
APPENDIX

A Extended Model: Posterior Distributions

A.1 Homoskedastic errors

Consider the basic contingent claim model b extended by the vector of observables x2:

logCi = β1 log b (σ, x1i) + β
′

2
x2i + ηi, i = 1, . . . , N ηi ∼ N (0, ση)

Rt = µ+ ξt, t = 1, . . . , Tr ξt ∼ N (0, σ) E(ξtηi) = 0

The likelihood function is:

`(ση, σ, β1, β
′
2 | yt) ∝

1
σNη
× exp

−
N∑
1

[logCi − β1 log b(σ, x1i)− β′2x2i]
2

2σ2
η

 (1)

Now define: x′i = (log b(σ, x1i), x′2i), X′ = (x1, ..., xN ), β′ = (β1, β
′
2), and Y′ = (logC1, ..., logCN ).

We formulate the following joint prior distribution for the parameters:

p (σ, ση, β) = p(σ)p(ση)p(β | ση)

= IG(σ : ν0, s
2
0) IG(ση : ν1, s

2
1) N(β : β0, σ

2
ηV0)

The fact that p(σ) is based on the Tr returns data, can be incorporated by setting ν0s
2
0 =

Tr∑
1

(Rt−R̄)2

and ν0 = Tr − 1. By Bayes theorem, the joint density of the parameters is

p(ση, σ, β | yt) ∝
exp

{
−ν0s20

2σ2 −
ν1s21
2σ2
η

}
σν0+1σN+ν1+1

η

× exp

{
−(Y −Xβ)′ (Y −Xβ) + (β − β0)′ V −1

0 (β − β0)
2σ2

η

}
Define:

β̂ = (X ′X)−1X ′Y, V =
[
X ′X + V −1

0

]−1
, ¯̄β = V

[
X ′Xβ̂ + V −1

0 β0

]
,

and

νη = N − k + ν1, νηs
2
η =

(
Y −X ¯̄β

)′ (
Y −X ¯̄β

)
+
(
β0 − ¯̄β

)′
V −1

0

(
β0 − ¯̄β

)
+ ν1s

2
1.

The joint density becomes

p
(
ση, σ, β | yt

)
∝

exp
{
−ν0s20

2σ2

}
σν0+1

× 1

σ
νη+1+k
η

× exp


−νηs2

η −
(
β − ¯̄β

)′
V −1

(
β − ¯̄β

)
2σ2

η

 . (2)
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It is analogous to that resulting from a standard regression model with the twist that X, β̂, ¯̄β, V, and

νηs
2
η, are functions of σ. We can now break down the joint density in the conditionals of interest.

First,

p(β | σ, ση, yt) ∼ N
(

¯̄β, σ2
ηV
)
. (3)

The joint density of σ and ση is then

p
(
ση, σ | yt

)
∝ 1
σν0+1

× exp

{
−ν0s

2
0

2σ2

}
× 1

σ
νη+1
η

× exp

{
−νηs2

η

2σ2
η

}
× |V |1/2 . (4)

The conditional posterior density of ση is

p
(
ση | σ, yt

)
∼ IG(νη = N − k + ν1, νηs

2
η(σ)) (5)

The posterior density of σ is

p(σ | y
t
) ∝ 1

σν0+1
exp

{
−ν0s

2
0

2σ2

}
×
[
νηs

2
η(σ)

]−νη/2
× |V |1/2. (6)

The distribution in equation (6) is the marginal posterior distribution of σ. A draw from ση, σ, and

β can be made by a metropolis draw from expression (6) and then a direct draw from (5) and (3).

So no Gibbs step is required for the homoskedastic model.

Alternatively, note that the densities p(ση | σ, β, yt), p(β | σ, ση, yt), and p(σ | ση, β, yt) are readily

obtained by inspection of the joint posterior (2) density. They are the basis for a (un-needed) Gibbs

cycle. Even with a Gibbs cycle a Metropolis step is still needed for σ.

A.2 σ: The Metropolis Step

This appendix discusses the σ draws. Since a Gibbs cycle will be needed when the errors are

heteroskedastic, this discussion is based upon the conditional posterior distribution of σ, not the

unconditional posterior in (6). It is

p(σ | β, ση, yt) ∝
exp

{
−ν0s20

2σ2

}
σν0+1

× exp

{
−νs

2(σ, β)
2σ2

η

}
, (7)

where νs2(σ, β) = (Y − X(σ)β)′(Y − X(σ)β). For computational convenience, we introduce the

sample statistic νηs2
η?, the mode of the kernel, and rewrite the posterior density of σ as

p(σ | β, ση, yt) ≡
K

νηs2
η?
× IG(ν0, ν0s

2
0)× exp

{
−νs

2(σ, β)
2σ2

η

}
(8)
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We draw in sequence (β | .), (σ | .), and (ση | .), building a chain of such draws. There is no

analytical expression for K, but it could be computed numerically by importance sampling from the

first kernel in (8). This is unrealistic as. First, we would need to recompute K for every draw of

σ. This is because β and ση change after each draw. Second, even then, direct draws from (8)

by conventional methods such as inverse CDF are unrealistic. The Metropolis algorithm does not

require the computation of K.

