strategy to evaluate the likelihood in a more standard
Bayesian analysis. Monte Carlo methods of numerical inte-
gration could be used to compute posterior expectations of
functions of interest such as posterior means. In effect, this
strategy would nest the Danielsson and Richard integration
strategy inside of a standard importance sampling approach
to conducting posterior analysis. Because thousands of like-
lihood evaluations would be required to set up the importance
function and perform the Monte Carlo integration, however,
a Bayesian analysis based on the Danielsson-Richard simu-
lated likelihood method is not yet computationally feasible,
based on the timing estimates for likelihood evaluation given
by Danielsson (in press; 1993 personal communication).

1.3 Bayesian Analysis and Markov-Chain
Monte Carlo

We view the specification of the stochastic volatility model
as a hierarchical structure of conditional distributions. The
hierarchy is specified by a sequence of three distributions, the
conditional distribution of y | h, the conditional distribution
of k| w, and the marginal or prior distribution of w. In this
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view, the stochastic volatility equation, governed by p(h | w),
is a prior with hyperparameters w. The joint posterior dis-
tribution of k& and w is proportional to the product of these
three distributions. In this sense, we have augmented the pa-
rameters, w, with £ to form a large parameter vector, (w, k) €
Q x H. This idea is termed data augmentation and was pi-
oneered in Markov-chain Monte Carlo (MCMC) by Tanner
and Wong (1987). The joint posterior is given by Bayes the-
orem 7(h,w | ¥) o< p(y | Wp(h | w)p(w). From this joint pos-
terior, the marginal 7(w | y) can be used to make inferences
about the stochastic volatility parameters, and the marginal
w(h|y) provides the solution to the “smoothing” problem
of inferring about the unobserved volatilities. To compute
these marginal distributions, we construct a Markov chain
with invariant distribution 7. Extremely long samples are
computable in short order on any workstation, enabling us
to construct very precise simulation-based estimates of any
posterior quantity. Mueller (1991) developed Markov-chain
algorithms for analysis of factor ARCH and other dynamic
models for which the marginal likelihood is easily computed.
Mueller’s methods do not extend to the stochastic volatility
case.

Breaking the joint posterior into various conditional dis-
tributions is the key to constructing the appropriate Markov-
chain sampler. For example, conditional on £, the posterior
distribution of w, p(w | y, k), is simple to compute from stan-
dard Bayesian treatment of linear models. If it were also pos-
sible to sample directly from p(h | w, y), then we could easily
construct a Markov chain by alternating back and forth be-
tween drawing from p(h | w,y) and p(w | k,y). This process
of alternating between conditional distributions produces a
cyclic chain, a special case of which is the Gibbs sampler
(see Gelfand and Smith 1990).

In the case of the stochastic volatility model, it is not possi-
ble to sample directly from p(h | w, y) at low cost. Instead, we
decompose the joint distribution, p(h | w,y) further into the
set of conditionals p(h, | h_;, w, y), where h_, denotes the rest
of the & vector other than k,. In our case, it is difficult to sam-
ple from these univariate conditional distributions. Instead,
our approach is to construct a hybrid method that uses a se-
ries of Metropolis accept/reject independence chains which
do not directly sample from the conditionals p(h, | h_,, w, y)
but nonetheless provide the posterior as the stationary dis-
tribution of the chain. Our algorithm is known as a cyclic
independence Metropolis chain. We now give the details on
how to implement such a Markov chain.

1.4 The Algorithm

To construct the chain, we first sample from p(w | b, y) and
then sample indirectly from p(h | w, v). We specify a standard
natural conjugate prior for (8,0,), 5’ = (o, 8), p(B3,0) =
p(Blo), p(o), Blo ~ N(B, c*A™Y), ¢ ~ IG (vg,s3). The
posterior for w | h is available from standard linear-models
theory. We can easily draw the w vector at one time by
drawing from the appropriate multivariate normal and gamma
random variables. Clearly, we can extend the AR(1) model
for the volatilities to include higher-order returns, keeping the

standard linear-models framework. One obvious advantage
of the Bayesian approach for the general AR (p) model is that
we can put on “smoothness” or “damping” priors on the AR
coefficients to deal with the problem of excessive sampling
variability caused by the addition of more model parameters.

To draw from % | w, y requires more effort. We can easily
exploit the Markovian structure of the stochastic volatility
model to break down the joint posterior of the entire & vector
by considering the series of univariate conditional densities,
plhe | Beo1, By, w,yp), t = 1,...,T. If it were possible to
draw directly from these univariate densities, our algorithm
would reduce to a Gibbs sampler in which we would draw
successively from p(w | &, ¥) and then each of the T univariate
conditionals in turn to form one step in the Markov chain. Be-
cause T draws from these univariate conditional densities are
required for one step in the chain and then the chain has to be
iterated for several thousand steps, however, it is imperative
that the univariate sampling methods be highly efficient.

The univariate conditional densities have an unusual form,
which is produced by the normal form for the conditional
sampling density and the lognormal forms for the volatility
equations,

™ P(ht | he_t, ht+la°-),)’r)
o< p(ye | ho)p(hy | B 1)p(hest | )
oc % exp{~.5y; [h}1/hy
exp{—(n#, — u,)?/(20%)},

where i, = (a(l = 8) + 6(In hpyy +1nk,_1))/(1 + 6%) and o2
= ¢2/(1 + 6%). Here we have combined both of the log-
normal terms and completed the square on Ink,. In these
cases, when the density is not of a standard form, it is natu-
ral to consider an accept/reject sampling method. An ideal
accept/reject density, g(x), is a density for which there exists
a constant such that p(x) < cq(x) for all x and for which the
ratio p(x)/g(x) is relatively constant over the range of x in
which p has most of its mass. In this application, the fact
that there is no analytic expression for the normalizing con-
stant of the conditional density further complicates matters.
The normalizing constant is a function of the conditioning
arguments, which will vary as the sampler progresses. Thus,
even with a valid accept/reject density that truly dominates p,
we would have to find the constant ¢ required to raise g over
p for each time period, which could involve an optimization
problem at each draw. The solution commonly taken in the
random-number-generation literature (e.g., see Ripley 1987,
chap. 3) is to develop customized bounding procedures for
each special case. These ideas do not adapt well to simulat-
ing from conditional densities with unknown and changing
normalizing constants. Furthermore, even if the blanketing
constant could be found at low computational cost, it may
be difficult to find a valid accept/reject density that would
be efficient in the sense of accepting a high percentage of
the draws.

Our solution is to modify the Markov chain by allowing
repeats of points in the sample sequence producing what is
called a Metropolis chain. It should be emphasized that
although the Metropolis chain repeats points in the draw
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sequence the invariant distribution of the chain is absolutely
continuous. First, we choose a candidate simulation density,
g, which is cheap to sample from and closely mimics the
shape of the univariate conditional density, p. We do not ac-
tually have to guarantee dominance, however. Second, we in-
troduce a Metropolis independence chain to handle situations
in which the sample points from g are such that dominance
fails [see Tierney (1991) for a discussion of independence
Metropolis chains]. Shephard (1993) used a Metropolis chain
to implement the E step of a simulated EM algorithm for the
random-walk special case of the stochastic volatility models
considered here. To implement the simulated EM approach,
a decision rule must be established that determines the num-
ber of steps that the Metropolis algorithm is iterated at each
E step. Because there is no theoretical guidance in selection
of this rule, it must be established that a proposed rule pro-
vides a large enough number of Metropolis steps to endow
the simulated EM with adequate sampling properties for all
relevant regions of the sampling space.

We choose a candidate simulation density to be the ker-
nel of the independence chains by exploiting the special
form of the conditional density function. The first term
in the density expression (x) is the density of the inverse
of a gamma-distributed random variable (this is to be dis-
tinguished from the inverted gamma density): X ~ 1/Z,
Z ~ gamma(g, 1/A); Po(x) = A%/T(¢) x~@*D exp(~A/x).
We approximate the lognormal term by matching the first
and second moments of the lognormal to the moments of the
inverse gamma. The two inverse gamma density forms can
then be combined to form one inverse gamma with param-
eters, ¢ = (1 — 2exp(02))/(1 — exp(@?) + .5; A = (¢ ~ 1)
(exp(y; + .50%)) +.5y2. The inverse gamma is a good choice
for a simulation “blanketing” density because its right tail is
algebraic, allowing it to dominate the lognormal density on
the right. Our experiments with a lognormal blanketing den-
sity have shown the danger of choosing a blanketing density
that does not dominate in the right tail.

