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Abstract

In this paper, we survey asset allocation in finance from a Bayesian decision-
theoretic perspective. Our investor wishes to maximize the expected long-run growth
of the market returns. We show how Stein’s lemma helps deriving the Kelly criteria
for optimal bet size and Merton’s allocation rule for risky stocks. We therefore provide
an equivalence between these two criteria. Bayesian inference naturally determines
the inputs needed for optimal asset allocation, namely, the expected excess return and
volatility of the risky asset. Extensions to exchangeable returns where the investor
learns about the probability of success illustrate that risk-averse investors are still will-
ing to hold a small proportion of a risky asset even though the odds are unfavorable
at the current time. Specifically, the option value of future learning leads the investor
to a positive allocation. We conclude with directions for future research.
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1 Introduction

Bayesian methods have long played a role in finance and asset allocation since the
seminal work of de Finetti (1941) and Markowitz (2006). In this paper, we show how
the principle of maximum expected utility (MEU) (Ramsey, 1926, Savage, 1956, Bernardo
and Smith, 2000) together with Stein’s lemma for stochastic volatility distributions (Gron,
Jorgensen and Polson, 2011) solves for the optimal asset allocation. Stein’s lemma provides
the solution to the first order condition that accompanies MEU. The optimal asset allocation
problem couched in equilibrium then leads to models such as the Capital Asset Pricing Model
(CAPM) or Merton’s inter-temporal asset pricing model (ICAPM).

We consider an investor who wishes to invest in the risky asset in order to maximize the
expected utility of her resulting wealth. Under logarithmic utility, this leads to the famous
Kelly criterion which maximizes the expected long-run growth rate of the risky asset. We
review the link between the Kelly rule (Kelly, 1956) and the Merton optimal asset allocation
(Merton, 1969). We illustrate their implementation for a discrete binary setting and for the
standard historical returns on the S&P500. Under a CRRA utility we use Stein’s lemma to
derive fractional versions of the Kelly rules where the amount allocated is normalized by the
investor’s relative risk aversion.

The rest of the paper is as follows. Section 2 reviews the impact of Bayesian think-
ing in models of finance: asset pricing equilibrium models; how agents learn from prices;
properties of returns data including predictability and stochastic volatility. Section 3 views
asset allocation from a Bayesian decision theoretic perspective (see, for example, Bernardo
and Smith, 2000). Section 3 studies maximization of the expected long-run growth rate
and derives the classic Kelly and Merton allocation rules. Section 4 describes methods for
estimating this long-run growth rate. Section 5 describes estimation methods for long-run
asset allocation. Section 6 considers extensions to Bayesian dynamic learning (Bellman and
Kalaba, 1956) and time-varying investment opportunity sets (Ferguson and Gilstein, 1985).
When investors are faced with a return distribution that is an exchangeable Beta-Binomial
process, the effect of dynamic learning makes investors willing to invest a small amount of
capital to current returns that have a negative expectation even though they are averse to
risk. This is due to the fact that they might learn that the investment opportunity set
improves in the future and this is taken account of in the Bayesian MEU solution. Finally,
Section 7 concludes.

2 Bayesian methods in Finance

Bayesian thinking underpins financial modeling in a number of empirical and the-
oretical ways. Bayesian MCMC and particle methods are prevalent in empirical finance,
see Jacquier, Polson and Rossi (1994, 2004). Johannes and Polson (2010) discuss MCMC
methods in financial econometrics, Brandt (2009) describes portfolio choice problems and
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Polson and Tew (2000) provide an empirical analysis of the S&P500 stock index. Jacquier
and Polson (2011) provide a recent survey of Bayesian methods in finance. For example,
many of the theoretical developments in finance rely on Bayesian learning by agents. Here
we discuss applications to learning from prices and the implications of return predictability
and stochastic volatility of asset returns (Black 1976).

2.1 Learning from Prices

Bayesian methods are designed for learning, and market equilibrium occurs after indi-
viduals with differences in opinion have an incentive to trade and finally agree on a price. The
differences in opinion literature has a long history dating to DeGroot (1973), Geanakopolos
and Polemanokos (1982), Geanakopolos and Sebenius (1989), Harris and Raviv (1993), Hong
and Stein (2005) and Varian (1985, 1987). Odean (1998) and Barberis and Thaler (2003)
discuss investor behavior in financial markets.

A basic argument is as follows. Let y denote an observed signal. The insight is that
observing prices P (y) will change a trader’s beliefs. The trader needs to be able to coherently
update her probabilities via Bayes theorem. Grossman (1976, 1981) summarizes the logic
clearly as follows:

A smart trader t might even say to himself: let all the other traders naively use
their own information. I will wait until the market clears, and after observing the current
realization of P (y), make my purchases of commodities to maximize E [U(W )|yt, P (y)]. Since
I am a price taker, I will expect to do better than by trading now and maximizing E [U(W )|yt]

Market efficiency arguments follows a similar route, see Grossman and Stiglitz (1980).
Let π(y) be the vector of probabilities that the trader holds for the states. If the observed
prices P (π(y)) are invertible in π, the trader can back out everybody else’s beliefs. Then
implementing the principle of maximum expected utility

E [Ut(Wt)|yt, P (π(y))] ≡ E [Ut(Wt)|y]

The trader who only has information yt can still act as if he had full information set of all
investors signals y. Hence, in an efficient market prices are fully revealing of trader’s beliefs.

