
Empirical evidence on the dependence of credit default
swaps and equity prices

Debbie Dupuis, Professor of Management Sciences, HEC Montreal
Eric Jacquier, Associate Professor of Finance, HEC Montreal

Nicolas Papageorgiou, Associate Professor of Finance, HEC Montreal
Bruno Rémillard, Professor of Management Sciences, HEC Montreal ∗

October 1, 2008

∗Corresponding author: Nicolas Papageorgiou, Finance Department, HEC Montréal, 3000 Cote Sainte-
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Empirical evidence on the dependence of credit default swaps and
equity prices

Abstract

We investigate the common practice of estimating the dependence structure between
credit default swap prices on multi-name credit instruments from the dependence struc-
ture of the equity returns of the underlying firms. We find convincing evidence that
the practice is inappropriate for high-yield instruments and that it may even be flawed
for instruments containing only firms within a sector. To do this, we model individual
credit ratings by univariate continuous time Markov chains, and their joint dynamics
by copulas. The use of copulas allows us to incorporate our knowledge of the modeling
of univariate processes, into a multivariate framework. However, our test and results
are robust to the choice of copula.

Key Words: Copula, Markov chain, credit risk, credit rating migration, Credit Default
Swaps, Equity prices, Default time.
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1 Introduction

There are two main approaches in credit default modeling: the structural approach, first
studied by Merton (1974), and the reduced-form approach, introduced by Jarrow and Turn-
bull (1995). In the first approach, default is triggered by the market value of the borrower’s
assets falling below its liabilities. In the second, default is modeled directly as an unexpected
arrival.

The extension to the multivariate case, namely the calibration of the parameters
governing joint defaults, poses many challenges. Regardless of the approach, one must
model the joint evolution of either the credit ratings or the asset values of the firms. These
challenges are unavoidable when one seeks to price multi-name credit instruments, e.g. multi-
name credit default swaps (CDS). Modeling of the joint dependence is generally done through
the use of copulas.1

Copulas have very interesting properties. Most noteworthy is the fact that the copula
linking the marginals of the default times will be the same as the one linking the marginals of
any other quantity proportional to the default times. Since the value of the assets of a firm
are only observable at discrete and infrequent intervals, the challenge therefore lies in finding
a suitable proxy proportional to the time to default. A constant maturity CDS written on
the firm’s assets clearly satisfies this condition and would appear to be the obvious choice
of proxy to estimate the copulas and their parameters. Although the market for single
name CDS contracts has expanded dramatically over the last decade, liquidity remains a
concern for many issuers. It is therefore common practice (Crouhy et al. (2000)) to use the
joint dependence of equity returns as a proxy for the joint dependence of the asset returns.
While this practice has been questioned by some, we have found no work presenting strong
evidence that it is flawed. In fact, the results in Mashal et al. (2003) endorse the practice.
The inability to produce strong evidence against the practice may be due to the lack of
suitable methodology to compare dependence structures. In this paper, we use the recent
results in Rémillard and Scaillet (2008) to test and reject the equality of the two dependence
structures. One distinctive feature of our test is that, unlike that of Mashal et al. (2003), it is
not conditioned on a specific dependence structure, i.e. copula. This is especially important
given the recent evidence that the choice of copula can greatly affect pricing, see e.g., Berrada
et al. (2006).

In comparing copulas of returns on CDS for several firms to those of the underlying
stock returns, one faces a practical difficulty. For many firms, especially the least volatile,
there are many periods with no changes in CDS prices. While this reflects the illiquidity of
the market, the presence of zero-returns violates the distributional assumption of continuous
returns. These zero-returns lead to upward biases in the estimates of dependencies and
we remove them.2 We create two very different portfolios of volatile securities in order to

1One can also make the default probabilities dependent on background variables as in Duffie and Gârleanu
(2001) or use the infectious correlation approach proposed by Jarrow and Yu (2001).