The only remaining problem is to devise a method for
choosing ¢. Because we no longer require that ¢ be cho-
sen so that cq dominates p, we choose ¢ so as to trade off
too frequent rejection from high ¢ values with too frequent
“staying” from the Metropolis mechanism. We compute the
ratio of the unnormalized p density and normalized g density
at the three points centered on the mode of the inverse gamma
distribution. The median of these ratios is used to calculate
¢. We find that we accept between 70% and 80% of all draws
when they are constructed in this manner and “stay” less than
5% of the time. This indicates that the inverse gamma density
is a good approximation to the conditional density.

To construct the Markov chain on the full state space,
(h,w) € H x Q, we piece together T Metropolis indepen-
dence accept/reject chains to handle each coordinate in the &
vector and the generation from p(w | £, y). Each chain sam-
ples from the accept/reject density at each step and modifies
one A, coordinate. We construct a chain that moves from
the point (h,w) to (h’,w’) by cycling through T Metropolis
chains to update A to &’ and then draw w|h,” y to update w

to w’. We now establish that this hybrid chain has invariant
distribution 7, the joint posterior of (h, w).

1.5 Convergence of the Cyclic Metropolis Chain

The basic idea behind MCMC is to specify a Markov
chain, with transition kernel P that is ergodic (irreducible
and aperiodic) with 7 as its stationary distribution. Two
widely used chains are the Gibbs sampler (Geman and Ge-
man 1984) and the Metropolis algorithm (see Tierney 1991
for a general discussion). The desired distribution 7 can be
simulated by picking an arbitrary initial state X, and then ap-
plying the transition kernel of the chain giving rise to the
sequence {X;}. The general Metropolis algorithm works
as follows. Let Q(x,y) be the Metropolis transition kernel.
Suppose that the chain is currently at X, = x. Then gen-
erate a candidate point as the new point, X,_;. We accept
this new point, y, with probability a(x,y), where a(x,y) =
min{(p(NQ(x,y))/(p(x)Q(y,x)), 1}. Here we only need to
know 7 up to a proportionality constant, m(x) x p(x). A
Metropolis independence chain is fashioned by sampling can-
didate steps, Y, from a fixed density that does not depend on
x (hence the term “independence” chain). For the indepen-
dence chain, with transition kernel Q(x, y) = f(y), the accep-
tance probability is given by a(x,y) = min{w(y)/w(x), 1},
where w(z) = p(z)/f(z). If rejection sampling is used, then
F(x) o< min{p(x), cq(x)}, where ¢ is the accept/reject density.

If cq(x) were to dominate for all x, then this chain would
simply “pass through” iid accept/reject draws and provide
an iid sampling method. If, however, cq does not dominate
p, then there is the chance that the chain will simulate an
ordinate at which w(y)/w(x) will be less than 1. In these
circumstances, the chain may actually choose to stay ata point
for more than one draw. The intuition behind the working of
the Metropolis chain is that, although accept/reject sampling
works by rejecting draws so as to reduce the sampling density
at points where cq is much larger than p, the Metropolis builds
up mass at points where p dominates cq by repeating values.

To implement a Metropolis independence chain on the
whole state space (H x ) would be inadvisable because,
although we can calculate the joint posterior of 4 and w up to
a constant of proportionality, accept/reject sampling in high
dimensions can be very inefficient. Our solution is to define
the transition kernel as the product of T kernels for each of the
T elements of the h vector along with the conditional distribu-
tionof w | h, P: P1P; - - PrP,, |, where P, updates h; | w and
P, » updates w. Although each of the P, chains is reducible
because they only update one coordinate at a time), the prod-
uct has a transition kernel that is positive everywhere and is
therefore irreducible and aperiodic (see Tierney 1991, p. 5).
It only remains to check that the posterior, 7, is the invari-
ant distribution. Standard arguments involving the time re-
versibility of the general Metropolis chain (see Tierney 1991,
p. 3) can be used to verify that the posterior, 7, is the unique
invariant distribution of the chain.

Although it is easily verified that our chain is ergodic and
converges to the correct stationary distribution, in practice we
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must be satisfied that the draws are coming from a distribution
close to the stationary distribution. This amounts to deter-
mining how long the chain must be run to dissipate the effects
of the initial state, X,. Analysis of the second eigenvalues of
the chain (Applegate, Kannan, and Polson 1991) can provide
exact information on the run length required to ensure that
the chain is within a given tolerance of the invariant distribu-
tion. For most models, however, these eigenvalues cannot be
calculated. A body of current research seeks to obtain tight
bounds on these eigenvalues. For our problem, these bounds
are not sufficiently tight to be useful. Therefore, we must rely
on simulation experience to assess the speed of convergence.

One common practice, which we follow in our empirical
applications, is to discard the first 7* draws under the assump-
tion that the chain will have converged to within a very close
tolerance to the invariant distribution. In practice, T* must
be chosen by experience with simulated data. We simulate
data from a known stochastic volatility model and verify that
the sampler converges in distribution after a specified number
of draws. After extensive experimentation, we find that the
sampler converges very rapidly to the stationary distribution.
The excellent sampling performance of the Bayes estimator
reported in Section 4 provides an indirect confirmation that
the sampler has converged quickly.

Another issue that has received some attention (see
Geweke 1992; McCulloch and Rossi in press) is the informa-
tion content of a given draw sequence. We use the empirical
distribution of the draws to estimate posterior quantities of
interest [it is also possible to average the conditional distribu-
tions as suggested by Gelfand and Smith (1990)]. Itis impor-
tant to ensure that these posterior estimates are sufficiently
precise for the purpose at hand. In the case of stochastic
volatility models, however, a vast number of draws (exceed-
ing 50,000) can be drawn in a matter of hours on even a slow
workstation, rendering these considerations less important.

In summary, it is important to remember that these sorts
of Markov-chain samplers converge to the required poste-
rior distribution under only mild and verifiable conditions.
Furthermore, allocation of more computer time to the simu-
lation will unambiguously increase the amount of informa-
tion regarding the posterior and provide better inferences.
No amount of additional computing resources, however, can
improve the quality of inference obtained from asymptotic
procedures.

2. SMOOTHING AND FORECASTING

One important use of stochastic volatility models is to in-
fer about values of unobservable conditional volatility both
within the sample (smoothing) and out of sample (predic-
tion). For example, option-pricing applications often require
some sort of estimates of conditional volatility, and “event”-
style studies may wish to relate specific events to changes
in volatility. To provide a solution to the smoothing prob-
lem, we must compute the conditional distribution of 4, |y,
where y' = (y1,...,yr) is the whole data vector. If this

distribution were available, we could simply use E[A, |y] as
the smoothed estimate of ;. This density also summarizes
our uncertainty about the unobservable #,. An analytical ex-
pression for p(h, | y) is unavailable, even conditional on the
volatility parameters w. We will see, however, that a Monte
Carlo estimate of this density is available using our draws
from the joint posterior, w(h, w).

When an investigator uses the MM or simulated likelihood
approach to produce parameter estimates, a nonlinear filter-
ing problem has to be solved after the estimation to produce
smoothed estimates of h,. For example, Melino and Turnbull
(1990) used approximate Gaussian filtering methods to ex-
tract smoothed estimates conditional on MM parameter esti-
mates. These approximate Gaussian filtering methods do not
necessarily provide the optimal nonlinear filter. In a related
approach, Foster and Nelson (1992) constructed an approxi-
mate nonlinear filter based on the EGARCH model.

