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Abstract

This chapter surveys Bayesian Econometric methods in finance. Bayesian methods
provide a natural framework for addressing central issues in finance. In particular,
they allow investors to assess return predictability, estimation and model risk, for-
mulated predictive densities for variances, covariances and betas. This can be done
through decision theoretic problems, such as option pricing or optimal portfolio alloca-
tion. Bayesian predictive distributions are straightforward to calculate and summarize
the investor’s future views for return distribution and expected utility computation.
Nonlinear functionals, such as market efficiency measures and Sharpe ratios, are easily
dealt with from a Bayesian perspective. A central theme in this chapter is the use of
simulation-based estimation and prediction via Markov Chain Monte Carlo (MCMC)
and particle filtering (PF) algorithms. We provide detailed applications of these meth-
ods to the central issues in finance.
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Linda Tracey of Inkslingers. I am especially grateful to John Geweke and Herman Van Dijk for their innu-
merable insights and support. There is a rich body of Bayesian work in finance, and, as this chapter has no
encyclopedic ambition, a number of excellent papers are not discussed, with no implication on their quality;
apologies where they are due. A general acknowledgement is owed to Arnold Zellner whose foundational
work and mentoring are at the source of most everything discussed in this chapter.

1



Contents

1 Introduction 5

2 Optimal Portfolio Design 8

2.1 The basic optimal portfolio setup with parameter uncertainty . . . . . . . . 8

2.2 Shrinkage and empirical Bayes for the portfolio problem . . . . . . . . . . . 12

2.3 Parameter uncertainty and long-run asset allocation . . . . . . . . . . . . . 15

2.4 Economically motivated priors . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Other aspects of parameter and model uncertainty . . . . . . . . . . . . . . . 22

3 Predictability of Returns 24

3.1 Statistical analysis of predictability . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Long-run predictability . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Predictability and cyclicality . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Model choice and predictability . . . . . . . . . . . . . . . . . . . . . 28

3.2 Economic relevance of predictability . . . . . . . . . . . . . . . . . . . . . . 30

4 Asset Pricing 33

4.1 Asset pricing tests are portfolio efficiency tests . . . . . . . . . . . . . . . . . 34

4.2 Bayesian tests of the APT and factor models . . . . . . . . . . . . . . . . . . 35

4.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Volatilities, Covariances and Betas 38

5.1 Bayesian GARCH modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Stochastic volatility by MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 A Metropolis-Hastings independence algorithm . . . . . . . . . . . . 44

5.2.2 SV with correlated errors and fat-tailed conditional returns . . . . . . 47

5.2.3 Volatility predictions for different models . . . . . . . . . . . . . . . . 50

5.2.4 The cost of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.5 Computing odds ratios directly from the MCMC output . . . . . . . 52

2



5.3 Estimating continuous time models . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Estimating covariance matrices and betas . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Modeling the covariance matrix . . . . . . . . . . . . . . . . . . . . . 60

5.5.2 Modeling betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Bayesian Inference in Option Pricing 62

6.1 Likelihood based on underlying return only . . . . . . . . . . . . . . . . . . . 63

6.2 Risk-neutral predictive option pricing . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Likelihood based upon pricing errors . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 Deterministic volatility functions . . . . . . . . . . . . . . . . . . . . 65

6.3.2 Option pricing with stochastic volatility and jumps . . . . . . . . . . 67

7 Particle Filters with Parameter Learning 69

7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Incorporating realized volatility into the SV model . . . . . . . . . . . . . . . 72

List of Tables

1 Comparison of single-move and multi-move MCMC algorithms . . . . . . . 85

2 UK Pound to US $, SV posterior analysis . . . . . . . . . . . . . . . . . . . 85

3 Smoothing performance under alternative models . . . . . . . . . . . . . . . 86

4 Odds Ratios for Leverage effect, Daily Stock Returns 1978-1998 . . . . . . . 86

List of Figures

1 Bayesian Long-term asset allocation and implied mean estimate . . . . . . . 87

2 Posterior distribution of
√
ht, mean and 5%, 95% quantiles . . . . . . . . . . 88

3 Improving the blanket density for the correlated model . . . . . . . . . . . . 89

4 Effect of fat-tails and correlation on E(ht); Weekly EW index . . . . . . . . . 89

3



5 Differences between fat-tail and basic SV volatility forecasts . . . . . . . . . 90

6 Smoothed and filtered
√
ht, learning δ, SV model . . . . . . . . . . . . . . . 91

7 Log of odds ratios for basic SV versus SV with RV . . . . . . . . . . . . . . 92

4



1 Introduction

This chapter discusses the use of Bayesian methods in finance. A first fundamental

aspect of modern finance is that it asks questions of predictability. Discussions on the effi-

ciency of markets center on the degree of predictability, if any, of financial series. This maps

directly onto the Bayesian use of the predictive density. Further, as one must compare mul-

tiple competing models of predictability, the Bayesian perspective on testing, namely odds

ratios for model comparison or averaging, is well suited. Second, the quantities of interest

in many finance applications, e.g., the period of a cycle, hedge ratios, option prices, correla-

tions between portfolios, and Sharpe ratios, are non-linear functions of the base parameters,

used to write the likelihood function. For example, the period of a cycle in autocorrela-

tion is a function of the AR parameters. Bayesian methods, especially when posteriors are

simulated, easily deliver the exact posterior density of such non-linear function of the pa-

rameters. Third, in recent years, models of time-varying volatility have become increasingly

complex, and Bayesian methods in conjunction with Markov Chain Monte Carlo techniques

have produced highly effective estimation and prediction algorithms for these models. Fi-

nally, rationally-based financial decision-making contains a vast normative aspect. Following

Bayes’ rule, an agent updates her beliefs on the predictive distribution of asset returns, pos-

sibly via the optimal averaging of competing models, none of which she holds to be true.

She then devises a portfolio to maximize the expected utility of her predictive wealth.

With this in mind, section 2 addresses the classic portfolio optimization introduced

by Markowitz (1952) and Merton (1969). We first show how estimation error is addressed

in the Bayesian framework. Even within the restrictive framework of one single model, e.g.,

one-period as in Markowitz or independently identically distributed log-normal as in Merton,

expected-utility is now random since it is a function of parameters themselves random for

the Bayesian.1 Decision theory shows that conditioning on point estimates, no matter how

good, does not yield an optimal strategy. One needs to integrate out the parameters using

their posterior density, which yields the predictive density of future returns. This point

is made early, for example, in Zellner and Chetty (1962), and Brown (1978). While the

Bayesian methodology is optimal given the information available to the agent, diffuse priors

alone offer limited improvement over the classical approach. Therefore, section 2.2 discusses

a remedy, empirical Bayes. This refers to the use proper priors calibrated from the sample

1This is even before accounting for model uncertainty. Especially in Bayesian econometrics, there is no
sense in which a given model is seen as true. Models are, hopefully, convenient windows through which to
view the data, and make needed inference, prediction, or decision. See Poirier (2010) in this handbook.
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itself, rather than subjective priors reflecting actual views. We discuss the relation between

these priors and the James and Stein (1961) shrinkage estimators, and how to calibrate both

the mean vector and the covariance matrix as in Frost and Savarino (1986). Perhaps because

the numerical effect did not appear too large at the time, for the one-period framework, the

ideas in Brown (1978) and others, did not get immediate widespread use. We show in section

2.3 that the impact of uncertainty in the mean increases dramatically with the investment

horizon, we discuss Jacquier (2008) and Barberis (2000). Section 2.4 discusses how the

Bayesian econometrician can use priors to incorporate beliefs in asset pricing models, as in

Black and Litterman (1991) and Pastor (2000). We complete the section with a discussion

of further issues.

Section 3 discusses the predictability of the mean of asset returns, central to finance,

as it relates to the efficiency of financial markets. Predictability can be analyzed in a rather

classic statistical time series approach or from the viewpoint of its economic relevance. We

start with the time series approach. Here the benefits of Bayesian analysis reside in the

use of posterior odds, that allow the ranking of multiple models. The initial literature on

predictability typically analyzed the ability of one or more variables to predict stock returns

with classical statistical tools such as t-statistics, R-squares, or root mean-squared errors.

The standard classical framework with one null hypothesis nested in an alternative does

not allow the ranking of multiple, possibly non-nested models of predictability. In contrast,

model odds ratios are perfectly fitted for that task, and we discuss Avramov (2002) and

Cremers (2002) who contribute to the understanding of predictability by using Bayesian

model comparison and, more importantly, averaging in this context. Predictability is often

assessed by a measure that is a non-linear function of the basic parameters used to write

the likelihood function. Classical estimation techniques are ill-equipped for this situation

because of the approximations inherent in the asymptotic theory. We show such an example

with the analysis of cyclicality in stock returns, and with Lamoureux and Zhou (1996)’s

Bayesian approach n the long-horizon return predictability,

Section 3.2 discusses the economic relevance of predictability, namely its impact on

optimal allocation. A classic first paper that initiated this way of thinking is Kandel and

Stambaugh (1996). They analyze predictability through the classic regression of stock returns

on the dividend yield, specifically its impact on asset allocation, when parameter uncertainty

is properly accounted for in the predictive density. Recognizing the stochastic nature of the

predictor, they formulate the predictive regression as a bivariate VAR. Stambaugh (1999)

provides a thorough analysis of this predictive regression. We conclude with a discussion of

Barberis (2001) who pays special attention to the multi-period case.
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Section 4 discusses some major contributions of Bayesian econometrics to the literature

on empirical asset pricing. First we show how McCulloch and Rossi (1990, 1991) implement a

Bayesian test of Ross’s (1976) arbitrage pricing theory (APT) from statistical and economic

perspectives. Second, a major issue in tests of latent factor models is the needed preliminary

estimation of the factor scores and loadings. In contrast, for the CAPM and the index

models, one usually only worries about the estimations of the loadings (betas). Classical

approaches typically assume asymptotics in the time series or in the cross-section of assets.

Geweke and Zhou (1995) show that neither assumption is necessary. They jointly estimate

the scores and the factors with a simple MCMC algorithm. Third, within the CAPM world,

it has long been established that tests of asset pricing models were akin to testing whether

the index at hand was ex-post efficient. This has led to a rich Bayesian literature tackling

tests of asset pricing models this way, which we discuss. Another perspective on the efficiency

of markets is whether managed portfolios can beat passive indexes. We discuss Baks et al.

(2001) and others who study mutual fund performance from a Bayesian perspective. We

contrast with the approach in Jones and Shanken (2005) who study the funds jointly.

Section 5 discusses volatility and covariance modeling. It starts with a review of

Bayesian GARCH, and continues with Stochastic volatility (SV) modeling. MCMC algo-

rithms have resulted in a tremendous growth in the use of SV models in financial economet-

rics, because they make possible the estimation of complex non-linear latent variable models

for which the Kalman filter is not optimal. For example, the MCMC algorithms in Jacquier,

Polson and Rossi (1994, 2004) obtain the posterior densities of both the latent variables, here

the volatilities, and the parameters. While MCMC methods can be applied to the maximiza-

tion of the likelihood function, the Bayesian approach does not require this complicated step

since it only needs to draw from the posterior distribution. We review a Bayesian MCMC

algorithm for classic SV models with both leverage effects and fat tails. We show first how

to design and diagnose the algorithm, then how to conduct model comparison by looking at

the predictions of the model and by computing odds ratios. We show simple ways to obtain

the odds ratios that only rely on the readily available posterior draws, thus bypassing the

specific integration needed for the computation of the marginal likelihood. We then mention

extensions to the model. We complete this section by discussing Bayesian strategies for esti-

mating covariance matrices. We discuss two different approaches to the matrix, first where

the individual volatilities and the correlation matrix are modeled separately, second, where

factor model allow to constraint the covariance matrix. We discuss Bayesian estimation of

the factor loadings , the β’s. Cosemans et al. (2009) model jointly the cross-sectional and

time-series dynamics of betas and show that it results in improved portfolio performance.
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Jostova and Philipov (2004) implement a MCMC algorithm for latent betas.

Section 6 reviews the area of empirical option pricing. We first discuss simulation based

methods to compute the option price on the basis of draws of the uncertain volatility. Early

method only reflect the uncertainty in volatility. We then discuss the explicit addition of a

pricing error to the model entertained, so that the likelihood incorporates model error. We

discuss Jacquier and Jarrow (2000) who model the Black-Scholes pricing error as a function

of observable variables. While their likelihood exclusively follows from the pricing error,

they incorporate the historical returns via a prior on σ. In the same spirit, Eraker (2004)

implements a vastly more general model where volatility is stochastic and can jump. Jones

(2003) links implied and historical volatilities by a linear relationship, allowing for errors.

This in fact incorporates both the historical and risk-neutral process in the likelihood function

Section 7 discusses a promising recent development in finance, filtering with parameter

learning. Filtering techniques have gained recognition over the past years, (see Kohn et al. in

this handbook for classic filtering algorithms). MCMC methods allow inference for complex

models with parameters θ and latent variables h by breaking their joint posterior distribution

into conditionals, (h|θ) and (θ|h). This produces the joint distribution of the smoothed

estimates of the latent variables, for example (ht|y1, . . . yT ). However, one often wants the

distribution of the filtered values of the latent variable, (ht|y1, . . . , yt) ∀t ∈ [1, T ]. A feasible

solution is to repeat a MCMC smoother for all desired subsamples [1, t]. It is, however, not

attractive computationally. Particle filters deliver the desired filtered densities of the latent

variables, but until recently, conditioned on a parameter value (ht|y1, . . . , yt, θ), which was

not very interesting. In contrast, the more recent algorithms which we discuss allow for

parameter learning. That is, at any time t ∈ [1, T ], the algorithm produces the density of

both latent variables and parameters using only the data until time t, (ht|y1, . . . , yt, θ) and

(θt|y1, . . . , yt). We discuss implementations from Jacquier and Miller (2010).

2 Optimal Portfolio Design

2.1 The basic optimal portfolio setup with parameter uncertainty

Before introducing parameter uncertainty, we briefly review some key results of one-

period optimal portfolio theory. See Markowitz (1952), Merton (1972), Roll (1977), Brandt

(2009), or classic graduate finance textbooks for derivations. Markowitz’s (1952) one-period

framework assumes N jointly normal asset returns R with known mean vector µ and co-
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variance matrix Σ. A portfolio with weights w in the N assets, has mean µ = w′µ and

variance σ2 = w′Σw. This yields the well-known efficient frontier in the mean versus vari-

ance space, customarily plotted versus standard deviation. In brief, with short sales allowed,

the locus of expected returns versus standard deviation of optimal portfolios that minimize

variance subject to a desired expected return, is a hyperbola. Its vertex is the global mini-

mum variance portfolio (MVP) whose vector of weights is Σ−1i/i′Σ−1i, where i is a vector

of ones. Note that the weights sum to one due to the denominator. Without a risk-free

asset, investors select a portfolio on this frontier, so as to maximize their expected utility,

or certainty equivalent (CE) which represents the trade-off between mean and variance. For

investors with constant relative risk aversion, the CE is µ − γ
2
σ2. The weights maximizing

this CE are equal to 1
γ
Σ−1(µ− µ0i), where µ0 is also a function of Σ−1 and µ.

The combinations of a risk-free asset with a risky asset on this frontier occur on

a straight line, known as the capital allocation line (CAL), in this mean versus standard

deviation space. The slope of this line is the Sharpe ratio, the ratio of the expected return

in excess of the risk-free rate over the standard deviation, which investors seek to maximize.

The resulting tangency portfolio of the N risky assets is located where the CAL is tangent

to the frontier of risky assets. Its vector of weights is:

Σ−1(µ−Rf i)

i′Σ−1(µ−Rf i)
. (1)

Investors allocate their wealth between this tangency portfolio and the risk free rate accord-

ing to their risk aversion. The optimal allocation, the weight in the risky portfolio which

maximizes this certainty equivalent is:

w? =
µ−Rf

γσ2
, (2)

where µ, σ are the mean and standard deviation of the tangency portfolio found in (1), and

1− w? is allocated to the risk-free rate.

Parameters are unknown in actual implementations. Early practice was to substitute

point estimates of the parameters µ and Σ into the standard optimal portfolio formulas, or

into an optimizer. However, decision theory shows that conditioning the problem on point

estimates, as good as they may be, of model parameters leads to suboptimal portfolios. As

pointed out by Zellner and Chetty (1965), accounting properly for estimation error requires

the computation of the predictive density. The predictive density, an essentially Bayesian

concept, is the joint density of future data, conditional only on the model used and the data
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already observed R. In our case, the joint predictive density of the N asset returns for time

T+1 is:

p(RT+1|R) =

∫
p(RT+1|R,µ,Σ) p(µ,Σ|R) dµ dΣ. (3)

Note how the posterior density of the parameters is used to integrate them out of the density

of the future returns p(RT+1|R,µ,Σ). Similarly, the predictive density of the return on a

portfolio with weights w, follows by integrating its mean µ = w′µ and variance σ2 = w′Σw,

out of the conditional density of its return.

Klein and Bawa (1976) demonstrate that computing, and then optimizing, expected

utility around the predictive density is the optimal strategy. The intuition is clear in the

Bayesian framework: the Sharpe ratio and the expected utility, (or CE), µ− γ
2
σ2 are random

due to parameter uncertainty. How can one maximize a random function and hope to find

a fixed answer? Also, going forward and substituting point estimates of µ,Σ in the CE

or Sharpe ratio clearly omits an uncertainty that should be accounted for, especially by

risk averse investors. In this spirit, Brown (1976, 1978) and Bawa et al. (1979) incorporate

parameter uncertainty into the optimal portfolio problem. They (mostly) use improper priors

p(µ,Σ) ∝ |Σ|−(N+1)/2 to compute the predictive density of the parameters, and maximize

expected utility for that predictive density.

The multivariate predictive density of returns is shown to be a student-t with mean

µ̂, degrees of freedom T −N , and covariance matrix kΣ̂, where the variance inflation factor

k is (1 + 1
T

) T+1
T−N−2

. This modifies optimal allocation, especially when N is sizable relative

to T . Relative to the portfolio based on point estimates, Bayesian optimal portfolios take

smaller positions on the assets with higher risk, for example those with high µ̂. If Σ is

known, k reduces to 1 + 1
T

, and the correction is far less dramatic. Consider, for example,

the risky versus risk-free asset allocation. With an improper prior, the posterior density of

µ, is N(µ̂, σ
2

T
), where µ̂ is the sample mean. The predictive density of the future return

is N(µ̂, σ2(1 + 1
T

)). Intuitively, the future variance faced by the investor is the sum of the

return’s variance given the mean and the variance of the uncertain mean. Computing the

Merton allocation with respect to this predictive density of returns lowers the allocation on

the tangency portfolio in (2) by the factor 1 + 1
T

. However, it does not affect the weights of

the risky assets in the tangency portfolios in (1).

Initially, these corrections did not appear important for the one-period model, when

N was deemed small enough relative to T . The practice of substituting point estimates of µ

and Σ in the theoretical solutions remained common with both practitioners and academic

researchers. However, practitioners eventually recognized that this plug-in approach was
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sensitive to estimation error (see for example Michaud (1989)). Consider an investor who

minimizes variance subject to a given desired mean return, and uses a point estimate of

the mean vector. The highest individual point estimates are such because the corresponding

mean may be high, and the sample of data used may lead to a positive estimation error. The

next sample, corresponding to the investment period, will likely lead to lower point estimates

for these means. This investor will then be over-invested in these estimation errors.

Jobson and Korkie (1980), and a following literature, discuss the sampling variability

of the optimal portfolio weights due to the sampling variability of the vector of means

and covariance matrix. The major problem with this approach is that, for an investor at

decision time, the weights are not a random variable, they are a decision variable. Therefore,

the statistical exercise of characterizing their sampling variability offers little insight to the

investor, who needs to optimize the predictive utility on the basis of the sample at hand, as

decision theory stipulates. A second problem is that the relationship between the portfolio

weights and the mean and variance is non linear. It can be shown that large variations

in weights can result in small variations in portfolio mean and variance. Therefore, the

frequentist degree of uncertainty in the weights is a poor indicator of the uncertainty in the

future returns of optimized portfolios.

Another approach proposed computes the “resampled” frontier. One simulates returns

data from the sampling distribution of the estimators of µ and Σ, and then computes a

frontier for each simulated data set. The resampled frontier is an average of these simulated

frontiers. This frequentist simulation is very different from the Bayesian decision theory

approach, that computes one frontier on the basis of the predictive density of returns obtained

from the data at hand. The two methods are qualitatively similar in that both penalize the

mean estimates of the more variable assets. The extreme mean estimates in the actual sample

are averaged out in the simulated data sets, leading to smaller weights on these assets in the

resampled frontier. Bayesian optimization based on the predictive density leads to smaller

weights on these same assets, to the extent that they have a large variance. Harvey et al.

(2008) compare the two approaches and conclude that the Bayesian method dominates.

