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Abstract

The multivariate modeling of default risk is a crucial aspect of the pricing of credit derivative
products referencing a portfolio of underlying assets, and the evaluation of Value at Risk of such
portfolios. This paper proposes a model for the joint dynamics of credit ratings of several firms.
Namely, individual credit ratings are modeled by univariate continuous time Markov chain, while
their joint dynamic is modeled using copulas. A by-product of the method is the joint laws of
the default times of all the firms in the portfolio. The use of copulas allows us to incorporate our
knowledge of the modeling of univariate processes, into a multivariate framework. The Normal
and Student copulas commonly used in the literature as well as by practitioners do not produce
very different estimates of default risk prices. We show that this result is restricted to these two
two basic copulas. That is, for any other family of copula, the choice of the copula greatly affects
the pricing of default risk.
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1 Introduction

The last few years have witnessed an unprecedented growth in the use of credit derivatives. In

addition to single-issuer credit derivatives, e.g., total-return swaps, credit-spread options, and credit-

default swaps, there is now significant demand for credit derivative products based on a portfolio of

underlying assets. This poses the far more complicated technical challenge of modeling a multivariate

process of risky securities, namely their joint default process. A typical example of such a product

is an nth to default swap where payout is contingent on the time and identity of the nth default of a

credit portfolio.

One needs to model each individual credit rating migration, where default is the worst rating

and constitutes an absorbing state, but also their joint evolution. This multivariate problem has been

one of the most vexing technical challenges in the credit risk literature. For example [Greg et al.,

1997] ( CreditMetrics, a sophisticated benchmark for default-risk pricing), use one single Poisson

based transition matrix for all the individual securities, and a Gaussian copula to model their joint

behavior. Since the individual Markov chains all evolve according to the same transition matrix, the

value of the portfolio is determined strictly by the number of bonds initially in each state, without

allowing allow these bonds to have different characteristics. This extreme elimination of idiosyncratic

default risk is a severe modeling restriction.

One needs the joint distribution of the vector of default times to price nth-to-default swaps.

Default times can be modeled with the structural approach as initiated in Merton [1974] or with the

reduced form, intensity based, approach, such as in Jarrow and Turnbull [1995]. These pioneering

papers model only a single default time. Schönbucher and Schubert [2001] propose a feasible model

based upon the reduced form approach, for the multivariate distribution of default times. Hull and

White [2005] document the behavior of a stylized copula based models, e.g., with equal pair-wise

correlations. Their results could be seen to imply that the copula parameters have little impact on

the pricing of nth to default instruments. We will show that this is in fact not the case. An extension

of the earlier intensity-based approach for the modeling of individual default is to use each bond’s

credit rating information and model its evolution by a Markov chain. This is first proposed in Jarrow

et al. [1997]. Typically, as is done by these authors, one must study the law of motion under both

the objective and martingale measures.

In this paper, we follow the continuous time Markov chain approach initially used to model

individual credit ratings. However, our objective is to price credit default swaps or to calculate risk

measures for portfolios. So we need to model the joint behavior of multiple credit ratings. We use

the recent copula approach to model obvious dependencies among these ratings. This will allow us

to model the joint evolution of the credit ratings as a continuous time Markov chain. While copulas

have already been proposed, e.g., Li [2000], they are most always of the Gaussian family or Student

family. This limited menu of copulas has lead to the belief in the literature that the choice of copula

has a minor effect on risk modeling, see e.g., Rosenberg and Schuermann [2004].

The remainder of the paper is structured as follows. Section 2 first gives the main assumptions

required to model the joint behavior of multiple credit ratings. The assumptions are motivated and

discussed in further details in the Appendix. We then discuss the methodology for pricing credit

rating derivatives and calculating measures of risk. We also give the algorithm for the simulation of
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multiple credit rating trajectories and outline the pricing of an nth to default swap. The model is

implemented in Section 3. We show how to estimate 1) the infinitesimal generator of each univariate

Markov chain, 2) the price of default risk which links the objective and the risk-neutral measures, 3)

the chosen copula and its parameters, and 4) the default premia. Section 4 compares the different

copulas with numerical examples and simulations.

2 The Model

2.1 Assumptions on the process of default

Suppose that a portfolio is composed of d risky bonds with respective ratings X
(1)
t , . . . ,X

(d)
t ,

taking values in the ordered set S = {1, . . . ,m}, where 1 is the best rating, and m is the default

state. The goal is to model the joint behavior of the stochastic processes X(1), . . ., X(d) so as to price

credit derivatives on a basket of bonds. The assumptions made below are natural in a credit rating

migration context. The first assumption concerns the dynamics of the individual ratings while the

second relates to their joint distribution.

Assumption 1. For any 1 ≤ k ≤ d, X(k) =
(
X

(k)
t

)
t≥0

is a continuous time Markov chain on S,

with infinitesimal generator Λ(k), that is

P
(
X

(k)
t+h = j

∣∣∣X(k)
t = i

)
=

{
hΛ

(k)
ij + o(h), j 6= i,

1 + hΛii + o(h), j = i,
, i, j ∈ S.

Furthermore, for any k, the only absorbing state is state m.

This is standard continuous-time modeling of the individual credit ratings X(k), whereby

ratings can change at any time according to a Markov chain. The only absorbing state is default

and therefore if one sets λ
(k)
i = −Λ

(k)
ii , Assumption 1 implies that λ

(k)
i > 0 if i < m and λ

(k)
m = 0, for

all 1 ≤ k ≤ d.

Now denote by τk the default time of the kth firm, that is,

τk = inf
{
t > 0; X

(k)
t = m

}
, k = 1, . . . , d.

By definition of the infinitesimal generator, if P
(k)
ij (t) = P

(
X

(k)
t = j

∣∣∣X(k)
0 = i

)
, i, j ∈ S, then it

follows from Assumption 1 that Ṗ (k)(t) = Λ(k)P (k)(t), P (k)(0) = I. Hence P (k)(t) = etΛ
(k)

, t ≥ 0,

and the distribution function F
(k)
i of τk, given X

(k)
0 = i, is given by

F
(k)
i (t) = P

(
τk ≤ t

∣∣∣ X(k)
0 = i

)
=

(
P (k)(t)

)
im
, i = 1, . . . ,m, k = 1, . . . , d.

