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1 Introduction

Since the original Black and Scholes (1973) and Merton (1973) papers, the theory of option
pricing has advanced considerably. The Black-Scholes (hereafter B-S) has been extended to allow for
stochastic volatility and jumps. The newer equivalent martingale technique allows to solve complex
models more simply. At the same time it appears that the finance literature has not spent as much
energy on the effect of the econometric method used to estimate the models. 2 Whaley (1982) used
several options to compute the B-S implied volatility by minimizing a sum of squared pricing errors.
The non linear least squares method is still the most often used in empirical work. The method
of moments is sometimes used, e.g., Bossaerts and Hillion (1994a), Acharya and Madan (1995).
Giannetti and Jacquier (1998) report potential problems with the asymptotic approximation. Ru-
binstein (1994)’s paper started a strain of non parametric empirical work with aim to retrieve the risk
neutral pricing density implied by option prices. This literature is reluctant to assume a model error
which is inconsistent with the no-arbitrage deterministic models within which it works. The results
in Dumas, Fleming and Whaley (1998), hereafter DFW, show that this can lead to catastrophic
out-of-sample performance even if, or maybe because the in-sample fit is quasi perfect.

Absolute consistency with the no arbitrage framework is not consistent with the data. De-
terministic pricing models ignore market frictions and institutional features too hard to model. The
over-fitted implied density is affected by model error. There is no tool to asses the effect of model
error on the estimate. The results of DFW are consistent with an over-fitting scenario: The B-S
models is too restrictive to suffer from over-fitting. So it performs much better out-of-sample than
the more general non parametric models. Maybe DFW did not test the models as much as the
estimation method.

We develop an estimator to allow its user to assess the effect of model error on the inference.
It allows specification tests. The cost of this is that we must make explicit hypotheses on the pricing
error distribution. We can then write the likelihood function of the parameters. 3 Like the existing
methods, non linear least squares and methods of moments, the maximum likelihood estimator only
has an asymptotic justification. We develop a Bayesian estimator which is also justified in small
sample. This is useful for the small samples typical due to the common practice of updating model
parameters daily.

The Bayesian estimator does not have an analytical solution even for the B-S and simple
pricing error structures. We solve this problem by constructing a hierarchical Markov Chain Monte
Carlo estimator (hereafter MCMC). This simulation based estimator provides the second improve-
ment over standard methods. It delivers exact inference for any non linear function of the parameters
instead of relying on the usual combination of delta method and normality assumption. The sim-
ulation based estimator produces draws of the desired posterior or predictive densities, e.g., option
price , hedge ratio, correlation structure of the errors, all non linear in the parameters. 4 Before
taking a position, an agent wants to assess if a quote is far from the price predicted by a model. For

2See Campbell, Lo and MacKinlay (1997) for a review of the option pricing literature, Bates (1995) for an empirical
review, and Renault (1995) for a discussion of the econometric literature.

3We are not aware of likelihood based option pricing estimation. But some papers do add an explicit error to
deterministic pricing models. Justifications often include measurement errors. For example, Brown and Dybvig (1986)
add an error to the CIR term structure model.

4For a basic B-S model, the parameters is the underlying standard deviation.
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this type of tail based diagnostic, it is crucial to use an exact rather than an approximate density.
This is because predictive and posterior densities are often non normal.

The Bayesian estimator allows for prior information on the parameters, which standard meth-
ods do not. This is useful for several reasons. First, the underlying time series can be used as prior
information on the parameters. Second, imperfect models often result in time varying parameters
and need to be implemented in a setup allowing for periodic re-estimation. In the resulting small
samples, priors may be used to improve precision. The result of a previous sample can serve as
prior information for the next sample. Finally, priors can help resolve potential multicollinearities
when nesting competing models. We also extend the MCMC estimator to heteroskedastic pricing
errors and intermittent mispricing where the error variance is sometimes larger than usual. The
latter extension is more than a way to model fat tail errors. It parameterizes a quantity of economic
interest to the user, the probability of a quote being an outlier. This is in line with common views
where models are thought to work most of the time, and some quotes may occasionally be out of
equilibrium and include a market error.

A key here is that we put a distribution on the errors. Let us see what this allows us to
do which is not done in the empirical finance literature. Usually, once a point estimate for the
parameters is obtained by non linear least squares, model prices are computed by substitution into
the price formula. These price estimates are then compared to market prices. Mispricings, e.g.,
smiles, are characterized. Competing models are compared on the basis of these price estimates
and smiles. What is not produced is a specification test based upon confidence intervals around the
price reflecting parameter uncertainty and model error. Quotes, whether in or out of sample, should
be within this interval with the expected frequency. Without further distributional assumptions,
the distribution of the model error in a method of moment or least squares estimation is not clear.
Standard methods can, but this is not done in the literature, use the asymptotic distribution of
the parameter estimator to get an approximate density for the model price reflecting parameter
uncertainty alone. Coverage tests could follow. First, this (necessary) approximation can lead to
flawed inference. Second, it does not allow the incorporation of the pricing error to form a predictive
rather than a fit density . We produce both fit and predictive densities for option prices and document
their behavior. The extent to which they produce different results has not been documented.

Of course, the modelling of pricing errors arises only if the data include the option prices. We
state the obvious to contrast the estimation of model parameters from option prices and from time
series of the underlying. For models with risk premia, the time series may not give information on all
the parameters of the model. Also, even for simpler models, the time series and the option prices may
yield different inference. Lo (1986) computes coverage intervals and performs B-S specification tests.
He uses the asymptotic distribution of the time series variance estimator to generate a sampling
variability in option prices. The estimation has not used the information in option prices to infer
the uncertainty on the parameter or the model error. For a model with constant variance, this is a
problem since the length of the time series affects the precision of the estimator of variance. In the
limit, a long sample implies very high precision and a short one implies to low precision, with the
corresponding effect on the B-S confidence intervals. This test is hard to interpret.5 Our method
can incorporate the underlying historical information if desired, but the core of the information is
the option data.

5Jacquier and Polson (1995) propose to construct efficient option price predictors that reflect the uncertainty in the
forecast of stochastic volatility. Stochastic volatility forecasts are not degenerate even in large sample.
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One does not expect any model to have no errors. Rather, an acceptable model would admit
errors which: (1) are as small as possible, (2) are unrelated to observable model inputs or variables,
and (3) have distributional properties preserved out-of-sample. (1) and (2) say that the model uses
the information set as best as possible. (3) says that the inference can be trusted out-of-sample.
Our estimator can produce small sample diagnostics of these criteria. We document its behavior for
the B-S model. We well know that the B-S does not fare well at least by criteria (1) and (2) above.
DFW’s results seem to imply that it fares better than some more complex models by criterion (3).
There are known reasons for the B-S sytematic mispricings. The process of the underlying asset may
have a stochastic volatility, or jumps. The inability to transact continuously affects option prices
differently depending on their moneyness. Time varying hedging demand can also cause systematic
mispricings. Practitioners’ common practice of gamma and vega hedging with the Black-Scholes
reveals their awareness of model error.

It also shows their reluctance to use the more complex models available. Despite known
problems, the B-S is still by far the most used option pricing model. One reason is that practitioners
see more complex models as costly or risky. They may not have an intuition on their behavior. The
estimation of the parameters can be complex, lead to unfamiliar hedge ratios or forecasts. Jarrow
and Rudd (1982) argue that in such cases, auxiliary models such as a polynomial expansions of
known inputs may be useful extensions to a basic model. Their argument could be relevant beyond
the B-S case. At any point, there is a better understood basic model - the status-quo, and more
complex models entertained which are harder to learn and implement. To improve upon the current
basic model while the more complex model is not yet understood, the expansions need to capture the
patterns omitted by the basic model. Recently, Hutchinson, Lo and Poggio (1993) showed that non
parametric forms can successfully recover existing B-S patterns. 6 We add an extension of the B-S
in this spirit and incorporate it to our estimator. We essentially will test if the expansions, similar
to the larger models of DFW, capture the systematic patterns omitted by the B-S.

In the empirical analysis, we document the use of the estimator. We show the non-normality
of the posterior densities. We then show that tests of the B-S model (and its expansions) which only
account for parameter uncertainty (fit density) do not give a reliable view of the pricing uncertainty
to be expected out-of-sample. The use of the predictive density markedly improves the quality of the
forecasts. The fit density is of course tighter than the predictive density. It leads to massive rejection
of all the models used. Its use by a practitioner would lead to an overestimation of the precision of a
model price. We show that the non parametric extended models have different in-sample implications
than the simple Black-Scholes. They also improve the model specification. However we also show
that these improvements do not survive out-of-sample.

Section 2 introduces the basic model b(.) and its extended counterpart. It also introduces
two candidate error structures, multiplicative (logarithm) and additive (level), both possibly het-
eroskedastic. Section 3 discusses the estimators and details the implementation of the method in the
case of both basic and extended Black-Scholes models. 7 Section 4 shows the results of the application
of the method to stock options data. Section 5 concludes and discusses areas of future research.