Stambaugh (1997) generalizes the problem to the case where a subset of the assets has

a shorter history, as when new assets are introduced. Consider N1 assets with returns R1 on

[1, T ], and N2 assets with returns R2 on [s,T]. Earlier methods either used only the truncated

common sample [s,T], foregoing the information in [1,s-1], or estimated separately subsets of

µ,Σ, using the relevant subsamples. In the second case, µ1,Σ11 were based upon [1,T], while

µ2,Σ22,Σ1,2, were based on [s,T]. The second approach can produce singular estimates of Σ
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and still does not use all the information in the likelihood. Stambaugh rewrites the joint

density p(R1,R2|µ,Σ) as p(R2|R1)p(R1), and parameterizes it in terms of the regression of

R2 on R1.

Using this full-sample likelihood function has two effects; first, µ1 and Σ11 benefit

from the added precision of the full sample, second, and less obvious, µ2,Σ12,Σ22, also

benefit from the longer sample because the covariance between R1 and R2 is fully exploited.

For example, with diffuse priors, the posterior mean of µ2 is not just the unconditional µ̂2,

it also uses information from the discrepancy in µ̂1 between [1,s-1] and [s,T]. Similar results

follow for Σ12 and Σ22. The key intuition is that inference on the shorter assets differs from

the truncated method if the two samples [1,s-1] and [s,T] produce different inference on the

longer assets. Stambaugh then derives the predictive density of returns and implements the

method on a portfolio of longer developed market indices and a shorter index of emerging

markets. For these data, the two methods produce drastically different tangency portfolios

and optimal allocations in the tangency portfolio. Posterior analysis shows that the two

methods produce very different inference on the mean of the emerging market, but basically

identical covariance matrices.

2.2 Shrinkage and empirical Bayes for the portfolio problem

The mean vector of financial assets is particularly difficult to estimate precisely, even

with calendar spans of data as long as many decades. This is due to the magnitude of the

standard deviation relative to the mean for typical financial returns. Further, due to the low

autocorrelation of financial returns, sampling them at a higher frequency does not reduce the

uncertainty in the mean, because mean and variance time-aggregate at the same rate for i.i.d

returns. For example, the posterior distribution of the annualized mean obtained from 252T

daily returns is not tighter than the posterior distribution of the annual mean obtained from

T annual returns. Econometricians and investors have to live with this fact. In contrast, one

can reduce the uncertainty on variance by increasing the sampling frequency. This is why,

in the Merton world with constant variance and continuous time trading, the agent can be

assumed to know the variance. This makes uncertainty in the mean the first order effect to

address in portfolio optimization.

The optimization process tends to put higher (lower) weights on the assets with higher

(lower) mean. Due to parameter uncertainty, the extreme point estimates in the mean vector

for the estimation period, are likely to be closer to the central estimates next period, the

investment period. An optimizer which merely uses point estimates takes positions too
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extreme, and experience poor performance during the investment period. The phenomenon

is more serious for the more risk tolerant investors who load up more on the extreme mean

returns. Jobson and Korkie (1981) use 25 years of monthly returns and show that the realized

Sharpe ratios of a portfolio that optimizes on the basis of point estimates of µ,Σ is 0.08,

versus 0.34 for a portfolio using the true quantities. The substitution approach is clearly

costly. Frost and Savarino (1986) show that Bayesian optimization based on diffuse priors

indeed improve over this classical substitution approach, but the amount of uncertainty in

the mean is still too high to make the Markowitz framework appealing over passive strategies

such as value or equal weighting. For example, the estimates and resulting portfolio weights

still vary too much from period to period. We now discuss how portfolio performance can

be improved with informative priors.

James and Stein (1961) prove the inadmissibility of the maximum likelihood estimator

(MLE) of a multivariate mean, of dimension larger than 2, by showing that it is dominated

by a shrinkage, therefore biased estimator. Their shrinkage estimator is:

µ̂JS = (1− w)µ̂+ wµ0i, (4)

where w is a data-based scalar weight, µ0 is the scalar central value towards which shrinkage

occurs, and i is a vector of ones. w, formula omitted here, is inversely proportional to a

quadratic form in (µ̂− µ0i) and Σ−1. This estimator shrinks the original mean estimate to

a common value µ0.

Shrinkage is a natural approach to reduce the effect of parameter uncertainty in the

mean. They counter the tendency of the optimizer to load on extreme value by bringing them

closer to the center, replacing the MLE of the mean vector with a linear combination of that

estimate and a chosen central mean. This reduces the cross-sectional dispersion of the vector

of means. This effect is achieved in the Bayesian framework with the use of a prior. With

normal conjugate priors, the posterior mean is a linear combination of the prior mean and

the MLE. The weights are the respective precisions of these two components. Therefore, a

given shrinkage estimation is consistent with some Bayesian prior. Note that individual prior

means need not be equal, and the shrinkage does not have to occur toward a vector of equal

values such as µ0i in (4). However classic shrinkage corresponds to “empirical Bayes”, where

the prior parameters are based on the data, a convenience to reduce parameter uncertainty,

rather than a representation of the econometrician’s subjective prior views.

An important question is whether there is a better central value toward which to shrink

the initial estimate. Initial work proposed shrinking toward the grand mean. Jorion (1986)
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makes the important point that, under basic assumptions, µ0 should be the mean of the

global minimum variance portfolio (MVP). The intuition for this is clear. First, the MVP is

robust to uncertainty in the mean because we do not require the mean vector to identify it.

Second, the mean of the MVP is subject to the least uncertainty, since it has, by definition,

the smallest variance of all portfolios. Shrinking toward a mean with the smallest possible

uncertainty is precisely the desired objective. Jorion writes an empirical Bayes estimator

where the prior on µ is N(η, λΣ). The hyperparameter λ calibrates the tightness of the

prior, η is the prior mean. Jorion puts a diffuse prior on η. Integrating out µ, η, one finds

that the mean of the predictive density of the returns r is:

E(r|R) = (1− w)µ̂+ wµ0i,

where µ0 is the mean of the MVP and w = λ/(λ + T ), showing that λ has the intuition

of a notional sample size for the prior. As λ increases relative to T , the cross-sectional

dispersion of E(r|R) vanishes and the means shrink toward the global minimum variance

portfolio. Jorion (1985) implements optimal portfolio selection on international assets with

this empirical Bayes method. He shows that it dominates those approaches based upon the

basic sample estimates. The portfolio weights are more stable through time as they do not

take large bets on point estimates.

Dumas and Jacquillat (1990) implement a similar empirical approach on currency

portfolios. They use logarithmic utility and lognormal returns while Jorion was assuming

normal returns. They argue that shrinking to the MVP introduces a country-specific be-

havior undesirable for them because they want to model the asset allocation of a universal

investor. This country-specific behavior arises if one admits deviations from the purchasing

power parity. Instead, they engineer an empirical Bayes prior which produces a shrinkage

toward an equal weighted portfolio of currencies.

Frost and Savarino (1986) assume normal returns and exponential utility, and also

shrink the covariance matrix by empirical Bayes. They formulate a conjugate Normal Inverse-

Wishart prior for (µ,Σ), centered on equal means, variances, and covariances. The prior on

the mean is p(µ) ∼ N(µ0i,
1
τ
Σ), where µ0 is the MLE of the grand mean assuming equal

means for the N returns, and τ is a notional sample size representing the strength of prior

belief. The prior on Σ is an inverse Wishart which prior mean is a covariance matrix Ω

with equal variances δ and correlations ρ. A parameter ν with the interpretation of a

notional sample size models the prior strength of belief. Frost and Savarino estimate all

prior parameters, including ν and τ by maximum likelihood, a strong use of empirical Bayes.
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To do this, they write the likelihood of the data, modeled by this prior, and maximize it.

The posterior mean vector is the weighted average seen above. The covariance matrix

of the predictive density of returns is a weighted average of three quantities, the prior mean

Ω, the sample covariance Σ̂, and an outer-product of the vector of discrepancies between

prior and sample means (µ̂−µ0). This latter term is typical of posterior covariance matrices

when proper priors are used on means or regression coefficients. In term of optimization, this

amounts to a shrinkage toward the equal weighted portfolio since no asset has preferred char-

acteristics in the prior. With an investment universe of 25 randomly selected securities, they

compare the realized returns of optimized portfolios based on the classical point estimates,

the Bayesian predictive densities with diffuse priors, and their empirical Bayes priors. Their

results show that while the use of the predictive density with diffuse priors does improve on

the classical method, the empirical Bayes estimator leads to a vast additional improvement

over the diffuse prior.

2.3 Parameter uncertainty and long-run asset allocation

We will now see that parameter uncertainty compounds over time, becoming very

important in the long run. Namely, we discuss inference on the compound excess return of

the market index over the risk free rate, and its impact on long-run asset allocation.

Merton (1969) derives the optimal asset allocation between one risky and one riskless

asset in continuous time, generalizing the one-period result in (2). Consider an i.i.d. log-

normal risky asset, where log(1 + Rt) ∼ N(µ, σ2), its compound return over H periods

is:

exp (µH + σ
H∑
i=1

εt+i), εt ∼ N(0, 1),

This H-period compound return is lognormal (µH, σ2H), its expectation is therefore:

exp (Hµ+
1

2
Hσ2) (5)

Consider a risk-free return r0, and a power utility of final wealth per dollar invested,

U(VH) = 1
1−γ exp[(1− γ) log(1 +RH)], where γ is the constant relative risk aversion. One of

Merton’s key assumptions is continuous rebalancing, it guarantees that the portfolio of the

two assets is log-normal, see Dumas and Jacquillat (1990) for a discussion of the approx-

imation to log-normality. Then, by Ito’s lemma, the multi-period compound return for a
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constantly rebalanced allocation w is shown to be:

log(VH |α, σ) ∼ N
[
(r0(1− w) + wα− 0.5w2σ2)H,w2σ2H

]
, (6)

where α = µ+ 0.5σ2. The expected utility is:

E[U(VH)] =
1

1− γ
exp

[
(1− γ)H(r0 + w(α− r0)− 0.5w2σ2 + 0.5(1− γ)w2σ2)

]
. (7)

The maximization of (7) over w gives the well-known Merton allocation:

w∗ =
α− r0

γσ2
(8)

The allocation in (8) offers an added insight over its one-period counterpart in (2), even

though they appear similar. Merton’s i.i.d. log-normal framework is a multi-period problem.

Yet, the horizon H present in the expected utility (7) drops out of the optimal solution in

(8). This is the well known irrelevance of the horizon in the optimal asset allocation. when

returns are i.i.d.

In contrast, most of the subsequent intertemporal portfolio literature entertains the

predictability of risky asset returns, with predominantly negative autocorrelations. Then,

the variance grows with the horizon at a slower rate than the mean. One, therefore, op-

timally allocates more to the risky asset in the long than the short run. Additionally, in

a dynamic strategy, the investor can reallocate her optimal weight within the investment

horizon, reaping a further benefit from the long-run horizon. See Brandt (2006) for a survey

of intertemporal portfolio strategies.

There is an ongoing debate in the finance literature, between those who consider that

there is strong evidence of predictability and those who are unconvinced. However, one

fact that is not up for debate is that mean returns are estimated with large errors. It

is, therefore, curious that most of the finance literature has spent much more energy on

predictability assuming known parameters, rather than the opposite. We now incorporate

uncertainty in the mean into the optimal allocation problem.

For both classical and Bayesian frameworks, the sample mean, µ̂, computed from T

years of data is a key sample statistic. For long-term forecasts, practitioners choose a point

estimate by compounding the sample geometric return G = 1
T

log(PT
P1

). This amounts to

estimating E(VH) by ebµH . Academics, however, tend to substitute µ̂, σ̂ in the theoretical ex-

pectation (5), possibly because of the maximum likelihood justification, where the estimator
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of a function is approximated by the function of the estimator. The difference in these point

estimates becomes very large in the long run. Using Siegel’s (1994) geometric and arithmetic

averages of 7% and 8.5%, the two approaches grow $1 to $160 versus $454 over 75 years.

Even in the classical framework, a solution that does not invoke asymptotic approxi-

mation can be found. Jacquier et al. (2005) assume that σ is known and show that, for this

problem, the uncertainty in σ is secondary to the uncertainty in µ. They derive a minimum

mean squared error classical estimator of E(Vh):

M = eH(bµ−σ2

2
(1−3H

T
).

The penalty for estimation error in µ increases with the horizon. The MLE estimator obtains

as T/H → ∞. Even with 100 years of data, as in the most mature market, one is never

close to asymptotic assumptions for the purpose of long-term forecasts. Panel (b) in Figure

1 plots the compounding factor in M versus H as the dashed line, for realistic values of µ

and σ, a sample of T = 50 years, horizons H from 1 to 40 years. It decreases linearly with
H
T

. The penalty in Figure 1 is so severe that one may wonder if it is even reasonable. For

a very long horizon, it implies negative estimates of the compounding excess return, which

does not make economic sense.

Figure 1 here

Let us see how the rational Bayesian investor incorporates uncertainty in the mean

into her long horizon asset allocation. To do this, we repeat the asset allocation, with

estimation error as in Bawa et al. (1976), but for the long run. The density of VH in (6)

is now conditional on µ, which must be integrated out to produce the predictive density of

VH . Then, the expected utility can be computed. Jacquier (2008) does this for a normal

conjugate prior on µ. Consider for simplicity a diffuse prior, so that the posterior on µ is

N(µ̂, σ
2

T
). Because the integrations over the parameter and over the distribution of returns

can be exchanged, one can also view this as integrating µ out of the conditional expected

utility in (7). The expected (predictive) utility becomes:

E[U(VH)] =
1

1− γ
exp

[
(1− γ)H[r0 + w(α̂− r0)− 0.5w2σ2 + 0.5(1− γ)w2σ2(1 +

H

T
)]
]
. (9)

Recall that α = µ+ 0.5σ2, it is replaced by its posterior mean α̂, and there is a new term in

H/T at the end. Maximizing the expected utility in (9), Jacquier (2008) finds the optimal
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asset allocation:

w∗ =
α̂− r0

σ2
[
γ(1 + H

T
)− H

T

] . (10)

It is a function of the horizon H relative to the sample size T . It is in the spirit of Bawa et

al., but the numerical effect is very large for long horizons. Panel (a) in Figure 1 compares

this Bayesian optimal allocation. with Merton’s. As the horizon H increases, The Bayesian

allocation decreases drastically, even for a moderate risk aversion of γ = 5.

This allocation is consistent with an implicit point estimate of E(VH), optimal for the

Bayesian investor given her risk aversion, the sample size T , and the horizon H. Equation

(10) can be used to find this implicit point estimate of α, denoted α?. This is, in essence, a

change of measure to find the estimation risk adjusted estimate of α. In the new measure

where expected returns are risk-adjusted, Merton’s optimal allocation (8) applies, that is,

w∗ = α?−r0
γσ2 . Equating this and (10) solves for α?:

α? − r0 =
α̂− r0

1 + H
T

(1− 1
γ1

)

This point estimate incorporates the Bayesian investor’s expected utility and her opti-

mal long-term allocation under estimation risk. Panel (b) in Figure 1 displays α?. It strongly

penalizes uncertainty for long horizons, even more than the classical MMSE for γ = 8. The

finance literature points at typical risk aversions in this range, possibly even greater. Un-

like M , α? never implies negative estimates of the risk premium. This is because it is the

implication of the investor’s optimal asset allocation in (10), which can at worst be 0.

In summary, estimation error in the mean has a far greater effect on long than on short

term optimal allocation. A Bayesian optimal allocation shows that the investor should have

drastically smaller optimal weights for the long run than for the short run. By a change of

measure, the Bayesian optimal allocation provides us with an estimate of long-term expected

returns consistent with the investor’s risk aversion. This estimate implies a severe downward

penalty relative to the posterior mean of µ for long-term forecasts. For the more risk averse

investors, this penalty is larger than that implied by conventional statistical estimators. The

set-up described above assumes i.i.d. log-normal returns, known variance, and a continuous

time rebalancing, which provides us with analytical results. Barberis (2000) implements this

optimal allocation with discrete-time rebalancing and unknown variance. The predictive

density of returns, then, does not have an analytical form and must be simulated. Barberis

finds results extremely close to those pictured in panel (a) of Figure 1.
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2.4 Economically motivated priors

We now consider subjective Bayesian prior specifications of the mean vector, derived

from economic considerations. These are not empirical Bayes priors because their hyper-

parameters are not based on the sample at hand. They still effect some shrinkage in the

sense that the cross-sectional dispersion of the resulting posterior means is generally much

smaller than for the sample means.

Consider incorporating in the prior views on the mean vector, the implications of

an equilibrium model of expected returns such as the CAPM. Portfolio weights consistent

with the CAPM are the relative capitalization weights, as in the market portfolio. In the

absence of additional information on specific returns, these are good weights to start from.

Alternatively, an extreme of the passive investment framework is simply to replace expected

returns by β’s, since the CAPM states that expected excess returns are proportional to

the asset beta. The uncertainty in the mean would be the uncertainty in betas, still an

improvement as inference on β’s is more precise than inference on the mean. This, however,

is not convenient for an investor who wants to incorporate private information on some

of the assets, arising from proprietary analysis. This investor views the CAPM prediction

for expected returns as prior information. She may have an econometric model to predict

abnormal expected returns in excess of the CAPM, the so-called Jensen α. That will be the

source of the likelihood function. In realistic settings it will be more sophisticated than the

mere computation of average returns for a given sample period.

Black and Litterman (1991) (BL) is in this spirit. It specifically accounts for the fact

that even active managers do not have private information on every asset in their investment

universe. They notice that portfolio managers often modify only a few elements of the vector

of means, for which they have private information. BL show that this practice has a large

and undesirable impact on the entire vector of weights, rather, they combine investor views

and market equilibrium, in the spirit of shrinkage. The originality of BL is that they do

not write the prior expected returns from the asset pricing model. Instead, they reverse

engineer it from the observed weights of the different assets, assuming that these weights

arise from the market’s optimization of these expected returns. This amounts to inverting

the well-known formula for the optimal weights; w∗ = 1
γ
Σ−1µ, where γ is the representative

investor’s risk aversion. The remainder (1 − w) is invested in the risk-free rate. The mean

µ consistent with the observed capitalization weights w∗ is BL’s prior mean for the mean

vector. They use a prior covariance matrix proportional to the data, 1
T0
λΣ, where T0 is a

notional prior sample size. BL are primarily concerned with uncertainty in the mean vector,
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in their implementation they use the sample covariance matrix.

BL combine this economic-based prior view with the investor’s private views on µ.

These private views are formulated as a set of linear combinations of the mean vectors,

where normal error terms allow to model the precision of the view. Essentially, they can

be written as a multivariate normal distribution on µ. Assumedly these views come from

some data analysis, but they do not need to. The posterior views, in BL’s sense, result from

combining the prior, asset pricing based view, with the private view. BL’s formulation is

conjugate, and the posterior mean is a simple weighted average of the economic and private

means. This is a Bayesian learning scheme but curiously absent a formal likelihood function.

Zhou (2008) proposes to formally incorporate the data into the BL framework. He

allows for three sources of information, the views from the economic model, the private views

that may not use data, and the data. To do this, Zhou considers the final BL estimate of

the mean as a prior. He then multiplies this prior by the likelihood to obtain a posterior

mean. Zhou’s motivation is that the data provide valuable information in the likely case

that the economic model is inaccurate. This motivation runs a bit against the mainstream

view, which, as we have seen, worries that it is the noisy data that lead to erratic estimation

of the mean and, therefore, need to be restrained by shrinkage or an economic based prior.

Yet, Zhou’s implementation shows how to easily blend the above three fundamental sources

of information in the Bayesian framework. Also, in quantitative portfolio optimization, the

private views most certainly come from the estimation of some structure on the data, e.g.,

a predictive regression. Then, the problem simplifies as the prior can model the degree of

belief in the departure from the equilibrium asset pricing model.

Pastor (2000) demonstrates a natural approach to incorporating an asset-pricing model

in the portfolio allocation by using the prior to reflect the strength of belief in the model.

This encompasses the two extremes of an investor with complete disregard for the model,

and one with total confidence in the model. Reasonable investors have beliefs somewhere

in between. Pastor determines the predictive density of returns and the resulting maximum

Sharpe portfolio. Pastor’s methodology can incorporate modern multi-factor asset-pricing

models, where the efficient frontier is spanned by a set of benchmark portfolios that mimic

the realizations of factors. In these models, expected returns in excess of the risk-free rate

are typically of the form E(Ri) = β′iE(F ), where βi is the vector of k factor loadings of asset

i, and E(F ) is the vector of k factor expected excess returns. In the case of the CAPM, the

single benchmark portfolio is the capitalization weighted market portfolio.

Pastor considers a one-period setup with normal returns and a risk-free asset where
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the investor maximizes the Sharpe ratio. The investment universe includes N ordinary assets

and K benchmark, factor-mimicking, portfolios. These N + K assets have mean vector E

and covariance matrix V . The likelihood function, consistent with the existing literature,

comes from the multivariate regression of the N assets excess returns on the K portfolio

excess returns. Let R be the T ×N matrix of asset returns, X = [iT , F ] includes a vector of

ones and the T ×K matrix of benchmark excess returns. Then, the multivariate regression

of the assets on the benchmark returns is:

R = XB + U, vec(U) ∼ N(0,Σ⊗ I),

where B′ = [α′, B′2] includes the vector of abnormal returns, α and the factor loadings B2.

This can also be written using Zellner’s (1962) seemingly unrelated regressions framework.

It helps to write one observation of the multivariate regression above, for asset i at time t:

Rit = αi + β′iFt + uit.