Further remark that P (k) can be written explicitly. In the particular case that Λ(k) is diag-

onalizable, i.e. Λ(k) = M∆M−1 where ∆ is a diagonal matrix, P (k)(t) = Met∆M−1 and et∆ is the
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diagonal matrix with
(
et∆

)
ii

= et∆ii , i = 1, . . . ,m. Consequently,

F
(k)
i (t) =

(
P (k)(t)

)
im

= 1 +
m−1∑

j=1

Mije
t∆jj

(
M−1

)
jm
, t ≥ 0.

Note that one could also consider non-homogeneous Markov chains, but we believe that the added

value is not worth the complications, mainly for estimation.

The second assumption, central to our modeling, is that the joint distribution of the infinites-

imal generator can be represented by a copula as follows:

Assumption 2. The stochastic process X =
(
X(1), . . . ,X(d)

)
is a Markov chain with state space Sd

and infinitesimal generator Λ. Furthermore, Λ is determined by the generators Λ(1), . . . ,Λ(d), by a

copula C, and a constant λ ≥ max
1≤k≤d

max
1≤i≤m

λ
(k)
i , through the following relations:

Λ = Φ
(
Λ(1), . . . ,Λ(d), C, λ

)
= λ(R− I), (1)

where

R(k) = I + Λ(k)/λ, G
(k)
ij =

j∑

l=1

R
(k)
il , 1 ≤ i, j ≤ m, k = 1, . . . , d,

G
(k)
i0 = 0, and

Rαβ = P
(
G

(1)
α1,β1−1 < U1 ≤ G

(1)
αa,β1

, . . . , G
(d)
αd,βd−1 < Ud ≤ G

(d)
αd,βd

)
, (2)

for any α, β ∈ Sd,where U = (U1, . . . , Ud) has distribution function C.

It is important to note that (2) allows for multiple simultaneous credit rating changes. One

may worry that many firms could default at exactly the same time, a phenomenon rarely observed.

We would require the independence of the Markov chains to allow only one default at one time, see

Theorem 5 in the appendix. However this is not a concern, rather a flexibility of the modeling. The

application to typical data in Section 3.3 will show that the clustering effect is quite mitigated.

Finally, note that if Y is a discrete time Markov chain on Sd with transition matrix R, one

can write

Xt = YNt, t ≥ 0 (3)

where Nt is a Poisson process with intensity λ. That link between continuous and discrete-time

modeling will be used for simulating continuous-time Markov chains. The Appendix provides further

discussion of Assumption 2.

The next two assumptions characterize the law of the credit rating processes X(1), . . . ,X(d),

under the risk neutral measure P. They essentially state that the distribution of ratings is preserved

in the passage to the risk-neutral measure. First, consider the univariate marginal distributions of

credit ratings.

Assumption 3. Under the risk neutral measure P, the process X(k) is a homogeneous continuous

time Markov chain with infinitesimal generator L(k) = σkΛ
(k).
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Here, the parameter σk is the price of risk for the law of default time. Following standard

practice for fixed-income derivative securities, e.g., Jarrow et al. [1997], the risk premium σk can be

calibrated directly from market data, for example by fitting market prices of credit default swaps.

It follows from Assumption 3 that, if one sets

P
(k)
ij (t) = P

(
X

(k)
t = j

∣∣∣X(k)
0 = i

)
, i, j ∈ S,

then

P(k)(t) = etL
(k)

= etσkΛ(k)
= P (k)(σkt), t ≥ 0.

This is because the equation Ṗ(k)(t) = L(k)P(k)(t), P(k)(0) = I has a unique solution. In particular,

under the risk neutral measure P, the distribution function F̃
(k)
i of the default time τk, given X

(k)
0 = i,

is given by

F̃
(k)
i (t) = P

(
τk ≤ t

∣∣∣ X(k)
0 = i

)
=

(
P(k)(t)

)
im

= F
(k)
i (σkt), i = 1, . . . ,m, k = 1, . . . , d.

Finally, the fourth Assumption states that the cross-sectional dependence structure of the

infinitesimal generator is also preserved under the change of measure.

Assumption 4. Under the risk neutral measure P, the process X is a continuous time Markov

chain with infinitesimal generator L = Φ
(
L(1), . . . ,L(d), C, λ̃

)
, where λ̃ ≥ max

1≤k≤d
max

1≤i≤m
λ̃

(k)
i , and

λ̃
(k)
i = σkλ

(k)
i , k = 1, . . . , d.

That is, similarly to equation (1), we write for the risk-neutral infinitesimal generator that:

L = λ̃(R− I),

where

Rαβ = P
(
G

(1)
α1,β1−1 < U1 ≤ G

(1)
αa,β1

, . . . ,G
(d)
αd,βd−1 < Ud ≤ G

(d)
αd,βd

)
,

α, β ∈ Sd, and U = (U1, . . . , Ud) has distribution function C, where R(k) = I + L(k)/λ̃, and

G
(k)
ij =

j∑

l=1

R
(k)
il , 1 ≤ i, j ≤ m.

Note that, as stated under the historical measure, the Markov chain X can be written under

the risk neutral measure P as

Xt = ỸÑt
,

where Ñt is a Poisson process with intensity λ̃ and Ỹ is a discrete Markov chain on Sd with transition

matrix R.
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2.2 Simulation of multiple credit ratings trajectories

Given a model for the joint behavior of the credit rating processesX(1), . . . ,X(d), it is straight-

forward to use Monte Carlo methods to compute prices of basket credit derivatives. We now show

how to simulate multiple credit ratings trajectories, and in Section 2.3 how to price nth to default

swaps.

Given the parameters, one can easily describe the technique proposed to generate multiple

credit ratings trajectories. Simulations under the risk-neutral and the objective measures are similar

as a result of Assumptions 3 and 4. Hence, we only describe simulation under the objective measure.

The inputs needed for simulation are: (1) the initial vector of credit ratings X0 and (2) the discrete-

time transition matrix R.

Recall relation (3): Xt = YNt , for t ≥ 0. Given an initial state, the transition to the next

state is modeled by a Poisson process N where the intensity vector λ is a row of the transition matrix

R. Since the Poisson process N only has a finite number of jumps up to time T , we can simulate the

whole trajectory of X, after X0 and up to XT . The steps are:

1. Set T0 = 0 and generate n = NT arrival times T1, . . . , Tn of the Poisson process N of intensity

λ, up to time T .