6For a survey of the recent non parametric literature, see Ghysels et al. (1997).
7Technical issues and proofs are discussed in an appendix available from the authors upon request.

jacquier@jacquier.bc.edu
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2 Models and Errors

2.1 Basic model, additive and multiplicative forms

Consider N observations of a contingent claim’s market price, Ci, for i ∈ {1,2,...,N}. We think of
Ci as a limited liability derivative, like a call or put option. Formally, we can assume that there exists
an unobservable equilibrium or arbitrage free price ci for each observation. Then the observed price
Ci should be equal to the equilibrium price ci. There is a basic model b(x1i, θ) for the equilibrium
price ci. The model depends on vectors of observables x1,i, and parameters θ. We assume that
the parameters are constant over the sample span. The model is an approximation, even though
it was theoretically derived as being exact. There is an unobservable pricing error, ηi. A quote Ci

may also sometimes depart from equilibrium. The error then has a second component εi, which can
be thought of as a market error. εi and ηi are not identified without further assumptions. In the
empirical analysis contained in this paper, we merge these two errors into one common pricing error
ηi. In section 5, we propose an error structure to better identify outlying quotes which may originate
from intermittent mispricing. Formally,

log Ci ≡ log bi(x1i, θ) + ηi, (1)

This implies a multiplicative error structure on the level, which guarantees the positivity of the call
price for any error distribution.

The introduction of a non-zero error ηi is justified. First, simplifying assumptions on the
structure of trading or the underlying stochastic process made to derive tractable models. They result
in errors, possibly biased and non i.i.d. For example, Renault and Touzi (1994) and Heston (1993),
show this within the context of stochastic volatility option pricing models. Renault (1995) shows that
even a small non-synchroneity error in the recording of underlying and option prices can measurement
can cause skewed Black-Scholes implied volatility smiles. Bakshi, Cao, and Chen (1998) show that
adding jumps to a basic stochastic volatility process further improves pricing performance. Bossaerts
and Hillion (1994b) show that the assumption of continuous trading also leads to smiles while Platen
and Schweizer (1995)’s hedging model causes time varying skewed smiles in the Black-Scholes model.
In all of the above cases, the model errors are related to the inputs of the model. Second, in typical
models, the rational agents are unaware of market or model error and know the parameters of the
model. Such models could be biased in the ”larger system” consisting of expression (1). 8

The error in (1)is multiplicative. This could be preferred to an additive structure for two
reasons. First, it insures the positivity of Ci, independently from the distribution of ηi. This is the
first Merton lower bound, hereafter B1. 9 Second, it models relative rather than absolute errors.
This insures that contingent claims with low prices are not ignored in the diagnostic. Given a fixed
investment in a strategy, one may argue that relative pricing errors are the relevant measure of model
risk. The difference between multiplicative and additive errors is an unexplored empirical question.

8Clément, Gouriéroux, and Montfort (1993) address model uncertainty by randomizing the equivalent martingale
measure. They show that this may induce non i.i.d. pricing errors related to the model inputs. Our goal here is more
to implement and test known models.

9This does not address the second Merton lower bound, B2: A call option must exceed the stock price less the
present value of the strike price, S- PV(X).
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So we also implement the simple additive (level) form:

Ci = bi(x1i, θ) + ηi, (2)

For each formulation, we will document how acute the problem of Merton bound violations are.

2.2 Non parametric extended models

For many basic models, say bi(x1i, θ), the pricing error ηi is not i.i.d. We introduce an extended
model mi such that:

log Ci = β1 log bi(x1i, θ) + β′
2x2i + ηi ≡ log mi + ηi. (3)

Model mi differs from the basic model bi by the addition of a coefficient β1 and linear combination
β′

2x2i. The variables x2i may include functions of the observables x1i, of other relevant variables and
an intercept term. They can also include one or several competing models to bi. Then the extended
model equation allows an estimation procedure for nesting competing models. 10 The extended model
is intended to capture the biases in the basic model. Jarrow and Rudd (1982) argue that it may be
justified as a costless and intuitive non parametric approximation of a more general model when the
more general model is either unknown or too costly to implement. 11 This is also in the spirit of
the non parametric literature such as Hutchinson, Lo, and Poggio (1994) who show that simple non
parametric models can recover Black-Scholes prices. Here we will check if they can recover patterns
in addition to the Black-Scholes in actual prices. Under the simple additive error form, the extended
model is given by

Ci = β1bi(x1i, θ) + β′
2x2i + ηi ≡ mi + ηi. (4)

The basic model b(σ, x1i) is the Black-Scholes. So x1i includes the stock price Si, the time to
maturity τi, the relevant interest rate rf,τi

, and the exercise price Xi. We assume that ηi ∼ N (0, ση)
for both logarithm and level models. The parameters θ include the stock’s volatility σ, the model
error standard deviation ση, and the coefficients β. In this application we restrict the extended model
variables to expansions of moneyness and maturity. The moneyness z is the logarithm of S/Xe−rf,τ ,
the ratio of the stock to the present value of the exercise price. Renault and Touzi (1994) show that
under a stochastic volatility framework, the B-S implied volatility is parabolic in z, and decreasing
in τ . The second variable is τ , the maturity in days. In the analysis, we will refer to the following
models 0 to 4.

Insert Table 1 here

The logic is straightforward. Model 2 allows a linear maturity effect and a moneyness smile.
Model 3 lets the smile depend on the maturity. Model 4 introduces higher powers of τ and z. As we

10Competing models are often highly correlated, causing quasi multicollinearity. Priors in a Bayesian framework
resolve this problem. See Schotman (1994).

11In a trading system where the cost of changing a model is high, model (3) may provide an inexpensive control of
model error in hedging a trader’s portfolio (book).

5



do not know the functional form of the better parametric model, it is unclear how far the expansion
of the relevant variables needs to go. Model 4 will test the effectiveness of large expansions. One
could also consider other variables, such as liquidity proxies, e.g., the bid-ask spread of the option
or the stock.

2.3 Heteroskedasticity

The error in the level model is in dollars. Both quote and model value are small for far out of
the money options. Deep in the money, they are both large. So one may expect a possible het-
eroskedasticity in the errors, with ση an increasing function of moneyness. A different argument can
be made. The typical plot of the B-S value vs the stock value for a given maturity and exercise price
shows that the distance between the Merton bound and the model value is smallest for far from the
money options and largest at the money. This suggests that pricing errors may be more variable at
the money than away from the money. Both arguments imply that some form of heteroskedasticity
should be allowed. This could alleviate the potential Merton bound problem with the level model.

The error in the logarithm model is in relative terms. For a far out of the money call, the
quote could be 12 cents and the model might be centered at 6 cents. The dollar pricing error is small
but the relative error is large. Conversely, a large dollar error for a deep in the money option may
imply a small relative error. So one may expect ση to be a decreasing function of moneyness in the
logarithm model. A decreasing ση may also help alleviate the potential for predictive densities to
violate the Merton bound, B2 : C > S − PV (X), still a potential problem in the logarithm model.

We extend our estimator to allow for heteroskedasticity and implement both homoskedastic
and heteroskedastic errors. We model heteroskedasticity by simply allowing up to three different
standard deviations σηj , j = 1, 2, 3 depending on the moneyness ratio which proxies for the magnitude
of the call value. 12 A heteroskedastic model then has up to 2 more parameters than its homoskedastic
counterpart. For example, model 2 - table 1, with three levels of pricing error variance, has nine, not
seven parameters.

3 Estimation

3.1 Monte Carlo Estimation and Prediction

We now briefly outline the methodology for Monte Carlo estimation. The time-t information set
consists of observations of the option prices Cs,i collected for times s up to t, the vectors of relevant
observable inputs xτ,i, and the history of the underlying asset price Sτ . We index quotes by t and
i because for a time s, a cross-section of (quasi) simultaneous quotes can be collected. Let y

t
be

the vector of histories at t, the data. θ is the vector of all the relevant parameters including ση the
standard deviation of the error ηi, and the coefficients β from expression (3) or (4). A prior density
p(θ) is selected.

12We discuss the choice of the boundaries in section 4. An alternative is to model ση as a smooth function of
moneyness.
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Next, the contingent claim model and the distributional assumption on ηi yield the likelihood
function `(θ | y

t
). Finally, by Bayes theorem, the posterior density of the parameters is p(θ | y

t
) ∝

`(θ | y
t
) p(θ). 13 The specifics of the posterior and predictive distributions vary with the prior and

likelihood functions and are discussed later. Even for the Black-Scholes, the posterior density of θ
does not have an analytical solution. However a Monte Carlo estimator, i.e., a sample of random
draws of the posterior density is feasible. Moments and quantiles are readily obtained from this
sample with any desired precision. The main advantage of the Monte Carlo approach is that a draw
of any deterministic function of θ is obtained by direct computation from each draw of θ. Unlike the
delta method, this requires no approximation. We can for example generate samples of draws of the
exact posterior distribution of the model value, bi,mi, or hedge ratios. The Monte Carlo approach
removes the need to perform numerical integration as in standard Bayesian analysis.

An important deterministic function of the parameters is the residual for each observation.
Each draw of θ implies a draw of the posterior distribution of ηi for each i by computation of:
log Ci− log m(xi, θ). This is the basis for residual analysis. 14 These residuals can be used for within
sample tests of model specification, discussed later. Predictive densities, needed for predictive tests,
are different. The predictive density of a quote Cf depends on the error (ηf | yt

).

p
(
ηf | yt

)
=

∫
p

(
ηf | θ, yt

)
p

(
θ | y

t

)
dθ. (5)

Draws of this density are made and used as follows. Make one draw from (ηf | θ, y
t
) for each draw

of θ | y
t
. This yields a sample of joint draws of (ηf , θ | y

t
). The resulting draws of ηf are draws of

(ηf | y
t
) since they integrates out θ. Then for each draw, compute cf as in (3) or 4). This yields

a sample of draws of (Cf | y
t
, xf ), the predictive density of the price. Quantiles of this density

provide a model error based uncertainty around the point prediction, i.e. a probabilistic method for
determining to where a market quote Cf lies in its relevant predictive density. We discuss predictive
specification tests in sections 4.7 and 4.8

3.2 Markov Chain Algorithms

We now present the intuition behind the Markov Chain Monte Carlo (MCMC) algorithm needed
here. The next section and the appendix contain more details.15 Consider p(β, ση | σ | .). Given σ,
the model is a standard linear regression and direct draws of β, ση are available. The non linearity
in σ makes it impossible to draw directly from the marginal posterior p(σ | .).