α represents the deviation from the asset pricing model, Jensen’s alpha for the CAPM. If

the asset pricing model holds, α is zero. On the other hand, if the model is useless, α is

unconstrained and the above regression delivers inference on E(R).

The benchmark returns F are assumed to be i.i.d. N(EF , VF ). The likelihood func-

tion p(R,F |B,Σ, EF , VF ) is multivariate normal and decomposed as p(R|F, .)p(F |.). As a

technical aside, Pastor uses the results in Stambaugh (1997) to allow a longer history for

the benchmark portfolios than for the N assets. The priors on EF , VF are left diffuse. The

prior on B,Σ is normal for B|Σ and inverted Wishart for Σ, where E(Σ) = s2I, it is left

largely non informative for B2 and Σ. The key prior for modeling the degree of belief in the

model is that on α. Recall that α and B2 are subsets of B. The prior on α|Σ is modeled

as N(0, σ2
α

Σ
s2

). The zero mean centers the prior on the asset pricing model; σα reflects the

investor’s degree of skepticism toward the model. The prior mean could also be centered on

a non-zero value if the investor practiced some fundamental analysis, σα would then reflect

the precision of the analyst’s views.

The predictive density of returns p(RT+1|R,F ) is simulated by drawing in sequence

from p(FT+1|F ) a multivariate student-t, the posterior (B,Σ|R,F ), and the conditional den-

sity p(RT+1|B,Σ, FT+1). This integrates out the parameters and future benchmark returns

from the conditional density of future returns. The draw of B,Σ can be done with a very

effective Gibbs sampling. A large sample of draws allows the computation of the predictive
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mean and variance up to an arbitrary degree of precision. These two moments are then used

to compute the maximum Sharpe ratio portfolio as per (1).

Intuitively, the predictive mean of returns is α̃ + β̃ÊF , where α̃ is the posterior mean

of α. This posterior mean is a linear combination of the prior mean, here zero, and the

sample estimate. The posterior mean of β is almost always very close to the sample estimate

as the prior on B2 is diffuse. Therefore, the predictive mean is shrunk to the asset pricing

model prediction β̃E(F ), away from the sample estimate α̂ + β̃E(F ). As σα increases, the

predictive mean of returns tilts toward α̂, showing that the investor pays more attention to

the sample estimate α̂ of mispricings.

An interesting use of the analysis is to document the effect of variations in σα on the

optimal portfolio. Pastor implements the model to study the home bias effect. He uses one

benchmark asset, the US market, and one other asset, an international index. He finds that

an investor would require very strong belief in the global validity of the domestic CAPM,

σα < 1% annually, to justify holding as little in the foreign stock as is commonly observed.

A second application sheds light on the Fama-French factors, especially the book-to-market

benchmark portfolio. Pastor finds that even an investor with very strong prior beliefs in the

CAPM would hold a sizable fraction of her portfolio in the book-to-market portfolio.

As a portfolio paper, Pastor (2000) shows how a rational Bayesian investor naturally

incorporate her degree of belief in asset-pricing models into her optimal investment strategy.

Possibly more strikingly, the paper recasts empirical asset pricing in terms of the usefulness

and impact of asset pricing models on investing decisions. For a given sample and prior

belief in the CAPM, we can see how optimal choice differs from that implied by the asset-

pricing model.2 This is in contrast with the earlier classical literature which argues whether

an asset-pricing model, such as the CAPM, can or cannot be rejected by the data, with no

obviously useful implication for the investor.

2.5 Other aspects of parameter and model uncertainty

While some of the work discussed so far does integrates out Σ to obtain the predictive

density, e.g., Frost and Savarino (1986), it is mostly done assuming normal returns. This

yields a multivariate Student-t predictive density of returns. The assumption of log-normal

returns, coupled with a power utility, is often preferred in finance, especially for multi-period

problems. The log-normal distribution is preserved under time aggregation, as seen in section

2As such, the paper could have been discussed in the asset pricing section below. It is not the first paper
to use this approach, we discuss Kandel and Stambaugh (1996) later.
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2.3. However, the integration of the variance results in a log-Student t predictive density.

Geweke (2001) shows that expected utility then ceases to exist. The common practice has

been, for asset allocation, to arbitrarily constrain the weight in the risky asset to be below

one. Alternatively, a truncation of the log-Student t distribution eliminates the problem.

Pastor (2000) assumes normal returns and ignores the fat-tailness inherent in the

predictive density. This allows him to use an analytical formula for the optimum Sharpe ratio.

In addition, one may want to model skewness and kurtosis in the conditional distribution

of returns. Such generalizations can quickly render the maximization of expected utility

intractable. One can use simulation methods, or one can expand the utility function beyond

the second moment of the distribution of returns. Harvey et al. (2010) allow for skewness

and co-skewness in returns, with a skew-normal distribution, and formulate a utility function

linear in skewness as well as mean and variance. This may be important because, while

individual stocks may not exhibit strong skewness, portfolios of these stocks can have skewed

returns. Therefore, portfolio weights should also be judged on their ability to increase

skewness, since rational investors like skewness.

De Miguel, Garlappi and Uppal(2007) run a horse-race of 13 portfolio optimization

models against a basic equal-weighted portfolio, named one-over-N. They use several com-

binations of the classic domestic and international portfolios encountered in the literature.

Their sample period goes as far as 1963, they roll windows of ten years of monthly data. The

13 models include several of those mentioned so far. De Miguel et al. conclude that these

models would have generated lower Sharpe ratios and certainty equivalent returns than the

naive one-over-N rule over the past several decades. Their approach is based on the com-

parison of realized Sharpe ratios. Tu and Zhou (2008) revisit the results, using priors that

incorporate, not only parameter uncertainty, but also the economic objective, here Sharpe

ratio maximization. Their prior on the parameters is derived from a prior weight vector. Tu

and Zhou document utility improvement over other prior specifications and also over the the

1-over-N portfolio.

Finally, the presence of multiple competing models brings up the issue of model un-

certainty. Posterior odds can be used for model comparison, but also for optimal model

averaging. The optimal model is a (normalized) posterior odds weighted average of the

competing models. It would be interesting to revisit studies, such as De Miguel et al. by

incorporating the optimal combination model.
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3 Predictability of Returns

A large finance literature has studied the predictability, or lack thereof, of stock re-

turns. The ability to predict future returns is at the core of the debate on market efficiency.

See Campbell, Lo and Mackinlay (1996) chapter 2, (CLM) for a review of key classical results

and techniques. Past returns, as well as firm and economy characteristics, have been used

as predictors in time-series regressions or cross-sectional regressions where the returns lag

the right hand variables. The horizon may be short, a month or less, or long, up to business

cycle horizons. First, predictability can be studied through its statistical significance. We

will show examples that highlight some pitfalls of classical analysis when the econometrician

is concerned with non-linear functions of the base parameters used in the likelihood function.

Second, predictability can be studied through its core economic implications, for example

its impact on optimal portfolio design. This is conveniently done in a Bayesian framework.

3.1 Statistical analysis of predictability

3.1.1 Long-run predictability

In the study of long-run predictability, Bayesian methods can lead to conclusions very

different from classical methods. Consider the popular permanent-transitory component:

pt = qt + zt

qt = µ+ qt−1 + ut, ut ∼ N(0, σ2
u) (11)

zt = φzt−1 + εt, εt ∼ N(0, σ2
ε ),

where the log-price pt is the sum of a random walk and a stationary AR(1). It generates

the long-term negative autocorrelations observed in asset returns ( but fails to generate the

intermediate term positive autocorrelations, see CLM chapter 2). A common approach has

been to estimate directly the autocorrelation of long-term returns by the regressions:

rt,k = αk + βkrt−k,k + εt,k, t = 1, . . . .T (12)

where rt,k is the k-period return from t-k to t. These regressions are run for k’s between

1 and up to 8 years. One can also compute the ratio V ar(rt,k)/(k V ar(rt)). If log-prices

follow a pure random walk, regression slopes should be zero and variance ratios should be

one. These constitute typical null hypotheses for the classical approach (see CLM chapter
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2). It can be shown that, under the model in (11), β can tend to −0.5 as k increases.

In standard asymptotic analysis T goes to infinity, but the ratio K/T affects the

computations. With K/T → 0, the estimator of the ratio converges to 1 if the true ratio is

1. However, Richardson and Stock (1989) assume that K/T → c > 0. This may reflect the

fact that as the sample size increases, the investigator may explore larger k’s. They show

that the classical estimator of the variance ratio converges then to a value smaller than 1,

and its variance does not vanish asymptotically. This alternative asymptotic limit under

the hypothesis of no predictability is, in fact, consistent with the typical estimates in the

literature (see CLM chapter 2). These conflicting asymptotic limits make the interpretation

of results for a given fixed sample difficult. Which asymptotic limit is the empiricist who

uses one given sample size supposed to adopt?

In contrast, the Bayesian approach delivers the optimal posterior inference for the

given sample of size T studied by the econometrician. Lamoureux and Zhou (1996), (LZ)

implement Bayesian inference for the model in (11). The likelihood is a function of the

parameters (φ, σu, σε). The posterior densities for functions of interest, such as βk, do not

obtain analytically, but can be simulated.

LZ use data augmentation to generate convenient conditionals densities that are the

basis for a Gibbs sampler. They add the vector v = u/σu to the parameter space, and

consider the joint data (v, r). The contemporaneous covariance between v and r is σ2
u,

the covariance matrix of r is a function of φ, σu. The joint posterior distribution of the

parameters is intractable, but it can now be broken into a set of conditional distributions

from which one can draw directly. Specifically, LZ show how to cycle between direct draws

of (v|φ, σu, σε, r) and (φ, σu, σε|v, r), where the second distribution is further broken down

into three univariate conditional posteriors. The key here is that not only one can draw

from the conditional (v|r, .), but also that the densities of the original parameters are greatly

simplified by the conditioning on v. LZ extend the AR(1) in (11) to an AR(4) for quarterly

data. An essential identification of the model is that the vector of AR coefficient must imply

stationarity. In a Monte Carlo algorithm, this is enforced by rejection of the posterior draws

that fail the requirement. For every draw of the AR(4) parameters, one computes the roots

of the characteristic equation and rejects the draw if they are inside the unit circle.

These draws of the model parameters yield, by direct computation, draws of the non-

linear functions of interest, e.g., the ratio of the variances of the random walk shock ut to

the total return rt, σ
2
u/σ

2
r . The persistence of shocks to the stationarity of zt is of interest,

and LZ compute the posterior distribution of its half-life. One can also compute the long-
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run autocorrelation, the βks from (12), directly, as implied by the model. Each draw of

the parameters yields a draw of these functions of interest; therefore we obtain their exact

posterior distribution for our sample size.

Classical analysis for these long-term models yielded mixed results. The point esti-

mates of βk were deemed large enough to warrant attention; however, the power of these

regressions against the null of no predictability was known to be weak (see CLM ch. 2). The

results of the Bayesian analysis are very different. LZ study the inference on β3, the 3-year

beta in (12). For two different proper priors on the parameters φ, σu, σε, they simulate the

implied prior on β3 simply by drawing from these two priors. Both priors allow for sizable

probabilities of large negative betas, and allow for a high fraction of the returns variance

to come from the predictable component. They reflect the prior views of an investor who

believes that a departure from the random walk hypothesis is quite possible. Strikingly,

the resulting posteriors on β3 are tightly centered on 0. Despite the initial priors, the data

clearly speak loudly against the presence of a transitory component in stock returns.

Why then does frequentist analysis find large negative estimates of βk? LZ make the

case that frequentist analysis is akin to a flat prior on the parameters, (φ, σu, σv) in (11).

They show that with this prior, p(φ, σu, σε) ∝ 1
σuσε

, the posterior density for β has a mean

and standard deviation similar to the point estimates in the classical results. They also show

that this flat prior implies a very odd prior on β3, with two large spikes at 0 and -0.5. The

key here is that diffuse priors on both variances allow the ratio of stationary to random walk

variance, to be very large or very small, implying in turn, about equal probabilities of either

a nearly pure random walk, or a very strong transitory component. Note here that, since

the base prior is improper, LZ must have truncated or approximated it with a proper prior,

to draw from it. One should make sure that the shape of the implied prior is robust to the

truncation or approximation chosen.

This result shows that the notion of flat prior on the base parameters of a model, those

used to write the likelihood, here (φ, σu, σε), can imply very informative priors on non-linear

functions of these parameters. One must, therefore, be aware of the prior implied on functions

of interest, by the prior chosen for the base parameters. This is easily done in a Bayesian

framework. If needed, the prior on the base parameters can be modified to imply a reasonable

prior on the functions of interest. A small sample analysis in classical econometrics is possible

but complicated and rarely seen in the empirical literature. In standard maximum likelihood

analysis, functions of an MLE estimator are assumed to be asymptotically normal, their

variance typically approximated via the Delta method. A careful Monte Carlo simulation
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of the sampling properties of the estimator of the function could detect departures from

asymptotic approximations. It would then be clear to the careful classical statistician that,

as shown in LZ, the classical analysis did input, some undesirable prior views on the function

of interest. This point is important, since an advantage often put forth by the proponents

of classical analysis is that they do not need to put prior information into the analysis.

3.1.2 Predictability and cyclicality

We continue with another example where it is easy to understand that flat priors

on the regression slope coefficients imply tight priors on a function of interest. A simple

AR(1) in the stationary component as in (11) can generate the observed long-term negative

autocorrelations; however, it can not also generate the shorter term positive autocorrelations

discussed in CLM chapter 2. A model allowing for cyclical autocorrelation is required, that

is, at least an AR(2). Geweke (1988) shows the posterior probabilities of a cycle and posterior

densities of the cycle periods for GDP. Such macroeconomic variables can be state variables

for the investment opportunity set, and their cyclicality could permeate to the process of

stock returns.

Jacquier (1991) studies the cyclicality of AR(3) models of stock returns. He shows

that flat priors on the AR(3) parameters result in an undesirably informative prior for the

two main functions of interest: the probability of existence of a cycle and the period of the

cycle. As is well known, cyclicality obtains when the roots of the characteristic equations

are complex. Consider an AR(2) and flat priors for (φ1, φ2) in the stationary region; known

to be a triangle. Cyclicality occurs when φ2
1 + 4φ2 < 0, an area between a parabola and

the base of the triangle (see Zellner (1971)). For flat priors, the probability of being in this

region is exactly 2/3; therefore, flat priors on (φ1, φ2) in the region of stationarity imply a

2/3 probability of a cycle. For an AR(3), Jacquier (1991) shows that flat priors on φ1, φ2, φ3

in the stationary region imply a probability of 0.934 of existence of a cycle. For the Bayesian

econometrician, posterior probabilities of a cycle of up to 2/3 for an AR(2), and 0.93 for an

AR(3) represent no evidence whatsoever of cyclicality.

Given that a cycle exists, its period is of interest. Flat priors on φ inside the cyclical

domain also imply quite an informative prior on the distribution of this period. It is centered

at 3 with about 50% of its mass between 2 and 5. The Bayesian econometrician naturally

spots the inference problem by inspecting these implied priors, comparing them to the cor-

responding posteriors. As for possible remedies, one can easily modify the priors on φ to

produce, if desired, a flatter-looking prior on the period of the cycle, and a prior probability
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of existence of the cycle closer to 0.5. Setting flat priors on the roots of the characteristic

equation, rather than the AR parameters themselves, goes a long way to resolving the issue.

In contrast, both detection and remedy for this situation are not practical in the classical

framework. The ordinary least squares point estimate of φ matches numerically the Bayesian

posterior mean resulting from diffuse priors on the φ, therefore, the classical analysis can

not escape from this problem uncovered in the Bayesian framework.

3.1.3 Model choice and predictability

Studies of the predictability of stock returns can involve a number of competing regres-

sions of stock returns on firm-specific or economy-wide variables. The number of variables

and alternative models makes this an ideal ground for model comparison and, better, model

averaging, via odds ratios. In contrast, classical analysis is ill-equipped for multiple model

comparison. As early as 1991, Connolly ( 1991) reports odds ratios on the well known week-

end effect. Odds ratios also provide a more natural sample-based metric than the potentially

severely misleading use of the p-value. See Berger (1985) for extensive discussions. The odds

ratio of model 1 to model 2 is the posterior probability that 1 is true relative to 2, given the

sample just observed.

Classically-motivated criteria, such as the Akaike information criterion (AIC) allow

model ranking. The Schwartz information criterion (SIC) is proposed as a large sample

approximation of the odds ratio. Zellner (1978) shows that the AIC can be seen as a

truncation of the posterior odds ratio which omits many important terms. Jacquier (1991)

shows that the approximation in the SIC can also be unsatisfactory in small samples even

for simple AR models. Using these criteria, Bossaerts and Hillion (1999) find evidence of

in-sample predictability, but no such evidence remains out-of-sample. It is unclear to what

extent this contradiction between the criteria and the out-of-sample evidence is due to a

possible over-fitting by these criteria. Even if the approximation was satisfactory, SIC and

AIC could only be used for model ranking, not directly for model averaging.

Posterior odds ratios can of course serve to rank competing models, but, more inter-

estingly, they determine the weight of each model for the purpose of model averaging, the

optimal combination of all models. Avramov (2002) studies the predictability for monthly

stock returns. He considers 14 widely studied candidate predictors, e.g., dividend and earn-

ings yields, momentum, default and term spreads, inflation, and size and value premiums.

These 14 candidates define 214 mutually exclusive models for which Avramov computes pos-
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terior odds ratios. Model j is a multivariate regression with normal errors:

rt = BjX
j
t−1 + εt, ε ∼ N(0,Σ), (13)

where rt is a vector of asset returns. Avramov models a vector 6 portfolio returns, Bj includes

the intercept and the slope coefficients for model j, and Xj includes ones and the candidate

predictors zj, as in Zellner’s (1962) seemingly unrelated regression framework.

Avramov uses normal- inverse Wishart priors for Bj,Σj: the prior mean of Bj is zero

for the slopes and r for the intercepts. Now consider a hypothetical sample with the same

sample statistics as the one studied: r, zj, and V̂r, V̂zj, the sample covariances matrices of the

returns and predictors. Avramov sets the variance covariance matrix of Bj proportional to

that which would arise in the multivariate regression in (13). The proportionality coefficient

is in effect a notional sample size T0 that can be used to tighten the prior against predictabil-

ity. It is a multivariate generalization of the prior used by Kandel and Stambaugh (1996).

This is essentially a version of Zellner’s (1866) g-prior. Following K&S, Avramov uses a T0

equal to 50 times the number of predictors. His sample size is T = 540. He finds analytical

expressions for the posterior odds.

Avramov reports which predictors appear in the highest posterior odds model. He

notes that it is easy to add up the posterior probabilities of the mutually exclusive models

where each candidate predictor appears. The contrast between the two measures is striking.

The best models use at most two predictors, however, far more than two predictors appear

in many models. For example, the best model to predict the returns of a portfolio of large

firms with medium book-to-market values has only the Term premium as regressor, which

appears in 54% of all possible models. Yet, 4 other candidate predictors appear in more

than 20% of all models. The best model for another portfolio only includes inflation and

earnings, present in 31 and 39% respectively of all models. But Tbill, lagged index returns

and January, present in respectively 28%, 48%, and 21% of the models, are not in the best

model. Clearly the common practice in standard model identification and classical studies of

predictability to choose and work only with the best model, passes by a lot of information.

Odds ratios, while they properly rank models, similarly appear to omit essential information

when they are solely used for model comparison.

A composite model can be built, using the posterior odds as weights. For each predic-

tor, the posterior mean of its slope coefficient is the odds weighted average of the posterior

means for each model. The posterior variance can be shown to incorporate the within-model

posterior variance for each model, as well as the measure of cross-model variability. The
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composite model defines a weighted predictive distribution for future stock returns. This

distribution appropriately integrates out both model and within-model parameter uncer-

tainties. Avramov shows that for his 6 portfolios, from 1953 to 1998, the composite model

dominates the models chosen as best by any known model selection criterion.

In Avramov, all 214 models have the same prior probability; however, as Cremers

(2002) points out, there is a link between the probability of a variable being in the model

and the probability of that model. His reasoning is as follows: assume that all variables

have equal and independent prior probabilities p of entering the model, then the probability

of any one model is pk(1 − p)14−k. The only way that models can be equiprobable is if

p = 0.5. However, this implies a prior probability of no predictability of 0.0001, and a joint

probability of having more than 4 variables of 0.91. This is a lot of prior model mass on

predictability. The issue of the choice of prior on parameters and on model size is non trivial,

and the subject of a rich literature, see Ley and Steel (2009) for recent work on the issue.

Therefore, Cremers’s priors are different from Avramov. He also makes the point that

diffuse priors imply higher prior R2’s for the models with more regressors. He controls this

by tightening to zero the priors of the larger models so that the implied R2’s are the same.

On this issue, Avramov does something similar, since he keeps the notional sample size in the

prior equal to T0 times the number of predictors. This does tighten the slope prior towards

zero for the larger models, and he shows that his results are robust to values of T0 between

25 and 100. Another difference is that Cremers predicts a univariate series, a value-weighted

index, while Avramov runs a 6-variate model. In contrast with Avramov, Cremers finds that

his best models have more variables, but less out-of-sample evidence of predictability.