2. Suppose that the constant λ, the matrices G(1), . . . , G(d), and the copula C are given as in

Assumption 2. Then, for each i = 1, . . . , n, generate Ui =
(
U

(1)
i , . . . , U

(m)
i

)
∼ C. For a fixed

1 ≤ l ≤ m, if X
(l)
Ti−1

= j, then

XTi
= k if G

(l)
j,k−1 < U

(l)
i ≤ G

(l)
j,k, j, k ∈ S.

Having generated multivariate trajectories, one can now price contracts on baskets of securi-

ties and VAR of portfolios, based on the expectations of trajectories.

2.3 Pricing of credit default swaps

The main class of contract we want to price is the nth to default swap. Following Mashal and

Naldi [2001], the contract can be described as follows:

• The contract starts at time t = 0 and matures at time t = T .

• The notional value of the contract is N .

• τ(i,d), i = 1, . . . , d is the i-th shortest default time and τ(1,d) ≤ τ(2,d) ≤ · · · ≤ τ(d,d).

• pf is the percentage yearly premium and it is paid f times a year (at the end of each period),

so the net amount due each period is pfN/f , until default.

• RRj is the recovery rate for name j, j = 1, . . . , d, and RRn,d stands for the recovery rate of

the n-th to default. These rates are assume to be predictable.

6



• a is the accrued premium (in percentage), i.e. Na is the amount the insurance holder owes the

insurance seller since the last payment, until τn, provided τn ≤ T .

• At time T , if τn,d ≤ T, the insurance is triggered and the insurance payment is N(1−RRn,d−a).

• rt is the risk free instantaneous interest rate at time t and β(t) = e−
R t

0 rsds.

Under the risk neutral probability measure P, the value of the yearly premium pf verifies

EP

[
N
pf

f

fT∑

i=1

β(i/f)I

(
τn,d >

i

f

)
− β(τn,d)N(1 −RR(n) − a)I (τn,d ≤ T )

]
= 0.

Note that if i−1
f < τn,d ≤ i

f , then β(τn,d)a = β(i/f)
pf

f , so

pf = f
EP {β(τn,d)(1 −RRn,d)I(τn,d ≤ T )}

EP

{∑fT
i=1 β(i/f)I

(
τn,d >

i
f

)
+

∑fT
i=1 β(i/f)I

(
i−1
f < τn,d ≤ i

f

)}

= f
EP {β(τn,d)(1 −RRn,d)I(τn,d ≤ T )}

EP

{∑fT
i=1 β(i/f)I

(
τn,d >

i−1
f

)} .

In particular, if the interest rate, the default times and the recovery rates are independent,

the above formula reduces to

pf = f (1 −RR)
B(T )Fn,d(T ) −

∫ T
0 ∂tB(t)Fn,d(t)dt

∑fT
i=1B

(
i
f

)
F̄n,d

(
i−1
f

) , (4)

where, under P, B(t) is the value of a zero coupon bond with maturity t, RR is the mean recovery

rate, Fn,d is the distribution function of the n-th default time, and F̄n,d = 1 − Fn,d is the associated

survival function.

In the special case of a single debt, i.e. m = 1, the contract is simply called a credit default

swap (CDS). Its value qf is thus given by

qf = f
EP {β(τ)(1 −RR)I(τ ≤ T )}

EP

{∑fT
i=1 β(i/f)I

(
τ > i−1

f

)} ,

which simplifies, under independence, to:

qf = f (1 −RR)
B(T )F (T ) −

∫ T
0 ∂tB(t)F (t)dt

∑fT
i=1B

(
i
f

)
F̄

(
i−1
f

) , (5)

where under P, RR is the mean recovery rate, F is the distribution function of the default time, and

F̄ = 1 − F is the associated survival function.
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Remark 1. Since B is non increasing, ∂tB(t) ≤ 0. It is thus easy to check from equations (4) and

(5) that pf , as of function of Fn,d, and qf , as a function of F , are non decreasing. This means that

if Fn,d(t) ≤ Gn,d(t) for all 0 ≤ t ≤ T , then pf (Fn,d) ≤ pf (Gn,d). Similarly, if F (t) ≤ G(t) for all

0 ≤ t ≤ T , then qf (F ) ≤ qf (G).

In particular, if G(t) = F (σt), then qf (σ) is monotone increasing in σ, so given a premium q

and F , there is a unique “ implicit” σ so that qf (σ) = q.

Note that the continuous time limit f → ∞ also exists. This means that premium would be

paid continuously. It follows that

p∞ = lim
f→∞

pf =
EP {β(τn,d)(1 −RRn,d)I(τn,d ≤ T )}

EP

{∫ T∧τn,d

0 β(t)dt
}

and

q∞ = lim
f→∞

qf =
EP {β(τ)(1 −RR)I(τ ≤ T )}

EP

{∫ T∧τ
0 β(t)dt

} ,

where x ∧ y = min(x, y). Numerical results for n-th to default swaps are provided in Section 4.

3 Implementation

We now show how to estimate the parameters necessary to implement the model and describe

the data used.

To estimate the infinitesimal generator of the simple Markov chains, we use the method

proposed in Lando and Skødeberg [2002]. We outline the procedure in Section 4.1. Credit default

swaps (CDS) prices are used to estimate the risk neutral parameters σk, required to perform credit

derivatives pricing. The corresponding returns are used to estimate the copula parameters, based on

the pseudo-likelihood method of Genest et al. [1995].

To implement the proposed methodology, one first needs to estimate the matrices Λ(1), . . .Λ(d).

To do this we use the Moody’s credit rating for all corporate risky bonds from April 26, 1982 to

January 7, 2004. For sake of completeness and to remove possible biases, we include all the 23 credit

classes: Aaa (=1), Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa,

Caa1, Caa2, Caa3, Ca, C, and D (=23). Withdrawals (WR) corresponding to recall are treated as

all withdrawals corresponding to maturity. The observations thus consist of all transitions from one

class to another, and the length of time between these transitions.

3.1 Estimation of the historical transition matrices

For simplicity, we assume that the d firms all have the same historical transition probabilities,

that is, Λ(1) = · · · = Λ(d). With enough data, one could of course relax this assumption. In practice,

it is often needed so as to have enough transitions from state to state in the data.