This is partly because the integration constant of p does not have an analytical expression.
The Metropolis algorithm solves that problem because it does not require the integration constant. 16

See Metropolis et al. (1953). The intuition of the Metropolis algorithm is as follows. First, select a
13Whenever possible, we will follow closely Zellner’s notation. See Zellner (1971).
14See Chaloner and Brant (1988). The difference with standard residual analysis is that one obtains the exact

distribution of the residual for each observation.
15Detailed derivations of all the posteriors and the likelihood function are available in a technical appendix upon

request and on the first author’s WEB page.
16This is essential for the algorithm to be feasible. It is theoretically possible but practically infeasible to use a

standard method such as the inverse CDF method. Neither the CDF nor its inverse have an analytical expression.
Each draw of σ would require an optimization, each step of the optimization requiring a numerical integration.
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blanketing density q from which one can draw directly. q should have a shape similar to p. Given
a draw from q, the Metropolis algorithm is a probabilistic rule of acceptance of the draw which
compensates for regions where q draws too often or not often enough. The resulting sample of draws
of q converges in distribution to a sample of draws from p.

For the heteroskedastic extension where ση is a vector of parameters, we cannot write p(σ | .),
we can only write p(σ | ση). The MCMC algorithm is adjusted by the use of a Gibbs cycle, see Geman
and Geman (1984). It solves the following problem: Consider (σ, ση. We can not draw from their
joint density. We can, however, draw from the two conditional densities (σ | ση) and (ση | σ).
Under mild regularity conditions, draws from the chain (ση,0 | σ0), (σ1 | ση,0), (ση,1 | σ1), . . . , (σn |
ση,n−1), (ση,n | σn) converge in distribution to draws of the joint density σ, ση. This algorithm extends
to any number of conditionals. It is invariant to the initial values. This combination of these two
algorithms constitutes the MCMC estimator which we use. See Jacquier, Polson and Rossi (1994),
and Tierney (1994) for a recent discussion of the MCMC algorithms and convergence conditions.
The draws converge in distribution to draws of the joint posterior, under very mild conditions. The
key is that the conditions are often expressed in terms of the various transition kernels used by the
algorithms. Even though the conditions are intuitive and mild, absolute proofs of convergence for all
samples, on the basis of the likelihood and the priors only, is not easy . Some razor’s edge cases could
cause problems. For example, assume a proper prior and an unbounded parameter space. For a small
sample the likelihood may be unbounded. Then, a small dataset with some outliers could have a very
peaked and multimodal likelihood. If the (unimodal) prior is not strong enough, the algorithm could
still get stuck around a local mode. However if the prior imposes compactness on the parameter space,
the algorithm would converge even under multimodality. The issue of multimodality is addressed by
Gelman and Rubin (1992ab). Polson and Roberts (1994) have convergence results for some families
of distributions. The general consensus in the literature is that MCMC algorithms are very robust
but care must be taken in the diagnostics. Kass et al. (1997) gives a good survey of the literature.
We now specialize the MCMC estimator to the B-S model.

3.3 Application to the Black-Scholes Model

3.3.1 Priors and Posteriors

In the Black-Scholes economy, the underlying asset price St follows a lognormal distribution, i.e.,
Rt = log(St/St−1) ∼ N(µ, σ). In our application, the underlying asset is a stock. We assume that
the stock price and the risk free rate rf,i are observed without error. We assume a zero correlation
between the stock return and the model error. This is inocuous in our application because the stock
returns collected predate the panels of option price data. If stock returns with a calendar overlap
with the option price data were incorporated in the likelihood, the assumption of zero correlation
might not hold under some market structure where trading in the underlying is not exogenous to
trading in the option. 17 Here we view the stock return data as a source of prior distribution on σ.
So the likelihood does not include the stock return data. 18

17For this situation, allowing non zero correlation could provide a test of exogeneity of the underlying market. We
do not explore this route here.

18Combining a historical kernel in the likelihood with a diffuse prior on σ gives the same result.
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We use normal gamma priors for the parameters:

p (σ, ση, β) = p(σ)p(ση)p(β | ση) ∼ IG(σ : ν0, s
2
0) IG(ση : ν1, s

2
1) N(β : β0, σ

2
ηV0), (6)

where IG is the inverted gamma distribution and N is the normal distribution. Given σ, the joint
prior of β and ση is the normal-gamma prior used in regression analysis. Apart from σ, the priors are
conjugate. So they result in similar posteriors, see Zellner (1971). For σ, we use the inverted gamma
prior because it is consistent with a posterior resulting from the time series of the stock returns. The
priors can be made diffuse by increasing the variance V0 and using small values of ν0 and ν1. They
would still be proper.

Proper priors also allow the computation of odds ratios of desired. They also help model
desired restrictions on the parameters. For example, one may want to center β1 on 1 rather than zero,
and concentrate it in the positive region.19 One can also incorporate in the priors the Merton bounds,
by truncating the priors to eliminate parameter values violating the bounds. With a Monte Carlo
estimator, this is done by simply rejecting the posterior draws that violate the bounds. However,
one can not guarantee that the predictive density will not violate the bound. We will diagnose this
potential problem. Finally, when the sample is updated, the previous posterior distribution may be
used as a basis for the next the prior. This is not as simple as the linear regression. Because of the
non linearity in σ, one cannot find conjugate priors for all the parameters.

The joint posterior follows from Bayes theorem, see the appendix. We can not draw directly
from it. Instead we can draw from p(σ | y

t
) by a Metropolis step, then directly from p(ση | σ, y

t
),

and from p(β | σ, ση, yt
). In this case no Gibbs cycle is needed. A Gibbs step can be introduced

by drawing from p(σ | β, ση, yt
), p(ση | β, σ, y

t
), and p(β | σ, ση, yt

) respectively. These conditional
densities obtain readily from inspection of the joint posterior density. With heteroskedastic errors,
we will need to use a Gibbs cycle. This is because we can not write the kernel of p(σ | y

t
) when ση

is a vector of error standard deviations and not a scalar. See Appendix A3 for the heteroskedastic
model.

3.3.2 Posterior Distribution of σ

We now discuss the Metropolis step for σ. Appendix A2 contains the implementation details.
Consider the conditional posterior distribution of σ

p(σ | β, ση, yt
) ∝

exp
{
−ν0s2

0
2σ2

}
σν0

× exp

{
−νs2(σ, β)

2σ2
η

}
,

where νs2(σ, β) is a function of σ, β and xi. This is the distribution p used when a Gibbs cycle is
implemented. A draw of σ is made as follows. First, select a (blanketing) distribution q with shape
reasonably close to p, from which one can draw directly. We do not need to know the normalization
constant of p or the cumulative distribution function of σ. Call p? the kernel of p above. Second
make a draw from q. For this draw, we know p?/q The algorithm is a probabilistic rule with three

19Also, a zero intercept in the log model leads to a biased forecast for the Call price. This is due to the term 0.5 σ2
η

in the mean of the lognormal distribution. One may then want to center the intercept on -0.5 σ2
η for an unbiased log

model. The effect is small for typical parameter values.
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possible outcomes. First, the previous draw is repeated and the current draw is discarded. Second,
the current draw is chosen. Third, the current draw is rejected and we make another candidate draw
from q. The value of the ratio p?/q at the candidate and the previous draws is used to compute the
probability of each outcome.

The closer the shapes of q and p are, the faster the algorithm generates informative draws
on σ. A quantity c chosen as p?/q computed for various values of σ is used to balance the number
of rejections or repeats (see appendix A2). For a choice of q and c, a plot of the ratio p?/cq helps
assess the effectiveness of the algorithm. The more p? looks like q, the flatter the ratio curve. For q,
we choose a truncated normal with mean the mode of p(σ). A number of diagnostics are available
to decide how many burn in draws to eliminate, and how fast the algorithm generates information.
We discuss these tools in section 4.2.

4 Empirical Application

4.1 Data

The options data come from the Berkeley database. Quotes for call options on the stock TOYS’R
US, are obtained from December 89 to March 90. We use TOY for two reasons. First, it does not
pay dividends so a European model is appropriate. Second, TOY is an actively traded stock on the
NYSE. We define the market price as the average of the Bid and the Ask. Quotes are always given
in simultaneous pairs by the market makers. We filter out quotes with zero bids, and quotes which
relative spread is larger than the price. We use quotes rather than trades because it results in more
precise estimation Trades in this market happen more often at the prevailing ask or bid than inside
the spread. This causes additional error.20

There are between 80 and 300 daily quotes on TOY calls. We collect all quotes whatever their
maturity and moneyness because we want a global model diagnostic, and we analyze extended models
including bias functions. These models need rich panels to be identifiable. Table 2 summarizes the
data used.

Insert Table 2 here

We estimate the models over several sub-samples of these four months, to illustrate our
results under various setups. We use a one day sample to document small sample performance and
convergence of the algorithm. One week samples are compromises between the need for a short
calendar span and the need to accumulate information for the non-parametric extensions. When
the samples cover longer calendar periods, the potential autocorrelation of the errors may affect the
estimation. An estimator which does not take this into account may misrepresent the variability of
the parameters. Month long and bi-daily re-estimated samples help examine the robustness of the
results and the time variation of the parameters.