2Note that this leads to the elimination of the least volatile as well as the most illiquid securities. One
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best exploit the remaining data. First, we focus on the automobile sector where firms exhibit
homogeneous risk exposures albeit with volatile assets. Our first portfolio includes the largest
two US car manufacturers and three of the largest auto part producers. The different leverage
of assets and equity has often been an argument against the use of (dependence structure of)
equity returns as a proxy for (the dependence structure of ) asset returns. While many may
be willing to use equity returns as a proxy for high-grade issuers, they may object when it
comes to low-grade borrowers. So, our second portfolio consists of five high-yield issuers from
different sectors, i.e., with very heterogeneous credit exposure. Although the fundamental
risks differ across these five companies, all are non-investment grade issuers whose equity
and CDS returns exhibited high volatility in 2005.

It is important to note that many practitioners also use implied correlations from
CDS indices such as the CDX.IG index as an input for pricing models. Although useful for
pricing tranches on the actual indices, these implied correlations are not applicable to the
pricing of credit derivatives on a specific basket of names (especially if the constituents of the
basket and the index are not alike). The potential error from making such an assumption
can be substantial but the topic is not pursued here.

The rest of the paper is as follows. In Section 2, we discuss dependence within a
structural model. We outline the test for the equality of dependence structures in Section
3. In Section 4 we present the data in details, and give the results of the analysis. Section 5
offers concluding remarks.

2 Firm value, equity returns and default dependence

In this section, we shed some light on some model-induced links between the quantities
studied in this paper.

In the Merton (1974) model, the value of the firm’s assets is modeled as geometric
Brownian motion and is an increasing function of the equity price. The Merton approach
assumes that default occurs before time horizon T if the value of the firm’s assets crosses
a specified barrier, an event which can only be observed at time T . The value of a CDS,
which is a contingent claim that pays out when/if the default event occurs, must therefore
be a decreasing function of the value of the firm’s assets.

Consider the case of multiple firms. As copulas are invariant under monotone increas-
ing transformations, it is clear that the copula associated with the values of the firms’ assets
is the same as the copula associated with equity prices. Similarly, it follows that the copula
associated with the (negative) CDS returns is the same as the copula associated with the
values of the firms’ assets. The copula associated with the equity prices (a normal copula in
the case of the Merton model) is thus the same as the copula associated with the (negative)
CDS returns by transitivity. Note that the above reasoning can be applied to any structural

can argue that the least volatile assets are probably of very low credit risk, and therefore not a priority in
the evaluation of default risk.
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model.

Further note that in the Merton framework, the timing of the default is not modeled,
just the joint probability of default within a given horizon. This represents the main draw-
back of the approach as a model for the time to default is necessary to price CDO that have,
for example, Waterfall provisions.

The test that we propose can be seen as a test of an extended Merton’s model (ac-
counting for the timing of default), where we assume that default is triggered when the value
of the firm, not necessarily modeled by a geometric Brownian motion, is below some barrier,
and where it is also assumed that the value of the firm is an increasing function of its equity.
However, even in the simple setting of joint firm values modelled by correlated geometric
Brownian motions, the dependence structure of the default times is not the same as the
dependence structure between the values of the firms. This can be seen in the simple case
of two firms, using the results of Patras (2006).

3 Methodology

This section provides the main result used in the empirical work. Namely, we show how to
compute an asymptotic p-value for the test of equality of two copulas.

Denote St = (S1t, . . . , Sdt), t = 1, . . . , n the equity prices of d firms over n periods,
and Pt = (P1t, . . . , Pdt), t = 1, . . . ,m represent the value of a credit derivatives, here a CDS
of those firms, over m similar periods.3 The goal is to compare the copula of the returns
R

(S)
t = log(St/St−1) of the equity prices to the copula of the returns R

(P )
t = −log(Pt/Pt−1)

of the credit derivatives.

It is now well-known that the structure of dependence of d risk factors X1, . . . , Xd

does not depend on the marginal distribution functions F1, . . . , Fd. It only depends on the
so-called copula C defined by the implicit relation between the joint distribution and its
marginals. Namely,

C(F1(x1), . . . , Fd(xd)) = P (X1 ≤ x1, . . . , Xd ≤ xd),

as first defined by Sklar (1959).