Our method avoids any asymptotic approximations and
provides draws that can be used to solve the smoothing prob-
lem as a natural by-product of the simulation process [see
Carlin et al. (1992) and McCulloch and Tsay (1993) for re-
lated approaches]. Our Monte Carlo (MC) sampler has in-
variant distribution, which is the joint posterior of (h,w). The
solution to the smoothing problem is the marginal posterior of
he, p(he | y). We simply use the draws of the A vector to form
estimates of these marginals for all T observations. These
draws must be made to construct the chain so that they are
available at no additional computational cost. Furthermore
this marginal distribution directly accounts for parameter un-
certainty because p(h|y) = [ p(h|w,y)p(w|y)dw. The so-
lution to the nonlinear filtering problem is simply E[h, |y],
which we can approximate to any desired degree of accuracy
by using the draws from the marginal distribution, p(h, | ).

Our MC sampling framework can be extended to include
forecasting up to an arbitrary step ahead. The goal of any
forecasting exercise is to compute the predictive distribution
of a future vector of observations given the past observations.
In the case of volatility forecasting, our goal is to compute
the predictive density of a vector of future volatilities given
the sample data, p(h | y), where h} = (hre1, ..+, hrex). Our
approach is to compute the joint posterior distribution of the
h vector including both sample and future h’s and simply
marginalize on the future h’s, which will be the predictive
distribution. Define y; = (¥741,-- -, Yreis1)s B = (i, hy),
and y* = (y, y}). The key insight is that, given y*, we
have already shown how to draw from p(h* | y*,w) and that
P(yr |y, b*,w)is simple to draw from. We now piece together
three collections of conditional distributions to construct the
following chain:

1. yr|y,h*,w (iid normal draws)
2. b iytw
3. wlh*

The second and third conditionals are sampled using the
cyclic Metropolis approach outlined in Section 1.

To make forecasts using a standard filtering framework,
estimates of A7 are formed using filtering methods, and then
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estimated parameters are used in conjunction with the model
to forecast future variances. There are now two sources of
error that must be considered, error in the filtering estimates
of hr and parameter estimation error. Even if the sampling
variability in the parameter estimates were negligible, uncer-
tainty in the level of Ay must be reckoned with. There is
no reason to believe that asymptotic normal approxmations
would result in accurate prediction intervals, especially for
multistep-ahead forecasts that will involveA nonlinearities in
the estimate of the persistence parameter, 4.

3. ANALYSIS OF SELECTED STOCKS AND
PORTFOLIOS

To illustrate our Markov-chain simulation method and to
compare findings from the stochastic volatility models with
findings in the ARCH/GARCH literature, we analyze 15
data sets on a variety of stock portfolios, selected individ-
ual stocks, and exchange rates. For the stock data, we rely on
weekly stock returns constructed by compounding daily re-
turns from the Center for Research in Security Prices (CRSP)
daily NYSE stock files. Weekly returns were used to min-
imize the asynchronous trading and bid—ask bounce prob-
lems in daily data. In addition, there are variance shifts due
to weekends, holidays, and day-of-the-week effects that are
tangential to the main point of the analysis. By using weekly
returns, we hope to minimize these problems while still re-
taining much of the information on short-term volatility shifts
that is present in the daily data.

We first prefilter the returns series to take out an AR(1)
term and monthly systematic shifts in the mean returns,
R} = Ry —a — bR,..; —Zd;Mnth(i),. These residuals are then
analyzed via the Markov-chain algorithm outlined in Sec-
tion 1. If desired, one could accommodate these systematic
shifts in the mean of the series in the Markov-chain method
by allowing y, = x,v + v/h.&, and conducting an analysis of
the joint posterior of p(7, h, w | ¥). This is easily achieved by
introducing the conditional posterior distribution of | A, w,
and y, which can be computed from the standard theory of
linear models. although it is straightforward to allow a linear
mean function, we expect that information about the mean
is approximately independent of information regarding the
variance parameters.

Table 1 presents estimates of the stochastic volatility pa-
rameters for the standard CRSP equal-weighted (EW) and
value-weighted (VW) indices of NYSE stocks as well as three
decile portfolios corresponding to the 1, 5, and 10 deciles
of stock as measured by market capitalization. The poste-
rior mean of & lies between 91 and .95, exhibiting a high
persistence in conditional variances typical of estimates in
the ARCH literature. Below the posterior mean and stan-
dard deviation is the 95% Bayesian credibility interval that is
constructed from the .025 and .975 percentiles of the simu-
lated posterior distribution. It is hard to directly interpret the
posterior distribution of ¢,. A parameter that is more inter-
pretable is the coefficient of variation (we use the square) of
the volatility process, var (h)/E[h]* = exp(o, /(1 — 6%)) — 1.
Since the MC sampler provides draws of the parameters, it is

Table 1. Posterior Analysis for Selected Portfolios

Posterior means (standard deviation)

Parameter EW vw D1 D5 D102
« —.69 —-.39 -.56 -.71 —.56

(.12) (.11) (.112) (.36) (.18)
8 - —-.95 -.93 —.01 -.93

(015)  (013)  (016)  (046)  (.022)
(.88, 94] [.92, 97] [.89,.96] [.81,.96] [.89,.97]

oy .39 23 32 32 29
(025)  (026)  (032)  (095)  (.056)
Vi/ER 1.61 .80 1.1 92 03
(-38) (:24) (-28) (.27) (.25)
Shock 7.8 14, 9.6 9.4 11.
haif-ife  (1.4) (4.3) (2.3 (4.5) (4.5)

NOTE: Weekly returns, 7/62-12/91. 7 = 1,540. All returns are prefittered to remove AR
(1) + monthly seasonals from mean equation.

2EW = equal-weighted NYSE; VW = value-weighted; Dx is decile x portfolio. D1 is the
decile of smallest stocks.

DBrackets denote 95% Bayes probability interval.

a straightforward computational task to compute the poste-
rior distribution of any function of the parameters. We do not
have to rely on delta-method asymptotics. Examination of
the posterior distribution of the coefficient of variation sug-
gests that the small stocks (which drive the EW index) have
greater variability in the stochastic volatility equation than
for the high-capitalization stocks that greatly influence the
VW index.

Analysis of the posterior distribution of model parame-
ters for stocks selected from the 1st and Sth decile is given
in Table 2. As might be expected, the individual stocks
have greater variation in the level of persistence as measured
by widely varying posterior distributions of § and ¢,. For
this small sample of stocks, there seems to be a relationship
between the level of market capitalization and the level of
predictability in the stochastic variance equation. All three
middle-decile stocks have posterior distributions massed on
higher levels of the coefficient of variation than the high-cap
stocks. One interesting measure is the half-life of a shock to
volatility, log(.5)/ log(é), the posterior moments of which are
presented in the last row of the table. These measures vary
widely from about 3 weeks to over 26 weeks. It is also inter-
esting to observe that, although the posterior distribution of
¢ is tightly massed, the posterior distribution of the half-life
is very diffuse.

The adequacy of asymptotic normal approximations to the
posterior is addressed in Figure 2, which shows the marginal
posteriors of 8, var(h)/E[h]?, and the half-life for the EW in-
dex and Texaco. All of these distributions show pronounced
skewness. This casts some doubt on the usefulness of asymp-
totic approximations for conducting either Bayesian or fre-
quentist inference.

We computed MM estimates of the model parameters us-
ing the set of moments outlined in Section 4. We do not report
the MM estimates; instead we summarize the qualitative dif-
ferences. Some of the MM estimates of é are very different
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Table 2. Posterior Analysis for Selected Stocks

Posterior means (standard deviation)

Parameter 1BM GM TEX Broad Commetco  Bearings®

o’ -12 -.22 -.38 -.39 -.78 -.12
(-20) (.079) (.10) (.093) (13) (.16)

é .83 97 .85 .93 .87 .81
(.028) (.011) (.014) (017) (.021) (.024)
[.77, .88] .94, .99] [.92, .97] (.89, .96] [.83, .91] [.76,.86]

ov 40 .14 .23 .25 43 .53
(.025) (.023) (.028) (.029) (.027) (.028)

Vi/ E2 67 43 73 56 13 1.35
(.12) (.52) (.21) (.15) (-26) (-22)

Shock 3.8 26.0 14. 8.7 53 34

half-life (.69) (15) (4.1) (2.5) (1.0) (.49)

NOTE: Woeekly returns, 7/62-12/91. T = 1540. All returns are prefiltered to remove AR(1) and monthly seascnals from the mean
equation.