20We verified this by examining the trades and quotes. See George and Longstaff (1993) for the same conclusion on
the SP100 market. We previously estimated the models on trades with resulting performance dramatically worse than
presented here.
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4.2 Convergence of the Algorithm

Here we estimate a level model 3 with 2 levels of ση: ση,1 and ση,2 for moneyness ratios below
1 and above 1. It is a 10 parameter model. We use the 140 quotes from Dec 1, 1989. The prior on
σ is flat. We choose one (arbitrary) day and a relatively large model to document the applicability
of the algorithm in a small samples. One needs to monitor the draws. Figure 1 documents some of
the diagnostics used in the implementation of a MCMC algorithm.

When can we assume to have converged? A first tool is the time series plot of the draws,
top plot in Figure 1 shown for ση,2 on the top right plot. We intentionally start the chain from
several unrealistic values to check how quickly the draws settle down to a constant regime for all the
parameters. Here it took less than 10 draws for the system to settle down. The result was similar
for the other parameters and different starting values. If the starting value have a lasting effect on
the initial draws, e.g., multimodality, Gelman and Rubin (1992ab) argue that diagnostics based on
a single run can be misleading. We conservatively discard the first 500 draws. A further diagnostic
is to compute sample quantities for different segments of the remaining sample of draws. When the
sample quantities are stable , the process has converged. The boxplots in Figure 1 confirm that the
series has converged for this run.

The next question is: How fast does information accumulate? The most intuitive check is
the autocorrelation function of the draws past the burn-in period. The bottom plot of Figure 1
shows that the autocorrelations die out quickly. So the sequence of remaining draws is stationary.
That together with the fact that we checked multiple starting values confirms that the algorithm
converges. The autocorrelations are low. This means that information accumulates nearly as fast
as for a simple iid sequence. One can assess the precision of a sample quantile estimate given the
sample size and the degree of non i.i.d.-ness of the algorithm. Raftery and Lewis (1992) propose
such a diagnostic based solely on the sequence of draws. Our results will be based on 3500 parameter
draws.

4.3 The Parameters: β0, β1, σ

For the same model 3 and data as above, Figure 2 shows the posterior distributions of σ and ση,2.
The left plot indicates that the distribution of σ does not depart too much from normality. However
the right plot shows that ση,2 has a very non normal distribution. So, for a small sample, asymptotic
inference based upon a normal approximation can be flawed. This itself is a reason to favor a small
sample estimator.

We now ask whether different models imply different values for their common parameters.
This question with respect to the volatility σ is crucial because: (1) a visible empirical literature uses
implied volatilities to analyze the informational efficiency of options markets, and (2) practitioners
routinely back out implied volatility from the basic Black-Scholes model. We now use the first
complete week in December, i.e. 452 quotes generated between December 4 and 8. A week is a
compromise calendar span. It allows us to collect more information on the parameters of the non
parametric extensions. More than the sample size itself, the variation in the stock level generates a
richer pattern of moneyness. For a pure cross-section, where the stock price does not move, models
such as 3 or 4 may be difficult to identify. The cost of a longer window is that over five days, time
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variation in volatility may cause the models to be more misspecified and the errors to be larger and
predictable. Panel B in Table 2 shows the cross-correlations of the expansion variables over the week.
Those involving the powers of moneyness are high. Over a day, they are even higher. Over a month,
they are a little bit lower.

We estimate 12 models, the basic B-S and models 0 to 4 with heteroskedastic errors, for
both log and level structures. From now on, we use diffuse priors for the parameters to make our
results more comparable with the literature which only uses option prices to estimate the models.
The models in figure 3 allow for three levels of heteroskedasticity. Figure 3 shows boxplots for the
posterior distributions of σ, the intercept, and the slope coefficients of the models. The whiskers of
the boxplots are the 5th and 95th percentiles. The body of the boxplot shows the median, first and
third quartiles.

The top plots of figure 3 show that different models imply different volatility parameters. For
the log models, median σ’s go up from 0.25 for the B-S to 0.27 for models 2 to 4. For the level models,
they go down from 0.24 to 0.22. This may be because level models concentrate on high prices, i.e., in
and at-the money options, while log models emphasize out-of-the money options. 21 Since σ changes
with the model, it has not reason to be an unbiased estimated of the return’s standard deviation. It
is a catch-all parameter which enables a functional form to fit the data better, even more so since
we use uninformative priors for σ.

σ has a very concentrated distribution for the B-S model. This is because the model is so
restrictive that there is no leeway for the parameter. As parameters are added, the distribution of
σ spreads. Bossaerts and Hillion (1994a) note the same phenomenon. This happens, to some extent
to all the parameters. The fact that the posterior densities of σ, the intercept and the B-S slope in
models 1 and above are cross-correlated (not shown) also contributes to this.

Consider now the four bottom plots. For models 0 to model 3, they give us an idea of the
average bias around the B-S component in the extended models for a given sample. For the logarithm
case, for example, the intercept becomes slightly negative while the coefficient multiplying the Black-
Scholes goes down from 1 to below 0.9. This effect is offset by the fact that σ simultaneously goes
up. The values of the parameters for the logarithm and level models are not comparable because of
the different functional forms.

Finally, consider the parameters of model 4. They are estimated with far less precision than
the other models. In fact, the distribution for model 4 parameters have large outliers which do not
appear on the plots. Figure 4 shows that model 4 with 14 parameters (3 levels of ση) is difficult to
estimate even with 452 quotes collected over a week where the stock price is allowed to vary. This
casts doubt on the adequacy of such a model in a true cross-sectional implementation. Additional
parameters are costly and there is a marked difference in the width of the uncertainty between models
3 and 4. A lot of the problems from model 4 come from the high cross-correlations shown in Panel
B of Table 2.

21As a heuristic check, we re-estimated the level models on only the out-of-the money options. The posterior means
for σ were indeed higher.
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4.4 The Parameters: ση

Let us turn to ση, the standard deviation of the model error. Do the more complex non-parametric
models have lower standard deviation of errors? 22 Is there a need for heteroskedastic errors? To
implement a 3 level heteroskedasticity, we need two cutoff values. Sample independent cut-off values
sound appealing. Say that moneyness below 95% and 105% are groups 1 and 2, the rest is group 3.
This poses a problem for small panels where one may not have enough data to identify each group.
We select the cutoff values so that the three groups are identified. Here, we had 141, 192, and 119
quotes in each group. The cutoffs were 4% out- and 18% in the money. This reflects the fact that
there are more quotes in- than out-of the money, see Table 2, Panel A.

Figure 4a shows the posterior distribution of ση for B-S, and models 2 and 3 in the log form.
The top left plots show ση for the homoskedastic models. The other three plots represent ση,(1,2,3) for
out-, at-, and in-the money quotes. The top left plot shows that on average models 2 and 3 reduce
model error from about 10.5% down to 7%. The other plots show the very strong heteroskedasticity.
The mean standard deviation of the model 2 error is 12% out-, 4.5% at-, and 2.5% in-the money.
The improvement due to models 2 and 3 take place out- and at-the money. Models 2 and 3 do
worse than B-S in-the money,. The trade off still favors them: They bring down the error standard
deviation, out-of-the money from 20% to 12%, at-the money from 5% to 4.5%, while increasing in-the
money from 1.7% to 2.5%. Finally, Model 3 does not improve over model 2. Model 4, not in the
picture actually did worse. This is another warning that adding terms to an expansion is not always
rewarding when the terms need to be estimated.

Figure 4b shows these diagnostics for the level models. Direct comparison between the values
in figures 4a and 4b is not easy. The first are relative and the second are dollar errors. We tackle
this issue later in section 4.7. The top left plot shows ση for the homoskedastic models. The
improvements due to models 2 and 3 are not as impressive. The medians are better, but the spread
of the distributions increases. The other three plots confirm that the pattern of heteroskedasticity is
opposite from the logarithm case. Models 2 and 3 improve the level specification for out-of (8 to 3
cents) and in-the (15 to 13 cents) money errors, but fail to do so for the at-the money errors (about
12 cents). The inspection of the posterior densities on Figure 4b reveals that many are strongly
skewed. Even with 452 quotes collected over a week, the use of asymptotic normality could lead to
flawed inference.

We now estimate the heteroskedastic models 2 and 3 for the entire December 1989, a sample
of 1923 quotes. Figure 4c shows the posterior distribution of ση,(1,2,3). For comparability with the
weekly data, we used the same cutoff points for the heteroskedasticity. First, we compare model
performance for weekly vs monthly samples. Take logarithm model 2. The median ση were 12%,
4.5%, and 2% for out-,in-,at-the money calls for the one week sample (figure 4a). The left plots of
Figure 4c show that they are 28%, 7.4%, and 2% for the 1 month sample. Again, model 3 does not
improve on model 2. This confirms that the use of a long sample decreases the fit not only for the
B-S model but also for the extended models. Also, the non parametric expansions of models 2 and
3 do not alleviate the problem for the log model. The right plots show however that the level errors
for the one month sample are not substantially higher than for the one week sample of figure 4b.
The level specification seems more robust in long samples than the log.

22Unlike for the R2 of a regression, this is not automatically the case.
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This shows that increasing the sample size via an increase in the calendar span may not
give a better chance to the non parametric expansions. There may be reasons for this. Model 3 for
example says that the smile is a function of the time to maturity. Assume a Hull-White stochastic
volatility world. Say that today’s volatility is well below its mean. Model 3 picks it with a higher
and flatter smile for longer maturities since volatility is expected to rise. If tomorrow’s volatility is
above its mean, the smile will be lower and flatter for longer maturities. Mix these two days into a
sample and the pattern may be lost. 23

4.5 Hedge Ratios

Contingent claim models are used for two purposes, pricing and hedging. The previous section
gave an analysis of pricing errors via the estimates of the model error’s standard deviation. We
investigate whether the models have different hedging implications. Consider for example, the in-
stantaneous hedge ratio ∆. Asymptotic estimation for the parameters would require the use of delta
methods to get an approximate value for the standard deviation of a hedge ratio. The estimator
of ∆ would then be assumed to be normally distributed. Instead, we obtain draws of the posterior
distribution of ∆ by computation of the derivatives of the models specified in equations (3) or (4).
Different models imply different functional forms for ∆.