Choosing marginals is not an easy task, but choosing a copula is even more daunt-
ing. Until lately very little quantitative assistance was available and only ad hoc guidelines
existed. As shown in Berrada et al. (2006), different copulas can result in dramatically
different dependence structures. Quite recently, some statistical procedures were proposed
to address the problem of goodness-of-fit to copula families, e.g., Fermanian (2005), Genest
et al. (2006) and Genest and Rémillard (2005), but these tests would be a roundabout way

3We do not assume that n = m. We only need the maturity of the credit instrument to be constant over
time. This insures a reasonably random sample of returns and prevents maturity effects in the time series
of returns.
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to answer the questions raised here. This is because we do not seek to model the specific
dependence structure, i.e. copula, of the CDSs or equity returns, but rather to compare
them in a manner robust to the choice of copula. We now describe a procedure to do this
put forward in Rémillard and Scaillet (2008).

Let C and D be two copula functions. The following procedure tests the null hypoth-
esis H0 : C = D. Suppose that X1, . . . , Xn1 is a random sample from a distribution with
continuous margins F1, . . ., Fd and copula C, and Y1, . . . , Yn2 is a random sample from a
distribution with continuous margins G1, . . ., Gd and copula D.

To test the hypotheses

H0 : C = D vs H1 : C 6= D,

Rémillard and Scaillet (2008) use the Cramér-von Mises statistic

Sn1,n2 =

∫

[0,1]d
E2

n1,n2
(u)du,

where

En1,n2 = (Cn1 −Dn2)/

√
1

n1

+
1

n2

,

and the empirical copulas Cn1 , Dn2 are defined, for any u = (u1, . . . , ud) ∈ [0, 1]d by

Cn1(u) =
1

n1

n1∑
i=1

I(Ui,n1 ≤ u) =
1

n1

n1∑
i=1

d∏

l=1

I(Uil,n1 ≤ ul),

and

Dn2(u) =
1

n2

n2∑
i=1

I(Vi,n2 ≤ u) =
1

n2

n2∑
i=1

d∏

l=1

I(Vil,n2 ≤ ul),

with
Uil,n1 = rank(Xil)/(n1 + 1), 1 ≤ i ≤ n1,
Vil,n2 = rank(Yil)/(n2 + 1), 1 ≤ i ≤ n2,

and where rank(Xil) is defined to be the rank of Xil with respect to X1l, . . . , Xn1,l, for any
l ∈ {1, . . . , d}. The value of the statistic is

Sn1,n2 =

(
1

n1

+
1

n2

)−1

×
{

1

n2
1

n1∑
i=1

n1∑
j=1

d∏
s=1

(1− Uis,n1 ∨ Ujs,n1)

− 2

n1n2

n1∑
i=1

n2∑
j=1

d∏
s=1

(1− Uis,n1 ∨ Vjs,n2)

+
1

n2
2

n2∑
i=1

n2∑
j=1

d∏
s=1

(1− Vis,n2 ∨ Vjs,n2)

}
,
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where a ∨ b stands for max(a, b).

Because of the intricate limiting distribution of the stochastic process En1,n2 , and
also because C and D are unknown, the computation of p-values in Rémillard and Scaillet
(2008) is based on the multiplier technique. To describe how it works, suppose that for any

k ∈ {1, . . . , N}, ξ
(k)
1 , . . . , ξ

(k)
n1 , ζ

(k)
1 , . . . , ζ

(k)
n2 are independent standard Gaussian variables.