4Tex = Texaco; Broad = Broad inc.; Commetco = Commercial Metals Company; Bearings = Bearing Inc. Stocks are listed from
largest to smallest capitalization in terms of 1991 market value. The 1991 market capitalizations are $50.8 billion, $17.8 billion, $15.8
biltion, $621 million, $230 million, and $137.8 million, respectively.

bBrackets denote 95% Bayes probabiity interval.

from the Bayes estimates; for example, the MM estimate of the MM estimates are larger than the posterior standard de-
6 for IBM is .996 (compare with .83 from the MC sampler). viations reported in Tables 1 and 2. Although the posterior
In most cases, the asymptotic standard errors computed for standard deviations and MM asymptotic errors are not strictly
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Figure 2. Posterior Distributions of Selected Parameters.
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comparable, this does suggest that there is important infor-
mation missing in the set of moments used in computing the
MM estimates. We also found evidence of multiple interior
local optima in the MM criterion surface. For example, in
the analysis of the Commetco data, we found two interior
optima, one at (@ = 5.5, & = .12, 5, = .83) with an MM
criterion value of 20.4 and another at the point (—.129, .98,
.119) with value 19.3.

In Table 3, we present a Bayesian analysis of daily time
series that have received attention in the stochastic volatility
literature. We examine the daily changes in the log of the
S&P 500 stock-price index studied by Gallant, Rossi, and
Tauchen (1992) and daily spot exchange rates for the £/$,
DM/$, and CD/$ series. The S&P 500 series is prefiltered to
remove systematic components from the mean and variance
as discussed by Gallant et al. (1992). The £/$ and DM/$
series are noon spot prices from the Board of Governors of the
Federal Reserve System, supplied by David Hsieh. The CD/$
series was obtained from Melino and Turnbull (1990). The
Bayes estimates of 6 for the CD/$ exchange rate agree closely
with MM estimates computed by Melino and Turnbull. Our
estimates of the coefficient of variation, however, are 10 times
larger (1.12 vs. .14). For the DM/$ and £/$ rates, Harvey et
al. (1994) found much higher 6 values for the £/$ series.
It should be pointed out that the Harvey et al. study was
conducted on a subperiod of our sample and with data from
a different source. The exchange-rate data exhibit a high
degree of persistence in volatility although the posterior is
massed well away from the unit-root case. Some care should
beexercised in interpreting these persistence findings because
level shifts in these series brought about by calendar effects
and central bank interventions [especially for the U.K. series;
see Gallant et al. (1991)] can easily lead to spurious unit-
root findings. Our analysis of the S&P series finds a higher
level of persistence for the daily series as compared to the

Table 3. Posterior Analysis for Selected Daily Financial Series

Posterior means (standard deviation)

Parameter S&P 500 £/8 DM/$ CD$/$

«a -.002 -.36 -.56 —.61
(.004) (12) (.012) (12)

é .87 .96 .85 .95
(.008) (012) (.013) (.009)
[.96,.99]*  [.94,.98] [92,.97) [93,.97]

av 15 A7 13 .26
(017) (.03) (.03) (.025)

Vi/ E2 56 52 69 1.1
(.19) (12) (14) (-23)

Shock 29.0 21.6 13. 14.4

half-ife  (10.0) (8.8) (3.5) (3.0)

NOTE: S&P 500-daily change in log (S&P 500) index, filtered to remove calendar effects
as documented by Gallant, Rossi, and Tauchen {1992); 1/2/80-12/30/87; T = 2,023. £/$,
DM/$-daily noon spot rates from the Board of Governors of the Federal Reserve System,
supplied by David Hsieh; 1/2/80-5/31/90; T = 2,614. CD$/$-daily noon interbank market
spot rates from Bank of Canada, supplied by Melino and Turnbull (1990}, 1/2/75-12/10 86,
T =3,011.

* 1, ] denctes 95% Bayes probability interval.

weekly stock portfolios, a fact frequently noted in the ARCH
literature. The posterior distribution of §, however, is massed
well away from 1 (the posterior probability that § > .99 =
.005).

Taken as a whole, these findings suggest that there may
be important differences in the sampling properties of Bayes
and other estimation procedures. For this reason, we de-
signed and carried out a set of simulation experiments com-
paring the sampling performance of the posterior means as
Bayes estimators as compared to MM estimators and estima-
tors based on the QML filtering approach of Nelson (1988)
and Harvey et al. (1994). These sampling experiments are
reported in Section 4.

4. SAMPLING EXPERIMENTS

To compare our Bayes estimator to other procedures, we
devised a series of simulation experiments designed to gauge
performance over a fairly wide range of relevant parameter
values. Table 4 summarizes the six sets of parameter settings
used in the experiments. As discussed previously we have
found it most convenient to parameterize the model in terms
of the coefficient of variation of #. Our empirical analysis
of stock data and exchange-rate data suggests that 6 values
between .9 and .98 are relevant and that the coefficient of
variation fluctuates between .5 and 1.0. To examine the sen-
sitivity of the methods to the size of the stochastic component
in the volatility equation, we consider cells symmetrically
positioned around the central var(h)/E[h)? = 1.0 cell. All
experiments are calibrated so that E[4] = .0009. If we think
of the simulated data as weekly returns, this implies an ap-
proximately 20% annual standard deviation, which is typical
of many stocks. We consider sample sizes of T = 500 for all
six cells, and we run one set of simulations at T = 2,000 for
the central cells to confirm that our findings are consistent
across sample sizes. The same set of simulated data sets are
used for all three estimators considered.

A review of the findings in the stochastic volatility litera-
ture supports our choice of parameter values. All studies find
a coefficient of variation of less than 1.0 with § ranging from
around .8 to .995. Melino and Turnbull (1990) analyzed the
CD/$ exchange rate (T = 3,011, daily from 1975-1986) and
reported 6 = .91 and V},/E; = .14. Danielsson (in press)
studied the daily S&P 500 (T = 2,202, 1980-1987) and re-

Table 4. Sampling Experiment Parameter Values

5

Var(h)/ E[h)? .9 .95 .98

10 a —.821 —.4106 —.1642
ov 675 .4835 .3082

1 a —.736 -.368 —-.1472
ov .3629 26 .1657

R a —.7061 —.353 —.1412
ov 135 .0964 .0614

NOTE: All of the models are calibrated so that £, = .0009—that is, about 22% annual
standard deviation for weekly data.
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ported & = .96 and Vi /E,2l = .34, Vetzal (1992) used weekly
T-bill data and got § = .94 and V,/E2 = .53. Harvey et
al. (1994) studied daily exchange rates from 1981 to 1985
(T = 946) and reported § estimates from .958 to .995 with
Vy/E? ranging from .47 to .74.

Two methods that have received prominent attention in the
literature on estimating stochastic volatility models are the
MM and the quasi-likelihood Kalman filtering (QML) ap-
proach. Both the MM and QML methods are nonlikelihood-
based methods that are less efficient thari our likelihood-based
Bayes method. The purpose of the simulation experiments is
to measure the extent of this inefficiency. In the recent gen-
eralized MM (GMM) literature, there has been considerable
discussion of an efficiency/robustness trade-off in which one
might be willing to use inefficient methods in exchange for
robustness with respect to departures from the distributional
assumptions used in formulating the likelihood. The MM ap-
proach considered here, however, uses higher-order moment
conditions that depend critically on normality assumptions.

We do not consider the simulated likelihood method
(QAM) of Danielsson and Richard (1992) in our simulation
experiments for practical computational reasons. Using the
number of draws reported by Danielsson (in press), we con-
servatively estimate that it would take at least three Sparc 2
workstation CPU years to run our full set of simulation exper-
iments. Further refinements of the Danielsson and Richard
method may make a full-blown simulation study feasible, and
we leave this for future study.