3.2 Economic relevance of predictability

We now turn to the economic relevance of predictability, measured by the impact of

the competing models on optimal allocation. Performance is measured by the realized out-of-

sample Sharpe ratios or certainty equivalent. We first discuss Kandel and Stambaugh (1996)

(K&S), which set-up is now standard and has been used and generalized. K&S consider the

predictive regression of monthly returns on the dividend yield:

rt = x′t−1b+ εt. (14)

They evaluate the relevance of predictability through its effect on a Bayesian investor’s

optimal allocation between the market and the TBill. Typical R-squares for this regressions
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are below 5%, therefore, by statistical standard predictability does not appear formidable.

Clearly though, as xt varies through time, an investor may want to vary her optimal asset

allocation since the conditional mean forecast of returns x′t−1b changes as well. This is also

related to the inherent noise in the regression as well as the conditional mean at the time.

Despite the low R2’s, K&S show that the typical monthly variations in the value of the

regressors imply notable changes in the optimal asset allocation. They compute certainty

equivalent returns to argue that these allocation changes are worth a lot to the investor.

Returns are log-normal and the investor solves for her optimal allocation by using

power utility. K&S allow for stochastic regressors in (14), modeling them as a vector au-

toregression. The system of the VAR and (14) involves a slope coefficient and an error

covariance matrices (B,Σ). The R-square is a non-linear function of this covariance matrix

and slopes. To each possible value of (B,Σ) corresponds a value for the R-square. Hence,

a distribution of (B,Σ) implies a distribution of the R-square. K&S consider two priors for

B,Σ, one diffuse and one denoted “no-predictability”, centered on zero. This second prior

is that described above for Avramov (2002). The notional sample size T0 is proportional to

the number of predictive variables, so that the implied prior R2 stays about the same for a

different number of predictors.

As the variances are unknown, the predictive density is Student t. K&S constrain

the optimal allocation w to be below 0.99 so that expected utility remains defined. Further,

as they work in a discrete time setup, the exact w∗ would need to be obtained numerically.

Instead, they use the continuous time analytical optimum as an approximation. Their results

are striking. Even for very low sample R2’s, the optimal asset allocation can vary a lot with

the current level of the predictor. K& S compute the increase in expected utility due to the

ability to change asset allocation: they compute the difference in optimal expected utility

between a position where the regressors are at their unconditional mean and a typical low or

high values of the regressors. They find that the differences between these allocations amount

to notable differences in certainty equivalent, sometimes more than 3% a year, despite the

small R-squares of the regressions.

Avramov (2002) also conducts an optimization. His initial set up in (13) is incomplete

as he wants to look more than one step ahead. In order to draw several steps ahead,

he formulates an AR(1) process for the regressors. Consequently, the predictive density

p(rT+K |R) does not have an analytical expression for K > 1, due to the need to integrate

out the returns at times T + 1, . . . T + K − 1. In turn, the expected utility does not have

an analytical integral either; even though he only optimizes a K steps ahead buy-and-hold
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portfolio, he needs to simulate the expected utility, and optimize these simulated values.

Avramov looks at up to 10 periods ahead. He notes that the asset allocation should be less

sensitive to the current value of the predictor as the horizon increases, since the predictor is

stationary.

The classic framework for predictability in returns includes a regression of the returns

r on stochastic regressors x, which themselves follow an AR(1) with strong autocorrelation:

rt = α + βxt−1 + ut,

xt = θ + ρxt−1 + vt. (15)

The shocks ut, vt have a non-diagonal covariance matrix Σ. Stambaugh (1999) undertakes

a detailed Bayesian study of this predictive regression with lagged stochastic regressors,

typically the dividend-price ratio or the corporate yield spread. The system is written as a

large multivariate regression, and one formulates priors on (α, β, θ, ρ,Σ). Stambaugh uses

flat priors on the slope coefficients and Σ, and studies posterior inference and asset allocation.

A key result is that the posterior mean of β is linearly related to the posterior mean of ρ

through the covariance σuv which is negative. He describes the impact on inference and

asset allocation of two key aspects of the modeling; whether ρ is allowed to be in the non-

stationary regions, and whether the first observation is considered known or stochastic, which

modifies the likelihood function. He then implements these alternative specifications on four

subsamples of the data between 1927 and 1996. The ordering of the posterior means for the

various specifications varies with the subsamples, consequently, there is no clear evidence

that a given specification produces systematically higher, or lower, posterior means, apart

from the naive OLS which always produces the lowest β and highest ρ. Stambaugh then

shows that these posterior differences lead to sizable differences in Merton allocation.

Barberis (2000) analyzes the effect of predictability and parameter uncertainty on the

investor’s asset allocation, especially for long horizons. He uses the same classic model as

in Stambaugh (1999) or K&S, as in (15) where xt−1 is the dividend yield, (d/p)t−1. After

K&S, we suspect that predictability will have a strong impact on asset allocation. However,

section 2.3 has shown that parameter uncertainty compounds enormously as the horizon

grows. Without predictability, but with parameter uncertainty on both mean and variance,

Barberis finds results similar to Figure 1, panel a). Even though he integrates out variance

and rebalances discretely, he finds optimal allocations very close to those in Jacquier (2006).

Because he rebalances discretely, and does not know variance, Barberis does not have

an analytical solution to the Merton optimal allocation problem, such as in (10). For each
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draws of the posterior parameters, he draws from the multiperiod predictive density of

returns. Then for a number of candidate values of w ∈ [0, 0.99], he computes and averages

the utility of the asset allocation over the predictive draws. This is feasible since w is

univariate and bounded. The optimal allocation is the w that yielded the highest (Monte

Carlo estimate of) expected utility.

Barberis then considers predictability. As in Stambaugh (1999), the normal errors

are negatively correlated, with the following effect on long-term allocation. Suppose that

the dividend yield falls unexpectedly. The negative correlation implies that this is likely to

be accompanied by a contemporaneous positive shock to stock returns. However, since the

dividend yield is lower, stock returns are forecast to be lower in the future since β > 0.

This contemporaneous rise, followed by a fall in future returns, causes variance to aggregate

slower than for i.i.d. returns, leading the investor with a longer time horizon to allocate more

to stocks. Assuming known parameters, Barberis confirms this intuition. However, when

Barberis allows for parameter uncertainty as well as predictability, a very strong negative

demand, as seen in section 2.3, sets in to counter the positive demand due to predictability

alone.

Wachter and Warusawitharana (2009) model predictability with a regression of returns

on the dividend-price ratio and the corporate yield spread. They model the investor’s degree

of confidence in predictability via a prior on the coefficients of this regression. A small prior

variance for these coefficients implies high skepticism about predictability since the prior

mean is 0. As in Stambaugh (1999) and Barberis (2000), the predictors follow an AR(1),

and the shocks to the predictors and returns can be correlated. They conclude that the data

would convince even a skeptical investor to time the market. Modeling the prior degree of

belief in predictability allows them to determine which types of investors would or would not

be swayed by the data.

What matters in these studies is how incorporating predictability in returns affects

the predictive density, and in turn the optimal asset allocation of a rational investor, not

whether autocorrelations or slope coefficients are statistically significant.

4 Asset Pricing

This section surveys the finance literature that directly tests the validity of asset

pricing models. Since Roll (1977), it has been understood that tests of the various versions

of the CAPM are often equivalent to testing whether some index portfolio was ex-post
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mean-variance efficient; therefore, we first discuss the Bayesian approach to tests of portfolio

efficiency.

Multi-factor models, whether from economic arguments or data-mining, have become

a popular way to remedy the shortcomings of the CAPM. Some empirical analysis is based

on latent factors, which requires the estimation of the factor as well as the actual test of the

model pricing. We discuss some unique contributions of Bayesian methods to this aspect of

the literature.

4.1 Asset pricing tests are portfolio efficiency tests

Typical one-pass tests of the CAPM have often used likelihood ratios, Lagrange mul-

tiplier or Wald tests, which small sample distributions are not the same (see CLM, chapter

5). The econometrician selects a number of assets to be priced, and a market index portfolio,

and tests whether the index prices the assets properly according to the CAPM. Consistent

with Roll’s (1977) argument, these tests can be written as functions of a measure of the

efficiency of the index chosen as the market portfolio with respect to the frontier spanned

by the portfolios and the index (see CLM chapter 5).

Shanken (1987) solves and generalizes the problem in a Bayesian framework. First he

tests the efficiency, not of a single index, but of the most efficient linear combination of a set

of portfolios. This is still with respect to the frontier spanned by N assets and the portfolios.

Assume that the correlation between the highest Sharpe ratio portfolio on this frontier and

the benchmark portfolio tested is 0.98. With enough data one will can still reject the null of

efficiency, even if the difference between 0.98 and 1 is meaningless. This is a standard critique

of the tests of point null hypotheses. The critique is even more warranted here, because,

as Roll (1977) points out, we do not have the exact market portfolio, only a proxy with

hopefully high, but not perfect, correlation with the market portfolio. For a given imperfect

correlation between the chosen proxy and the portfolio with maximum Sharpe ratio, how

much of the distance to 1 comes from the fact that we do not use the true market portfolio?

Shanken formalizes this issue of proxy imperfection. It involves an added parameter, the

correlation between the proxy and the true portfolio, on which he posits a prior distribution.

He then tests the efficiency of the index by computing odds ratios that take into account the

fact that we are using a proxy of the market portfolio.

Harvey and Zhou (1990) address the same problem by formulating priors on the mean

and covariances of the assets; they do not incorporate beliefs about the imperfection of
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the proxy. In their crucial paper, Kandel et al. (1995), derive the posterior distribution

of the maximum correlation between the portfolio tested and any portfolio on the efficient

frontier. This posterior distribution is shown to be very sensitive to the choice of prior. As in

Shanken (1987), they incorporate the fact that the portfolio tested is not a perfect proxy for

a theoretical portfolio. This in effect makes the sharp null hypothesis of perfect correlation

uninteresting. Their approach works for both cases, with and without a risk-free asset. They

find that, especially in the presence of a risk-free asset, the choice of priors affects the results.

For conventional sample sizes, a diffuse prior on the mean vector of the assets makes it very

hard for the posterior of ρ to concentrate close to 1, the value implied by efficiency, even if

the sample estimate of ρ is close to 1. This is another case where the parameter of interest,

the maximized ρ is a non-linear function of the base parameters µ,Σ, which has perverse

effects on the prior distribution of ρ.

In related work, Pastor (2000) discusses how to incorporate into the portfolio optimiza-

tion the investor’s degree of belief in an asset pricing model. Assume that expected returns

are a linear combination of K factors, a generalization of the CAPM which centers on the

efficiency of a single portfolio. If these factors can be replicated by K benchmark portfolios,

then the frontier is spanned by these portfolios. The degree of belief is modeled by the tight-

ness of the prior of the deviation from the model’s prediction, e.g., Jensen’s α for the CAPM.

Pastor and Stambaugh (2000) use this framework to compare the CAPM, the Fama-French

3-factor model, and a third model, in a one-period, buy-and-hold mean-variance optimiza-

tion framework. Portfolios are optimized using the predictive density implied by a model,

and a degree of margin requirements. To compare models, they compute the loss in certainty

equivalent for an investor who believes in one model but is forced to use weights that are

optimal under another one. The result is that for realistic margin requirements and prior

model uncertainty, the perceived differences between models are far smaller than classical

testing lets us believe. Note also, that, from the view point of portfolio optimization, the

best strategy would be a composite model according to the posterior odds ratios of each

model, an interesting avenue of research.

4.2 Bayesian tests of the APT and factor models

The Arbitrage Pricing Theory (APT) builds on the assumption that returns are gen-

erated by a statistical model with latent factors ft:

Rt = E(Rt) +Bft + εt, εt ∼ N(0, D), (16)
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where Rt is the N vector of asset returns, and B is an N (stocks) × K (factors) matrix of

factor loadings. The crucial assumption is that D, the covariance matrix of the idiosyncratic

risks ε, is diagonal; exposures to the common factors explain all of the stock covariances.

The number of free parameters in the N × N covariance matrix is constrained since it is

modeled with the K ×K factor covariance matrix, the N ×K coefficient matrix, and the N

error variances. McCulloch and Rossi (1990) show that at most 5 factors suffice to explain

the covariances between returns. Therefore, the factor model is by itself a very effective

device for inference on large covariance matrices.

In the absence of arbitrage, the APT model follows from (16). Expected returns are

linearly related to the factor exposures B:

E(Rt) = rfti+Bγt, . (17)

Here, γ is a k-vector of factor premia. Mc Culloch and Rossi (1990, 1991) are the first to

implement a Bayesian test of the APT with latent variables. The first step of their procedure,

by which they obtain the factor scores ft is, however, more classical in spirit. They use the

method of asymptotic principal components (see Connor and Korajczyk (1986)) to estimate

the factor scores from a cross section of more than N = 1500 stock returns. The standard

principal component methodology extracts the factor loadings from the sample covariance

matrix, with precision increasing with the length of the time series. In contrast, Connor and

Korajczyk show how to extract the factor scores from the T × T cross-product matrix of

returns, with precision increasing in the number of stocks N . For the typical stock-market

asset-pricing application, with very large N and not so large T , Connor and Korajczyk show

that the ft’s are incredibly precisely estimated. Mc Culloch and Rossi (1990, 1991) essentially

consider these scores ft as known, when they implement the cross-sectional regression in

(16). Therefore, they concentrate on a Bayesian implementation of (16), assured that it is

not subject to issues of errors in the variables.

If both the factor model (16) and the APT (17) are correct, the intercept vector α in

the multivariate regression:

R = αi′ +BF + E, E ∼ N(0,Σ),

must be zero. Mc Culloch and Rossi (1990) produce the posterior distributions for α. They

use normal-Wishart priors for α,B,Σ. If the APT in (17) is correct, then α is zero. Second,

they compare the certainty equivalent returns for a rational investor optimizing her portfolio
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with and without the constraint of the APT. For tractability, they assume normal returns

and exponential utility. Their work represents the first utility based evaluation of an asset

pricing model.

As this is a simple case of nested hypotheses, McCulloch and Rossi (1990) can use

the Savage density ratio method to compute posterior odds for the null hypothesis of the

APT model versus the hypothesis of mis-pricing ( α 6= 0). The Savage density ratio method

allows to write odds ratios without actually performing the integration necessary to obtain

the marginal likelihood. Instead, the odds ratio is simply the ratio of a posterior to a prior

ordinate, at the value specified under the constrained model, here α = 0 (see Dickey (1971).

In small-small (cross-section and time series) sample situations, even the N -asymptotic

of Connor and Korajzyk might be inadequate, and suffer from errors in the variables. The

standard principal components methods, which sampling precision increases with T , will also

be affected by severe problems of errors in the variables. A pure Bayesian framework, optimal

for the T and N used by the econometrician, is going to be very useful. Geweke and Zhou

(1995) show how to estimate latent factors and their loadings with a pure Gibbs sampler.

The intuition is straightforward since both conditional posterior densities B|F and F |B
represent a regression, time-series or cross-sectional. Upon convergence of their algorithm,

Geweke and Zhou can produce analysis similar to Mc Culloch and Rossi, however, bypassing

any reliance to large N or large T .

4.3 Performance evaluation

One can view performance evaluation as a form of asset pricing test where managed

funds, rather than individual stocks or portfolios, are investigated for mis-pricing. Perfor-

mance evaluation is also tied to predictability as the issue of persistence in performance

inevitable arises, see for example Avramov and Wermers (2006) for mutual funds .

Baks et al. (2001) approach performance evaluation via its impact on an investor

who optimizes a portfolio of the index and one actively managed fund. Most importantly,

they propose an innovative prior on a manager’s Jensen α. The prior has a point mass on a

slightly negative α, with probability 1 − q that the manager is unskilled. The performance

α = a − fee − cost, is slightly negative because one subtracts from the raw performance a,

the fees and transaction costs due to active management. a is argued to be slightly negative

because the unskilled manager trades with skilled managers. Then, the manager is skilled

with probability q. Given skill, α is modeled by a normal truncated at the mode α. Baks
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et al. effectively remove possibly large negative values from the prior on α, as unskilled

managers are not expected to display systematically large negative performance. Baks et al.

show how to elicit the prior by specifying q, the fees and costs, and the probability that the

manager’s α will be above a specific level, for example 25 basis points. An important result

is that, unless the investor is a-priori extremely skeptical toward the possibility of skill, she

would invest a non-negligible fraction of her wealth in actively managed funds. In contrast,

for many of these same funds, the classical approach would fail to reject the null hypothesis

of no skill, which would likely be followed by the decision not to invest in the fund. First,

Baks et al.’s careful modeling of the prior on α affords them much needed precision in the

estimation of α. Second, this application shows that even though two alternatives, here skill

and no skill, may appear statistically close, they can still lead to very different investment

decisions.

Baks et al. study each of 1400 fund managers separately, and do not allow for in-

teractions or learning across funds. They compute each α over a Fama-French three factor

model, and assume that the correlation matrix of idiosyncratic noises is diagonal. Jones and

Shanken (2005) maintain this latter assumption but concentrate on learning across funds.

The performance αj of each fund is considered to be a random draw from a general distri-

bution with cross-sectional mean µα and variance σ2
α. Intuitively, consider that the prior on

αj draws from the average and variance of the sample α’s of the other funds in the sam-

ple. Jones and Shanken point out that this shrinkage approach counters the undesirable

unboundedness of the maximum posterior α when the number of funds increases. Also, in

contrast with Baks et al. and others, they model different prior beliefs for each fund. The

parameter space includes the αj’s, (considered to be random draws of) µα, σα, as well as

the individual fund betas and standard deviations. Since µα and σα are unknown as well,

the posterior densities of the parameters are not known analytically. Therefore, Jones and

Shanken write a Gibbs algorithm which updates all parameters, especially the αj’s, µα, and

σα. Their empirical results confirm that incorporating learning across funds dramatically

reduces the highest posterior means.

5 Volatilities, Covariances and Betas

Estimating and forecasting (co)variances is crucial in about every area of finance,

including, risk management, option pricing, and portfolio optimization. At least in the

univariate case, the literature has moved very quickly to the modeling of the time variation
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of volatility for a few reasons. The time variation of volatility has been taken for granted

in finance since Officer (1973), and, because of its high autocorrelation, volatility is more

successfully predicted than time varying expected returns. The modeling of time-varying

volatility goes a long way to help match the fat-tailness of the unconditional density of

financial series. In brief, the research has shown that a good parsimonious model of time

varying volatility must have three key ingredients: 1) an autoregressive structure, 2) the

ability to model asymmetries in returns where negative returns are associated with a greater

volatility than same size positive returns, and 3) some additional modeling of fat-tailness for

the conditional distribution of returns.

For a long time researchers used ad-hoc time moving windows to allow for time-varying

volatility. Engle’s ARCH, a quantum jump in variance modeling, triggered a huge literature

(see Bollerslev et al. (1994) for a survey). However, while the time-series ARCH literature

was mushrooming, theoretical finance was already exploring the more general stochastic

volatility (SV) for modeling purpose. One reason for the resilient success of GARCH models

may be that they are viewed as good filters of unobserved volatility. For example, Nelson

(1994) shows that, as one converges to continuous time records, GARCH models dominate

Kalman filters in terms of mean squared errors . Another reason is their ease of implemen-

tation, at least in the univariate setup; the multivariate case is far more complicated. While

the ML framework works well computationally for the GARCH framework, classical methods

can not handle the SV model well. The reason is that the SV model is non-linear and the

volatility is a latent variable.

With the advent of Markov Chain Monte Carlo (MCMC) algorithms, Bayesian meth-

ods have been able to deliver the optimal estimation for a large class of SV models (see for

example Jacquier, Polson and Rossi (1994,2004).3 Further, Geweke (1994) and Kim et al.

(1998) show that a lot can be gained from the added flexibility of the SV over the GARCH

model. This section, therefore, first discusses some Bayesian GARCH algorithms. Then we

show how to design, implement, and diagnose a simple MCMC Bayesian algorithm for a

general univariate SV model with fat tails and asymmetric returns.

Precise inference for large covariance matrices is difficult even if they are assumed to

be constant. Realistic finance applications often have many assets relative to the time period;

therefore, parsimonious modeling requires some reasonable constraints on the matrix. One

such constraint very well adapted to financial modeling is the factor model. We already

discussed the Bayesian estimation of a constant-parameter factor model in the asset-pricing

3Jacquier, Johannes and Polson (2007) show that a simple adjustment of the Bayesian algorithm delivers
the ML estimate and its asymptotic covariance matrix.
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section. We complete this discussion here with the implementation of time varying factor

models and betas.

5.1 Bayesian GARCH modeling

In a basic GARCH model, returns and their variance are as follows:

rt =
√
htεt, εt ∼ N(0, 1), (18)

ht = ω + αr2
t−1 + βht−1.

The model can be extended to allow for fat tails in the shock εt. A so-called leverage effect

can be added to allow for variance to be higher when the return is negative. Glosten et al.