If N is the total number of bonds in the database, let N
(k)
ij denotes the total number of

transitions from state i to state j for bond k, 1 ≤ i ≤ m, 0 ≤ j ≤ m, j 6= i, 1 ≤ k ≤ N . Then
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Nij =
∑N

k=1N
(k)
ij is the total number of transitions from state i to state j, 1 ≤ i ≤ m, 0 ≤ j ≤ m,

reported in the database, and N
(k)
i =

∑
j 6=iNij is the total number of transitions starting from state

i, in the database.

Further let L
(k)
i be the total occupation time of state i for bond k, that is, the total time the

bond k spent in state i for the period considered, 1 ≤ i ≤ m, 1 ≤ k ≤ N . Set

Li =

N∑

k=1

L
(k)
i , 1 ≤ i ≤ m.

Note that when constructing the dataset, a transition from any state (say i) to the state WR

(corresponding to maturity of the bond or its recall) is not taken into account, but the time spent

in state i prior to moving to such a WR must be taken into account, when calculating Li.

Because a full maximum likelihood estimation would be quite complex, even impossibly

difficult due to the dependence structure and the small number of transitions for a given portfolio,

we use the “cohort” method described in Lando and Skødeberg [2002] to estimate Λ(1). Namely, the

estimator of Λ
(1)
ij is given by

Λ̂
(1)
ij =

Nij

Li
, 1 ≤ i ≤ m, 0 ≤ j ≤ m, j 6= i.

It follows that

λ̂
(1)
i =

Ni

Li
, 1 ≤ i ≤ m.

Hence one can take

λ̂ = max
1≤i≤m

λ̂
(1)
i = max

1≤i≤m

Ni

Li
.

Table 1 shows the resulting discrete-time generator of the transition matrix. Recall that

e−Λt is the transition probability. The negative values on the diagonal correspond to a very high

probability of no migration in credit. The zeros far from the diagonal represent the absence of a

jump across many credit ratings in the data base.

9



Table 1: 100Λ̂ based on Moody’s ratings, all corporate risky bonds Apr. 26, 1982 to Jan. 7, 2004.

-15.66 11.36 3.53 0.23 0.38 0.08 0.08 0 0 0 0 0

3.14 -30.84 13.59 11.64 1.44 0.68 0 0.17 0 0 0.08 0

1.02 4.22 -25.68 13.82 4.96 1.11 0.28 0.09 0.09 0 0 0

0.15 0.69 6.00 -28.02 15.50 4.64 0.63 0.09 0.15 0.03 0 0

0.04 0.13 0.58 7.17 -25.09 11.81 4.17 0.47 0.25 0.04 0.18 0.16

0.02 0.08 0.36 1.27 7.48 -28.11 13.45 3.99 0.87 0.23 0.08 0.11

0.10 0.08 0.10 0.30 1.50 10.90 -34.59 12.58 6.98 1.48 0.15 0.18

0.06 0.16 0.22 0.26 0.29 2.75 9.96 -36.39 15.42 4.98 1.12 0.48

0.03 0.18 0.09 0.25 0.37 1.01 4.94 8.58 -37.53 15.70 4.48 0.86

0.04 0.04 0.04 0.04 0.28 0.55 1.07 3.80 12.95 -43.69 13.86 6.69

0.04 0.04 0.04 0.04 0.23 0.23 0.46 0.96 3.87 11.87 -39.96 9.26

0 0 0.04 0.04 0.04 0.22 0.13 0.58 0.75 2.75 11.88 -41.88

0 0.03 0.03 0 0.03 0.19 0.14 0.28 0.33 0.64 3.26 7.15

0.03 0 0.03 0 0.10 0.15 0.13 0.23 0.23 0.18 0.64 3.10

0 0 0.05 0.09 0.05 0 0.18 0.18 0.23 0.37 0.46 1.05

0 0.15 0.10 0 0.05 0.05 0.10 0.10 0.10 0.30 0.25 0.45

0 0 0 0 0 0 0 0 0.30 0.60 0.30 0.30

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.73 0

0 0 0 0 0 0 0.59 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0.08 0 0 0 0 0 0 0 0 0 0

0.05 0 0.05 0 0 0 0 0 0 0 0

0 0.09 0.03 0 0 0 0 0 0 0 0

0.04 0.04 0 0 0 0 0 0 0 0 0

0.06 0.04 0.02 0.02 0 0 0 0 0 0 0

0.13 0.10 0 0 0 0 0 0 0 0 0.03

0.41 0.22 0.06 0 0 0 0 0 0 0 0

0.46 0.25 0.25 0.06 0 0 0 0 0 0 0.03

2.38 1.11 0.40 0.08 0.08 0 0.20 0.04 0 0 0.04

7.92 2.33 1.72 0.23 0.08 0 0 0.11 0.04 0.04 0.46

13.43 4.87 5.10 1.60 0 0 0.04 0.09 0.04 0 0.27

-36.00 10.29 8.65 3.67 0.14 0.31 0.06 0.08 0.03 0 0.70

7.43 -38.29 15.07 7.25 0.56 1.23 0.46 0.08 0.13 0 1.26

2.89 11.14 -53.87 20.86 2.25 7.61 2.29 0.78 0.96 0.05 2.38

0.85 4.03 7.06 -53.89 6.02 9.74 5.52 3.53 2.54 0.15 12.83

1.21 2.41 2.41 6.03 -68.11 6.63 4.22 1.21 9.64 0.60 32.25

0.22 0.66 1.76 10.55 0 -91.89 19.79 24.18 14.51 1.54 18.69

1.32 0 2.21 3.09 0 7.06 -114.77 18.54 16.33 10.59 55.62

0 2.18 0.73 2.18 0 2.91 8.72 -150.47 50.16 13.08 69.78

0.59 0 1.19 2.97 1.78 0 5.94 6.54 -129.00 12.48 96.90

0 0 0 0 0 0 0 0 7.62 -224.74 217.12

0 0 0 0 0 0 0 0 0 0 0

Λ is the generator for the transition probability matrix eΛt

3.2 Estimation of the price of risk σ
(k)

Suppose one has prices Y1 = qf,x1,r1,T (σ), . . . , Yn = qf,xn,rn,T (σ) of credit defaults swaps of

a firm for a fixed T where xi and ri denote the credit rating of the firm and the interest rate at

time i, 1 ≤ i ≤ n, respectively. Since Λ(1) is now assumed to be known, the distribution functions

F1, . . . , Fm are also known. Hence one can use formula (4) to estimate σ. For example, one could

choose σ so as to minimize
∑n

i=1 [Yi − qf,xi,ri,T (σ)]2.