The simulation studies allow for comparison of various
methods not only in parameter estimation but also in produc-
ing “smoothed” estimates of the unobserved variances. Al-
though our MCMC Bayes procedure yields solutions to the
smoothing problem as a natural by-product of the method,
the MM, QML, and QAM approaches offer no direct solu-
tion to the filtering problem. In the non-Bayesian approach, a
method of parameter estimation must be coupled with a non-
linear filtering method to solve the smoothing problem. In
the simulation experiments, standard approximate Kalman-
filtering methods are compared to the Bayes solution to the
filtering problem.

41 Method of Moments

For simple stochastic volatility models such as the one
considered here, analytic expressions are available for a large
collection of different moments. For more complicated mod-
els in which analytic moment expressions are not available,
a simulated MM methodology could be employed. The real
problem in implementing an MM approach is the choice of
moments. Although many collections of these moments are
sufficient to identify the stochastic volatility parameters, there
is always the question of efficiency loss due to excluding in-
formation in the likelihood. The score function of the log-
likelihood should suggest which moments should be used.
Since the score is not available for these problems, we must
guess which set of moments is “sensible.” For extremely
large samples, we might specify moments from some set of

basis functions, which would, one hopes, approximate any
score function. A very large number of basis functions and
lags might be required, however.

We select the same basic set of moments considered by
Melino and Turnbull (1990). Weuse {E[|y,[*].k = 1,...,K},
{Elyyi—ell. k=1,...,L,}, and {E[y?y* ). k=1,...,L}.
The moments of marginal distribution of y, primarily serve to
identify the mean of A, and the autocovariances of the squares
and absolute values help to identify 6. As will be discussed,
we experimented with the number of lags in the moments
of the autocovariance type. Appendix A presents the well-
known analytic expressions for these moments as well as the
derivatives of the moment expressions with respect to the
stochastic volatility parameters. These derivatives are used
in optimization problems as well as in the computation of
the asymptotic covariance matrix of the method of moments
estimator.

The MM estimator is based on the classical MM approach,
except that the non-iid character of the moment discrep-
ancies is taken into account in forming the weighting ma-
trix, as in the work of Hansen (1982). Using the notation
in Appendix A, define m; = Xf(y)/T, where my indi-
cates moment of type i/ and power/order j. For example,
mi = Zly|/T with fz(y) = |y|. Let m;(w) be the pop-
ulation moment expression. The MM estimator is defined
as Wyy = arg min g’ (w)Wg(w), where g is the vector of mo-
ment deviations and g = £g,/T, g = [my; — my(w)], an
m x 1 vector, where m is the number of moments used.
W is the weighting matrix standard in the GMM literature,
W' = 1/To S wik,L)g.gl,,, and w(k, L) are the Bartlett
weights for up to order K. The MM estimates are based on
the first four moments of |y,|, 10lags of E[y?y*_, ], and 10lags
of E[]y:|y:—«|]. Although there is some correlation among the
24 moment discrepancies, there is no evidence of singularity
in the weighting matrix.

It is common practice to iterate the computation of the
weighting matrix by starting with the identity matrix and
then computing new weighting matrices based on the current
parameter estimates. Some iterate this process until it has
converged in the sense of producing small changes in the
criterion function and parameter estimates from iteration to
iteration. We found that estimates converge after only a few
iterations of the weighting matrix so that weighting matrix
issues are less important for this class of problems. Informing
the MM estimator, we used five iterations of the weight matrix
for T = 500 and four for T’ = 2,000.

As is standard in this literature, the asymptotic variance
matrix of Dy is computed as (D’'W~'D)~!'. Disthe 3 x m
Jacobian matrix of the moment expressions. For the simple
stochastic volatility model, it should be possible to calculate
W exactly rather than using the standard consistent estimator,
although this would be atedious calculation. More important,
we would have to evaluate the exact expression for W at
the MM estimates. It is not clear which of these consistent
variance estimators should be superior, the standard spectral
estimation approach or evaluating the exact W at Wy

To compute the MM estimates, we employ a state-of-the-
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Table 5. Mean and Root Mean Squared Error of the MM Estimator

Var(hy/ E{h)? « § oy a § oy a 1) ay
10 —-.821 .9 .675 —-.4106 .95 4835 —.1642 .98 .308
—-1.47 .83 .59 -.72 916 42 —~.09 .99 .19
(1.468)  (17) (29) (61)  (07) (18) (18)  (02)  (.14)
1 -.736 .9 .363 -.368 .95 .26 —.1472 .98 .1657
-1.0 .87 .24 -.51 .93 16 —.128 .982 .104
(1.25)  (17)  (19) (83) (1) (16) (26)  (.038) (11)
A —~.706 .9 .135 -.353 .95 .0964 —.1412 .98 .0614
-5.0 .30 .06 —-47 .34 .05 -2.25 .65 .063
(6.3) (88) (12) (6.5 (9 (.09) @.7) (67)  (.090)

NOTE: The statistics in this table are based an 500 simulated samples, each consisting of a time series of length 500. Foreach cell, the top
row (italics) shows the true value of the parameters. The following two rows show the mean and root mean squared error (in parentheses).

art optimizer specifically designed for a sum-of-squares ob-
jective function. We use the NPSOL routine from Stanford
Optimization Laboratory as implemented in NAG library rou-
tine EO4UPE. Analytic derivatives are used throughout. In-
spection of the moment expressions (derived under the as-
sumption of stationarity) immediately suggests that numeri-
cal problems can occur for values of delta close to 1 as well
as for large values of &, (the moments contain the expression
exp{c?/(1 — 6%)}). Furthermore it is well known that o, is
an absorbing state in the sense that once o, = 0 the MM es-
timation procedure will just try to match the mean volatility.
Our approach to this problem is to place bounds on the pa-
rameter space to keep ¢ from approaching too close to 1 and
to keep sigma from getting near 0. Since our optimizer is
based on a sequence of quadratic programs that approximate
the augmented Lagrangian problem, it is a simple matter to
add bounds constraints. Typically, we require |6AMM| < .995
and ¢, > .001. These bounds are very far from the parameter
values used in the simulations. Another possible solution to
this problem would be to work with moments of the log series
such as log |y,| and log(|y;y,—|). Although this strategy will
reduce the overflow problems, it will not eliminate them.

For many simulated data sets, the configuration of sample
moments implies a minimum to the MM criterion at a point
outside the stationary region. In our procedure, the optimizer
will hit the bounds imposed on the problem. There is a serious
problem with corner solutions for any sample size in cells
with high 6 and low coefficient of variation. At T = 500, over
half of the simulated samples result in corner solutions for
§ =95 or .98 and var(h)/E[h}? = .1. Both 6 and &, bounds
may be binding, although never at the same time. Even for
the middle row of the design, var(k)/E[h]? = 1.0, there are
larger numbers of 6 estimates at the bounds. Obviously, this
problem will only worsen for data generated with models
showing higher persistence. These problems with corner
solutions are less severe but still persist in samples of size
2,000, but they eventually disappear if we examine extremely
large samples of 32,000.

Given the large number of corner solutions, it is all the more
important to examine the sensitivity of the MM estimates to
the starting point for the optimizer. For all simulated samples

in the experiment, we started from the true parameter vector.
One view is that this gives the MM the “best chance” to
find the optimum that we expected to be fairly close to the
true parameter values. This argument only holds if there is
very little sampling variability. It is possible that the MM
criterion surface has multiple local minima. To check this,
we took a few samples of 2,000 observations and defined a
fine grid over the bounded 2 parameter space. The optimizer
was then started from every point on this grid. We could
find no evidence of more than one interior minimum. From
some starting points, however, the optimizer would stop at
the bounds with valid Kuhn-Tucker conditions. From still
other starting points and for the same data set, the optimizer
would converge at an interior optimum with lower criterion
value. Finally, for some data sets, we find the minimum of the
criterion at the bounds. Thus our experience to date does not
rule out the possibility of either a nonconvex criterion surface
or the presence of global optima outside the stationary region.