The Metropolis algorithm (see Metropolis et al. (1953) and Tierney (1991)) nests a simpler

algorithm, the accept/reject, (see Devroye (1987)), which requires the knowledge of K. We explain the

accept/reject algorithm first. We cannot draw directly from the density p(σ). There is a blanketing

density q(σ) from which we can draw, and which meets the condition that there exists a finite number

c such that cq(σ) > p(σ), for all σ. Draw from q a number σ and accept the draw with probability

p(σ)/cq(σ). The intuition of why this produces a sample of draws with distribution p(σ) is simple:

We draw from q and for each draw we know by how much cq dominates p. p/cq is not the same

for every value of σ because p and q do not have the same shape. The smaller p/cq, the more q

dominates p, the more likely we are to draw too often in this area, the less likely the draw is to be

accepted. If the parameter space is unbounded,a finite c such that cq(σ) > p(σ),∀σ, exists only if

the tail of q drops at a slower rate than the tail of p. For density (8), this can be accomplished if

q is an inverted gamma with parameter ν ≤ Tr − 1. Given that c exists, an ideal density is such

that p / q is relatively constant over σ. Otherwise c needs to be very large, and we will waste time

rejecting many draws. Experimentation shows that the inverted gamma may have a shape different

from (7), particularly if the option kernel is more informative than the prior kernel. This is because

q must have low degrees of freedom (ν ≤ Tr − 1) for c to exist. q is not allowed to tighten when the

information in the options data increases. An extreme case of this occurs if we only use option data.

Also, the calculation of c is non trivial. One must first calculate K rather precisely, and then solve

for the minimum of p/q over σ. So the accept-reject algorithm alone is unsatisfactory.

However, for any candidate density q, we always find c such that cq > p, for most values of σ.

For some values of σ, cq < p, i.e., the density q does not dominate p everywhere. In these regions, we

do not draw often enough from q, and therefore, underestimate the mass under the density p. The

Metropolis algorithm is a rule of how to repeat draws, i.e., build mass for values of σ, where q does not
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draw often enough. This does not require dominance everywhere, and gives us more choices for the

density q and the number c. For a given density q, too large a c leads to frequent rejections, and too

low a c produces many repeats, but the algorithm is still valid. A c which trades off these two costs

can be computed very quickly. Furthermore we do not need to compute K anymore. This is because

the transition kernel of the Metropolis is a function of the ratio p(y) / p(x), where x and y are the

previous and the current candidate draws. K disappears from the ratio. Consider an independence

chain with transition kernel f(z) ∝ min{ p(z), cq(z)}. The chain repeats the previous point x with

probability 1-α, where α(x, y) = min
{
w(y)
w(x) , 1

}
, and w(z) ≡ p(z)/f(z). If cq > p, w(z)=1, and if

cq < p, w(z) >1. The decision to stay or move is based upon w(y)
w(x) which compares the (lack of)

dominance at the previous and the candidate points.

We implement the Metropolis algorithm as follows. A truncated normal distribution was found

to have a shape close to p. We choose it as blanketing density q. The truncation is effected by

discarding negative draws. We have not encountered such draws even in the smallest samples where

the mean is still more than 6 standard deviations away from 0. A possible alternative to the normal

blanket would be the lognormal distribution. We set the blanket mean equal to the mode of p(σ | .).

The mode is found quickly in about 10 evaluations of the kernel. We then set the variance of q to

best match the shape of q to p. For this, we compute and minimize the function p ? /q, where p? is

the kernel of p, at the mode and 1 point on each side of the mode, where p is half the height of p at

the mode. These two points are found in a few evaluations of the kernel. The minimization requires

an additional 10 evaluations. This brings q as close as possible to p in the bulk of the distribution

where about 70 % of the draws will be made. Possible values for c are the ratios p ? /q at these

three points. We choose c so as to slightly favor rejections over repeats. The top left plots of figure

1 show that the ratio p?/cq is close to 1 almost everywhere. The intuition of the ratio p?/cq is as

follows. If a candidate draw is at the mode, ratio = 1, and the previous draw is at the upper dotted

line, ratio = 1.1, then there is a 1/1.1 chance that the previous draw will be repeated rather than

the candidate draw chosen. Also, a draw at 0.27, ratio = 0.93, has a 7% chance of being rejected.