Set

α̂(k)
n1

(u) =
1√
n1

n1∑
i=1

(
ξ

(k)
i − ξ̄(k)

)
I(Ui,n1 ≤ u),

γ̂(k)
n2

(u) =
1√
n2

n2∑
i=1

(
ζ

(k)
i − ζ̄(k)

)
I(Vi,n2 ≤ u),

and for any l ∈ {1, . . . , d}, define

β̂
(k)
l,n1

(ul) =
1√
n1

n1∑
i=1

(
ξ

(k)
i − ξ̄(k)

)
I(Uil,n1 ≤ uk),

δ̂
(k)
l,n2

(ul) =
1√
n2

n2∑
i=1

(
ζ

(k)
i − ζ̄(k)

)
I(Vil,n2 ≤ uk).

Next, for any l ∈ {1, . . . , d}, let

̂∂ul
Cn1,h1(u) =

Cn1(u + h1el)− Cn1(u− h1el)

2h1

and

̂∂ul
Dn2,h2(u) =

Dn2(u + h2el)−Dn2(u− h2el)

2h2

,

where el is the l-th column of the d× d identity matrix.

Finally, for all u ∈ [0, 1]d, and for all k ∈ {1 . . . , N}, set

Ĉ(k)
n1,h1

(u) = α̂(k)
n1

(u)−
d∑

l=1

β̂
(k)
l,n1

(ul)∂̂ul
Cn1,h1

(u),

D̂(k)
n2,h2

(u) = γ̂(k)
n2

(u)−
d∑

l=1

δ̂
(k)
l,n2

(ul)∂̂ul
Dn2,h2

(u),

Ê(k)
n1,n2

=

√
n2

n1 + n2

Ĉ(k)
n,hN

−
√

n1

n1 + n2

D̂(k)
m,hN

,
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and

Ŝ(k)
n1,n2

=

∫

[0,1]d

{
Ê(k)

n1,n2

}2

(u)du, k ∈ {1, . . . , N}.

According to Theorem 2.1 of Rémillard and Scaillet (2008), if hi = n
−1/2
i , i = 1, 2

and if min(n1, n2) → ∞ in such a way that n1

/
(n1 + n2) → λ ∈ (0, 1), under regularity

conditions on C and D, an approximate p-value for Sn1,n2 is

1

N

N∑

k=1

I
(
Ŝ(k)

n1,n2
> Sn1,n2

)
. (1)

The closed-form expression of Ŝ
(k)
n1,n2 used for the computations can be found in

Rémillard and Scaillet (2008).

4 Data Analysis

4.1 The data

We analyze the daily prices of 5-year maturity CDS for 2005 of three different portfolios:
an automobile industry portfolio, a high-yield diverse-sector portfolio and a portfolio if high
grade financial institutions.

The first portfolio consists of five firms in the automobile sector: Dana, Ford, GM,
Lear, and Visteon.4 The two left plots in Figure 1 show CDS prices and equity prices for
the five firms. The corresponding equity returns are shown on the right.

We use the automobile sector because of its high volatility in 2005, due to severe
foreign competition. The five firms include the largest two US car manufacturers and three
of the largest auto part producers, all of which had a very difficult 2005. This is reflected
in the increasing CDS and declining equity prices in the left plots of Figure 1. Among the
many news that rocked the industry that year, two specific events stand out. First, Standard
and Poor’s downgraded to junk over $290 billion of GM and Ford bonds on May 6th. The
downgrades were the largest ever of their kind and they had a massive impact on CDS,
equity prices and their volatilities (see around observation 90 on the plots). Second, Delphi
Corporation filed for Chapter 11 on October 8th. Although Delphi is not in our sample -
CDS and equity prices are unavailable after its Chapter 11 filing - its bankruptcy had a huge
impact on the entire sector. Delphi is the largest supplier of automotive systems, components
and parts to GM and therefore their insolvency fueled speculations that their competitors,

4The data were purchased from GFI. Recall that CDS returns are defined as minus their change in log-
price such that an increase in price is seen as a negative CDS return. CDS returns defined in this way will
have positive dependence with the usually defined equity returns.
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Dana, Visteon and Lear, could follow suit. This uncertainty shows up in the high volatility
of the CDS returns in the last few months of 2005. The market’s pessimism proved well
founded as Dana corporation filed for Chapter 11 early in 2006.