Table 5 shows the absolute sampling performance of the
MM estimator for 7 = 500. The table shows the mean and
root mean squared error (RMSE) for each of the six cells.
The MM estimator exhibits substantial bias, especially for
the estimates of o,. In addition, there is very substantial
sampling variability that results in RMSE’s as large as the
true parameter value for both 4 and o,. It should be empha-
sized that the actual MM estimator investigated in Table 4
uses the strong prior information in the assumption of sta-
tionarity to attenuate the sampling variability by imposing
stationarity bounds.

To assess the adequacy of the standard asymptotic approx-
imations to the sampling distribution of the MM estimator,
we computed standardized values of the MM estimates—for
example, (6AMM — 8)/7, where 7 is the asymptotic standard
error. Figure 3 shows the sampling distribution of the stan-
dardized MM estimates of 6 and o, along with the N(0, 1)
asymptotic distribution. For T = 500, there is a substantial
difference between the asymptotic and exact sampling distri-
butions. For o,, the substantial bias of the MM estimate is
evident even for T = 2,000.

It is also useful to look at the correlations between the pa-
rameter estimates. For all cells, & and & are extremely highly
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correlated (over .99). for high § and low variability, there can
also be high (= —.95) correlations between 7, and 5. Al-
though o and é are separately identified, the high correlation
indicates that, in practice, these parameters are underidenti-
fied. It is possible that this high correlation induces a ridge
(actually a valley) in the MM criterion surface that could
cause problems for the optimizer. In an effort to regular-
ize the surface, we experimented with reparameterizing to
(a/(1 —6), 6, 0,). Although this new parameterization elim-
inates much of the correlation between the parameters, the
sampling distribution of gcomputed from this parameteriza-
tion is indistinguishable from the distribution resulting from
the standard (e, 6, 0,) parameterization.

Some might suggest that the poor performance of the MM
estimator might be due to inclusion of insufficient lags in the
autocovariance-type moments. We used 10 lags of both the
autocorrelations in the squares and absolute values. Exper-
imentation with a larger number of lags did not affect the
sampling performance. It appears that the problem with the
MM is the selection of the form of the moments and not the
number of lags.

4.2 The Quasi-Maximum Likelihood Estimator

Nelson (1988) and Harvey et al. (1994) suggested a QML
method that is based on a Kalman-filtering approach. The
basic stochastic volatility model can be written as a system
of two linear equations:

log(y?) = log(h,) + log(e})
log(h,) = a + §log(h,—1) + oyvy,
(&, v;) ~ independent N(O, 1).

This is a linear dynamic model in the standard-measurement-
equation/state-evolution-equation form. If 7, = log(e?) were
normally distributed, standard linear filtering theory could
be used to evaluate the likelihood and solve the predic-
tion/smoothing problem (see Appendix B for a complete dis-
cussion and review of the filtering approach). Since 7, is not
normally distributed, linear filtering methods can only ap-
proximate the results of the true nonlinear optimal filter. As
Harvey et al. (1994) and Ruiz (1994) pointed out, the ade-
quacy of the approximation depends critically on the value of
oy For large values of o, the systematic component [log(h,)]
in the measurement equation will dominate the 7, error term,
the normality approximation may be adequate, and the linear
filtering approach will be close to optimal. For small values
of oy, however, the normality approximate will break down,
and a linear filtering approach may produce estimates with
poor sampling properties relative to a likelihood-based pro-
cedure. The real advantage of the QML approach is its speed
and adaptibility to many situations. The very fact that we are
able to conduct large-scale sampling experiments with our
Bayesian methods suggests that computational speed is not an
important advantage for the QML procedure in this context.

Table 6. Mean and Root Mean Squared Error of the QML Estimator

Var(h)/E[W? « 6 ov a § ov a § gy
10 -.821 .9 .675  —.4106 .95 4835 —.1642 .98 .308
—-.99 .88 .70 —.55 93 51 -1 .99 .33
(48) (.06) (.16) (-32) (04) (12 (-09) (01) (07)
1 ~.736 9 363  -.368 95 26 —-.1472 .98 .1657
~1.4 81 .45 -1.0 .86 .35 -.20 97 22
(1.6) (22) (27 (1.7) (23) (.25) (.54) (-08) (.15)
A ~.706 .9 135 -.353 .95 .0964 ~.1412 .98 .0614
-55 23 .33 -55 22 .31 -35 49 35

(56)  (79) (39)  (6.0)

(85)  (41) (4.6) (67) (46)

NOTE: The statistics in this table are based on 500 simulated samples, each consisting of a time series of length 500. For each cel,
the top row (italics) shows the true value of the parameters. The following two rows show the mean and root mean squared srror (in

parentheses).
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Table 7. Mean and Root Mean Squared Error of the Bayes Estimator

Var(hy/ Efhi? o & ay 8 ov a é ay
10 -.821 9 .675 -.4106 .95 .4835 —-.1642 .98 .308
—.679 916 562 —-.464 .94 .46 -.19 .98 .35
(22) (.026) (12) (.16) (.02) (.055) (.08) (.01) (.06)
1 —-.736 .9 .363 —.368 .95 .26 ~.1472 .98 .166
—.87 .88 .35 —.56 .92 .28 -.22 97 .23
(.34) (.046) (.067) (.34) (.046) (.065) (.14) (.02) (.08)
A -.706 .9 .135 —-.353 .95 .0964 —.141 .98 .0614
-1.54 .78 15 —-1.12 .84 12 —.66 91 14

(1.35)  (19)  (.082) (1.15)

(16)  (.074) (83)  (12) (.099)

NOTE: The statistics in this table are based on 500 simulated samples, each consisting of a time sarigs of length 500. For each ceil,
the top row (italics) shows the true value of the parameters. The following two rows show the mean and root mean squared srror (in

parentheses).

Table 6 presents the sampling performance of the QML
estimator for our experimental design. The sampling experi-
ment confirms our intuition that the performance of the QML
estimator is best for large values of o,. For a coefficient of
variation of 10, the QML estimator exhibits little bias and
small variability. For smaller values of the coefficient of
variation, however, the performance of both of the QML and
MM estimators deteriorates rapidly.

It is interesting to compare the relative performance of the
MM and QML estimators. The overall impression is that
the QML and MM estimators have similar performance with
the QML dominating the MM estimator only for the high
volatility cells (var(h)/E[h]? = 10.0). Ruiz (in press) com-
pared the MM and QML approach on the basis of relative
asymptotic efficiency and found that the QML approach has
very high relative efficiency as compared to the MM estima-
tor for large o, values. For smaller o, values, the QML is
dominated by the MM as measured by asymptotic relative
efficiency. Our finite-sample results suggest that the perfor-
mance of QML for high o, cells is only marginally superior
to the MM. It should be emphasized that we do not consider
exactly the same set of parameter values. Ruiz considered
values of o, = 1 that imply coefficients of variation still
higher than ours. We know of no estimates from a stochastic
volatility model with a coefficient of variation even as high as
10, as considered in our high-volatility cells. Most studies,
including our own, find coefficients of variation between .1
and 2 or so. Finally, Ruiz pointed out that the asymptotic
variance estimates dramatically understate the true sampling
variability. This suggests that there may be large differences
between actual sampling performance and asymptotic rela-
tive efficiency. In addition, the asymptotic relative efficiency
measure does not consider the substantial biases that we find
for both the MM and QML estimators.

43 Bayes Estimators

Table 7 presents the sampling performance of the Bayes
estimator. The Bayes estimator is constructed using a draw
sequence of length 4,000 from the Markov chain constructed
according to the algorithm outlined in Section 1. To assure
convergence to the stationary distribution, the first 1,500

draws are discarded, leaving a sequence of length 2,500 to
compute an estimate of the posterior mean. To simulate a
sequence of this length takes approximately 14 minutes of
Sparc 10 CPU time.

In the literature on MCMC (e.g., see McCulloch and Rossi
in press), there is extensive discussion of the dependence of
results on initial conditions. We experimented with differ-
ent starting points [the pair (w, /)] and found no discernible
differences between starting points. Examination of draw
sequences from the Markov chain shows that the effect of
initial conditions is rapidly dissipated in the first hundred or
fewer draws. In all of the simulation experiments, we start
from the point (w = (—.5,.5,.1), and h, = y?). We employ
extremely diffuse but proper priors centered over the start-
ing point for w. Our prior standard deviations exceed the
posterior standard deviations by a factor of at least 100.