Note that if the credit rating and the interest rate do not change over the period considered,

then qj(σ) = Ȳ , so σ can be found explicitly since qf(σ) is monotone increasing and has range (0,∞),

see Remark 1 in section 2.3.

We use seven firms : Bank One Corp., Bear Stearns Companies Inc,. Goldman Sachs Group

Inc., Lehman Brothers Holdings Inc., Merrill Lynch & Co., American Express Co., and Countrywide

Home Loans Inc. We collected the weekly prices (in basis points) of credit default swaps for a

maturity of T = 5 years, from Jan. 7, 2000, to Feb. 2, 2004, where payments were made twice a

year, i.e. f = 2. For simplicity, we assume a constant interest rate r = 2% and a mean recovery
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rate RR = 50%, since the worst rating of the group is A3. Note that all firms remained in the same

credit rating, with the exception of Lehman Brothers Holdings which switched from A3 to A2 after

43 weeks.

Table 2 shows the estimates of the coefficients σ1, . . . , σ7 and the credit ratings at the end

of the period. The prices of risk range from 2.9 to 4.1, most of them being around 3.5, which is

expected since these specific firms are large high grade issuers whose risk characteristics do not vary

much.

Table 2: Ratings and estimates of σ for seven stocks

Firm Bank Bear Goldman Lehman Merrill American Countrywide
One Stearns Sachs Bros Lynch Express Home Loans

Rating Aa3 A2 Aa3 A2 Aa3 A1 A3
State 4 6 4 6 4 5 7

σ̂ 3.62 3.22 4.16 3.26 4.36 3.67 2.93

Ratings on Feb. 2, 2004. σ is the price of default risk expressed basis points. Estimates based on data from

Jan. 7, 2000 to Feb. 2, 2004. Other parameters are set to RR = 50%, r = 2%, T = 5, and f = 2

3.3 Estimation of the copula

Recall that a d-dimensional copula C(u1, . . . , ud) is a joint distribution function of uni-

formly distributed random variables U1, . . . , Ud. Consider first the well-known Gaussian copula.

Let Y = (Y1, . . . , Yd) ∼ Nd(0,Σ), i.e. Y is a d-dimensional Gaussian distribution with mean zero and

covariance matrix Σ, where Σii = 1 for all 1 ≤ i ≤ d, then the Gaussian copula CΣ is defined as

CΣ(u1, . . . , ud) = P {N(Y1) ≤ u1, . . . , N(Yd) ≤ ud} , u1, . . . , ud ∈ [0, 1],

where N(·) is the distribution function of the standard Gaussian distribution. Note that as Σii = 1

for all 1 ≤ i ≤ d, Σ is also a correlation matrix.

As a second example, consider the closely related Student copula. If Y ∼ Nd(0,Σ) as above

and V is an independent variable with a chi-square distribution with ν degrees of freedom, then

Y/
√
V/ν has a multivariate Student distribution with parameters Σ and ν. The Student copula

CΣ, ν is then defined as the joint distribution function Ui = Tν

(
Yi/

√
V/ν

)
, i = 1, . . . , d, where Tν(·)

is the distribution function of a Student distribution with ν degrees of freedom.

Another popular family of copulas is the Archimedean family defined by Genest and MacKay

[1986]. A copula is said to be Archimedean when it can be expressed as

C(u1, . . . , ud) = φ−1 {φ(u1) + · · · + φ(ud)} ,

where φ : (0, 1] → [0,∞), is a bijection such that φ(1) = 0 and

(−1)i
di

dxi
φ−1(x) > 0, 1 ≤ i ≤ d.
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Table 3 gives the generators for three well-known Archimedean copulas: the Clayton, Frank,

and Gumbel copulas. These three classes share the interesting property that φ, denoted the generator

of the copula, is unique, up to a constant. See Joe [1997] and Nelsen [1999] for further examples on

copulas.

Table 3: Archimedean copulas, parameter estimates for seven firms

Model φθ(t) Range of θ θ̂

Clayton t−θ−1
θ (0,∞) 0.43

Frank log

(
1 − e−θ

1 − e−θt

)
(0,∞) 2.78

Gumbel-Hougaard | log t|1/θ (0, 1) 0.77

Due to a lack of data on credit migration, the estimation of copula parameters must rely

on proxies. This approach is validated by the property that the copula corresponding to a random

vector Y =
(
Y (1), . . . , Y (d)

)
is invariant for monotone increasing transformations of its components

Y (k). That is, the copulas of Y and
(
ψ1

(
Y (1)

)
, . . . , ψ1

(
Y (d)

))
are the same whenever the ψk’s are

strictly increasing transformations.

If Credit default Swaps (CDS) prices are available, the associated returns could serve as

proxies to estimate the parameters of the copula and to choose the “right” copula family. If no

reasonably large data set of CDS prices is available, one could use the daily log-returns of the

corresponding companies as proxies, under the assumption that the higher the return, the higher the

default time, and the higher the credit rating. There is presently no empirical evidence to discourage

this assumption, and in fact, Mashal et al. [2003] favor the practice.

We proceed as follows. Given returns Yi =
(
Y

(1)
i , . . . , Y

(d)
i

)
, i = 1, . . . , N , one first cal-

culates ranks Rank
(
Y

(k)
i

)
for each fixed k. That is, Rank

(
Y

(k)
i

)
represents the rank of Y

(k)
i

within Y
(k)
1 , . . . , Y

(k)
N , with rank one assigned to the smallest number. Next, one defines the pseudo-

observations Ui as follows:

Ui =
(
U

(1)
i , . . . , U

(d)
i

)
=

1

N + 1

(
Rank

(
Y

(1)
i

)
, . . . ,Rank

(
Y

(d)
i

))
, i = 1, . . . , N.

If cθ represents the density of the copula, the estimation of the parameter θ, possibly multi-

dimensional, is defined as the value θ̂ maximizing

arg max
θ

N∑

i=1

log {cθ(Ui)} . (6)

Note that (6) still makes sense even if the time independence of returns is not satisfied. Serial

independence is used mainly to calculate the estimation error, see Genest et al. [1995] for additional

details.

For the Gaussian copula, there is an explicit expression for the correlation matrix Σ̂. Each
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component Σ̂jk is the so-called van der Waerden correlation coefficient, defined as the Pearson cor-

relation coefficient of the pairs
{
N−1

(
U

(j)
i

)
, N−1

(
U

(k)
i

)}
, i = 1, . . . , n.