Figure 5 shows the posterior distribution of ∆ for B-S and logarithm models 2 and 3. The
six plots show ∆ for out-, at-, and in-the money, short and long maturity options. Models 2 and 3
have similar hedging implications, different from the B-S. The difference is identified with precision,
mostly because the B-S ∆ is incredibly concentrated. This is because σ itself is concentrated for the
B-S. For example, 5 day, 4% out of the money calls have a median ∆ of 15.4% per models 2 and 3,
and only 13% per the Black-Scholes. These differences are of the order of 2% for the short maturity
calls and 1% for the long maturity, not economically relevant. The results for the level models, not
shown, are similar. Again the differences are not economically meaningful. The differences between
the log and level models are small too. For the level model, the differences are not reliably estimated
either. The distributions have large overlaps from model to model.

4.6 The Expansion Function βx

The extended models incorporate additional functions of moneyness and maturity with possibly
a fair number of additional parameters. We do not inspect each parameter. Instead we ask whether
they result in different pricing implications from B-S. For example, in level model 2, the B-S part
of the call price is incremented by β0 + β2z + β3z

2 + β4τ , a value which varies with τ and z. We
want to see how flat this function is. For any value of z and τ , the parameter draws yields a sample
of draws of the expansion function. It is not straightforward to interpret this as a bias function in
the traditional sense. Since the parameters σ and β1 are different for the various models, the B-S
part of the models will be different too, though not across money and maturity. This is because we
estimate these functions together with the B-S parameter values. 24

23In this situation, the best hope for an ad-hoc model to track the dynamics is via the introduction of an observable
related to volatility such as trading volume or a time series volatility forecast.

24For a strict bias analysis, one could set β1 = 1 and tighten the prior on σ.
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Figure 6 documents the posterior distribution of these functions for level models 2 and 3,
estimated from the 452 quotes of December 4 to 8, 1989. We have allowed for three levels of ση. The
vertical axis is in dollars. The horizontal axis shows the moneyness; stock divided by present value
of exercise price.

On the top left plot, the solid lines are the 5th, 50th and 95th quantiles of the expansions.
The dashed lines are their posterior mean, and +/- 1.64 standard deviation. The expansions are
computed for model 3 and τ = 100 days. For this slightly above average maturity the mean function
shows no moneyness effect. Notice that the distribution appears normal since the quantiles are close
to their normal values. For a 100 day option, the 90% confidence interval (hereafter CI) covers about
30 cents, 15% in the money. If properly specified this is quite precise since it is smaller than a typical
Bid-Ask spread of 50 cents. However the CI for out of money calls is 20 cents. This is larger than
typical spreads of below 18.75 cents. Recall that these intervals only reflect parameter uncertainty
and not the B-S part and the model error.

The top right plot shows the 10%, 50%, 90% quantiles for models 2 and 3 and a 5 day call.
Model 3 is a negative function of moneyness, while model 2 is a positive function. Allowing the
smile to vary with the maturity (model 3) drastically modifies the pricing relative to the money for
short term options. For low and high moneyness, the 90% CI of the two models do not overlap. For
this short maturities, the CI’s are quite narrow always below 20 cents, well below 10 cents at the
money. This is smaller than the relevant bid-ask spreads. Now consider the bottom right plot. It
shows these two models CI’s for a 180 day option. Model 2 shifted up owing to the presence of τ in
its expansion. Model 3’s prediction however is now positively related to maturity. The CI’s for both
model are now much larger. This is specially noticeable for model 3 which generate CI’s of 40 cents.
The bottom left plot shows the posterior mean of the expansion for model 3 for different maturities.
The reversal of the function from short to long maturities is striking. The 5 day, 15% out-of-the
money calls are worth 20 cents more than in-the money calls, relative to the B-S part of the model.
But 180 day 15% out-of-the money calls are 15 cents less than in-the money calls, relative to the B-S
part of the model.

These functions change over time. The patterns of Figure 6 are however typical for a sample of
this size. To conclude, model 3 has very different pricing implications than model 2 even though it has
the same hedging implications. This brings up an interesting distinction between likelihood and non
likelihood based methods. An econometrician accustomed to the GMM or Least Squares approach
might say: “This is because you minimized pricing error. The estimation found the parameters
optimizing the pricing of the various models, this will not highlight their potentially different hedging
behavior”. In fact a branch of the classical literature suggests that parameters should be estimated
by optimizing the hedging (pricing) behavior of the model if the model is to be used for hedging
(pricing). Given the non linearity in these functions, the point estimates will be different in small
sample, but not in large sample however. There is therefore an inconsistency between the choice of
objective function, i.e., only matters in small sample, and the theoretical validity of the estimation
method, i.e., only asymptotic. Bayesian analysis does not optimize any criterion to produce a point
estimate. It gives the posterior distribution reflecting the prior and likelihood information. The
decision theoretic part is kept separate unlike for some non likelihood based classical method. 25

The uncertainty around the expansion functions, due to parameter uncertainty only, varies
25We thank Peter Bossaerts for highlighting this point.
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a lot with the moneyness and maturity. It typically is the largest for long maturity calls. However,
it is most often well within the bid-ask spread. If this uncertainty is representative of the model
performance, we should expect model prices to fall inside the Bid-Ask spread most of the time. We
discuss this further.

4.7 In-Sample Specification Tests

Residual analysis helps test the stochastic assumptions of models. Bayesian residual analysis uses
the exact posterior distribution of the residual as dicussed in section 3.1. We use the fitted density
to analyze the performance of the logarithm heteroskedastic and homoskedastic models and the level
heteroskedastic models. We conducted in-sample tests for the the first two weeks of December 89.
We reestimated the models for the week of December, 11 to 15. This added 419 quotes to the 452 of
the week of the 4th to the 8th. The results are in table 3.

Insert Table 3 here

Panel A shows the biases and root mean squared errors (RMSE) of the models on the basis
of the posterior mean of the fit density of the quotes. We also look at the out-of and in-the money
sub-samples. We also show the bias and RMSE, using only the quotes where the posterior mean is
outside the spread. This brings an economic rationale on the model comparison. If two models yield
posterior means inside the bid ask spread, it is of little interest which one is closest to the mid point.

The left half of panel A shows that average biases are far smaller than the RMSE’s. Biases
are never more than a few cents for the level models. The biases for the log models are also in the
order of 1 or 2%. This is smaller than the typical percentage spread. Consider now the right half of
Panel A. The logarithm models 2 have smaller RMSE than the B-S. For quotes with posterior means
outside the spread, model 2 reduces the RMSE from 16% to 13%. There is no improvement beyond
model 2. The in-sample improvement brought by model 2 are very minor, nil outside the spread.
Recall that if the errors exhibit cross-sectional or time series correlation, the posterior mean of the
parameters may mis-represent their variability. We can check how close the posterior mean of ση is
to the RMSE’s in Panel A. For the B-S, the posterior mean is below the RMSE. For the extended
models, the posterior means are closer to the RMSE’s. Specific forms of autocorrelation in the errors
can be diagnosed by computing the posterior distribution of the autocorrelation function.

Do log models perform better than level models? The residuals of the log models are relative
pricing errors. They are not comparable to the residuals for the level models. For the log models,
we compute the posterior mean of the model value and hence, the dollar pricing errors. Due to the
exponentiation, the variance of the relative error may induce biases in the pricing error. The results
are in Panel B. Note the large pricing errors of model 4 which was not reliably estimated. This
confirms the high cost of an increase of the expansion, even if the sample spans a week. We do not
discuss model 4 any further. The log B-S models biases are larger than the level B-S biases, but they
are within common bid ask spread values. The log extended formulations have no relevant bias.

The RMSE’s reveal three facts. First, the incorporation of heteroskedasticity drastically
improves pricing precision, even though it did not have an effect on the fit of the model. What is only
a second moment effect in the log model, becomes incorporated in the mean in the exponentiation.
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Second, the extended models significantly improve upon the B-S. Third, the level models seem to
have marginally better RMSE’s than the logarithm models. This does not mean that the level
models should be preferred. Given a fixed amount to invest, relative error may be the more relevant
criterion.

These diagnostics are based upon the posterior mean of the residuals. Panel C, distribution
analysis, documents the specification of the predictive and fit density. The in-sample predictive
density is obtained as discussed in section 3.1. The first column shows the percentage of quotes
for which the mean of the predictive density falls outside the B-A spread. The extended models
greatly reduce this number, from 25 to 30% for the B-S, down to below 20% for models 2. We then
compute the percentage of quotes falling inside the interquartile range of the fit density (column
2) and the predictive density (column3). Column 2 shows that the fit covers grossly underestimate
the variability of the model. For example, the IQ range of the fit density for the B-S covers the
quotes only 2% of the time. Those of the extended models from 15 to 24%. Column 3 shows the
predictive covers. The Homoskedastic models all have very misleading predictive densities. Allowing
for heteroskedasticity greatly improves the predictive densities. The level models perform much
better than the log models on this account. As a whole the predictive densities appear to be the
appropriate benchmarks for a specification test. The fit densities which do not account for model
error, underestimate the variability of the models.