The second portfolio consists of five firms with very volatile CDS and equity returns
as well as heterogeneous credit risk. The left plots of Figure 2 show the CDS and equity
prices for Six Flags Inc, ArvinMeritor, Polyone Corp, Maytag, and Blockbuster Inc. The
corresponding equity returns are on the right.

These five high-yield firms represent a heterogeneous credit exposure. Six Flags is in
the General Entertainment industry, ArvinMeritor in Consumer Goods, Maytag in Consumer
Staples, Blockbuster in Services and Polyone is in the Basic Materials sector. Although the
fundamental risks differ across these five companies, they all share the characteristic of being
non-investment grade issuers whose equity and CDS returns exhibited high volatility in 2005.
It is interesting to note in Figure 2 the spike in the CDS prices in May (around observation
90) for all five companies. It appears that, although the operations of these companies are
not directly related to Ford or GM, the downgrading of the latter affected the entire credit
market because of its magnitude. It appears however that the equities did not respond as
uniformly as the CDS to this credit event. The bottom-left plot in Figure 2 shows substantial
drops only for the equity prices of Maytag and ArvinMeritor. No other specific event seems
to have had a significant impact on the entire high-yield portfolio, the individual CDS and
equity prices responding primarily to company or sector related events during the year.

The third portfolio consists of five financial institutions with low volatile CDS and
equity returns and high credit ratings. The left plots of Figure 3 show the CDS and equity
prices for American Investment Group, Citigroup, Goldman Sachs, JP Morgan, and Merril
Lynch. The corresponding equity returns are on the right.

4.2 Results for the Auto Industry Portfolio

After removing missing values in the database, 133 valid CDS returns and 223 equity returns
remain for the year 2005. We compute the Cramer-von Mises test and its p-value described
in Section 3 as per (1) using N = 1000 iterations. Table 1 shows the p-values for all the
bivariate copulas of firms in the portfolio. Tables 2 and 3 show the p-values for all three-,
four-, and five-dimensional copulas, respectively.

Based on the p-values listed in these three tables, in many cases the null hypothesis
of equality of the equity and the CDS copulas cannot be rejected. At least statistically, one
cannot reject the use of the equities as a proxy for the underlying assets.5

The p-values listed in these three tables exhibit a pattern. The p-values tend to
decrease (toward rejection) with the dimensionality of the copula. This may be because

5Of course, as all p-values, these are subject to the Lindley-Smith critique, and the difficulties arising
from the reporting of multiple test results. For example, here a Bonferroni adjustment would not change the
results since we fail to reject the null.
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Figure 1: Daily CDS and Equity, prices (left) and returns (right), five automotive sector
firms, 2005.
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Figure 2: Daily CDS and Equity, prices (left) and returns (right), five high-yield firms, 2005.
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as we increase dimensionality, a single stock, e.g. Ford, appears more often in the possible
combinations. Looking at all but Ford, the “credit shock” induced by the Delphi bankruptcy
was extreme. The Delphi bankruptcy had a direct effect on 1) GM its main client and 2)
the other suppliers in the industry, but a lesser effect on Ford who is not a client. Since the
credit shock makes up most of the equity movements of the four non-Ford stocks, the CDS
and equity copulas can look similar. In contrast, for Ford, while the CDS shock was high,
its equity was also driven by other non credit related factors. This could explain the equity
copula being different from the CDS copula when Ford is included.

Table 1: P-values for test of equality of CDS and equity bivariate copulas, auto industry
portfolio.

Ford GM Lear Visteon
Dana 0.05 0.50 0.55 0.78
Ford 0.31 0.12 0.06
GM 0.50 0.86
Lear 0.90

Table 2: P-values for test of equality of CDS and equity trivariate copulas, auto industry
portfolio.