For our data set, the estimation of Σ for the Gaussian copula model is given by

Σ̂ =




1.00

0.43 1.00

0.42 0.48 1.00

0.38 0.59 0.55 1.00

0.40 0.50 0.47 0.54 1.00

0.31 0.29 0.25 0.28 0.25 1.00

0.35 0.34 0.37 0.33 0.37 0.35 1.00




.

Estimating the parameters Σ and ν of the more general Student copula is a little bit trickier.

It is recommended to follow a two-step procedure: first estimate Σ, then estimate ν, using the pseudo-

maximum-likelihood method (6). It is known, e.g., Abdous et al. [2004], that Σjk = sin(τjkπ/2),

where τjk is the theoretical Kendall’s tau between components Y (j) and Y (k). If τjk is an estimate of

τjk, then sin(τ̂jkπ/2) is an estimate of Σjk. However, the new estimated matrix Σ̂0 is not necessarily

a correlation matrix. It can be transformed into a correlation matrix Σ̂ in the following way: take the

symmetric square root Σ̂1 of the matrix Σ̂0Σ̂
⊤
0 , then form the diagonal matrix ∆ with components

∆jj =

√(
Σ̂1

)
jj

. Finally set, Σ̂ = ∆−1Σ̂1∆
−1.

Using that method with our data set yields an estimated correlation matrix for the Student

copula given by

Σ̂ =




1.00

0.50 1.00

0.49 0.56 1.00

0.43 0.66 0.62 1.00

0.46 0.56 0.53 0.58 1.00

0.42 0.36 0.33 0.33 0.31 1.00

0.44 0.39 0.44 0.38 0.43 0.49 1.00




,

with an estimate of ν̂ = 3.7 degrees of freedom.

The parameter estimates for the three Archimedean copulas are listed in Table 3. Note that,

while θ varies greatly with the specific copula, it does not have the same interpretation, as even the

ranges of possible values differ.

3.3.1 Differences between copulas

To illustrate the contagion effect (the clustering of defaults), we simulated 100,000 five-year

periods of joint ratings of the seven firms. Simulation is under the risk neutral dynamics, with Clayton

and Gumbel copulas. Parameter values were set to previously fitted values, i.e., in the calculation

of n-th to defaults swaps. There were 33,600 periods with at least one default (33,910 defaults total

) for the Clayton copula, and 30,702 default times (33,106 defaults total) for the Gumbel. Note
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that 33.9% or 33.1% do not represent probability of defaults since the simulation is done under the

risk neutral dynamics. The effect of the coefficients σ1, . . . , σ7 is to accelerate time. For example, if

they were all equal to 5, then the percentages would reflect the probability of defaults in a 25-year

period instead of a 5-year period. In the present case, they are all of order 3 so 33.91% represents

the probability of at least one default in the seven firms over a 15-year period for the Clayton model.

Table 4 summarizes the results.

Table 4: Risk Neutral Probability of simultaneous defaults for two copulas

Copula 1 2 3 4 5 6 7

Clayton 99.1 0.91 0.01 0 0 0 0
Gumbel 93.8 5.05 0.844 0.26 0.1 0.01 0

100,000 periods of 5 years simulated for the 7 firms, with parameters in Table 2 and 3. Probabilities of n ( 1 to 7)
defaults over one 5-year period in %.

Table 4 confirms that these copulas do not produce massive clustering of default. However it

also shows that the Gumbel copula produces significantly more clustering than the Clayton. Clearly,

once one departs from the Normal and Student copulas, very different patterns of dependencies can

be simulated. The clustering of the defaults is tied to the upper-tail dependence of the fitted copula.

We see for example in Table 4 that the Gumbel’s larger upper-tail dependence than the Clayton

leads to higher clustering of default. More on upper-tail dependence can be found in Joe [1997].

This shows that the choice of the appropriate family of copula can be very important. While

formal statistical testing is beyond the scope of this paper, the above results show that it is an

important issue for future research. Indeed, formal tests have only appeared recently in the literature.

See Genest et al. [2006] for discussions of formal tests, and Dupuis et al. [2006] for an application to

equity and CDS prices.

3.3.2 Pricing nth to default swaps

After estimating the parameters, one can now estimate the premiums pf for different copula

families. We computed the prices, in basis points, by Monte Carlo methods using 100,000 repetitions.

They are reported in Table 5.

Table 5: Premia for the nth to default, basket of seven firms.

Order of default
Model 1st 2nd 3rd 4th 5th 6th 7th

Clayton 151 25.2 3.5 0.4 0.03 0.00 0.00
Frank 150 29.0 5.1 0.8 0.12 0.00 0.00
Gumbel 111 35.9 15.7 7.5 3.88 2.01 0.73
Gaussian 137 32.3 8.6 2.1 0.50 0.11 0.01
Student 110 39.3 17.0 7.5 3.15 1.06 0.24

Default premia in basis points.

Note that the choice of copula also has a large impact on the prices. For the 1st to default,
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the largest price is obtained for the Clayton family, and the smallest for the Student family. These

roles are reversed for the 2nd to default price. It shows that a copula may dominate for a given nth

to default, but not necessarily for all. We discuss further numerical examples in the next section.

4 Properties of the Model and Concluding Remarks

To illustrate the resulting effect of the copula and its dependence parameters on the prices of

nth to default swaps, we consider two portfolios. The first one is made of 10 firms with the following

high-grade credit ratings: Aaa Aaa, Aa1, Aa1, Aa2, Aa2, Aa3, A1, A2, A3. We assume here that

the σk’s are all equal to 3 basis points, a reasonable value given the estimates of Table 2. The

second portfolio is made of 10 low-grade risky bonds with the following ratings: Caa1, Caa1, Caa2,

Caa2,Caa3, Caa3, Ca, Ca, C, C. We assume σk’s of 5.