The efficiency of the algorithm is verified wby keeping track of the actual rejections and repeats in

the simulation.
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A.3 Heteroskedastic errors

We model heteroskedastic errors as:

logCi = β1 log b (σ, x1i) + β
′

2
x2i + ση,j(i)ηi, i = 1, . . . , N ηi ∼ N (0, 1) (9)

where j(i) = 1, .., J indicates the levels of volatility. J is a smaller number than N. The conditional

posteriors for this model follow readily. Conditional on ση,j , σ, one divides the observations in (9)

by ση,j , which results in a regression with unit variance errors. p(β | ση,j(i), σ) follows. Conditional

on σ, β, the densities of the various ση,j are Inverse Gammas. Conditional on ση,j , β, the likelihood

kernel of σ becomes

exp

{
−νs

2(σ, β)1

2σ2
η,1

− · · · − νs2(σ, β)J
2σ2

η,J

}
, (10)

where the sums of squares j is taken over the quotes which errors have standard deviation ση,j

B Analysis of Market Error

Consider

logCi = β1 logm(σ, x1i) + β′2x2i + ai, where ai = ηi + siεi

= β′xi + ai

Rt = µ+ ξt

ηi ∼ N (0, ση) , εi ∼ N (0, σε) , ξt ∼ N (0, σ)

si =

 0 with prob. 1− π

1 with prob. π

The variance of ai is σ2
i = σ2

η + siσ
2
ε ≡ σ2

η(1 + siω). Introduce the state vector s= {s1, ..., sN}, a

sequence of independent Bernouilli trials. Consider the prior distributions

π ∼ B(a, b)

(β | ω, ση) ∼ N
(
β0, σ

2
η(1 +

a

a+ b
ω)V0

)
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ση ∼ IG
(
ν1, s

2
1

)
σ ∼ IG

(
ν0, s

2
0

)
. (11)

where IG and B are the Inverted Gamma and the Beta distributions. As usual the prior on σ can

be derived from the history of the underlying return if desired. The priors can be made arbitrarily

diffuse by setting ν0 and ν1 to 0, and the diagonal elements of V0 to large values. Note that σε

is modelled through the specification of ω. The goal is to obtain the posterior joint and marginal

distributions of β, σ, ση, π, ω , and s. The first conditional posterior is that of (β, σ, ση | yt, ω, S):

1:

p(ση, σ, β | yt, ω, s) ∝
exp

{−ν0s20
2σ2

}
σν0+Tr

×
exp

{−ν1s21
2σ2
η

}
σν1+1+k+N0
η

(
ση
√

1 + ω
)N−N0

× exp

−(β − β0)′ V −1
0 (β − β0)

2σ2
η

(
1 + a

a+bω
)

× exp

{
−(Y ∗ −X∗β)′(Y ∗ −X∗β)

2σ2
η

}

where N0 is the number of observations for which si is zero. Y ∗ = (logC∗1 , ..., logC∗N )′, where

logC∗i = logCi/
√

1 + ωsi. The same transformation is applied to the vector X, i.e. each element is

divided by
√

1 + siω. After this transformation, a draw of this posterior is made as shown in section

3. Now consider ω introduced above. When s is known, the likelihood function of ω depends only

on the N1 = N − N0 observations for which si = 1. Consider for ω̄ = 1 + ω, a truncated inverted

gamma prior distribution IG
(
ν2, s

2
2

)
Iω̄>1. The posterior distribution of ω̄ conditional on the other

parameters is

2:

p
(
ω̄ | y

t
, β, ση, s

)
∝ 1

ω̄1+ν2+N1
× exp

−
∑
i∈N1

(Yi − β′xi)2

2σ2
ηω̄

2
+ ν2s

2
2

 Iω̄>1

∼ IG

ν2 +N1, ν
2
ωs

2
ω = ν2s

2
2 +

∑
i∈N1

(
Yi − β′xi

ση

)2
 Iω̄>1

where Iω̄>1 is the indicator function for ω̄ > 1. A draw of ω is obtained directly from a draw of ω̄

since ω̄ = 1 + ω. We now need the conditionals p
(
si | yt, s−i, .

)
where ”.” stands for all the other

parameters, and s−i refers to the state vector without si. Following McCulloch and Tsay (1993),

they are written as
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3:

p(si = 1 | y, s−i, .) =
πp(yt | si = 1, .)

πp(yt | si = 1, .) + (1− π)p(yt | si = 0, .)

=
1

1 + 1−π
π ×

p(yt|si=0,.)
p(yt|si=1,.)

For the set up considered here the denominator term is simply:

yt | si = 0, .
yt | si = 1, .

=
√

(1 + ω) exp−(logCi − β′xi)2

2σ2
η

× ω

1 + ω

We now need the last conditional posterior of π . It depends exclusively on N1 the number of si’s

equal to 1:

4:

p(π | s, .) ∼ B(a+N1, b+N −N1)
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