Dana Ford GM 0.10
Dana Ford Lear 0.06
Dana Ford Visteon 0.03
Dana GM Lear 0.43
Dana GM Visteon 0.87
Dana Lear Visteon 0.75
Ford GM Lear 0.13
Ford GM Visteon 0.13
Ford Lear Visteon 0.13
GM Lear Visteon 0.89

Given the profound impact of the May 2005 events on the credit market, one might
think that they changed the subsequent dependence structure of the CDS returns of firms. In
order to examine the relative stability of this dependence structure over time, we consider the
CDS returns of the auto industry portfolio before and after the May 5th double downgrade
of GM and Ford. Although there is a dramatic change in the levels of the associated CDS
spreads, we find that there is no significant change in the dependence structure between the
portfolio constituents before and after the downgrades. The p-value of the test is 0.64.
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Table 3: P-values for test of equality of CDS and equity four- and five-variate copulas, auto
industry portfolio.

Dana Ford GM Lear 0.07
Dana Ford GM Visteon 0.07
Dana Ford Lear Visteon 0.02
Dana GM Lear Visteon 0.68
Ford GM Lear Visteon 0.11
Dana Ford GM Lear Visteon 0.04

4.3 Results for the High-yield Portfolio

After removing missing values, 148 CDS and 222 equity returns remain for the year 2005.
Table 4 shows the p-values of the Cramer-von Mises test for the bivariate copulas using
N = 1000 iterations. The results are drastically different from the auto industry portfolio.
The null hypothesis is massively rejected for every bivariate combination of these five firms.
So, the use of the equities as a proxy for these firms is inappropriate, at least from a statistical
standpoint. Table 4 does not report results for higher dimensional copulas. As expected, if
the hypothesis of equal copulas is rejected for all bivariate combinations, the hypothesis of
equal copulas when considering three of more firms is also firmly rejected. All p-values are
close to 0.

Table 4: P-values in % for test of equality of CDS and equity bivariate copulas, high-yield
portfolio.

ArvinMeritor Polyone Corp Maytag Blockbuster
Six Flags Inc 0.000 0.000 0.000 0.000
ArvinMeritor 0.002 0.028 0.006
Polyone Corp 0.001 0.000
Maytag 0.023

The fact that copulas for equity and credit default swaps are different for our basket
of high-yield firms has important implications on the pricing of multi-name credit products.
Namely, the heterogeneity of the risk exposures, coupled with the diversity in financial
leverage across these five firms cause the credit and equity markets to exhibit different
levels of sensitivity. Given the increasing number of Collateralized Bond Obligations used to
securitize high-yield debt portfolios, the choice of equity as a proxy for estimating dependence
between default times seems clearly inappropriate.
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4.4 Results for the High-grade Portfolio

In order to contrast the results obtained with the auto parts and High-yield portfolio, we
also test for equality between CDS and equity returns on a third portfolio. This portfolio
is comprised of five financial institutions that have have a credit rating of at least AA, and
whose equity and CDS returns were considerably less volatile than those of the two previous
portfolios.

After removing missing values, 134 CDS and 244 equity returns remain for the year
2005. The p-values of the Cramer-von Mises test for the five-dimensional copulas copulas
using N = 1000 iterations is 0.175. Based on this p-values the null hypothesis of equality of
the equity and the CDS copulas cannot be rejected.

These results contrast those found for the high-yield portfolio and at first might
appear counter-intuitive. Generally, we would expect the equity returns of firms that are
closer to financial distress to be more sensitive (and hence correlated) with the the CDS
market. However, it is important to remember that we are not studying the dependence
between CDS prices and the equity returns for each issuer; what we are investigating is
whether the dependence structure between the CDS returns of the five firms is the same
as the dependence structure between the equity returns of the same five firms. The results
indicate that the dependence between the CDS prices of the firms in the high-grade portfolio
is not statistically different than the dependence structure between the equity returns on the
same portfolio. The results are also coherent with the extended Merton’s model, as discussed
in section 2.