To study the effect of copulas beyond the relatively commonly Gaussian and Student, we

add the Clayton, Frank, and Gumbel families described earlier. For this simulation we will use the

equi-correlated Gaussian and Student families (i.e. Σjk = ρ for all j 6= k), similar to the restriction

in Hull and White [2005]. We set ν = 3.7 for the Student, the fitted value in our real data example

in Section 3.2, taken as plausible behavior. As the value of ν does not affect the value of Kendall’s τ

for the Student, the five families are then indexed by one parameter, τ . Note that τ = 0 corresponds

to the independence copula C(u1, . . . , ud) = u1 · · · ud, while τ = 1 corresponds to the Fréchet copula

C(u1, . . . , ud) = min(u1, . . . , ud). We used τ = j/20, for j = 0, . . . , 20. We use the generator matrix

estimated from the Moody’s data set, shown in Table 1, and the values f = 2, r = 2% and T = 5 for

all the simulations. For each copula and value of τ , we make 100,000 draws of the vector of survival

times, to estimate the premia for 1st to 10th to default credit swap instruments.

Figures 1 to 5 show plots of the premia in basis points versus Kendall’s τ for the various

copulas and orders of default. Figure 1 considers 1st to default. The bottom plot shows that the

different copulas produce very similar prices for the swap on the risky securities. For these risky

assets, the probability of even only 1 default out of 10 is very high and the effect of the dependence

structure is minimal. In contrast, the top plot shows that the copulas produce very different prices

for the low risk portfolio. As default unlikely for these high grade securities, the choice of copula

can greatly impact the default price, via the probability of default. Note that the copulas produce

the most different premia when Kendall’s τ is neither close to 0 nor to 1. This is because, when

a high dependency is forced into the model (τ = 1), the copulas will all be consistent with a very

low probability of all these high-grade securities defaulting. On the other end, when we model very

low dependency (τ = 0), all the copulas will agree that the possibility of one of these securities

defaulting is at its highest and their pricing will be nearly identical. Unlike the other copulas, the

Student and the Gaussian are very similar throughout the range of τ , a result consistent with the

existing literature.

Considering only the top plots of Figures 2 to 5, we notice the upward sloping curves as a

function of τ . Again, for these high grade bonds, multiple defaults can really only result from a high

level of dependence. Conversely, for independent, high-grade securities, the probability of multiple

defaults is extremely low. Note also that the prices are lower for the higher order default swaps.

In summary, we propose to price nth to default swaps using continuous time Markov chains
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and copulas to model the joint dynamics of default. The method is easy to implement and prices

can be calculated rapidly. We implement the model on real data and demonstrate the model’s

flexibility for default-risk based instruments. For the most likely values of Kendall’s τ (i.e. for

neither independent nor perfectly correlated vectors of risky securities) the choice of the copula for

credit-default pricing can have a very large impact on prices. Also, while the Gaussian and the

Student exhibit very similar behavior, this is not the case for other, possibly more general copula.

This suggest further research to investigate which copula fit credit instruments best.

Appendix on Continuous-time Markov Chains

Suppose that Xt =
(
X

(1)
t , . . . ,X

(d)
t

)
is a homogeneous time Markov chain with infinitesimal

generator Λ and state space S = S1 × · · ·Sd. Further assume that the only absorbing state is the
constant state (m, . . . ,m). If Λ is the infinitesimal generator then

P (Xt+h = β|Xt = α) =

{
hΛαβ + o(h), β 6= α,
1 + hΛαα + o(h), β = α,

, α, β ∈ S.

It follows that Λαβ ≥ 0, β 6= α, and

λα = −Λαα =
∑

β 6=α

Λαβ.

Furthermore, if
Pαβ(t) = P (Xt = β| X0 = α) , α, β ∈ S,

then Ṗ (t) = ΛP (t), P (0) = I. Hence, using the usual convention Λ0 = I, P can be written as

P (t) = etΛ =
∞∑

n=0

tn

n!
Λn, t ≥ 0.

For example, if d = 1, S = {1, 2}, and Λ =

(
−λ λ
0 0

)
, then

P (t) =

(
e−λt 1 − e−λt

0 1

)
, t ≥ 0.

It is known that for all α ∈ S,

P (Xs+u = α for all u < t |Xs = α) = e−λαt.

Therefore, α is an absorbing state if and only if λα = 0. It follows that a Markov chain stays
in a non absorbing state α an exponentially distributed (mean = 1/λα) time and then goes to state
β 6= α with probability Λαβ/λα.

Another way of interpreting the continuous time Markov chain is the following: if the chain
is at a non absorbing state α ∈ S, then after an exponentially distributed (mean = 1/λα) time,
µα ≥ λα, the chain goes to state β 6= α with probability Rαβ = Λαβ/µα or stays at state α with
probability Rαα = 1−λα/µα. For simplicity, assume that µα = 0 when λα = 0. Note that any value
µα would also lead to the same generator.
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Let
M = {µ : S 7→ [0,∞);µα ≥ λα, µα = 0 when λα = 0},

and then every µ ∈M corresponds a unique transition probability matrix R defined by

Rαβ =





Λαβ

µα
, λα > 0, β 6= α,

1 − λα

µα
, λα > 0, β = α,

0, λα = 0, β 6= α,
1, λα = 0, β = α.

Note that µα(Rαβ − Iαβ) = Λαβ . The set of all (µ,R) with µ ∈ M is denoted by M. For
every such R, one can define a discrete time Markov chain (Yn)n≥0 with transition matrix R.

It follows that an equivalent way of describing the continuous time Markov chain with gen-
erator Λ is to prescribe the jumping rates µ ∈M , together with the transition matrix R.

There is a subset of M which is most interesting. Consider the set M0 of all (µ,R) so that
R is a transition matrix of a discrete Markov chain Y with the property that for each nonempty set
A = {a1, . . . , ak} ⊂ {1, . . . , d}, Y (A) =

(
Y (a1), . . . , Y (ak)

)
is a discrete time Markov chain.

It follows from Proposition 3 that this is equivalent to the following condition: For each
nonempty set A ⊂ {1, . . . , d}, ∑

β∈S; βj=γj , j∈A

Rαβ (7)

depends only on αA = {αj , j ∈ A}. For any k = 1, · · · , d, i, j = 1, . . . ,m, set

G
(k)
ij =

j∑

l=1

R
(k)
ij ,

where G
(k)
i0 = 0. Next, given a copula C on [0, 1]d, if U = (U1, . . . , Ud) is a random vector with

distribution function C, define, for any α, β ∈ S,

Rαβ = P
(
G

(1)
α1,β1−1 < U1 ≤ G

(1)
αa,β1

, . . . , G
(d)
αd,βd−1 < Ud ≤ G

(d)
αd,βd

)
. (8)

It follows that R, as defined by (8), satisfies (7). Of course C is not uniquely defined by
(8), but for a given copula C, and given marginal cumulative transition matrices R(1), . . . , R(d), R is
uniquely determined by (8).