The final columns of the panel deal with the problem of the intrinsic bounds. Call model
should not generate negative call values, bound B1=0, or values below B2=S-PV(X). The level models
may have a problem with B1. The column entitled B1 shows the percentage of quotes for which the
predictive density implies a probability of negative call values larger than 0.1%. There are no more
than 3% of such quotes for model 2, and 0.3% for model 3. Now consider the bound B2. Actually,
30% of the asks violate this bound. 26 We computed the number of quotes for which the first quartile
of thee predictive density violated B2. For this, we only used the quotes which bid was above B2.
After allowing for heteroskedasticity, the logarithm and level models give similar results. The last
column shows that less than 1% of the predictions have this undesirable property.

We conducted similar test on different samples. We also estimated the models on the entire
month of December, 1923 quotes. The typical RMSE’s were 12 and 10% for log models B-S and 2,
14 and 13 % for level models B-S and 2. The log models had the same pricing RMSE’s as the level
models. First, this shows that when the sample has a longer calendar span, the fit may be degraded.
Second, the extended models do not improve the fit as much. We conjectured earlier in the paper
that this could happen if the patterns that they fit vary with time. A longer sample can mix the
patterns and reduce the efficacy of the expansion.

So we also investigated samples covering short calendar spans. We conducted a bi-daily
re-estimation from January 2 to March 31, 1990, a total of 8749 quotes. Given the little evidence
supporting improvement by the larger extended models, we compared only the B-S and model 2.
The RMSE’s were 0.31 (B-S) and 0.18 (Model 2). Outside the Bid-Ask spread, they were 0.49 and
0.31. 37% (B-S) and 26% (Model 2) of the posterior mean prices were outside the spread. These
errors are actually higher than for the week long samples. Also, model 2 exhibits significantly smaller
errors. Further, there were 627 observations for which model 2’s mean prediction was outside the

26The violations are small and for short term options. If the bound S-X is used, only 2 quotes violate the bound.
For short term options, even a small transaction cost on the Tbill would make an arbitrage impossible.
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B-A spread and the B-S prediction inside, but the reverse happened 1568 times. Both models had
prediction means simultaneously outside the B-A spread 1632 times, and in the BA spread 4922
times.

Figure 7 documents the time series variation of some of the parameters. The top left plot
shows the volatility σ. Parameters exhibit large variations. The model will be well specified out-of
sample if the posterior densities of the parameters are in line with the magnitude of these variations.
The two right plots of Figure 7 show the mean, first and third quartiles of σ and ση. If the IQ range
of these densities covered the next period posterior mean, this would indicate that the parameter’s
uncertainty is reasonably specified with respect to the uncertainty of it future values. The inspec-
tion of these plots indicates that the posterior distributions seem to underestimate the time series
variability of the parameters. The bottom left plot shows that the posterior means of ση for the two
models are not very different from one another, even though model 2 often produces smaller values.

4.8 Out-of-sample Specification Tests

The previous results, even the predictive densities, were in-sample. We now turn to the out-of-
sample analysis. For each of the two weeks, we used the parameter draws to compute diagnostics for
the quotes of the following week. This resulted in an out-sample of 419 + 624 = 1043 quotes. Table
4 summarizes the out-of-sample evidence in a format similar to table 3.

Insert Table 4 here

Again, the biases are small and we do not discuss them. Consider the RMSE’s. First, the
extended models do not produce better RMSE’s than the B-S. This is true for residuals and pricing
errors, levels and logarithms. Second, the log B-S out-of sample RMSE’s are about the same as
in-sample. The better in-sample RMSE’s of log models 2 and 3 has vanished. They are now at
par with the B-S. The level B-S RMSE’s have however deteriorated, mostly due to a deterioration
for out-of the money quotes. For the pricing errors in Panel B, the out-of sample RMSE of the log
models put them at par with the level models.

This contrast with the results of DFW who report a severe deterioration of their extended
models in out of sample tests, while having a nearly perfect fit in sample. First we did not allow a
perfect fit in sample. Second, the performance degradation was not as strong. The RMSE’s increased
from 7% to 10% (11 to 14 cents) for log-model 2, 11 to 15 cents for level model 2. DFW only sampled
quotes every Wednesday. So their out sample was seven days apart from their estimation sample.
We check if this is an issue by looking at the RMSE’s for the first day out of sample. The results,
right side of panel A, are that the 1 day ahead RMSE’s are worse than the RMSE’s based on 1 to 5
days ahead. This confirms that the deterioration in performance occurs right away.

Panel B in table 4 completes the out-of sample tests. The first column confirms a noticeable,
but not catastrophic degradation of performance. 20% of the in sample means of predictions were
outside the B-A spread. 30% of the out-of-sample predictions are outside the spread. The B-S
does as well as the other models. Next, the IQ range coverage ratios, broken down by moneyness,
show how crucial the heteroskedasticity is. The homoskedastic B-S and model 2 predictive IQR
covers the in-the money quotes 98% and 97% of the time, a gross overestimation. They cover the
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out-of the money quotes 35% and 25% of the time. These numbers are markedly improved by the
heteroskedasticity. Still, even heteroskedastic, the log models predictive densities do a poor job of
reflecting the variability of the quotes. The level models appear better specified. The last column
shows that the predictive densities do not violate bounds anymore out-of sample than in sample.

We also used the estimates from the whole month of December to make out-of sample forecasts
for the first week of January. As above, the extended models did not do better than the B-S. However
in that case the B-S also performed worse out-of sample than in sample.

5 Conclusion

We incorporate model error into the estimation of contingent claim models. We design a Bayesian
estimator which to produce the posterior distribution of deterministic functions of the parameters, or
the residual of an in-sample observation and assess its abnormality, and to determine the predictive
density of an out-of-sample estimation. We document the potential non-normality of some posterior
distributions. This shows the added value of the Bayesian approach.

We apply this method to quotes on stock calls options, and document the behavior of several
static non parametric expansions nesting the B-S. These types of non parametric models have received
attention in the recent literature. They could be justified as an approximation to an unknown model
or a complex model too costly to implement. We formulate the error in both relative (logarithm
) and dollar terms (level models), and allow it to be heteroskedastic. Our analysis shows that,
within sample the small expansions improve on the Black Scholes mispricing. They reduce root
mean squared errors of pricing and residuals. Whatever the calendar span, the larger expansions are
unable to improve on the B-S even in sample. In-sample, the extended models have similar hedging
implications but different pricing implications than does the B-S model. The log models do not
exhibit better performance than the level models. One must allow for heteroskedastic model error
specially for the log models.

Specification tests on the basis of the fit and predictive densities of the call price, show that
the failure to include model error in prediction intervals leads to an underestimation of the variability
of the quotes. For example, the interquartile range of a predictive distribution which should cover
the true value 50% of the time, would be wrongly believed to cover the true value 2% of the time.

Out-of sample, the non parametric expansions most always fail to improve on the B-S. Spec-
ification tests show that even the heteroskedastic models do not model the variability of out-of and
in-the money quotes properly. These results cast a serious doubt on the usefulness of static non
parametric expansions. Their better fit does not survive out of sample. However, out of sample
performances are not drastically worse than in sample performances. These results are in constrast
with those of recent studies which exhibit quasi perfect fit in sample and disastrous fit out-of sample.
The difference lies in the estimation technique which allows us to make more realistic, though not
satisfactory, out-of sample inference on the basis of our in-sample estimation

This paper is a first pass at the much neglected likelihood based estimation of contingent
claim models. The MCMC estimators which we implement are flexible. They can be extended to
estimate more sophisticated error structures or functional forms. We discuss some of these extensions
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below.

In the appendix we show how to extend the model to allow for a more general error structure
consistent with the presence of intermittent mispricing. The intuition underlying this formulation is
that sometimes, an additional error εi, possibly a market error, is added to ηi. This extension leads
to outlier diagnostics easy to interpret. The probability that a given observation has the extra error
can be estimated. The estimation and prediction procedures may be more robust as they allow for
these mispricing errors, a form of fat-tailness. The cost of this extension, the added burden on the
estimation, has to be weighted against the likelihood that such errors are indeed present.

In some cases one must relax the assumption that the underlying or the risk free rate are
observed exactly. For example, the martingale restriction built in the B-S model can be relaxed with
either the stock price or the risk free rate being free parameters, e.g., Longstaff (1993) and Giannetti
and Jacquier (1998). Renault (1995) argues that non synchroneous measurement may have an impact
on the pricing formula. The stock price in the B-S could be modelled as S = S∗ + µ + ν, where
S∗ is the measurement and νi is random with appropriate priors possibly reflecting bid-ask spreads.
S becomes an unobserved state variable. The hierarchical structure of MCMC estimators allow
extensions to unobservable state variables. A worthwhile research direction can be to investigate
whether errors inside the B-S (or other) box obviate the need for errors outside.

A class of models assumes the homogeneity of the option price, see Garcia and Renault (1997).
The input variable is the ratio of the stock over the exercise price. Such non parametric models could
be implemented. The extensions could take the place of the standard normal cumulants d1 and d2.
Alternatively σ could be expanded inside the B-S function, e.g., σ = σ0 + σ1z + σ2z

2.., as in DFW.
Placing errors and extensions inside the model allows to randomize it without ever violating the
no-arbitrage restrictions.