As we observed in the previous section, the results for the high-yield portfolio indicate
that the dependence structures were statistically different for the CDS and equity portfolios.
This can in part be attributed to the high volatility of both the daily CDS and equity returns
as well as the heterogeneity of the firms in high-yield portfolio both in terms of industry and
financial leverage. That could also be due to the fact that for riskier assets, the extended
Merton’s model is not adequate.

4.5 Choice of Copula and Impact on Pricing

We have presented and used a test that shows that the dependence structures for CDS and
equity returns can be statistically very different. This statistical evidence is consistent with
qualitative evidence. Consider the scatter plots of normalized returns for CDS and equity,
respectively, for two firms. For example, Figure 4 shows the bivariate normalized rank plots
for three pairs of firms. The left and right plots show the dependence structure for CDS and
equity, respectively. The top two plots show the dependence for Dana and Lear, a pair for
which the p-value of the test of equality of copulas was 0.55. This lack of statistical evidence
against equality is consistent with the graphical evidence: the two plots are simply not very
different. In contrast, the middle and bottom plots show two pairs which exhibited strong
statistical evidence against the null of equality with p-values essentially equal to zero. These
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plots show indeed that the CDS and equity dependence structures are qualitatively different.

The test used here does not hinge on a specific family of copulas or pricing model.
One may argue that this still does not address directly the economic impact of selecting
the wrong copula on the pricing of multi-name securities. To measure an economic impact
requires the formulation of a pricing model. Berrada et al. (2006) for example, provide
empirical evidence that the choice of the copula greatly affects the pricing of joint default
risk and show the impact on the pricing of nth to default credit default swaps. To do this,
they model the joint dynamics of credit ratings of several firms. Namely, individual credit
ratings are modeled by a univariate continuous time Markov chain, and the joint dynamics
by specific copulas. Namely, they use the Normal, Student, Gumbel, Clayton and Frank
copulas to price multi-name credit derivatives. A sample of the results is shown in Table 5
below. Clearly, the different copulas can produce very different prices.

Table 5: Default premia - basis points, for the nth to default, different copula families
Model 1st 2nd 3rd

Clayton 151 25 3
Frank 150 29 5
Gumbel 111 36 16
Gaussian 137 32 9
Student 110 39 17

5 Conclusion

We have presented empirical evidence that the dependence structures for CDS returns and
equity returns can be markedly different and sensitive to the composition of the portfolio.
Our results contradict previous findings, such as those in Mashal et al. (2003) who, with
a likelihood-based test, found that equity returns were an efficient proxy for asset returns.
A distinctive feature of our test is that, unlike that of Mashal et al. (2003), it does not
hinge on a specific dependence structure, i.e. copula. The test we use does not rely on the
assumption of a particular dependence structure for each return series. The test is therefore
much more robust as it is not subject to model error, with respect to the choice of copula.
In that respect, it is a natural complement of model-specific approaches that document the
economic implications of the choice of one copula vs another.

It is important to note that given the limited scope of the empirical study, it is possible
that the source of rejection/nonrejection has to do with sample selection, not necessarily the
level of risk of the obligors. Let us recall that the high yield portfolio is fairly heterogeneous,
while the investment-grade portfolio consists of all financial companies. With the availability
of more liquid CDS prices it would definitely be interesting to conduct a more comprehensive
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Figure 4: Bivariate normalized rank plots, three pairs of firms.
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study using a larger sample (at least the scope of the 125 name CDX index) and offer a more
definitive empirical evidence.

Among other directions for future research is the effect of possible lead-lag relation-
ships between equity and CDS prices. For example, Acharya and Johnson (2007) study
insider trading in the CDS market and identify the presence of advanced information reve-
lation. However, they find no evidence that the degree of asymmetric information between
the CDS and equity markets, affects prices or liquidity in either market. Consigli (2005)
investigates the lead-lag relationships between the two markets with Granger causality tests.
He documents a moderate leading effect of stock market volatility on CDS spreads, possibly
over several days. It would be interesting to test whether our conclusions concerning the
dependencies are robust to temporally aggregated data. For the moment, there is probably
insufficient weekly CDS data available for a robust statistical test to give good precision.
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