It follows that for any A ⊂ D,

R
(A)
αβ ≤ min

k∈A
R

(k)
αkβk

.

It is now easy to characterize members (µ,R) of M0 satisfying Assumption 2.

Proposition 2. Under Assumption 2, for any (µ,R) ∈ M0, there is a constant λ > 0 such that

µα = λ for all α 6= (m,m, . . . ,m).
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Proof. Take (µ,R) ∈ M0. It follows from Proposition 3 and Corollary 4 below that for any 1 ≤ i 6=
j ≤ m, any 1 ≤ k ≤ d, and any α ∈ S with αk = i,

Λ
(k)
ij =

∑

β∈S; βk=j

Λαβ =
∑

β∈S; βk=j

µαRαβ = µαR
(k)
ij .

Hence,

λ
(k)
i = µα

(
1 −R

(k)
ii

)
.

If i < m, then λ
(k)
i > 0, and µα is constant for any α 6= (m,m, . . . ,m).

Finally, if α = (m,m, . . . ,m), then λα = 0 since α is an absorbing point. Therefore µα =
0.

Based on Proposition 2 and relation (8), the following statement makes sense: The infinitesi-

mal generator Λ is determined by a copula C, and a constant λ ≥ max1≤k≤d max1≤j<m λ
(k)
i . Having

fixed λ, the marginal transition matrices R(k) corresponding to Λ(k) are R(k) = I + Λ(k)/λ, while the
cumulative transition matrix G(k) is defined by

G
(k)
ij =

j∑

l=1

R
(k)
il , 1 ≤ i, j ≤ m, k = 1, . . . , d.

Proposition 3 and Corollary 4 used above are as follows.

Proposition 3. Assume R is a transition matrix of a discrete Markov chain Y ∈ S = S1 × · · ·Sd,

with the property that for each nonempty set A = {a1, . . . , ak} ⊂ {1, . . . , d}, Y (A) =
(
Y (a1), . . . , Y (ak)

)

is a discrete time Markov chain on SA = ⊗j∈ASj , with transition matrix R(A).

Then, a necessary and sufficient condition for this is that for all nonempty set A ⊂ {1, . . . , d},
and all α ∈ S so that αA = γ ∈ SA, ı.e. αj = γj for all j ∈ A,

(RA)γ,δ =
∑

β∈S; βj=δj , j∈A

Rαβ, δ ∈ SA.

Proof. The condition is clearly sufficient. To prove that it is also necessary, remark that for any fixed
α ∈ S with αA = γ, it follows from the Markov hypothesis that

(
R(A)

)
γδ

= P
{
Y

(A)
1 = δ

∣∣∣ Y (A)
0 = γ

}

= P
{
Y

(A)
1 = δ

∣∣∣ Y0 = α
}

=
∑

β∈S; βj=δj , j∈A

Rαβ.

Corollary 4. Suppose that Λ is the infinitesimal generator of a continuous time Markov chain Xt

with state space S = S1 × · · ·Sd, with the additional property that for each nonempty set A =
{a1, . . . , ak} ⊂ {1, . . . , d}, X(A) =

(
X(a1), . . . ,X(ak)

)
is a continuous time Markov chain on SA =

⊗j∈ASj, with generator Λ(A).
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Then, a necessary and sufficient condition for this is that for all nonempty set A ⊂ {1, . . . , d},
and all α ∈ S so that αA = γ ∈ SA, ı.e. αj = γj for all j ∈ A,

(
Λ(A)

)
γ,δ

=
∑

β∈S; βj=δj , j∈A

Λαβ , δ ∈ SA.

Theorem 5. Suppose X(1), . . . ,X(d) are Markov chains with infinitesimal generators Λ(1), . . . ,Λ(d)

on the state spaces S1, . . . , Sd. Then there is a unique way to define a Markov chain X =
(
X(1), . . . ,X(d))

)

on S = S1 × · · ·Sd, with generator Q so that only one transition among the components is permitted

at a time.

In that case, for any α, β ∈ S,

Λαβ =

d∑

k=1

(
Λ(k)

)
αkβk

∏

j 6=k

Iαjβj
,

and it follows that the Markov chains X(1), . . . ,X(d) are all independent.

Proof. If X(1), . . . ,X(d) are independent, then X =
(
X(1), . . . ,X(d)

)
is clearly a Markov chain. It

only remains to calculate the generator Λ̃.

By hypothesis, Pαβ(t) =
∏d

k=1

(
P (k)(t)

)
αkβk

, if β 6= α, so

Λ̃αβ =
d

dt
Pαβ(t)

∣∣∣∣
t=0

=
d∑

k=1

(
Λ(k)

)
αkβk

∏

j 6=k

Iαjβj
= Λαβ .

Hence Λ̃ = Λ.

On the other hand, if more than one simultaneous transition is prohibited among the com-
ponents, and if all components are Markov chains, it follows from Corollary 4 that for any α, β ∈ S,
Λ is given by

Λαβ =

d∑

k=1

(
Λ(k)

)
αkβk

∏

j 6=k

Iαjβj
.

Setting

P̃αβ(t) =

d∏

k=1

(
P (k)(t)

)
αkβk

,

one can check that ˙̃P (t) = ΛP̃ (t), and P̃ (0) = I. Hence P̃ = P , by uniqueness of the solution.
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Figure 1: Premium (basis points) for 1st to default for five-year contracts with bi-annual payment
vs Kendall’s τ for different copulas. Top plot: high grade; bottom plot: low grade.
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Figure 2: Premium (basis points) for 2nd to default for five-year contracts with bi-annual payment
vs Kendall’s τ for different copulas. Top plot: high grade; bottom plot: low grade.
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Figure 3: Premium (basis points) for 5th to default for five-year contracts with bi-annual payment
vs Kendall’s τ for different copulas. Top plot: high grade; bottom plot: low grade.
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Figure 4: Premium (basis points) for 9th to default for five-year contracts with bi-annual payment
vs Kendall’s τ for different copulas. Top plot: high grade; bottom plot: low grade.
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Figure 5: Premium (basis points) for 10th to default for five-year contracts with bi-annual payment
vs Kendall’s τ for different copulas. Top plot: high grade; bottom plot: low grade.
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