Model mispecification often results in time varying-parameters. One can argue that static non
parametric extensions can not perform well out-of sample because they do not capture the dynamics
of this time variation. So a worthwhile direction is to allow the non parametric forms to capture
the missing dynamics via a well chosen prox, e.g., stochastic volatility. Within this framework, the
model presented here begs to be extended to a dynamic estimation setup. Even better will be an
extension of the estimator to parametric models that nest the B-S.
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Table 1: List of Models

Model # Model Feature Number of Parametersa

B-S none 2: σ, ση

0 Add intercept 3: σ, ση, β0

1 Add slope coefficient 4: σ, ση, β0, β1

2 Add τ, z, z2 7
3 Add τz, τz2 9
4 Add τ2, z3, z4 12

aThis is for models with homoskedastic pricing errors. Models with
heteroskedastic errors, see below, have more than one ση parameter.
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Table 2: TOYS’R US Quotes Data, Dec. 89 to March 901

Panel A: Summary Statistics
BA$ BA% Moneyness% Maturity

Median 0.375 8 9 46
Q1,Q3 0.25, 0.5 6, 13 1.3,21 22, 94

10%, 90% 0.125, 0.5 4, 22 -6, 31 8, 164

Panel B: Cross-correlation of input variables over Dec 4-8, 1989
z z2 τ zτ z2τ τ2 z3

z2 0.89
τ -0.19 -0.12

zτ -0.14 -0.20 0.54
z2τ -0.25 -0.24 0.51 0.88
τ2 -0.10 -0.10 0.59 0.07 0.05
z3 0.87 0.98 -0.12 -0.17 -0.23 -0.11
z4 0.82 0.97 -0.10 -0.15 -0.19 -0.10 0.994

aBA is the Bid-Ask Spread. The moneyness is in percentage of the present value of the
exercise price. The Maturity is in days.
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Table 3: In-Sample Performance Analysis: Dec 4 to Dec 15, 1989a

Panel A: Residual Analysis
BIAS RMSE

Model all out BA all oom im out BA
Log-Hom
B-S -0.018 -0.050 0.10 0.18 0.02 0.15
2 0.000 0.001 0.07 0.12 0.02 0.12
3 -0.000 0.001 0.066 0.11 0.02 0.12
4 0.002 0.006 0.065 0.11 0.02 0.07
Log-Het
B-S -0.012 -0.028 0.10 0.18 0.017 0.16
2 -0.005 -0.017 0.07 0.12 0.015 0.13
3 -0.004 -0.013 0.07 0.12 0.016 0.12
4 0.000 0.002 0.07 0.11 0.020 0.10
Lev-Het
B-S -0.013 0.005 0.12 0.092 0.144 0.19
2 -0.002 0.012 0.11 0.087 0.126 0.19
3 0.000 0.017 0.11 0.081 0.122 0.19
4 0.005 0.014 0.11 0.078 0.134 0.21

Panel B: Pricing Analysis
BIAS RMSE

Model all oom im out BA all oom im out BA
Log-Hom
B-S -0.07 -0.11 -0.06 -0.16 0.16 0.17 0.17 0.24
2 0.001 -0.004 -0.01 0.003 0.12 0.09 0.14 0.20
3 0. -0.01 -0.025 0.006 0.12 0.084 0.15 0.20
4* -8. -0.01 -26 -29 49 0.092 85 60
Log-Het
B-S -0.07 -0.10 -0.06 -0.13 0.144 0.16 0.145 0.22
2 -0.01 -0.03 -0.007 -0.009 0.11 0.098 0.128 0.19
3 -0.01 -0.03 -0.016 0.001 0.11 0.09 0.13 0.18
4 -0.12 -0.02 -0.36 -0.34 0.39 0.085 0.68 0.49
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Table 3 - continued
Panel C: Distribution Analysis

% Pred. Fit Pred
Model out BA Cover Coverb B1c A<B2c (Q1<B2|B>B2)
Log-Hom
B-S 32 1 71 na - 6
2 19 24 74 na - 6
3 19 28 75 na - 6
4 63 41 85 na - 7
Log-Het
B-S 29 2 58 na - 0.4
2 18 21 67 na - 1.1
3 19 24 68 na - 2
4 25 36 78 na - 10
Lev-Het
B-S 24 2 50 4 30 0.4
2 18 13 52 3 30 0.5
3 18 15 51 0.3 30 0.6
4 15 31 64 0.7 30 3

aThe models have been estimated over the week of Dec. 4-8, (452 quotes) and re-estimated for the Dec.
11-15 week (419 quotes). That is 871 quotes used to compute the above statistics. The symbols used are,
all: all quotes used, oom: out of the money quotes, im: in the money quotes, out BA: quotes where the
mean prediction is outside the Bid-Ask spread, B: Bid, A: Ask, B1,B2: intrinsic lower bounds on call price.

bPercentage of the observations for which the interquartile range of fit or prediction covers the true value.
cB1:Percentage of observations such that Prob(Pred<0) >0.001. B2 is the other intrinsic bound, S-

PV(X). The next column show the number of ask quotes violating the bound. Only 2 quotes violated the
bound S-X. The last column is the percentage of quotes for which the first quartile of the predictive density
violated the bound, counted over only the quotes which Bid was above the bound.
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Table 4: Out-of-Sample Performance Analysis, Dec 11 to Dec 23, 89a

Panel A: Residual and Pricing Analysis
Residual RMSE Pricing RMSE

Up to 5 days ahead 1st day ahead
Model all oom im out BA all oom im all oom im out BA
Log Homoskedastic:
B-S 0.10 0.18 0.02 0.15 0.15 0.11 0.16 0.22
2 0.11 0.23 0.02 0.18 0.16 0.14 0.17 0.23
3 0.12 0.24 0.02 0.18 0.16 0.13 0.17 0.23
Log Heteroskedastic:
B-S 0.1 0.20 0.02 0.16 0.12 0.23 0.02 0.15 0.12 0.15 0.22
2 0.1 0.21 0.02 0.17 0.10 0.19 0.02 0.14 0.13 0.15 0.21
3 0.11 0.22 0.02 0.18 0.10 0.19 0.02 0.14 0.12 0.15 0.22
Level Heteroskedastic:
B-S 0.15 0.14 0.14 0.23
2 0.15 0.13 0.14 0.22
3 0.15 0.14 0.14 0.23

Panel B: Distribution Analysis
% Pred. IQR coverb

Model out BA Pred: all, im, oom B1c A<B2c (Q1<B2 | B>B2)
Log Homoskedastic:
B-S 31 69 98 35 na 0.9 5
2 36 59 97 24 na 0.9 3
3 34 58 97 24 na 0.9 2
Log Heteroskedastic:
B-S 31 54 64 39 na 0.9 0.7
2 31 52 75 31 na 0.9 0.6
3 29 52 78 33 na 0.9 0.6
Level Heteroskedastic:
B-S 29 41 46 39 2.2 0.9 0.4
2 30 39 51 35 1.2 0.9 0.2
3 31 39 53 35 0.6 0.9 0.4

aThe statistics are computed over the week after the estimation week. All: all quotes used, oom: out
of the money quotes, im: in the money quotes, out BA: quotes where the mean prediction is outside the
Bid-Ask spread. B: Bid, A: Ask

bPercentage of the observations for which the predictive interquartile range covers the market price.
cB1:Percentage of observations with Prob(Pred<0) >0.001. The next columns show the percentage of

market prices, ask prices, and first quartile of predictive density violating bound B2, S-PV(X).

27



DRAW

S
ig

m
a_

E
ta

_2

0 200 400 600 800 1000

0.
05

0.
50

5.
00

0.
05

0.
15

0.
25

••••••••••••
••••••
•••••
••••••••
••
••
•
••

••••••••
•••••••••
••
••••
•••••
•

•••••••••••
••••••••
•••••••
•••••
•••••
•••
•
•••

DRAWS 
 51-1700

DRAWS 
 1701-3350

DRAWS 
 3351:5000

S
ig

m
a_

E
ta

_2

LAG

A
C

F
 o

f S
ig

m
a_

E
ta

_2

5 10 15 20 25 30

0.
0

0.
05

0.
15

Figure 1: MCMC estimation diagnostics, Dec 1, 89: 140 quotes, 
Model 3 with 2 levels of Sigma_Eta: 10 Parameters