(1992) add a sign dummy to the variance equation. In contrast, Nelson (1991) introduces the

exponential GARCH model (EGARCH), based upon a logarithm formulation. This allows

for negative right-hand side variables in the variance equation, and eliminates the need for

positivity constraints. For example, a EGARCH(1,1,) can be written as:

log ht = ω + θεt−1 + γ(ε2t−1 − E(ε2t−1)) + β log ht−1. (19)

Typically, one uses several years of daily returns to estimate a GARCH model. This often

leads to precise reported standard errors of estimation for the simplest models. The prevalent

technique has been the maximization of the likelihood function, which is conveniently done

for the simplest models; however, experience shows that the maximization can be difficult

for the more complex models. See Bollerslev, Engle, and Nelson (1994) for a survey.

Bayesian estimation of the GARCH model requires MCMC methods as one can not

draw directly from the posterior distribution of the parameters. To see this, consider the

posterior density of the parameters θ = (ω, α, β) in equation (19), a simple GARCH(1,1)

model with normal errors:

p(θ|R) ∝ p(θ)
∏ 1√

ht(θ)
exp− y2

t

2ht(θ)
.

Even breaking θ into its individual components does not permit a simple Gibbs sampler.

The model can be extended with a regression function γxt in the returns equation, which

does not pose any further difficulty. One then introduces an added conditional p(γ|θ) to

the MCMC sampler, from which direct draws can be made. Geweke (1989) uses importance
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sampling to draw from the posterior distribution of the parameters, and, in turn, the ht’s

for the pure-ARCH model, with no lagged ht in the variance equation. Kleibergen and Van

Dijk (1993) use importance sampling to estimate a GARCH with Student-t errors. Their

approximation function for θ is a multivariate Student t with very low degrees of freedom.

The priors used in Bayesian GARCH estimation are usually diffuse, but one wants

to impose the positivity (ω, α, β) > 0, and, if desired, stationarity α + β < 1 conditions.

Note that Bayesian analysis, unlike maximum likelihood or the method of moments, does

not require the existence of unconditional moments such as the variance of rt. This is done

by rejecting posterior draws which do not meet the conditions, which amounts to using

a truncated prior since an indicator variable transfers directly to the posterior via Bayes

theorem. Consider, for example, a possibly diffuse but proper density p(θ) defined on the

real line. The econometrician wants to use this shape of density as a prior while imposing

the condition θ ∈ [a, b]. The prior is then π(θ) ∝ p(θ)I[a,b] where I is the indicator function.

By Bayes theorem, the posterior is then (θ|D) ∝ p(D|θ)p(θ)I[a,b].

Depending on the domain restriction, both prior and posterior may require a compli-

cated integration to find the normalization constant due to the truncation. However, if one

only need to draw from the posterior, as in a direct MC or MCMC algorithm, this integration

is done by drawing from p(D|θ)p(θ), and then rejecting draws that do not belong to [a, b].

This truncation by rejection is one of the appealing practicalities of Monte Carlo simulation

of posterior and predictive densities. Clearly, the effectiveness of this practice, related to the

fraction of draws rejected, depends on the amount of information in the likelihood about

the domain of θ. An alternative prior strategy is to use a prior which does not require

truncation, e.g. a scaled Beta prior; however, such priors may not always lead to simple

posterior densities. In Bayesian GARCH estimation, positivity and stationarity conditions

are, therefore, enforced by rejecting the inadequate posterior draws. It turns out that only

a very small fraction of the draws is rejected.

Bauwens and Lubrano (1998) estimate a GARCH where εt in ( 19) is Student-t. with

ν degrees of freedom. They note that the posterior of ν does not integrate if the prior is

on (0,∞). Precisely, p(ν) needs to decrease at a rate faster than 1/ν for large ν’s. It also

needs to be well behaved at ν = 0. Truncation away from zero solves the problem and may

even be desirable for modeling purpose; recall that the unconditional variance is infinite for

ν ≤ 2. Bauwens and Lubrano choose the prior p(ν) ∝ 1/(1|ν2). An alternative specification

could be Geweke’s (1993) exponential prior p(ν) ∝ ψ exp−ψν. Bauwens and Lubrano use

a griddy Gibbs to draw from each element of the conditional posterior. For each element of
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the parameter vector, the griddy Gibbs computes posterior ordinates on a grid of carefully

selected points, and the CDF between these points by numerical integration (see Ritter

and Tanner (1992)). The inverse CDF method is then used to draw from the parameter.

This is conceptually straightforward but numerically intensive, and requires a fair number

of functional evaluations. Also, as Bauwens and Lubrano note, one needs to choose the grid

carefully.

Muller and Pole (1998), in contrast, use a Metropolis Hastings (MH) algorithm to es-

timate GARCH models with regressions or AR parameters in the mean. They first break the

parameter vector (θ, γ) into its individual elements. Then they make an MH independence

draw for each element. Nakatsuma (2000) extends the model, also using a MH algorithm. He

allows for an ARMA in the errors, making use of Chib and Greenberg (1994) who estimate

the ARMA model with a MH algorithm.

Nakatsuma’s algorithm cycles the ARMA and GARCH parameters, respectively δ1

and δ2. The conditional δ1|δ2 uses an ARMA likelihood with heteroskedastic but known

variances ht, a minor modification of the MH algorithm in Chib and Greenberg (1994). The

conditional δ2|δ1 uses the well-known ARMA representation of the GARCH model introduced

in Bollerslev (1986) (See Bollerslev et al. (1994)). For a GARCH(1,1), we have:

ε2t = α0 + (α1 + β1)ε2t−1 + vt − β1vt−1, vt = ε2t − ht. (20)

Note that vt is non-normal with variance 2h2
t . Nakatsuma uses (20) as the basis for the

conditional posterior of δ2|δ1. As a direct draw is not available, a feasible proposal density

for an independence MH draw of δ2 obtains by replacing the true distribution of vt by a

normal. The parameter vector draws are, in fact, further broken down, for both the ARMA

and the GARCH, into the autoregressive and the moving average parameters. Accounting

for the possible regression parameters, these are 5 major blocks of MH independence draws.

However, Nakatsuma’s method does not extend to the asymmetric GARCH of Glosten et al.

(1992) and Nelson’s (1991) EGARCH because they do not have an ARMA representation.

Vrontos et al. (2000) propose a random walk MH algorithm. The algorithm is easy

to apply since it does not require the fine tuning of a proposal density. The candidate draw

is simply made by adding an increment N(0, σ) to the current value; σ is tuned to generate

no more than 50% repeats. Small moves generate lower repeat probability, but they do not

travel enough in the parameter space. Large moves on the other hand may visit very low

probability areas and cause too many repeats. Vrontos et al. initially break the parameter

vector into univariate MH draws; however, they show that the numerical efficiency can be
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increased if one draws jointly the most highly correlated parameters. One should, in general,

be cautious with Metropolis draws of high-dimensional vectors, and make sure that they do

not lead to a high repeat rate.4 In their case, however, the dimension is low. The entire

parameter space for a GARCH(2,2) is 5 parameters plus the regression or mean parameter.

Possibly the most interesting contribution in Vrontos et al. is their use of the re-

versible jump algorithm, which allows them to simulate simultaneously a number of com-

peting GARCH or EGARCH models. In addition to the parameter draws, the algorithm

jumps to another candidate model with a certain probability. The MCMC algorithm effec-

tively generates the posterior probabilities of the models, as well as the parameter draws

of each model (see Greenberg (1995)). So their algorithm produces the posterior odds for

each model, as well as the model averaging. A direct by-product of their method can be

the posterior distribution of in-sample volatilities and the predictive distribution of future

volatilities, for the optimal combination model that is the average of the models considered,

with weights the posterior probabilities of each model. For the Greek stock market, Vrontos

et al. compare 8 EGARCH models. The best model has a posterior probability of 0.47, but

the next three models have posterior probabilities summing up to 0.43. This highlights the

potential benefits of model averaging over to the practice of selecting the best model.

These methods do not produce parameter posterior means drastically different from

the MLE point estimate for very long series; however, if inference is needed for the parame-

ters, one worries about the use of the Hessian matrix for standard errors, and the asymptotic

normality assumption. In contrast, the Bayesian simulation methods produce the expected

non-normal posterior distributions. Another, more important, issue is the difference in in-

ference on in-sample and future volatilities (see Geweke (1989)). The MLE estimates the

volatilities hts at the MLE point estimate of the parameters. The Bayes methods delivers,

by simulation, the entire posterior density of each ht as well as of the parameters. The

Bayesian econometrician can then choose the posterior mean as a point estimate optimal

under quadratic loss. But having the entire posterior distribution allows proper inference,

beyond the use of the posterior mean as a location estimate.

A similar potential problem arises with multi-step ahead forecasting. Again, the MLE

simply substitutes parameters estimates, running the variance equation sequentially to com-

pute ĥt+K , replacing r2
T+K−1 on its RHS by its forecast ĥt+K−1. In contrast, a simulation-

based Bayesian algorithm produces draws from the exact predictive density by running draws

of the future shocks and volatilities to time T +K through the volatility equation, for each

4One may decrease the repeat rate by reducing the dispersion of the proposal draws, but there may be a
risk that the entire domain is not covered properly, especially in a high-dimensional multivariate setting.
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draw of the parameters. This naturally produces the correct predictive density of future,

time T +K volatilities, that integrate out intermediate volatilities at T + 1, . . . , T +K − 1,

and parameters. See Geweke and Whiteman (2006) for discussions of Bayesian forecasting.

5.2 Stochastic volatility by MCMC

Consider the basic SV model below:

yt =
√
ht εt, (21)

log ht = α + δ log ht−1 + σvvt, t = 1, . . . , T

(εt, vt) ∼ N(0, I2).

The key difference with the GARCH model resides in the shock vt to volatility, which makes it

an unobservable latent variable; the knowledge of the parameters, unlike the GARCH model,

does not deliver the volatilities. Let ω = (α, δ, σv); the likelihood function p(y|ω) requires the

integration of the T -dimensional vector of volatilities, that is, p(y|ω) =
∫
p(y|h, ω)p(h|ω)dh.

The early literature used the method of moments to estimate the parameters, and the

Kalman filter to obtain smoothed or filtered estimates of the volatilities given the parameters.

Another approach, the quasi maximum likelihood (QML) was to approximate the SV model

by a normal-linear state space model, assuming the normality of log ε2t . The likelihood of this

approximate model could then be written in terms of the Kalman-filtered volatilities and

maximized to obtain the parameters. These methods have been shown to perform poorly,

(see Jacquier, Polson and Rossi (1994), hereafter JPR). JPR develop a Bayesian MCMC

algorithm to draw from the posterior densities of the parameters and the volatilities, as well

as the predictive densities of the future volatilities. The algorithm uses Metropolis-Hastings

independence sampling.

5.2.1 A Metropolis-Hastings independence algorithm

Given a prior for the parameters p(ω), one needs to draw from the posterior den-

sity p(ω,h|y). Consider first a Gibbs cycle of the two conditional densities, p(h|y, ω) and

p(ω|y,h). The second is a draw of the posterior distribution of regression parameters. The

prior used in JPR is the conjugate normal-gamma prior, with variances large enough to

render it flat over the relevant parameter domain (see JPR ). A simple joint draw of the

high-dimensional p(h|y, ω) is not convenient, so one further breaks it into univariate densities
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p(ht|h−t, y, ω). JPR show that, by successive applications of Bayes’s rule, it can be written

as:

p(ht|ht−1, ht+1, ω,y) ∝ p(y|ht) p(ht+1|ht, ω) p(ht|ht−1, ω),

∝ 1

h
3
2
t

exp

(
−y2

t

2ht
− (log ht − µt)2

2σ2
v/(1 + δ2)

)
. (22)

One can not draw directly from (22), but it is well approximated by an inverse gamma density.

This is the basis for a MH independence draw. Therefore, the overall MCMC algorithm cycles

through the elements of (ω, h1, . . . , hT ). One draws ht from the inverse gamma density, and

accepts the draw with the acceptance probability shown in JPR, otherwise the previous

draw is repeated. This is referred to as a single-move algorithm, because it draws the latent

variables ht one at time. Since these volatilities are correlated together, the sequence of

draws in this algorithm can exhibit high autocorrelation, especially for σv.

Large scale sampling experiments, e.g., demonstrate the behavior of the algorithm. In

repeated simulations, as the sample size increases, the Monte Carlo estimate of the posterior

mean converges to the true parameters. For example, for the parameters δ = 0.95, σv = 0.26,

and E(
√
ht) = 3.2%, JPR simulate 500 samples of T = 1500 observations, and compute the

posterior means for parameters and volatilities with 50000 draws of the algorithm. They find

that the posterior mean of δ is 0.94 on average, with a RMSE of 0.02, while that of σv is 0.279

on average with a RMSE of 0.04. Over the 750,000
√
hts of this simulation, the posterior

mean exhibits Mean Absolute Error (MAE) of 18.4%. By any standard, the posterior mean

is very close to the true value as shown by the absence of bias and the very low RMSE. We

also get an idea of the relative precision expected from the smoothed posterior mean of the

volatilities, about 18%. For a given sample size, the posterior mean is not necessarily an

unbiased estimator of the true parameter. Consequently, some Bayesians may find limited

interest in a simulation of the sampling performance of the MCMC estimate of the posterior

mean. The question here is whether the MCMC average is a good estimate of the posterior

mean. If we find that its sampling behavior exhibits bias or high RMSE, how can we know

if because of some failure of the algorithm or if we are actually seeing the sampling behavior

of the true posterior mean. Recall that the posterior mean is optimal for a quadratic loss

over the posterior distribution of the parameter, for the sample at hand.

Practically, in our case, the MCMC estimate of the posterior means do a great job of

coming close to the actual parameters, by any intuitive measure. Second, JPR show that

the sampling RMSE of the MCMC estimate of the posterior mean decreases with the sample
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size. Therefore, it reproduces the behavior expected from the posterior mean as the sample

size increases. That is, the posterior mean converges to the MLE estimate as the sample size

increases, and the MLE estimator converges to the true parameter. This is consistent with

convergence of the algorithm. Another way that sampling experiments can be used is in

comparing two algorithms in the same situation. If they both converge, they should produce

the same results over and over.

An alternative algorithm has been proposed (see Kim et al. (1998), KSC) for the

basic SV model. KSC model log ε2t , as a discrete mixture of normals, augmenting the state

space accordingly, which allows them to draw directly from the multivariate distribution of

h. While the computational burden at each draw is higher, the resulting draws are markedly

less autocorrelated, notably for σv, than for the single-move sampler. In comparing the two

algorithms, KSC and others after, misinterpret the high autocorrelation of the draws in the

single-move algorithm as slow convergence. One should not confuse a high autocorrelation

with a sign that the algorithm does not converge. It is a sign that the algorithm may

accumulate information at a slower rate than if the autocorrelations were lower. One then

takes the usual precautions to assess the number of draws needed to obtain a desired precision

for the MC estimate of, say, the posterior mean. This is done simply by computing standard

errors robust to autocorrelation (see Geweke (1992)). In fact, low autocorrelation may not

even be a sign that an algorithm has converged; it may be stuck in a region of the parameter

space while exhibiting low autocorrelation in that region. With lower autocorrelation, a

given desired precision for Monte Carlo estimates requires fewer draws, but this has to be

weighted by the required CPU time per draw. In this case, the single-move algorithm is

very fast; on a 2.8 Ghz Duo CPU, one generates 100,000 draws in 7 minutes for a sample of

T = 1500 observations.

Sampling experiments can be used to compare different algorithms, for the same model.

Jacquier and Miller (2010) show that the single and multi move algorithms. produce the

same output. Table 1 reproduces some results for 500 samples of 1500 observations of the

following SV model:

Table 1 here

These performances are nearly identical, especially for the volatilities. Jacquier and

Miller run both these algorithms on 809 days of the daily UK pound to US $ exchange rate

from January 2, 2006, to February 26, 2009. Table 2 shows the posterior analysis, where the

two models produce nearly the same inference.
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Table 2 here

Possibly, the multi-move will result in different posterior densities for the volatilities

ht? The sampling analysis in Table 1 only showed the sampling behavior of the posterior

mean of ht, what about the entire posterior distribution? Figure 2 plots the posterior mean

and the 5th and 95th quantiles of the posterior distribution of
√
ht, for both algorithms, they

are in fact identical.

Figure 2 here

To conclude, SV models estimated by single-move or multi-move MCMC can deliver,

period after period, posterior distributions of smoothed volatilities with a very satisfactory

degree of precision, such as below 17% for the posterior mean of
√
ht. Further results in

section 7.2 confirm this for an extended SV model which exploits realized volatility.

5.2.2 SV with correlated errors and fat-tailed conditional returns

This section shows how to extend the basic SV to allow for correlated return and

volatility errors, as well as fat-tailed conditional returns. We pay close attention to potential

problems arising for the design of the proposal density.

A benefit of the basic single-move algorithm is that it extends readily, without further

computing time burden, to the two most desired additional features: fat-tails in the distri-

bution of εt and correlated errors to generate the so-called leverage effect. We use Student-t

errors as with the GARCH, and we introduce a correlation ρ between εt and vt. This cor-

relation is in line with the use of SV models in option pricing theory, (see Heston (1993)).

The general SV model is:

yt =
√
htεt =

√
ht
√
λtzt, (23)

log ht = α + δ log ht−1 + σvvt, t = 1, . . . , T,

ν/λt ∼ χ2
ν ,

(zt, vt) ∼ N

(
0,

(
1 ρ

ρ 1

))
.

The shock to returns εt is modeled as a Student-t(ν) by setting a prior on λt as i.i.d. inverse

gamma, that is ν/λt ∼ χ2
ν . Explicitly modeling λt allows for a convenient simulation-based

diagnostic for each observation. The prior on ν is integer uniform, for example on [5,60], if

47



one wishes to rule out infinite conditional kurtosis. This discreteness of ν is not a problem

since it would take a huge sample to deliver precise information for intervals smaller than 1.

See Geweke (1993) for a continuous prior for ν. The parameter ω now includes (α, δ, σv, ρ).

We consider the conditional posterior distributions for the MCMC cycle:

1. p(h|ω,λ,y), where the conditioning on ν is subsumed by λ

2. p(ρ, σv|h, α, δ,λ,y)

3. p(α, δ|σv,h,λ,y) ≡ p(α, δ|σv,h)

4. p(λ, ν|h,y), where the conditioning on ω is subsumed by h

The fourth distribution is the extension for fat tails, it is straightforward and does

not increase the computing burden measurably. Given a draw of (h), the model simplifies

by considering y∗t = yt/
√
ht = λtzt. A direct draw of the posterior p(λ, ν|.) = p(λ|ν, .) p(ν|.)

can be made, where p(λ|y∗, ν, ) =
∏

t p(λt | y∗t , ν). JPR2 show that each (λt|ν, y∗t ) is a direct

draw of an inverse gamma draw, and each (ν|y∗) is a direct draw from a discrete multinomial

distribution.

The third conditional is the posterior distribution of the slope coefficients of the AR(1)

regression for log ht, conditional on the error standard deviation σv. We now consider the first

two conditionals which contain the correlated errors extension. Their implementation pro-

vides a nice example of the care required to design the proposal density for an independence

MH algorithm.

We will now see that care must be exercised in choosing the blanket of a Metropolis-

Hastings independence algorithm. Given a draw of λ, the model in (23) simplifies by consid-

ering y∗∗t = yt/
√
λt. For y∗∗, it is a SV model with correlated normal errors. The correlation

ρ is modeled via the regression of ut = σvvt on zt = yt/
√
htλt, specifically:

ut = ψzt + Ωηt, (ηt, εt) ∼ N(0, I), (24)

where ψ = ρσv and Ω = σ2
v(1 − ρ2). This reparameterization of (ρ, σv) allows direct draws

from the regression parameters (ψ,Ω|h). As the transformation is one-to-one, this yields di-

rect draws for (ρ, σv|h). Attempts to model ρ directly may require a Metropolis step, an un-

necessary complication. JPR2 show how to model the prior on ψ,Ω, so as to have the desired

prior on ρ, σv. The correlation ρ modifies the conditional posterior of (ht|y, ω, ht−1, ht+1),
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JPR2 shows that it becomes:

p(ht|ht−1, ht+1, ψ,Ω,y) ∝ 1

h
3
2

+
δψyt+1
Ω
√

ht+1

t

exp

(
−y2

t

2ht

(1 +
ψ2

Ω
)− (log ht − µt)

2

2Ω/(1 + δ2)
+
ψytut

Ω
√

ht

)
(25)

which modifies (22) for ψ 6= 0, mostly by adding a third term in the exponent.5

As with the basic model, JPR2 initially approximate and merge the first two terms

in the exponent of (25), to design an inverse gamma proposal density, denoted q1(ht). It

omits the third term in the exponent. Convergence theory, however, suggests that it should

not be lost; it will naturally be accounted for when computing the ratio (p/q) needed for

the repeat / accept probability. This should, therefore, not affect the theoretical capability

of the algorithm to produce draws with invariant distribution p; at worst, one would think

that it might affect the rate of convergence.

In fact, JPR2 report that practical convergence did not happen; q1 produced a very

inefficient algorithm that would not close in on ρ no matter how long it would run or where it

would start from. If the issue was only about the rate of convergence, it was still too severe for

us to wait for it to happen. Autocorrelations in the sequence of draws were not abnormally

high, revealing nothing pathological. Recall that a key to performance in accept/reject and

Hastings-Metropolis Hastings is how well the blanket approximates the desired posterior p.