The sampling performance of the Bayes estimator is dra-
matically superior to that of either the MM or QML esti-
mators. In each of the six cells, both the bias and sampling
variance of the Bayes estimator is smaller than either the MM
or QML estimator. To summarize the relative performance
of the Bayes estimator across experimental cells, we describe
the distribution of the ratio of RMSE in Table 8. These sum-
mary statistics show that, for the parameter settings consid-
ered in the sampling experiments, the Bayes estimator domi-
nates both the MM and QML procedures with RMSE’s of less
than one-half of these other procedures. This superior sam-
pling performance also demonstrates that the convergence of
our Markov chain is rapid and reliable.

Table 8. The Distribution of the Ratio of RMSE

Parameter Relative RMSE Median Range
o MM: Bayes 3.8 [1.9, 6.6}
QML: Bayes 41 [1.1,5.5]
6 MM: Bayes 3.7 [1.8, 6.5]
QML: Bayes 4.1 [1.1,5.6]
ov MM: Bayes 1.9 {.95,3.3]
QML: Bayes 3.8 [1.2,5.5]
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Figure 4. Density of MC Posterior Means, QML, and MM
Estimates, T = 500, Var(h)/E[h** = 1, Delta = .9: , Bayss;
----- , MM; ———, QML.

The-only cell in which the QML has a sampling per-
formance near to the Bayes estimator is the 6 = .98 and
Vi/Ex = 10 cell and, in this cell, only for estimation of «
and 4. We know of no data set that appears to have come
from this region of the parameter space. The MM estimator
never comes near to the performance of the Bayes estimator
for o and &, but it does perform slightly better in the esti-
mation of o, for the high persistence, very low-volatility cell
(6 = .98, V,/E? = .1). This performance may be somewhat
deceptive, however, because over two-thirds of the samples
in this cell have an MM surface that gives an optimum at
the lower bound for ¢,(.001). In effect, this winsorizes the
MM estimator to a very favorable, in terms of RMSE, pa-
rameter estimate. If all MM estimates were truncated at the
lower bound, the RMSE would be .06, even lower than the
actual performance.

Figures 4 and 5 present the sampling distribution of MM,
QML, and Bayes estimators for two cells in the experimen-
tal design. The substantial biases in the MM estimates of
o, are evident in both figures. In addition, the Bayes esti-
mator shows a much tighter (but nonnormal with substantial
skewness) sampling distribution than either the QML or MM
estimators. Figure 5 illustrates how dramatically the per-
formance of both the MM and QML estimators degrades in
situations with high persistence and low volatility in the vari-
ance equation. This situation is typical in financial data that
display highly predictable short-term volatility.

Table 9 examines one of the central cells in the design for
T =2,000. As should be expected, the relative performance
of the Bayes estimator is similar to that in the small sample

<
— MC
L MM
--=-- QamL
N I
= ,"""'\"'*-v—-‘» ------ o
0 0.5 0.0 05 o
DELTA
[Te]
2\l
o el e

SIGMA

Figure 5. Density of MC Posterior Means, QML, and MM Esti-
mates, T = 500, Var(h)/E[h}**? = 1,Delta = .95: , Bayes;
----- , MM; ———, QML.

with T = 500. For T = 2,000, there is little bias for any
of the estimators; the superiority of the Bayes estimator (%
of RMSE of others) is achieved by dramatically lower sam-
pling variability.

4.4 Refinements of the MM and QML Approaches

Some recent developments in the MM literature hold some
promise of improving the performance of the MM estimator
considered here. Andersen and Sorensen (1993) made two
refinements of the basic MM procedure: (1) They employed a
penalty function to avoid nonstationary parameter estimates,
and (2) they used a slightly modified weighting matrix us-
ing the weights proposed by Andrews (1991). Andersen and
Sorensen replicated a portion of our sampling experiment

Table 9. Comparison of Method of Moments, QML, and
Bayes Estimators

o 6 oy
Method —.736 .9 .363
MM —.86 .88 .31
(42) (.06) (.10
QML —.853 .88 .383
(.46) (.06) (.11)
Bayes —.762 .896 .359
(.15) (.02) (.034)

NOTE: The statistics in this table are based on 500 simulated samples. The table shows
the mean and the root mean squared error (in parentheses). The true parameter values are
in talics, T = 2,000, varch)/ E{h)? = 1.0.
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design, facilitating direct comparison with our results. They
achieved about a 25% reduction in RMSE over the num-
bers reported here, which still puts an MM procedure at a
disadvantage relative to Bayes procedure for all except the
§ = 98,V,/E? = .1 cell. In this cell, the Andersen and
Sorensen procedure could result in a modest improvement
over our current Bayes procedure.

Gallant and Tauchen (1992) suggested ways of using both
parametric and nonparametric procedures to suggest which
moments are important in evaluating the score function for the
stochastic volatility model. Their procedure involves simu-
lating from the stochastic volatility model at a given parame-
ter setting and using semiparametric methods to approximate
the score. Although the Gallant and Tauchen approach has
some appealing asymptotic properties, its value in the estima-
tion of stochastic volatility models remains to be determined
from a thorough simulation analysis. Finally, this sort of ap-
proach may help in parameter estimation but does not help
solve the nonlinear filtering and prediction problem.

Our implementation of the QML procedure assumes that
it is known that the mean equation error is normal. We view
this as giving the maximum possible advantage to QML pro-
cedure. It is possible, however, to make 0127 an unknown pa-
rameter. Because the linear filter is an approximate method,
it might be the case that by freeing this variance parameter
we could achieve a better approximation. For this reason,
we reran the QML sampling experiments with this parame-
ter free in the algorithm. Overall, the results did not change
much at all, with modest improvements in parameter estima-
tion in some cells and some degradation of performance in
others. Over all nine cells in the design, including af, as a
free parameter changed the RMSE for parameter estimation
by no more than 15%.

Table 10. RMSE Smoothing Performance of Approximate Kalman
Filtering Versus Bayes Solution

1)
Var(h)/ E{h}? Method .9 .95 .98
10 Approx. Kalman
True parameters 242 211 13.5
MM estimate 25.4 227 16.4
QML estimate 23.6 22.0 13.9
Bayes solution 211 i7.0 12.2
1 Approx. Kalman
True parameters 6.74 6.04 5.60
MM estimate 7.74 7.08 6.52
QML estimate 714 6.64 6.19
Bayes solution 5.9 5.26 5.04
A Approx. Kalman
True parameters 2.6 2.5 2.28
MM estimate 3.0 2.9 2.55
QML estimate 35 37 4.83
Bayes solution 2.58 2.46 2.27

NOTE: The statistics in this tabie are based on 500 simulated samples, each consisting of
a time series with T = 500. RMSE x 10,000 is displayed.

Table 11. Filtering Performance

Relative RMSE Median Range
Approx. K filter given

true parameters: Bayes 1.1 [1.004, 1.24)
Approx. K filter given

MM estimates: Bayes 1.29 [1.12, 1.35)
Approx. K filter given

QML estimates: Bayes 1.26 [1.12,2.13]

5. SMOOTHING PERFORMANCE

As noted previously, one of the unique advantages of our
method is that it provides an exact solution to the smooth-
ing problem of estimating the unobserved variances. The
smoothing problem is the problem of computing the posterior
distribution of h, given v, p(h, | y). A natural smoothed esti-
mate would be E, = E[h; | y], which can be computed directly
(up to simulation error) using the sequence of Markov-chain
draws. In the stochastic volatility literature, approximate
Kalman-filtering methods are used to approximate this so-
lution to the smoothing problem. To evaluate the smooth-
ing performance of various procedures, we compare our
Bayesian MCMC solution to the smoothing problem to ap-
proximate Kalman-filtering methods. We consider approx-
imate Kalman-filtering (see Appendix B for details) condi-
tional on the true parameters, MM estimates, and the QML
estimates.