•
•

••••
•••

••••••• •
•

•
••

•••
••
••

•
••
••••

••
••••••
••
•

••
• ••

•••
• •••••

•••
•••••••••
•••

•
•• ••••••

••••
•••••••••••

••••
•••••••

•
•••

•••
••••

•••
•

•••
••••••••••••

••••••
•••••

•••
•••••
•••••

•••
••

••••
•

••••••••
••••••••••• •••• ••

••
•••••• ••
••••••

•••••••
••

•••••••••••• •
••••
••••

•••••
•

•
•••••
•••••
•

••
•

•
••••
••

••••
•••

•
••••••

••
•••

•
••••

•
••

••••• •••
••
•••
••••

•• •••
••••• ••••

•••••
•

••
•

••••••••••
••

• ••
•••

• •• ••
•

• ••••
•

••
•••

••••••
•••••

•
• •••••
•

• • ••••
•••••

• •
•

•••••
••

•
••••
•

••
••

•••
•••

•••
•••••

•

••
•••••••••
•

•
•

•
••••••••••

••
• ••••••••••••• ••

••••• •••
••••••

•
••• •••

••• •
••••

•••••
• •
••• • •

•
••••
••

• •••••

•
•

••••••
•••
•

•
•

••
••

•••••••
••••••
•

•••••
•• ••

• ••
•

•••••
• •••

•••
•

•••
•••• ••••••••
••

•
••

•
••

••
• ••• •••

•••
•

•
••
•••••••••
•••

••
•••••

••
••

•
••

••••••
•• •

••••••••••
•

•••
•••
•

••••
•

•
•

•
•

••
•

••
••••••

•
••• •

••
••

•
•••••

•••••
••

•
•••••
•••

••••••
••

••
•

••
•

•••
••••••••••
••••••••••••
••••

•• •••••••• •
••••••••

•
•••••
••

•••
•••
•••
••••••••
•

• •••••
•••••••••

•••
•

•••• •
• ••

•••
••••

•
••

•••••
•••
•••

••
•• ••

••••
•••

•
••••

•
••••••

••
•••• • •

••••
•

•
•••
•

••••
•••

•
••••••••••

•
•

•••
••••
•••
• •••

••••
• ••••••••••• ••••

••• •• ••
••••
•

•
••••
•••
••••••
•••••
•••

•
•

••
•••
•••
•••
•• ••

••••
•

••
•

••
••

•••
••

•
••••

• •••
•

•
••

•
••
••

•
•
•

•••
•

••
•

•••••
•

•
•••••

••
•

••• ••••
•

••
••

•
•

•••••••
••••
••

•
•••

••
•••
••

••
••
•••••
•••
•

••
•••
•

•

• • •
•

••
••••••

•
•

••
••
•

••
•

••••••
•••••

•
•••••••

•••••••
•

••• •
• •

•
• ••••• •••
•••••

•••
••

•••
•

•••••••••••
••

••
••

••
•••

•••••••••••
•••

••••
•••••••••

••
••

•••••
•••••

•••••
•••••••
•••••••
••••
•
•

••
•

•
•• •••• •••

••• •••
•••••••••••••••

••••••••••
••••••••••• ••••••••••••

••
•

•••• •••• •••••
•

•••••
••••
••
••

••••
••••••••••
••

•••
•••••••
•••
•

••
•

••••
•

•
••••
••

•
•••

•••••••

•• •••••
•••
•

••••••• •
••••
••••
••

••••
• •••

•
•

•• ••• ••••••
•••••••
•••••••

•
••

•
••••

•••••••••
•

•
• ••• ••

•
•••••
•

•••
•••
••••••••••••
••••••
• ••

••
•

• •
••••

••
•

••
••

•
•

••••
•••••• ••

••••
••••••
•

••••
•

•
•••

•••
••••

•
•• ••

• •
••••••••

••
••••
•••••• •
•

••
•• ••

••
••

•
•••

• ••••• •••• •••••
•

••••
•••

•
• •••

•
••••• •

••
••

•••
•••

••
•

••••••••
•

••
••••

••
•••••
•••

••
••

•••••
•••••

••••••
•

•••
•

••
•••

•
•

•••••••
••••••
•• •••••

•
••

• •
•••

•
•

••••••
••

••••
•

•••
•••••

•• •
•

••••••••
•••

• •••• ••
••••

•
•••••••••
••

•••••
•••

•
••••

••
•••••• ••
••

•••
••••••••

••••• •
••

• ••••• ••••• •••

••••
••••

•••••••
• ••••

• •••
••

••••••••
•••
••••••

•
• ••

••
••
••

•
••

•
•• ••••
•••••

•
•••••

•••••
••••••
• ••• ••••

••
•

••••
••
••••••

• •
•

••• •••• •••••
•

•••
•

•
•

••• •
•

••••
•••

••
•

•••••••••••••••••
•• ••

•••
•

•••••••••••••
•••

•
••• •

••••••
••

•••
•

•••
••

•
•

•••
•••••
••

•
••••• •
•••
•

•
••

•••••
• •

•••
••••
••
•

•
••••

•••
•••
••
••••
••

•••
••

•••••
•••••••
••••

•••
•••

•••• •••
••••
••

•
••••••

•
•

••

•
•••

•••••
••••
•

••••••
•••••• •

• •••••• ••••
••••••••

••••
•

•
•••••••
••••••••

•••••••• •
••••

•••••••
•

••
••

••
•
••••••••••

••
••••••••
•••••
••

••• • ••
•••

••
•••••

•
•••
••••••
••
••

•••••
•

•
•••••••

••••
••••

• ••••
••

•••••
••

•
••••
•

•••• •
•••••••

•
••

• •
•••

••••
••••• •

•••
•••••

•
••

•••• •••••••••
•••
• •
•

•••
• •

•••
••

••
• •

•
••
•
•

••
••••

•
•••

•••••
• •••••

•••••• •••
••••

•••••••
••

•
••••

••
•••• ••

•
••

••••
• •
••••

••
••

••
•••

•••
•

••
•••

• •
••••••••
• • •••

••••••
•••••••

••••••••••
•

•
••••

• ••
•

••••••
•

•••••
•••

••••
••• • ••

•
••••••••••
•••

•
•

•
•••••• •••

•
•••••• ••••

•••••
•••

•
••••

••••••••
•••••• ••••

•• •
•••••••

•
•

•
•••••••••• •

••••
•••

•••• ••••••••••
•

••
••

•••
•••••

•
••

•••
••• •••• ••

••••••
•••
•• •

•
•••
••••••

••
••

•
••••••
•••

••
••

••••••
•••••
••••
•
••••

•
••••••
•••

•
••••

•••••••
•••••
•

••••
••••

••••
•••
•

•
•••

•
••••••

•••••
•

• ••••••• •
•••

•••
•••••

••••••• • •••• ••
•••
• ••

•
•

••
•••
• ••••••••
•••

•
••
•• ••
••

•
•••
•••••
•
•••
•

••
•••••

••
•••
•••
•
••••

•
•

••••
•

••
•••

••
••••
••••

•
•

••

•
••

••••••••••
•

•
•

•
•••••

•
••••••••

••••••••••
••

••

••••
•• ••

•••••
•••••

••
•
••••

••••
•

•
•
•••••••

••
••••

••••••••
•

••• • •••
•••

••••
•

•
•••

••••••••
•

•
••

••
•••••
••
••••
•

•••••••
••
•••

•••
••

•
•

••
••

••••••••
•••

••••••••• •
••••••

••• •••••
•••••
•

•••
••

••••
•

•••••••• •
• •

••••
••
••

••••••
••

• ••••••
••••••

•••••
•••

•
•

•
•••••

••
••• •

••• •
•• •

••
•

••••
••••

••
••••••• •••••••
•

•
•••

•
••

•
••

••
•••

•••••
•••••

•••
•

•
• ••

•••••
••

••• ••••
•

••
••••••

•••
••••
•••

•••
•••

••
•

•••••
••

•
••••••
•

••••••
•••••
•

•
•••

•
•••

• •
••••••••••

••••
••

•
••

•••••
••••• •• ••

•
•••

• •••
•

••
••••

•
••

•••••••
•

•
•••

••
••

••
•

• ••
••••• •• •••••••

••••• •••••
•

••
•••••••••

••
•

• • ••••
•••

•• ••••
••••••••

••••
•

•
•

•
•••••

•••••••
•

•••••
•••••

•••
• ••

•
•••••
•

••
•••

•••••
•••••
•••

•
••••••••• • ••

•
••••••

••
••

• •
•

•••
••••••••

•••
•

•• •• •••
••••••
••

••••
••

••
•

•
••

•
••

•••••
•••

••
•••

•
•

•
•

•••••••••
•••

••••••
•

•
•

•
••••••

•
••••••••••

••••••••••• •
••

•
• • ••• •••

•••
•••••
••••
••

••
••• ••• •

••• ••••••
•••••••••••••

•••
••••
••••

••
•

• • • •
•• • • • ••

•
•

••
•••••••

••••
•••••••
•••••

••
••••

••
••••

•••
•••••

• ••
••••

••••••
•

••••
•••

••
••••

••
•••
•

••
••

•••
•••
•••

••••••
•••••••
•••••••
•••••••

• • • ••••••• •••
••• ••

•••
••••

••
••••

••••••
••••••

••••••••
•

•
• ••••••••••

••
••••

••• •
•

•••
••

•• •••••••• •
•

••
••
•

••
••

•••••••
•••••••
••• •

•••
••••••••
•••••

•
•••

• •

• ••
••

•••
•• •

••••
• • ••
•••••
•••

••
•

••
••

•••••••
•• ••

•••• •
•••

•• •••••
•• • •••••

••
•••••

•
•••

•
•••

•••••
••

•••
•••

•
••

••••••
••••

•
•••

••••••••
•••
•••••••
••

•••••
•

••• • ••••••
•

•••
••

••
••
••••••••
••

•••
••••••••••••••••

• •
•••••••
•

••
••••

• •••
•

• •
•••
••••

•• • •
••

•
••••

••••
••

•••••••••
•••

•••••••
••••

•
•••••••
•

•
• •••••

•
•• ••

••
•

•
••••••••

• •••
• ••

••
•••••
• ••••

••
•

•
••

••
••
••••

•
•

••
••••••••••

•
••••

••
•

•
•
••••

••
•••• •

•
••••
•••

• ••
••••

•
•

••• •
••••••
•••• • ••

•
••

•••• •
••••••
•

••••••
••

••
••

•••••••
•

•
••••••

••
••

••

••

•••••
••••••••

•••••
••

••
•

•
•

•
•••

•
•••

••
•

••
••
•••••••••••
••

•••
••••

••••••
•••••

•
•

•
•••

••
••
••••

•••
•

•
•••

••
••

•••••
•

••
• ••

•• •••••••
•••

•••
•

•
•••

•••
•

••
•••••••••

••••••
••

•
•••••••••
•

••
•

•
•••

•
••

••
• • ••••
••

••••••
••

Quantiles of Standard Normal

S
ig

m
a 

st
an

da
rd

iz
ed

-4 -2 0 2 4

-2
0

2
4

0.0 0.05 0.15 0.25

0
2

4
6

8
10

12
14

Sigma_Eta_2

Figure 2: Non normal posterior density, Dec 1, 89: 140 quotes, 
Model 3 with 2 levels of Sigma_Eta: 10 Parameters
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Figure 4c: Model Error and Heteroskedasticity, 1923 quotes Dec. 1989
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