Specifically, if the ratio p/q is unbounded, the algorithm cannot be uniformly ergodic. It

turns out that, in this model, a simple extra work on q dramatically improves performance.

JPR2 approximate ut√
ht

in (25) as a linear function in 1
ht

, which can, then, be incorporated

in the inverse gamma kernel. This yields a new proposal density, q2, also inverse gamma.

A key diagnostic tool here and for any independence HM algorithm, is a plot of p/q

for a wide range of values of ht as the algorithm evolves. Figure 3 demonstrates this for a

given ht. The right plot shows that the ratio p/q2 is much more stable than p/q1 over a wide

range of ht. The left plot, where the kernels are normalized so as to be plotted together,

shows that q2 is right over p, while q1 misses it. It is worse than q1 not approximating the

shape of p as well as q2, it is that q1 is in the wrong place. This is because the third term in

the exponent of (25) often does not not have a mode; so it modifies the distribution kernel

in the first two terms by shifting them. For independence MH algorithms, one should make

sure that the ratio p/q is stable, specifically that it is not unbounded (see Mengersen and

Tweedie (1994)).

5ρ is the contemporaneous correlation between εt and vt. It implies that E(yt) 6= 0; however, the effect
is small. Alternatively, ρ can be defined as Cor(εt, vt+1), with a minor modification of (25).
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Figure 3 here

5.2.3 Volatility predictions for different models

The literature is replete with simulation studies documenting parameter estimation.

This is a good first step, but we especially interested in the volatility densities produced

by different models, especially future volatilities. Volatility forecasts are vehicles for risk

management and option pricing. Do different models produce different forecasts, and in

what circumstances? Bayesian MCMC algorithms deliver the marginal posterior density of

the vector in-sample volatilities h. One draws the predictive densities of future volatilities,

by simply drawing the future shocks vT+ks, and using the AR(1) equation to obtain the

future hT+ks, for each draw of (h, ω).

While the posterior odds (see below) provide one summary diagnostic, we can use

these posterior and predictive densities to compare the outputs of competing models. In

this case, we want to know whether differences between the models matter in their economic

magnitudes. For the weekly US NYSE index return, JPR2 estimate SV models, basic, with

correlated errors, with fat tails, and with both. A first important question is if and when

these models produce different posterior densities for volatilities, we concentrate here on the

posterior means. Figure 4, left-hand plot, shows the ratio of posterior means of ht produced

by the Fat-tail and basic SV models, E(ht,Fat)/E(ht,basic) versus the posterior mean of the

mixing variable,
√
E(λt). It clearly matters what model we choose. The model allowing for

fat-tails predicts markedly lower volatilities, especially for a number of observations where

it estimates larger lambdas.

Figure 4 here

Consider now adding correlated errors to the SV models with fat-tails. The posterior

mean of ρ for these data is −0.4. Figure 4, right-hand side, plots the ratio of posterior

means of ht for the full versus the fat-tailed model versus the posterior mean of εt (for

the full model). Again, the choice of model appears to matter greatly. Observations with

negative εt have larger volatility. The average ratio on the vertical axis is 1.09 for the first

decile of ε, and only 0.9 for the tenth decile (right tail), a 20% difference.

Return to the fat tails; does it matter if, as Figure 4 shows, the model with fat-

tails allocates some of the ht into λt? The top plot in Figure 5 shows the daily change in

UKPound/$ in 1985. An agent can implement the basic or the fat-tailed model. The thick
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line in the middle plot shows E(
√
ht) for the basic model, the dashed line shows E(

√
ht) for

the fat-tailed model. The ragged line is E(
√
htλt), it shows that λt is far more than just a

device to implement the Student-t errors. The model allocates a large λt to mostly the days

that have a high ht under the basic model. Then, the fat-tailed model will predict lower

future volatility than the basic model, because λt does not have any persistence. These high

volatility days are those when getting the best possible volatility prediction is crucial for a

risk manager. The bottom plot shows out-of-sample forecasts originating from September

23rd confirms this intuition. The two models can make very different volatility predictions,

especially high volatility days with high volatility.

Figure 5 here

5.2.4 The cost of a model

The loss function approach allows an agent to summarize the cost of making the

wrong decision. Our purpose here is illustrative, possibly more than normative, because

with actual data, even the best inference will rarely lead to certainty as to the right and

wrong models. Therefore, the reader should see the sections of the chapter, where we discuss

model averaging.

Consider an investor with quadratic loss, the posterior mean is an optimal location

estimate on the posterior distribution because it minimizes expected loss. This decision

theoretic aspect can also be used for model choice, whereby the agent computes the expected

loss of choosing each model. For J models Mj with posterior probabilities p(Mj|.), the

expected loss of model or decision i is:

EL(Mi|.) =
∑
j

L(Mi|Mj)p(Mj|.), (26)

One can take L(Mi|Mi) to be zero, which is a way write L(Mi|Mj) as the incremental loss of

using model i if j is true. The losses could for example be the RMSE of variance estimation.

If the models are mutually exclusive, then one chooses the model with the lowest expected

loss. Posterior model odds ratios, normalized, are the weights that allow us to compute the

expected loss. Recall that when models can be combined without added complexity, the

odds ratios can be used as weights to determine the optimal combination of models, as seen

above with Avramov (2002).

It is however interesting to compare the models along the loss function in (26). Con-
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sider an agent contemplating incorporating fat-tails to a basic SV model. She wonders what

penalty may result from omitting to incorporate fat-tails when they are present in the data,

or from unnecessarily incorporating them if they are not needed. Specifically, JPR (2004)

simulate 500 samples of T = 1000 observations from the basic SV and 500 from the SV with

fat tails. They then estimate both models on each sample. The loss function used is the

RMSE and % MAE of variance estimation. Table 3 shows that the cost of unnecessarily

extending the model with fat-tails is lower than that of omitting them when they should

be used. First, both models fit st with equal success, in terms of RMSE or %MAE of their

posterior means. If the data originate from the basic SV model, inference from the fat-tailed

model is not affected as it correctly allocates very little volatility to the λt’s. However, if

the data originate from the fat-tailed model, inference from the basic SV model is seriously

hampered by the fact that it lumps λt and ht into its view of ht. The third column in Table

3 shows that problem becomes quite severe on days when there was a large λt; while using

the SV model results in a 24% MAE for
√
ht, compared to 31% for the basic model. Such

errors will transfer into volatility forecasts, as was seen in Figure 5.

Table 3 here

5.2.5 Computing odds ratios directly from the MCMC output

Posterior odds ratios allow a convenient ranking of multiple competing models. Nor-

malized as model probabilities, they can be used to design an optimal model combination.

Posterior odds ratios are based upon the marginal likelihood of the data for each model. For

a model M0, we have:

p(y|M0) =

∫
p(y|θ0,M0) p(θ0|M0) dθ0.

This marginal likelihood can be a source of computational difficulties, for any reasonably

complex model, it does not have an analytical integral. In addition, with latent variables

as h, even the conditional likelihood p(y|θ0,M0) itself does not have an analytical integral.

Therefore, as much as possible, one should avoid computing this integral directly. Note also

that the integral in the marginal likelihood requires proper priors. For the SV class of models,

Jacquier and Polson (2000) follow Newton and Raftery (1994), and show how to compute

the odds ratios directly from the MCMC posterior output of (h, ω,λ, ν|y), without resorting

to a direct evaluation of the marginal likelihood. They use the Savage density ratio method

for an odds ratio on correlated errors, and Student’s formula for an odds ratio on fat-tailed

errors. Quantities are computed at each iteration of the MCMC posterior simulator, their
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Monte Carlo average delivers the odds ratios. This is fast because the posterior draws are

already available from the posterior parameter and volatility sampler. We now review this

methodology.

Odds for correlated errors

In the SV model with correlated errors, the density of ρ follows by direct draw from

that of ψ,Ω. Posterior analysis is intuitive, especially since we can formulate a very flat,

but proper, prior for ρ. Since the basic SV, where ρ = 0, is nested in the correlated errors

SV, we can use the efficient Savage density ratio method ( see Dickey (1971)). Consider two

models M1: (φ, ω) and M0: ω = ω0. If p1(φ|ω = ω0) = p0(φ), then:

BF0/1 =
p1(ω0|y)

p1(ω0)
.

The computation is done under the nesting model, and only requires ordinates of the posterior

and prior densities of the parameter being restricted. If the posterior ordinate of p1(ω) at

ω0 is larger than the prior ordinate, the Bayes factor favors the restricted model.

The ratio requires the exact ordinates, so that it can’t be applied to parameters drawn

by Metropolis for which we only know the kernel of the density. This is another reason why

algorithms that do not draw ρ or ν directly would be problematic. JPR (2004) use the Savage

density ratio method on ψ, the slope coefficient in the regression (24). We have ψ = 0 for

the basic SV model denoted B, the correlated model is denoted C, and the Bayes factor is

the ratio of ordinates:

BFB|C
pC(ψ = 0|y)

pC(ψ = 0)
.

The marginal posterior ordinate pC(ψ = 0|y) is obtained by integrating out all the other

parameters and state variables. The density of ψ conditional on the other parameters is

normally distributed, the slope of a regression; Ω can be integrated analytically, which

yields a Student-t for pC(ψ|h, α, δ,y). The integration of the other parameters is done by

averaging the Student-t ordinate over the draws of the MCMC sampler. The Bayes factor

can be approximated by

B̂FB/C =
Γ(ν0+T

2
)Γ(ν0

2
)

Γ(ν0+T−1
2

)Γ(ν0+1
2

)

1

G

G∑
g=1

√√√√ 1 + a
(g)
11 /p0

1 + a
(g)
22.1/ν0t20

[
1 +

ψ̃2

ν1t21/p1

(g)
]− ν0+T

2

, (27)

where a11 and a22.1, vary with the parameter draw (g) (see JPR2 for details). Note the
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averaging over the G draws of the MCMC sampler. The odds ratio only requires computing

and cumulating the quantity on the right of the summation sign at each iteration of the

sampler.

Odds for normal versus fat-tailed errors

The posterior for ν is not an convenient vehicle for a formal odds ratio between the

SV models with fat-tailed and normal errors. Since ν has a finite upper bound in JPR

2, ν ∈ [5, 60], the model with fat-tailed errors does not nest the one with normal errors.

The fat-tail model could nest the basic model with Geweke’s (1994) parameterization in

1/ν; however, another condition necessary to the application of the Savage density ratio,

0 < p(ω = ω0|D), would not be met, because the posterior goes to zero as 1/ν → 0.

The following method helps circumvent the direct computation of the marginal like-

lihood. By Bayes theorem, with simple rearrangement of terms, the marginal likelihood for

model M1 can be written as:

p1(y) =
p1(y|ω, ψ)p1(ω, ψ)

p1(ω, ψ|y)
. (28)

This holds for any (ω, ψ) in the parameter space and is known as Student’s formula, (see

Besag (1989)). Chib (1995) proposes to use (28) directly to compute the marginal likelihood,

by averaging the right-hand side over the Monte-Carlo draws. It might be computationally

unstable as it involves a high-dimension likelihood. Jacquier and Polson (2000) show instead

that (28) can be incorporated into the computation of the Bayes factor, as follows:

BF0|1 =

∫
p0(y|ω)p0(ω)dω

p1(y)
=

∫ [∫
p0(y|ω)p0(ω)dω

p1(y)

]
p1(ψ)dψ

=

∫ ∫
p0(y|ω)p0(ω)

p1(y|ω, ψ)p1(ω|ψ)
p1(ω, ψ|y)dψdω,

which is:

BF0|1 = Eω,ψ|y

[
p0(y|ω)

p1(y|ω, ψ)

p0(ω)

p1(ω|ψ)

]
. (29)

The expectation is taken with respect to the posterior draws of ω, ψ in the larger model.

In this general formulation, the domain for ψ in the larger model does not need to contain

the values which represent the smaller model. For example, a SV model with Student-t

errors with fixed degrees of freedom can be compared with the basic SV model, even though

the latter corresponds to infinite degrees of freedom. Jacquier and Polson (2000) and JPR2
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apply (29) to compute the Bayes factor for the fat-tailed versus the basic SV model:

BFB|F = Eθ,ν

[
pB(y|θ) pB(θ)

pF (y|θ, ν) pF(θ|ν)

]
,

where θ = (α, δ, σv,h), and E refers to the expectation over the joint posterior of (θ, ν)

in the fat-tailed model. The choice of priors allows to further simplify the result; with ν

is independent from the other parameters, we have pF (θ|ν) = pF (θ), and pF (θ) = pB(θ).

Therefore, the Bayes factor is only the ratio:

BFB|F = E

[
pB(y|θ)
pF (y|θ, ν)

]
. (30)

Given a MCMC sample {θg, νg}Gg=1 from the joint posterior p1(θ, ν|y), a Monte Carlo estimate

of (30) is:

B̂FB|F =
1

G

G∑
g=1

pB(y|θ(g))

pF (y|θ(g), ν(g))
. (31)

Under MB, yt ∼
√
htN(0, 1), and under MF , yt ∼

√
ht Student-t(ν). Because we condition

on h, the likelihoods in the Bayes factors (30) are simple products of independent univariate

densities. Since we only need a ratio of likelihoods conditional on the parameters at every

draw, and not the likelihood of each model, their magnitude does not cause computational

problems.

Further, (30) easily extends to the computation of BFC|FC , the Bayes factor of the

model with correlated errors over the full model. A draw of (α, δ, σv,h), implies a draw for

all vts. In the presence of correlation, it also provides information on the εts, specifically,

εt|vt ∼ N(ρvt, 1 − ρ2). One, therefore, extends (30) to the computation of BFC|CF , by

replacing yt with y∗t = (yt − ρvt)/
√

1− ρ2.

Empirical results

JPR (2004) apply this method to compute odds ratios among the models for a number

of financial series. They report odds that largely favor the general SV model with fat tails

and correlated errors against the basic SV, for all stock indices and most exchange rates.

For all exchange rates but the Canadian to US one, the odds, between 3 and 10 to one,

moderately favor the model with fat-tailed errors for weekly data. For daily data, the odds

overwhelmingly favor the fat-tailed errors. For most indices, the odds very strongly favor

the model with correlated errors. The full model is overwhelmingly favored to the basic SV
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model for all indices and exchange rates.

We report here some additional results on the leverage effect, contrasting indices and

individual stocks. Table 4 shows the posterior means of ν and ρ for the full model, and the

Bayes factors. For individual stocks, the posterior distributions of ρ are centered very close to

0. The odds ratios moderately favor the models with no correlation. Yet, JPR (2004) report

strong odds in favor of correlated errors for all the indices studied. The last row in Table

4 estimates the SV models and odds ratios for a portfolio of the 10 stocks above. There is

now a negative correlation, and the odds ratio is in favor of the correlated errors. However,

leverage can not be the cause for this effect since it does not appear with the individual

stocks that exhibit as much variation in leverage as the portfolio. It is sometimes proposed

that the correlation ρ can be driven by a small number of exceptional days in the sample.

October 17th, 1987, comes to mind. The last column of table 4 shows the Bayes factors for

the 1989-1998 period. The result is opposite from what is expected. Again, the odds are

moderately against the correlated model for most stocks; however, they very strongly favor

the correlated model for the portfolio, in fact, far more strongly than for the period that

contains October 19.

Table 4 here

The hypothesis, of volatility feedback, often advanced as an alternative to the leverage

effect, could not either affect portfolios but not the stocks that constitute these portfolios.

The negative correlation between return and volatility shocks of indices must be the result

of a portfolio effect; arising from a time-variation in the correlation matrix of the stocks. A

two-regime model for the correlation matrix of individual stock returns could be a fruitful

avenue of research.

5.3 Estimating continuous time models

The theoretical option-pricing literature uses continuous-time processes, mainly be-

cause of their ability to produce tractable option-pricing models. Data are however observed

at discrete times. To estimate a continuous-time model from discrete data, one uses its

Euler discretization, which approximates the continuous trajectory of the process into a dis-

crete one between the successive data intervals. For example, the following continuous-time

constant elasticity of variance (CEV) model of the short rate:

dYt = (θ + κYt)dt+ σY β
t dwt,
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is approximated by the discrete time process:

Yt = θ + (1 + κ)Yt−1 + σY β
t−1wt, wt ∼ N(0, 1).

This introduces a bias in the drift and diffusion parameters. We now discuss Bayesian meth-

ods that alleviate this discretization bias. Eraker (2001) concentrates on the specification

of the diffusion process; Jones (2003a) develops independently a very similar technique, and

studies the specification of the drift of the short-term rate.

The discretization bias disappears as the time between observations becomes shorter.

This is the motivation for the Bayesian approach in Eraker (2001). He introduces m − 1

missing data between each observation. Consider the process Yi = (Xi, Zi), where Xi is

observed every m periods and Zi can be a latent variable such as stochastic volatility; both

X and Y can be multidimensional. If we knew the missing data, the discretization bias

would be diminished as we would be converging to continuous time. Given these missing

data, denoted X̂, the model is a standard discrete time model. Posterior analysis can be

conducted with known Bayesian techniques; that is, we can draw from p(θ|Ŷ ), where θ is

the vector of parameters.

The final intuition comes from Gibbs sampling: if we can draw from the missing

data given θ and the observed data X, we have a complete model to improve upon the

discretization bias. Eraker (2001) shows how to do this for the CEV or stochastic volatility

models. His method also applies to other processes. Let Ŷi be the time i element of the

matrix Ŷ , where Xi is observed or is a missing value X̂i . Given a draw of θ, Eraker updates

Ŷi sequentially, drawing from p(Ŷi|Ŷi−1, Ŷi+1, θ) for i ∈ [1, . . . ,mT ]. Of course one does not

update the observed values. By Bayes theorem, this update is shown to be:

p(Ŷi|Ŷi−1, Ŷi+1, θ) ∝ p(Ŷi|Ŷi−1, θ) p(Ŷi+1|Ŷi, θ) (32)

Both conditional discretized densities on the right hand side are simple Gaussians given

θ. Eraker characterizes (32) for a number of underlying processes. For constant drift and

diffusion, we obtain Ŷi ∼ N(1
2
(Ŷi−1 + Ŷi+1), 1

2
σ2

m
), from which one can draw directly. For

other processes, Eraker uses this density as the proposal for a Metropolis-Hastings draw.

As the number of missing data increases, one converges to the continuous time model,

however as one converges to continuous time, the MCMC algorithm slows down due to the

larger number of observations. Eraker (2001) shows by simulation that the algorithm still

works fairly well even with 20 filled in data. For actual data, posterior densities stabilize
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quickly as one keeps filling in missing data. Eraker (2001) estimates a CEV model with 2288

weekly T=bill yields from 1954 to 1997. He finds that the three parameter posterior densities

are unchanged after filling-in 4 missing data between each observed data. Remarkably, his

posterior mean for the CEV parameter is 0.76. He then estimates a SV model with CEV,

and again, the parameter posterior densities only require 4 filled-in data to stabilize. An

estimation with 8 filled-in data does not show any change in the posteriors. See also Elerian

et al. (2001) who study the diffusion case.

Jones (2003a), with a very similar approach, estimates the drift of a continuous time

model for the short rate. He also finds that posterior distributions stabilize after the intro-

duction of a few missing data. His posterior characterization of the drift is very different

from that obtained with maximum likelihood analysis.

He incorporates this approach in Jones (2003b), where he examines the ability of gen-

eralized CEV models of stochastic volatility to generate the needed features of the conditional

returns distribution in periods of high variance. An interesting feature of Jones (2003b) is

that he incorporates the information on volatility contained in option prices. First, he notes

that expected average variance over the remaining life of an option is approximately linear

in current variance for the processes used: EQ[Vt,T ] ≈ A + BVt. The coefficients A,B are

known parametric functions of the variance process and the price of volatility risk. Second,

he notes that Black-Scholes implied volatility is a proxy for EQ[Vt,T ], the better when the

option is close to the money. He, therefore, incorporates into the modeling the following

link:

IVt = A+BVt + εt, εt ∼ N(0, ξ2V 2
t ),

where IVt is obtained from the VIX index. The ensuing MCMC algorithm requires a non-

trivial draw for most blocks, because the posterior distributions are complicated by the link

between implied and current volatilities, and the fact that A,B are non-linear functions of

the process parameters. This is, however, an interesting way to bring in information from the

option prices into the estimation of the volatility process, without estimating option prices

themselves.

5.4 Jumps

Chib, Nardari, Shephard (2002) model an additive jump process in the returns equa-

tion of the discrete time SV model. This can be seen as an alternative to the fat-tailed

conditional returns seen in section 5.2.2.
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Eraker et al. (2003), hereafter EJP, compare SV models with additive jump com-

ponents in both the returns and variance equations. They discretize the continuous time

models for daily US index returns, and do not implement the improvement discussed in

section 5.3, making the case that the discretization bias is small for these daily returns. EJP

start from existing results in the literature, that show how SV models with jumps in returns

do not account well for the features of historical returns or option prices. They argue that

jumps in volatility create a dynamic for both returns and volatility that is far different from

added diffusion factors or jumps in returns. EJP consider several models nested within the

general (discretized) specification:

Rt+1 = µ+
√
Vtε

r
t+1 + ξrt+1J

r
t+1

Vt+1 = κθ + (1− κ)Vt + σvε
v
t+1 + ξvt+1J

v
t+1

The jump density is modeled as Jtξt, where a jump occurs when Jt = 1. The jump intensities

are λr, λv. Relative to the SV model, the parameter domain is extended to the vectors of

jump states Jv, Jr and the jump intensity parameters λr, λv. EJP distinguish the following

nested models: SV is the basic stochastic volatility model; SVJ adds the jumps in returns

ξr ∼ N(µr, σr); SVJC allows for correlated jumps; ξv ∼ exp(µv) for volatility; and ξr|ξv ∼
N(µr + ρJξ

v, σ2
r) for returns. In SVIJ, the jumps are independent.