Table 10 summarizes the smoothing performance. To
evaluate the smoothing performance, we compute the grand
RMSE = [(1/NT) 3>, ¥, (hs — h)*]5 over all N = 500 sam-
ples for t = 100, . . ., 400. Again we can use relative RMSE
as a performance criterion for smoothing; see Table 11. It
is remarkable that the Bayes smoothing solution dominates
not only approximate Kalman filtering based on the MM and
QML estimates but also the approximate Kalman-filtering
solution using the true parameters.

As outlined in Section 4.4, we also considered the variant
of QML, in which 0727 is left as a free parameter. Freeing
0727 unambiguously worsened the filtering performance. For
high persistence and low volatility cells, use of the free o2
parameter can result in a very substantial degradation in fil-
tering performance of up to a 400% increase in RMSE (for
the 6 = .98, V},/EZ = .1 cell).

Finally, it should be emphasized that we can obtain esti-
mates of the entire posterior distribution of A, | y rather than
just the mean. This distribution can be used to characterize
the full level of uncertainty in the smoothing estimates rather
than resorting to asymptotic “plug-in” computations in which
the estimation error in the parameter estimates is ignored and
an asymptotic normal approximation is used.
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APPENDIX A: MOMENTS OF THE STOCHASTIC
LOG-VOLATILITY MODEL

The model is
= Vhe, = ase, ~N(@O,1)
log h, a+blogh,_y + o,y v, ~ N, 1).
Then,

a o? 5
logh, ~ N(T——é’ T:_éi) ~ N(pn, o).

The model in this appendix does not have mean parameters.
Moreover, the correlation between ¢, and v, is assumed to be
0. For each type of moment, we write its expectation (m) and
the derivative of a discrepancy function (g) with respect to
each parameter. The discrepancy function is the difference
between the sample moment () and the expected value of
the moment.

E(y(™
We first compute the expectations of the moments for sev-

eral values of m:

my; = E(¥') = 0: no parameter information for i odd
miz = E(y?) = E(he?) = E(h)E(e2) = *n*1/2%

miq = E(y") = E(B2e?) = E(R?)E(e?) = 3¢+ %%
mis = E(38) = E(R3e) = E(R)E(ef) = 15649/,

Now compute the derivatives of the discrepancy functions:

2 —~
g2 = %Z)’? — e 2% = gy —myy
9812 1
Ba _mnl )
Og12 _ —m ba?
95 12 (1 T a ey
_ ey 60'),
T (1 1o 52>
a812 _
9oy '"’21 — 5

1 2
4 20t _ o~
814=TE y; — 3¢ h = myy — myy
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Oga__, 2
da U176
3814 20 480>
26 - ™M\ 0 e Ta—en
4602
= —m14(2ph1 -6+ 1 gz)
0g14 40,
o, e 1-46%
816 = % Z}’rz — 15e™5*%/%%h = Fiyg — my,
o6 _ . 3
da 776
8g16 _ 3o 950’3
a5 = ™S\ 0 —6p T (_s%
8g15 = —m 90’v
do, T 82
my = E(|y:]) = E(0:|es]) = E(o)E(ley])
- \/z el/2uh+1/8cr;1
™
my = E(|y:') = E(d7|€}]) = E(E(lei*)

=2 /EeB/Zuh+9/80i;
i

1
21 = ‘7:2|)’x| — my

On _ 1
Do 221 =6
0ga1 a §o?
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- Ha boj
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83 =7 Z lyi|* = ma
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E(yyE))

= E(h;e,zht_ie;z_,')
= E(hh,_)E(e})E(el_)) =

E(yiyi))

Note that

i—1

logh, = 6 logh,_; + Z(a +0yV;

=0
and

i—1

Z(a + oV,

E(y»yr )= [h6 *lexp {
7=0

i—1

- E(hfi’})E[exp{

Z(a +ov_.67)
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2 i -1 e
EI)’:)’t—i| = ;E [o’f_‘}’ezf (otoyvy_ )% ]

i~1 T

Z(a + OV )

7]

= %E(o‘si";l E [ exp {

2
E(h h; i) - _72chp {(1 +5i)ﬂ +(1 +5i)2g8_h_

(5

2
= Zexpd e (1462
T 2 8

CHST 262

)8

al— &

o211 - 6%
+51—6+

8 1-62

2
= ;exp {,u,, + —(1 +§’)} = ms;.

6

f

The derivatives are

f

=0 3851' m 1
. 1 . oo T st
= exp {(1 — 8n + 5(1+ 650 630‘ 1-4 ,
. _gz=_m(“" T (5" — g™
+Z(a6r+ 0252)} % R
+25+25‘+1)>
=exp{(1+5")ﬂ,,+5(1+5")2a,% Ogsi_ 1+ &
1-8 1 ,1-8% o, TTA1L-8
8]
5t Corr (y.42.)

= exp {Z,u;, +o2(1+& )} =my,;.

The derivatives are

Bg4,- _ 2
FS
08ai _ 2pn i1
36 ’"“‘(1 1—52(’5
+26 + 25"“))
0gai = —ma2o 1+6
do, YT s
E(lytye_il)
E(b’t)’t—il) = E(Utletlc'r—ilet—iD
= E(Utdt—i)E'etlEIet—i|
2
= —E(0:0,-).
™
Note that

Ty

i1
logo, =6 logo,_; + Z (%
=0

2

and

+ —v,_T)é"

pi = corr(y2,y2 ) = (exp{o26'} — 1)/(3exp{o;} - 1).

APPENDIX B: APPROXIMATE KALMAN FILTERING
AND QML ESTIMATION

i6*! B.1 The Kalman Filter
The stochastic volatility model,
ye= ()%, &~ N(O,1),
and
logh, =a+dlogh,_ + oy, v, ~ N(0, 1),

can be rewritten as

log (¥?) = —1.27 +log h; + n;,

Eln]=0, var(n)=n7/2,

and

logh,=a+6logh,_; +o,v,, v, ~N(QO,1).

If the distribution of 7, is approximated by a normal distri-
bution the preceding system becomes a standard dynamic
linear model, to which the Kalman filter can be applied. The
Kalman filter requires three sets of equations—a prediction
and updating set which are run forward through the data,
and smoothing equations, which are run backward through
the data. We follow the standard notation of Anderson and
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Moore (1979). Letlog h, |, be the prediction of log h, based
on the information available at time ¢ — 1. ,),_, is the vari-
ance of the prediction. Let logh, |, be the update that uses
the information at time ¢ and 2, the variance of the update.
The equations that recursively compute the predictions and
updatings are given by

=)
]

>
=
T

|

=a+6loghi1|s-1,

. 52 2
Qo1 =6y 11 + Oy,

and

log iy = log by sy
[log (¥7) +1.27 ~ logh, |,y |
t

err = Qt|x-1(1 - err—l/fr);

where fi = Q-1 + 72 /2. Once the predictions and updates
are computed for t = 1, ..., T, we can obtain the smoothed
estimates, log h,|r, which is the estimate of log A, given
all information in the sample. €7 denotes the variance of
log 4, | 7. The smoothing equations are

Qtlt—l

logh; 1 = logh, |+ P[loghy |1 — 10g Ay |
Q1= Qtlr"’Pzz(Qm]T = Q10

where P, = 89,/ |, The system is initialized at the
unconditional values, 2y = o2 /(1—4§%) and log kg = /(1 —6)

The prediction, updating, and smoothing estimates of A,
are computed using standard properties of the lognormal dis-
tribution.

As discussed in Section 4.4, it is possible to refine the QML
to make o2 a free parameter and avoid an assumption that 7

n
is normally distributed.

B.2 QML Estimation With the Kalman Filter

The quasi-likelihood is defined and computed using
the predictive error decomposition (see Harvey 1981)
o, b,0,) x —1/2% log f; — 1/2%€? /f;, where f; is the pre-
diction error variance just defined and ¢, is the one-step-ahead
prediction error, ¢; = log(y?) + 1.27 — log A |,_;.

[Received August 1993. Revised October 1993.]
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