Bayesian inference allows the use of priors to impose constraints on the parameter

space, without which the likelihood could be unbounded. The useful priors are those of jump

size, intensity, and volatility. Here the prior is used to model large and rare movements in

returns, with a low λr and a large σr. EJP’s prior places low probability of jump standard

deviation below 1%, and on more than a 10% chance of a daily jump. The priors of the

other parameters are left uninformative. The MCMC algorithm draws iteratively from the

following blocks of the posterior density of parameters and state variables:

1 parameters: p(θi|θ−i, J, ξ, V, R) i = 1, .., K

2 jump times: p(Jt = 1|θ, ξ, V, R), t = 1, .., T

3 jump sizes: p(ξr|θ, ξv, J, V, R)

: p(ξr|θ, ξv, J, V, R)

4 volatilities: p(V |θ, J, ξ, R)

Blocks 1, 2, 3, the extensions of the basic SV model, can be drawn directly. The ability

to analyze models of this level of complexity testifies to the flexibility of the hierarchical
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formulation used together with Bayesian MCMC methods. If there are concerns that the

data may contain little information about some features of such a complex model, recall that

the posterior draws will reflect simply reflect this uncertainty. This is in contrast with the

potential computational difficulties in attempting to numerically maximize the likelihood

(unavailable analytically) of such a model. See Jacquier et al. (2007) for a maximum

likelihood approach that exploits the simplicity of the Bayesian MCMC algorithm.

EJP also compute odds ratios for the various jump extensions. They avoid the com-

putation of the marginal likelihood, which is not readily available for these complex models.

Instead, they are able to rewrite the odds ratios in terms of posterior quantities. For exam-

ple, the odds ratio of SVJ versus SV is a function of the probability that the entire vector of

jumps J is equal to zero. The MCMC posterior simulator draws from this known probability,

(block 2 above). The odds ratios therefore, involves only a minor additional computation

at each step of the MCMC simulator. This extension of the Savage density ratio method is

possible because the conditional density of the vectors Jr, Jv is available analytically. For

the daily NASDAQ 100 and SP500, the Bayes factors show that the data strongly favor

jumps in the volatility rather than in the return equations.

5.5 Estimating covariance matrices and betas

5.5.1 Modeling the covariance matrix

Even when it is not time varying, the estimation of the covariance matrix of a large

vector of stock returns poses serious problems. It is full rank mathematically as long as the

number of periods T is equal to or larger than N ; however, it takes a sample far larger than N

to obtain sufficient information on, for instance, the smallest Eigen value. Optimal portfolio

weights are often functions of the inverse of the covariance matrix; therefore, in small sample,

a lot of uncertainty on the smaller Eigen value will result in possible instability for the inverse

of the matrix, in turn, affecting the optimal portfolio weights.

The factor model is a unique way to reduce dimensionality. It is also tightly related to

finance modeling, e.g., the APT. When factors are latent, Gibbs sampling makes it possible

to draw the factors and their loadings, as shown in Geweke and Zhou (1995). The constraint

is effective when the residual covariance matrix is assumed to be diagonal. The factor model

is a very effective way to constrain the covariance matrix since it replaces N(N + 1)/2

parameters by K(K + 1)/2 + (N + 1)K. Aguilar and West (2000) implement an algorithm,

suggested in Jacquier et al. (1995), that extends the factor model to allow for stochastic
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volatility in the factors. See also Chib et al. (2006) for discussions of multivariate SV

algorithms.

Another approach is the variance / correlation decomposition, where the covariance

matrix is written as D0.5CD0.5, (see Barnard et al. (2000) and Engle’s (2000) DCC ). The

individual variances in D can follow univariate GARCH or SV models. The correlation

matrix can then be modeled separately from the variances, perhaps with regimes. Regime

switching models are conveniently estimated by Bayesian methods, most of the time requiring

no more than direct Gibbs draws. See McCulloch and Tsay (1993) and Ghysels et al. (1998)

for Bayesian estimation of univariate switching models in means and variances.

5.5.2 Modeling betas

Recall the factor model from the APT section. Geweke and Zhou (1996), Mc Culloch

and Rossi (1990, 1991), and many others, assume that B, the matrix of factor loadings, is

constant. It may, indeed, be too much to ask from the data, in latent variables models, to

deliver precise inference on both time-varying betas and factor scores.

In many cases, however, the factors are considered observable, and it may become

practical to allow for time-varing betas. In fact, modern intertemporal asset-pricing models

imply that betas time vary and are related to economy-wide or firm-specific state variables.

Empirical work has so far mostly used basic rolling window filters to estimate betas. Also,

even if one maintains that firm betas are constant, this assumption may be less tenable if

one studies managed portfolios. Finally, with very few observable factors, time-varying βs

may provide a more flexible specification for a time-varying covariance matrix. Jostova and

Philipov (2005) use a MCMC algorithm to draw the betas, considered as unobservable latent

state variables.

Cosemans et al. (2009) design a Bayesian estimator of β’s that combines the cross-

section and the time series. Within this framework they show that the fit is improved by

the cross-section, and the resulting out-of-sample forecasts improve portfolio performance.

Cosemans et al. is a very interesting example where the simultaneous use of the time-series

and the cross-section yields predictive improvements. Their criterion is economic-based, as

they assess competing models through their impact on optimal portfolio design.
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6 Bayesian Inference in Option Pricing

Option prices depend on a number of factors. Some are known, such as the strike

price and the time to maturity, and some are assumed to be known in most models, e.g.,

interest rates, future dividend yields. Volatility, assumed to be known to the investor in

the Black-Scholes and other earlier models, is unknown to the econometrician. Volatility

over the remaining life of the option is assumed to be unknown to the investor in most

modern models. Modeling the uncertainty in volatility is, therefore, a crucial aspect of the

econometrics option pricing.

Econometric methods in option pricing take three main approaches. First, one can

obtain information from the historical return process and use it to infer the option price; the

likelihood comes from the historical return and variance process. Second, one can use option

prices to draw inference directly on the risk-neutral process. In this case, the likelihood is

formed from the pricing errors. This approach generally uses panels of options spanning a

range of moneyness and maturity. A third segment of the literature attempts to combine the

historical and pricing information in the likelihood. In this case, it is generally assumed that

the historical and risk-neutral processes, of volatility for example, are of the same family,

differing only by a drift shift due to the price of volatility risk.

Another strategic choice to be made is how to compute the option price itself. A

relatively easily computed, semi-analytical option-pricing formula may be available, based

on the model parameters, in the simpler cases, for example with deterministic volatility. In

the more complex cases, the flexibility of the Monte Carlo method pays off. It extends the

risk-neutral pricing methodology where the option price of a call of maturity T and exercise

price K is:

CT = e−rf (T−t)EQ
t [Max(ST −K, 0)] (33)

where rf is the appropriate risk free rate, and EQ is the risk-neutral expectation (see Cox and

Ross (1976)). For example, one simulates from the predictive density of the state variables,

such as volatility, until maturity, each time computing the option payoff at maturity. The

average of these discounted payoffs is the Monte Carlo estimate of the option price. This

approach is generally referred to as predictive option pricing. This predictive approach is

more effective for the latter class of option pricing models, especially with stochastic volatility

or jumps. The Bayesian implementation of (33) naturally incorporate in the predictive draws

the posterior uncertainty on the parameter. This is in contrast with a conditional predictive

implementation of (33) which would condition on a value of the parameters.
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6.1 Likelihood based on underlying return only

Early empirical practice has been to substitute point estimates of σ, either historical or

implied, into the Black-Scholes formula. However, even the simplest option pricing model is

a non-linear function of σ. Due to the non-linearity and the uncertainty in σ, the substitution

of a point estimate into the option formula may lead to biases, in addition to failing to reflect

the effect of the uncertainty of σ on the price. Karolyi (1993), the first Bayesian empirical

option paper, addresses both issues. It adopts an empirical Bayes approach to reduce the

uncertainty in σi, which is estimated from the history of the underlying stock return Ri,

itself assumed to be log-normally distributed (µ, σi) in the model. Precision comes from

cross-sectional shrinkage: Karolyi chooses a common conjugate prior for σi with location

parameter τ and dispersion parameter ν, (see Zellner (1971) appendix B). This yields the

posterior density for σi given the history of underlying returns Ri:

p(σi|Ri) ∝
(

1

σ2
i

) νi+ν+2

2
+1

exp

(
−νis

2
i + ντ

2σ2
i

)
,

where νi = Ti−1, Ti is the sample size for the returns of asset i, and νis
2
i is the sum of squared

deviations of the Ri’s from their sample mean. He obtains τ by the method of moments,

where τ is essentially an average of the individual sample variances. Given τ , he assumes

that the individual returns series Ri’s are uncorrelated, and obtains ν by maximizing the

log-likelihood logL(ν, τ). It can be seen that ν increases as the cross-sectional dispersion

of the sample estimates of variance s2
i decreases. Here, empirical Bayes is used to obtain

tighter posterior densities for the σi’s by shrinkage.

Karolyi then makes points out that substituting a point estimate of σi into the Black-

Scholes formula is inappropriate. He computes the Black-Scholes price as the expectation

of Black-Scholes prices over the posterior density of σi, using the Monte Carlo average of

the draws as the Black-Scholes estimate. This approach takes into account the non-linearity

of the Black-Scholes formula with respect to σ. Note that Karolyi’s approach is consistent

with a model with stochastic volatility and no premium for volatility risk. In such a case,

the option price can be shown to be the expectation of the Black-Scholes price over the

distribution of unknown volatility, (see Hull and White (1987)). Volatility is stochastic for

Karolyi because he only observes its posterior distribution.

This Bayesian Monte-Carlo approach extends to draw from the predictive density of

volatility over the maturity horizon of the option, for more general option pricing models. In

fact, in Hull and White (1987), volatility follows an AR(1). A Bayesian implementation by
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MCMC will make posterior draws of the model parameters and in-sample volatilities, and

will, for each draw, make a predictive draw of volatility up to the maturity of the option.

Each draw will then yield a corresponding draw of the option price. The MCMC estimate

of the Hull and White price is the average of these draws. The method generalizes to the

Heston (1993) model where volatility and return shocks are correlated. In that case, one

needs to make joint draws of future returns and volatilities, which is a minor increase in

complexity of the algorithm. The option price computed for each draw makes use of the

final underlying asset value for each MC draw.

6.2 Risk-neutral predictive option pricing

When the option-pricing model has a non-zero price of volatility risk, the predictive

method must take this into account, by simulating from the risk-neutral predictive density

rather than the historical-based density. Bauwens and Lubrano (2002), hereafter BL, price

options with risk-neutral GARCH volatility forecasts. Their risk-neutral process is given by:

rt = rf + vt; vt ∼ N(0, ht), (34)

ht = ω + α(vt−1 − µt−1 + rf )
2 + βht−1,

where returns earn the risk-free rate rf . Consequently, the squared error in the GARCH

equation is modified. BL use µt = µ+ρrt−1 for the historical return conditional expectation.

It is important to note that this risk-neutral process, while theoretically motivated, will not

be estimated through option prices, but from the historical returns.

The starting point in BL’s analysis is a Bayesian estimation of GARCH models from

returns data, (see also section 5.1 in this chapter). They report that the posterior means of

the GARCH parameters imply considerably less persistence than the ML estimates. Being

closer to the boundary of the parameter space, the ML estimates, especially their standard

errors, are unreliable.

BL implement a Bayesian predictive pricing as per (33). For a maturity of K, this

requires drawing returns rt+k ∼ N(r, ω + α(rt+k−1 − µt−1) + βht+k−1), and computing the

GARCH risk-neutral volatility ht+k, for k ∈ [1, K]. These draws of the compounded returns

yield prices at maturity that allow the computation of a Monte Carlo estimate of (33). BL

make the important point that the convergence of the Monte Carlo estimate to the price

occurs if the returns process is stationary; draws in the non-stationary region must, therefore,

be rejected. In the GARCH analysis, such draws occur about 2% of the time.
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The Bayesian implementation of (33) allows for the integration of parameter uncer-

tainty because each new predictive draw is made given a new draw of the posterior distri-

bution of the parameters, here (ρ, α, β, µ). This is in contrast with alternative approaches

that would condition on a point estimate of the parameters. BL make N posterior draws

and M predictive draws for each posterior draw. They justify it by the computational cost

of a posterior relative to a predictive draw. However, with the computational power now

available, one can as well set M = 1 and N large (see Geweke (1989)).

There is, however, a distinction between posterior and predictive draws. As per most

models, the agent is assumed to know the parameters of the volatility process. Consequently,

the N predictive draws reflect the Monte Carlo implementation of (33), but not an uncer-

tainty about the option price. The price is the expectation of the payoff along this predictive

density. The only use of the spread of these N predictive draws would be to make sure that

the Monte Carlo estimate has the desired precision. In contrast, the econometrician does not

know the parameters, and draws from the predictive density by mixing the posterior draws

of the parameters. Due to the posterior uncertainty, the econometrician faces an option price

uncertainty, which she could want to document. Then, setting M > 1, finding the option

price by Monte-Carlo averaging over N predictive draws for each posterior draw, would allow

one to characterize the posterior uncertainty.

Eraker et al. (2003), discussed in section 5.4, decompose the uncertainty on simu-

lated option prices into their predictive and posterior component, but in a different manner.

They characterize posterior uncertainty by conditioning the draws on the mean of predictive

volatility, and volatility uncertainty by conditioning the draws on the posterior mean of the

parameters. Their Figure 8 shows that parameter uncertainty has the largest impact for the

longer term options, and for extreme moneyness in shorter term options.

6.3 Likelihood based upon pricing errors

6.3.1 Deterministic volatility functions

In the Black-Scholes model, the return standard deviation σ is assumed to be constant,

and is known to the investor, who observes prices in continuous time. The theoretical price

is obtained by a no-arbitrage argument, whereby the option can be exactly replicated, in

continuous time, by a hedge portfolio of the underlying asset and a riskless bill. A family

of extensions of the Black-Scholes model allow σ to vary as a deterministic function of the

underlying price. This preserves the possibility of forming a hedge portfolio, since σ is still
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perfectly predictable conditional on the underlying asset price. These are still pure no-

arbitrage option pricing models, where any deviation between model and market price can

only be an arbitrage possibility. For example, Rubinstein (1995) shows how to fit flexible

deterministic volatility functions of the stock price σ = f(S) to panels of options, with trees,

in a manner consistent with no-arbitrage. This is, however, viewed as over-fitting by the

econometrician; using this method, Dumas et al. (1998) report large out-of-sample pricing

errors contrasting with quasi-perfect in-sample fit.

One clearly needs to explicitly allow for model error to obtain a likelihood function

from option price data. This is done in Jacquier and Jarrow (2000) for the Black-Scholes

model and its deterministic extensions. The pricing error yields the likelihood function and,

in turn the posterior distribution of option parameters and prices. Jacquier and Jarrow

model option prices as:

logCi = β1 log bi(x1i, σ) + β2x2i + ηi, ηi ∼ N(0, ση), (35)

where (x1, x2) are known data including the stock price. The prior density for σ comes

from the historical data observed prior to the panel of options. It, therefore, incorporates

information from the historical returns, but not in the likelihood function. The logarithm

formulation eliminates the potential for negative prices while keeping a tractable likelihood.

Jacquier and Jarrow produce the posterior densities of β1, β2, σ, ση, where ση is the

standard deviation of the pricing error. They break down the joint posterior density into

two Gibbs steps. First, one draws directly from p(β, ση|σ,C), as (35) is a linear regression

given σ. Second, p(σ|β, ση) is obtained by a univariate Hastings Metropolis step, using a

truncated normal as proposal density. Jacquier and Jarrow implement the model on panels

of individual US stock options.

The results show that the econometric specification has a great impact, in a way the

model itself can not suggest. Allowing for heteroskedasticity in the error ηi greatly improves

the pricing performance. Unlike the calibration methods used in Dumas et al., the likelihood

based approach allows the econometrician to assess in-sample potential problems with the

model and its implementation. The posterior distributions of ση, β2 give clear warning of

the potential ineffectiveness of the extensions as the dimension of x2 increases. As more

variables are added in x2, the posterior mean of ση decreases for out-of-the money options,

but does not improve for the other options. At the same time, the spread of the posterior

distribution of the other parameters (β, σ) increases drastically.

A joint draw from the parameters yields a draw for the model price, model prediction,
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and hedge ratio. The uncertainty in prices and hedge ratios increases with the model size

and becomes quite large. Consequently, even before engaging into prediction, the Bayesian

econometrician knows that the larger models may not be effective. Having introduced pricing

error, the econometrician faces an uncertain option price, which is at odds with the theoretical

foundation of the model. We do not address this tension, the resolution of which goes well

beyond the scope of this chapter. It involves theoretical modeling, no doubt resulting in a

model more complex than the one being implemented. From the econometric viewpoint, we

believe that the benefit of incorporating the imperfection of the model at hand far outweighs

the cost of the contradiction with the model being implemented.

Jacquier and Jarrow then show that the out-of-sample performance of the extended

models is not superior to the basic Black-Scholes model. However, the decrease in perfor-

mance from in- to out-of sample is not catastrophic as in Dumas et al. This is because, in

contrast to the fitting criteria used in Dumas et al., the Bayesian method does not explicitly

find parameters to minimize in-sample pricing errors. Such methods will exacerbate the

potential for over-fiting, and are more likely to result in seriously degraded out-of-sample

performance. The Bayesian method, in a first step, produces the uncertainty in the poste-

rior density of parameters, and functions such as the option price. One expects therefore its

out-of-sample performance to be more robust to over-fitting.

We conclude with two observations. First, in the formulation in (35) one can use the

Savage density ratio method to compute model odds since direct draws of β are available. Sec-

ond, the formulation in (35) would be more effective if the extensions were modeled on σ itself,

rather than outside of the Black-Scholes model, as for example in Ci = BS(x1,i, σ(β2x2,i+ηi)).

This parameterization would be more consistent with most generalizations of the Black-

Scholes model. Having the error inside the Black-Scholes formula would guarantee the no-

arbitrage conditions. It would, however, lead to a more complicated MCMC algorithm.

6.3.2 Option pricing with stochastic volatility and jumps

Eraker et al. (2003), discussed in section 5.4, estimate historical processes allowing

for jumps in volatility as well as in returns. Using odds ratios and the fraction of volatility

explained by jumps and diffusion, they conclude that jumps in volatility are a crucial ex-

tension to the SV model. Then they adjust their historical densities for a plausible price of

volatility risk to generate option prices as per (38). They conclude that jumps in volatility

have the potential to create a very realistic smile in implied volatilities.

Eraker et al. (2003) do not estimate the price of risk from option data; this is done
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in Eraker (2004) who derives the likelihood from explicit option pricing errors, as Jacquier

and Jarrow (2000), but for the vastly more complex model of Eraker et al.(2003). Recall the

process on the stock price S and its volatility V :

dSt = aStdt+
√
VtStdw

s
t + StdJ

s
t (36)

dVt = κ(θ − Vt)dt+ σv
√
Vtdw

v
t + dJvt ,

where the volatility and return shocks can be correlated, and both dS and dV can have

jumps. To the SV, SVJ, and SVCJ models seen in section 5.4, Eraker (2004) adds a model

in which the jump intensity depends on volatility, i.e., λ = λ0 +λ1Vt. He uses the discretized

versions of these models. Jump components Z are assumed to be exponential for variance and

normally distributed for stocks. Consistent with the option pricing literature, the risk neutral

processes corresponding to the above historical processes incorporate drift adjustments for

the prices of jump and volatility risk. Specifically, the return and volatility drifts, and the

mean jump are adjusted for these prices.

Given the option prices Yt with known characteristics χt; the model prices these options

with error εt:

Yt = F (St, Vt, χt,Θ) + εt, (37)

where Θ is the vector of parameters of the risk-neutral processes of St, Vt. Times between

transactions can vary. To compute the price F , Eraker uses Fourier inversion methods

available due to the affine structure of the model, (see Duffie, Pan and Singleton (2000)).

Equation (37) yields the density of the options data Y conditional on the relevant

parameters, observable inputs, and state variables V and S needed for pricing, p(Y |S, V,Θ).

However, these state variables must be integrated out in order to obtain the posterior den-

sities of the parameters and option prices. The formulation of S, V in (36) is conditional on

the state vectors of jumps J ; those must also, therefore, be integrated out. Consequently,

the joint density of options data and all state variables p(Y, S, V, J, Z,Θ) involves the pa-

rameters of the process in (36). This joint density multiplied by the priors on all parameters

yields the desired posterior density p(V, J, Z,Θ|Y ). Eraker breaks this posterior into MCMC

conditional blocks of volatilities V , jump states J , jump components Z, and parameters Θ.

Eraker estimates the model with 3000 option prices on S&P500 contracts recorded

over 1000 days from 1987 to 1990. Due to the computational demands of the model, he uses

a small number of randomly selected contracts daily, on average three contracts per day. At

the same time the underlying return is recorded daily. The posterior analysis reveals the
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following. The jump-size parameters are hard to estimate precisely, because option data do

not contain information about them. Given the posterior jump intensity which implies very

rare jumps, 2 or 3 per 1000 days, one clearly can not have much information in jump size.

In contrast, volatility parameters are very precisely estimated. This in turn helps the state-

dependent model, in which the jump intensity is linked to the current volatility. Eraker

concludes that the jump in volatility dominates the other extensions to the SV model in

terms of explaining returns. For these models, return and volatility jumps are negatively

correlated. That is, a negative jump in returns is associated with a positive jump in volatility.

The posterior mean of the option pricing function F in (37) is used as the estimate of

the option price. Based on this, the in-sample pricing errors of the larger models do not show

much improvement over the simpler ones. Eraker notes that this result is in contrast with

most of the previous literature. Recall that, unlike least squares, the Bayesian method does

not compute estimates to minimize pricing errors. It optimally describes the uncertainty

about the parameters; the posterior mean then minimizes a squared error loss along that

posterior uncertainty. In contrast, least squares methods are geared at fitting better with

larger models. This is why an out-of-sample analysis is a very interesting complement.

Eraker’s out-of-sample result reveal some performance for the larger jump model but the

results are at best mixed.

Overall, the larger models in Eraker (2004) appear to perform better with respect

to features of the time series of the stock return than pricing options. Eraker (2004) is an

example of the degree of complexity that can be handled by Bayesian MCMC algorithms. It

would be interesting to revisit the features of the model with a larger cross-section of options

data as computing power allows. Using a small panel of randomly selected data means that

only very rough information on the smile is available at any given time, possibly affecting the

precision of estimation. Inference on rare and large jumps is definitely a difficult problem,

to which option prices do not contribute much information.

7 Particle Filters with Parameter Learning

We conclude the chapter with a methodological approach that appears very promis-

ing for Bayesian econometrics in finance: the joint filtering of the latent state variables

parameters.

MCMC methods for models with latent variables generally produce the posterior den-

sity of the parameters and of the smoothed state variable. For example, the MCMC al-
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gorithms for the SV models discussed in section 5, produce p(ht|yT ) and p(θ|yT ), where

yT ≡ (y1, . . . , yT ), and θ, ht are the model parameters and the variance at time t. For a

given sample of data, however, one may want, for each time t in the sample, the posterior

density of both filtered volatilities and parameters p(ht|yt) and p(θ|yt). Running again the

MCMC sampler each time a new observation (yt+1) becomes available, is a feasible but com-

putationally unattractive solution. Recent research has, therefore, been devoted to filtering

algorithms for non-linear state space models. Early filtering algorithms solve the problem

conditional on a value of θ. This is unattractive for two reasons. First, they do not incorpo-

rate the uncertainty on θ into the predictive density of ht. Second, the most likely value of

θ on which to condition, comes from the posterior distribution of a single MCMC algorithm

run on the whole sample. However, conditioning on the information from the entire sample

is precisely what one wants to avoid when drawing from p(ht|yt). Incorporating learning

about θ in the filtering algorithm turned out to be quite difficult. Let xt be the state vari-

able in a general model; earlier attempts to draw from p(θ, xt|yt) suffered from degeneracy

problems. Section 8 of the Kohn chapter discusses these earlier methods. Carvalho et al.

(2010), hereafter CJLP, resolve the problem. In this section, we briefly outline their method

and present an application demonstrating the potential of particle filtering with parameter

learning.

7.1 Methodology

Consider a model with observable yt and latent state variable xt. The goal is to update

the current distribution p(xt, θ|yt) to p(xt+1, θ|yt+1) after observing yt+1. For notational

convenience, ignore in a first step the parameter θ. Classic filtering algorithms proceed by

first predicting and then updating, as follows:

p(xt+1|yt) =

∫
p(xt+1|xt)p(xt|yt)dxt

p(xt+1|yt+1) ∝ p(yt+1|xt+1)p(xt+1|yt).

The distribution p(xt|yt) is usually not known analytically. Particle filters approximate it

by a discrete density pN(xt|yt), consisting of N particles, or draws, x
(i)
t with weights w

(i)
t :

pN
(
xt|yt

)
=

N∑
i=1

w
(i)
t δx(i)

t
→ p(xt|yt) as N →∞,
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where δ is the Dirac function. In earlier algorithms, the weights are typically 1/N . This

discretization allows us to replace the integral in the prediction step with a sum. We now

have:

pN(xt+1|yt+1) ∝
N∑
i=1

p(yt+1|xt+1)p(xt+1|x(i)
t )w

(i)
t ,

where pN(xt+1|yt+1) is a finite mixture. There are several classic particle filters to draw from

this mixture, such as the exact, the sampling importance resampling (SIR), and the auxiliary

particle (APF) filters. The SIR algorithm, for example, relies only on two steps given N

samples from pN (xt|yt):

1. (Propagate) Draw x
(i)
t+1 ∼ p

(
xt+1|x(i)

t

)
for i = 1, ..., N ;

2. (Resample) Draw x
(i)
t+1 ∼MultN

({
w

(i)
t+1

}N
i=1

)
.

Note how the first step uses the transition density of the state variable, but no informa-

tion about yt+1. The transition density can be seen as the simplest and most convenient

importance density to use in the propagation step. The weights are then based upon the

information in yt+1, and a multinomial draw is made from the N xt+1’s obtained from the

propagation step. In their auxiliary particle filter, Pitt and Shephard (1999) improve the

importance density, and show that the optimal weights are wt+1 ∝ p(yt+1|xt). Possible prob-

lems with particle filters include degeneracy or sample impoverishment, where the number

of particles from which one draws degenerates due to the inability of the transition density

to cover the high probability states. This can happen, for example, around extreme values,

if the propagation step does not use the information in yt+1. Then the resampling step leads

to sample impoverishment as most draws have nearly zero weights. See the Kohn chapter

and CJLP for details.

Consider now extending this framework to parameter learning, where one needs to

move from p(θ, xt|yt) to p(θ, xt+1|yt+1). CJLP’s algorithm combines two contributions. First,

they reverse the prediction-updating order, and instead follow a smoothing-prediction se-

quence:

p(xt|yt+1) ∝ p(yt+1|xt)p(xt|yt);

p(xt+1|yt+1) =

∫
p(xt+1|xt)p(xt|yt+1)dxt.

For the discretized distribution used, this sequence leads to a resample-propagate particle
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algorithm:

1. Resample particles with weights w
(i)
t ∝ p

(
yt+1|x(i)

t

)
:

Draw an index z(i) ∼MultN

(
{w(i)

t }
)
, and set x

(i)
t = x

z(i)
t for i = 1, . . . , N ;

2. Propagate state particles with x
(i)
t+1 ∼ p

(
xt+1|x(i)

t , yt+1

)
, for i = 1, . . . , N.

By resampling first, the compounding of approximation errors is reduced because the propa-

gation of the states uses the information in yt+1. The second contribution addresses the issue

of parameter learning. Rather than attempting to update p(θ|yt) directly, CJLP extend the

state with a vector of conditional sufficient statistics st, and instead update p(st|yt). The

sufficient statistics satisfy the conditions:

p(θ|xt, yt) = p(θ|st) where st+1 = S (st, xt+1, yt+1) .

CJLP show how to use particle methods to find the joint filtering distribution p(xt, st|yt);
the parameter θ is then simulated by θ(i) ∼ p(θ|st). The sufficient statistics st are essentially

the parameters of the posterior distribution p(θ|yt).

Given a particle filtering algorithm with parameter learning, dynamic model compar-

ison or averaging can be performed at each time t via sequential odds ratios. A Bayesian

investor can then evaluate the economic benefits of predicting out-of-sample returns by learn-

ing about the models, parameters, and state variables sequentially in real time. Bayes rule

naturally revises beliefs as new return data is available.

7.2 Incorporating realized volatility into the SV model

We now discuss an application to the SV models. The MCMC algorithms seen in

section 5.2 produce draws from p(ht|yT ), the smoothed posterior density of the volatilities,

which uses the entire information in the sample. This smoothed density coincides with the

filtered volatility, p(ht|yt), only for the last observation of the sample. An MCMC algorithm,

such as in JPR, makes 50,000 draws in 4 minutes for T = 1500 observations on a dual-core

2.8 Ghz CPU. Computing draws of the filtered posterior densities p(ht, ωt|yt) by running the

MCMC algorithm for every subsample yt for t ∈ [500, 1500] would require about 45 hours of

CPU time. This is not an issue for academics, but practitioners who may want to update

many such models everyday would find themselves a bit more pressed for time. Another

reason why the filtered density of the latent variables is of interest is that they allow for
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the computation of the likelihood function. This is convenient if one can not write posterior

odds directly through the MCMC algorithm as in section 5.

Jacquier and Miller (2010), JM hereafter, apply both the MCMC and the CJLP

algorithm to an extended SV model for the logarithm of variance ht:

log ht = α + δ log ht−1 + γRVt−1 + σvvt, (38)

where RVt−1 is a realized volatility measure (see also Brandt and Jones (2005)). The addition

of exogenous variables to the volatility equation is a technically simple but potentially very

useful extension of the SV model. Other variables of interest can be incorporated in the SV

equation, such as implied volatility or the number of non-trading days between observations.

The basic RV measure is computed as the sum of squared intra-day returns: RVt =∑m
j=1 r

2
t,j. Under ideal assumptions, it is shown to converge to the day’s integrated volatility

IVt =
∫ t
t−1

σ2
τdτ , as m goes to infinity. However, measurement errors in prices, microstruc-

ture effects, and the possibility of jumps have to be taken into account. Therefore, several

variations of this basic realized volatility now exist to address these issues (see for exam-

ple Patton (2008)). The realized volatility literature typically attempts to evaluate these

competing measures by their ability to predict integrated volatility, IVt+1. However, since

IVt+1 is never exactly known, it is typically replaced by a RVt+1 measure in predictability

regressions.

In contrast, equation (38) takes the view that the daily volatility ht is the latent

variable to be predicted, and that RVt−1 is only an observable with information on this

latent variable, not the object to be predicted. JM conduct simulations to document what

reduction in volatility uncertainty can be expected by incorporating RVt−1 in (38). Using

the root-mean-squared error of the posterior mean, they show that, for simulated data, RV

measures only improve out-of-sample volatility forecasts up to 4 days ahead at the most.

They also propose an alternate econometric specification to improve upon (38), which models

the fact that RVt is a noisy estimate of log ht, and allows for its error ηt to be correlated

with vt. Therefore, instead of having RVt in the volatility equation as in (38), an additional

measurement equation is introduced:

logRVt = β0 + β1 log ht + ηt. (39)

Competing volatility measures can be introduced, via seemingly unrelated measurement

equations, as in (39).
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JM apply MCMC to the SV model with and without RV , on the UK Pound, Euro,

and Yen daily exchange rate changes, and country index returns over 2006-2009. They find

that 90% posterior confidence intervals on
√
ht have average widths of 47% on the Pound

and 41% on the Euro, relative to E(
√
ht) when RV is not used. The introduction of RV , as

in (38), reduces these to 27% and 32%. However, RV brings no such improvement for the

Yen. They report similar improvements due to realized volatility for several country indices,

with the exception of the SP500 and the Nikkei.

JM then implement the CJLP algorithm. For these samples of 800 observations,

the filtering algorithm with parameter learning requires about 25 minutes of Core-Duo 2.8

Ghz CPU time with 40000 particles. Compared to filtered volatilities, smoothed volatilities

benefit from the information contained in future y’s; one, therefore, expects the posterior

distributions of smoothed volatilities to have a tighter spread than those of filtered volatilities.

Figure 6 demonstrates the magnitude of the difference for the British Pound. The top

and middle plots show the 90% intervals for the smoothed and filtered volatility densities

obtained by MCMC and the CJLP algorithm. The bottom plot demonstrates the evolution

of the parameter δ as the filtering algorithm updates its posterior distribution. The filtering

algorithm for Figure 6 was run with N = 40000 particles.

Figure 6 here

A note of caution is in order with respect to the number of particles used. Jacquier

and Miller note that, unless the number of particles is quite large, different runs of the CJLP

algorithm can produce very different posterior densities. Consider, for example, the odds

ratios for the basic SV model versus the model augmented with realized volatility; which is

based on the parameter α1 in (38). Since both MCMC and the filtering algorithms draw

directly from the posterior density of α1, a simple Savage density ratio can be used.

Figure 7 shows the MCMC odds ratios as a horizontal line, and the CJLP odds ratio

updated every period for 5000 to 40000 particles. The MCMC log odds is -35, in favor of

the model with realized volatility. The dynamic odds ratio obtained on the last observation

from the particle filters should equal the MCMC odds ratios. Figure 7 shows that this

only happens when the number of particles used is very large. This is a sign that the

posterior distributions in the filtering algorithm may require a very large number of particles

to be deemed reliable. Care needs to be exercised when analyzing the output of this type

of algorithm. Nevertheless, these algorithms have great potential and are definitely worth

exploring.
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Table 1: Comparison of single-move and multi-move MCMC algorithms

δ σv
√
ht

True 0.960 0.210
Single-move

Mean 0.948 0.229
RMSE 0.021 0.041 0.00219
%MAE 16.27

Multi-move
Mean 0.952 0.221
RMSE 0.017 0.037 0.00219
%MAE 16.19

Table 2: UK Pound to US $, SV posterior analysis

δ σv
Single-move

Mean 0.992 0.108
5% , 95% 0.983 , 0.999 0.075 , 0.146

Multi-move
Mean 0.993 0.097
5% , 95% 0.988 , 0.998 0.077 , 0.122
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Table 3: Smoothing performance under alternative models

Data generated by
Basic model Fat-tailed model ν = 10

All obs. All obs λt > λ.9

Estimate fat-tailed SV
RMSE(st) 0.0066 0.0104 0.0198
RMSE(

√
ht) 0.0066 0.0071 0.0076

%MAE(
√
ht) 18.3 21.4 23.7

Estimate basic SV
RMSE(st) 0.0066 0.0107 0.0198
RMSE(

√
ht) 0.0066 0.0082 0.0098

%MAE(
√
ht) 19.2 25.9 30.6

For each observation, we compute the estimation error of the posterior mean of
√
ht and

st =
√
htλt. When the data are generated by the fat-tailed SV, we also report RMSE and

%MAE for the observations with a λt larger than the 90th percentile of p(λ | ν = 10).

Table 4: Odds Ratios for Leverage effect, Daily Stock Returns 1978-1998

1978-1998 1989-1998
Company ν ρ BFF/FC BFF/FC
Merck 10 -0.05 5.3 1.5
Boeing 8 -0.02 7.1 4.1
Dole Food 6 0.02 3.8 1.7
H.P. 8 -0.07 4.4 2.3
Fedex 6 0.08 5.4 0.6
Ford 12 -0.01 8.9 7.1
Sony 8 0.11 1.2 0.4
Fleet Bank 10 0.03 4.3 3.5
Exxon 11 0.01 6.6 3.6
Merrill Lynch 9 0.00 9.3 2.5
Average 9 0.01
Portfolio 10 -0.23 0.22 1.E-03

F: fat-tail, FC: full model, 25000 posterior draws.
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•

•

••

•

•

•

•
•

•

•

•

•

• •

••

•
•

•

•

•

•

•
•

•
•

•

•• •••

•
•

•

•

• ••

•

•

•

•

•

•

•
•

•

•
•

•

•

•

••

••

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

••
•

••
•

•

•
•

•
•

•

•

•

••

•
••

•
•

•

•

•

•

•
•

•
•
•

••
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•

•• •

•

•

•

••••
•

•

• •

•

•

•

•

••
•

•

•
•

•

•
•

•
•• •

•

•
•

• •

•
•

•

•

•

••

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

••
•

•

•

•

•

•

•

•••
•

••

•

•

••

•

•

••

•

•

•

•

••

••
•

•
•

•

•

• •

•

•
•

•
•

••

•

•

••
••

•

•

•
•

•
•

• •

•

•

••

• •

•
•

•

••

•
•

•

•
•

•
•

•

•

•
• •

• •

•

•

•••
•

•••

•

•

•

•
••

•

•

•

•

•

•

•
•

••
•

•

•

•

•

• •

•

•
•

•

•
•

•

•
•
•

••

•

•
••

•

•

•
•

•
•

•• •

•

•

•

•

•••
•

•

•
• •

•

•

•

•

•

•

•

••••
•

•

•

•

•

•

•

•

•

••
•••

•

•
•

• •

•

•

•
•

•

•

•
•

• ••

•

•

•

•

•

•

••

•

••

• •

••

•
•

• • •
•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

•
•••

•

•

•

• •

•
•

•
•

•

•

•
•

•
•

•

••

•

••

•

•

••
•
• •

•
••

•

•

•
• •

•

•

•
•

•

•

•
•

•

•

•

•

•

••
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

• •

••

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

••

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

••

••

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

• •

•
••

•

•

•
•

•
•

•
•

•

•

•

•

•
•

•

•

•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•

•
•

• •
•

•

•

•
•

•

•
••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•
•
•

• •

• •

•

•

•

•

•

•
•

• •

•

•

•

•

•

•
•

•
•

••
•

•
•
•

•

•

•

•

•

•

•

• •

•

•

•

•

••
•

•
•

•

•
•

•

• •

•
•
•

•

•

•
•
•
••
•

•

•
•

• •
•
•

•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•
••

• •

•
•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

• •

•

•

• •

•

•••

•
• •

•

•

•

•
•

•

•

•

•

•

•
• •

••

•

•
•

•
•

•

•
•

•

••

•

•

••

•
•

•

•

•
•

••

•

•
•

•

•
•

• •

•

•

•

•
•

•

••
••

••

•

••

•

•
•

•

•
•

•

•
•• ••

•

•

•

•

•
•

•

•

•

•

•

••
•

•

•

•

••

•
•

• •

•

• •

•

•••

•

•
••

•

•

•

•

•

•••

•

•

•

•

•

•

•
••
•

•
•••

•

•

•

•

•
••

••

•
•

• •

•

•
• ••

•

•

• •

•

•

• ••

•

•

•••

•

•

•
•

•

•
•

•
•

•

• •

•

•
•

•

•

•

•

•

•••

• •
•

•
•

•

•

•

••

•

• •

•
•

•

•
•

••

•

•

•
••

••

• •

••

•
•

•

• •

•

•
• •

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•
•

•
•

•

•

• •

•

•

•
•

••

••
•

•

•

•
•

•

•

• •

•

•

•

•••

•

• •

•
•

•

•
••

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•

•
•
•

•
•

•

•
• •
•
•

•

•

•

•

•
•

•• •

•
• •
•

•

•

•

•

••

•

•

•
•
•

•

•

•

•
•
•

•
•
•

•
•

•
•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•
•

••
•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

••

•

•

•

• •

•

•

•

•

•
•

•

•

•
•

•

•

•

••

•

•

• •

•
•

•

•

•

•

•

•

•

•
••

•

•
•

•

•
•

•

•

••

•
•

•

•
•

•

•
•
•

•••

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•
•

•

•

••

•
•

•

•

•

•
••

•

••

•

•
• •

• •

•

•

••

•

•

••• •••

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

••••

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••• •

•
•

•

• •
•

• •

•

•

•

•

•
•

•

•
•

•

•

•

• •

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•
•

•
•

•

•
•

•

•

•
••

•

• •

•

•
•

•

•
•

•

•

•
•

•

• •

•

•

•

•

• •

•
•

•
•

•

•

•

•
•

•

•

•

••
•

•

•

••

•
•

•
•

•
•

•

•••

•

•
•

•

••

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

••

•

•
•

•
• •

•

•

•

•

•

••
•

•
•

• • •

••

•

•

•
•

•

•

•

•
•

•

•
•

••

•
•
•

•

••

• •
•

•

•

•

•

•
•
•

•

•
•

• •
•

••

Standardized residual, full model

E(
h)

 fu
ll 

/ E
(h

) f
at

-ta
il

-3 -2 -1 0 1 2

0.
6

0.
8

1.
0

1.
2

1.
4
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Figure 4: Effect of fat-tails and correlation on E(ht); weekly EW  index

Figure 4: Effect of fat-tails and correlation on E(ht); Weekly EW index
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Figure 1: Differences between fat-tail and basic SVOL volatility forecasts

Figure 5: Differences between fat-tail and basic SV volatility forecasts
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Figure 6: Smoothed
√
ht|RT , filtered

√
ht|Rt, learning δ|Rt

SV model, £/$, Jan. 2, 2006 to Feb. 26, 2009, Mean and 5%, 95% quantiles.
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Figure 7: Log of odds ratios for basic SV versus SV with RV
Horizontal line: MCMC odds ratio. Particle filtering based odds ratios for 5K, 10K, 20K,
and 40K particles. SV model, £/$, Jan. 2, 2006 to Feb. 26, 2009.
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