2.2 Return Predictability and Stochastic Volatility

Time varying stochastic volatility is a widely documented feature of financial series,
Typically, volatility is time-varying, persistent, mean-reverting and in some instances has
jumps (Jacquier, Polson, Rossi, 1994, 2004, Eraker, Johannes and Polson, 2003). Harrison
(1998, 2005) shows that the eighteenth and twentieth century time series distributions of
stock returns are statistically very similar, and both exhibit stochastic volatility. In particu-
lar, he analyzes biweekly prices and returns for shares of the London stock market index and
the Dutch East India company from 1723-1794 and shows empirical evidence of stohcastic
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volatility.

Another, more controversial, feature of financial returns is predictability, typically
modeled as a projection on a set of predetermined information variables. For example, the
dividend yield, or net payout ratio, variable plays a central role, see Barberis (2000) and
Johannes, Korteweg and Polson (JKP, 2011). JKP combine predictability and sot stochastic
volatility. Rather than a constant optimal allocation as is the case with i.i.d. returns, the
time-varying opportunity set arising from predictability induces a hedging-demand into the
investor allocation. Barberis (2000) shows how horizon effects can be dramatic when the
investor engages in Bayesian learning about the mean return. In a continuous-time setting,
Campbell and Viceira (2002) quantify the hedging demands from stochastic volatility. Liu
and Pan (2003) provide a theoretical analysis of dynamic portfolio strategies when there is
jump risk, an effect that is also present in a discrete time setting. Clearly, economically
significant hedging demand can exist and sensitivity analysis to models and priors is an
important issue. Finally, as the optimal allocation rule can lead to leverage, issues of short-
sales and margin-based trading arise. Garleanu and Pedersen (2011) provides a framework
for generalizing the CAPM when investors face margin-based constraints.

We now turn to the central problem of asset allocation.

3 Asset Allocation

The asset allocation problem can be described as a Bayesian decision-theoretic problem
(Bernardo and Smith, 2000) as follows. An investor has initial wealth W0 that can be invested
in a risk-free bond or a risky asset. The end of period wealth is W = W0 {(1− ω)rf + ωR}
where rf is the return on the risk-free rate and R is the return on the risky asset. The
Bayesian investor maximizes expected utility, namely maxω E [U (W (ω))]. This leads to a
first order condition of the form:

E [U ′(W )(R− rf )] = 0

Applying the definition of covariance yields

Cov [U ′(W ), R− rf ] + E [U ′(W )]E [R− rf ] = 0

ωE [U ′′(W )] var(R) + E [U ′(W )]E [R− rf ] = 0,

where we have used Stein’s lemma for a differentiable function g(X) where E|g′(X)| < ∞
then cov(g(X), X) = E (g′(X)) var(X). This has a solution for the optimal weight

ω? =
1

γ

(
E [R]− rf
V ar [R]

)
(1)
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where γ = −WE [U ′′(W )] /E [U ′(W )] is the agent’s relative risk aversion. This is a form of
the famous Merton optimal asset allocation result.

This result can be extended to allow for stochastic volatility in the risky asset return.
Let (X|V ) ∼ N (0, V ) where V ∼ p(V ). The equivalent Stein result is

Cov [g (X) , Y ] = EQ
[
g
′
(X)

]
Cov [X, Y ]

Here EQ is taken with respect to the distribution q(V ) = V p(V )/E [V ]. This is referred
to as the size-biasing of the original volatility distribution p(V ). If Y = X, we have
Cov [g (X) , X] = EQ

[
g
′
(X)

]
var [X].The optimal allocation rule is then

ω?SV =
1

ΓQ

(
E [R]− rf
V ar [R]

)
, (2)

where ΓQ = −EQ [U ′′] /E [U ′] is the volatility adjusted risk aversion. See Gron, Jorgensena
and Polson (2011) for an analysis of comparative statics.

In this one period setting, given that agents adopt the optimal allocation rule, one
can then show that an equilibrium Capital Asset Pricing Model (CAPM) holds. Specifically,
under stochastic volatility (SV), the expected return E(Rj) on the jth security is given by

E(Rj)− rf = βj (E(Rm)− rf ) ,

where rf is the risk-free rate and βj = cov(Rj, Rm)/var(Rm) is the risk premium.

A commonly used utility function is constant relative risk aversion (CRRA). It has
the advantage that the optimal rule is unaffected by wealth effects. The CRRA utility of
wealth takes the form

Uγ(W ) =
W 1−γ − 1

1− γ
The special case U(W ) = log(W ) for γ = 1 plays a central role in growth rate analysis. It
leads to maximizing the expected long-run rate of growth, namely

max
ω

E (logWT |W0 = x)

We now solve for this rule and derive the Kelly criterion and Merton’s rule.
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4 Maximizing Expected Long-Run Growth

4.1 Kelly Rule and Merton’s Optimal Allocation

The Kelly Criterion corresponds to the following Bayesian decision problem under
binary uncertainty. Consider a sequence of i.i.d. bets where

p(Xt = 1) = p and p(Xt = −1) = q = 1− p

The investor who maximises E (logWT |W0 = x) uses a myopic-rule with weight

ω? = p− q = 2p− 1

Indeed, we can see that maximising the expected long-run growth rate leads to the solution

max
ω

E (ln(1 + ωWT )) = p ln(1 + ω) + (1− p) ln(1− ω)

≤ p ln p+ q ln q + ln 2 and ω? = p− q

If one believes the event is certain i.e. p = 1, then one bets all wealth and a priori one is
certain to double invested wealth. On the other hand, if one thinks the bet is fair, i.e. p = 1

2
,

one bets nothing, ω? = 0, due to risk-aversion.

We will use the following notation. Let p denote the probability of a gain and O =
(1−p)/p the odds. We can generalize the rule to the case of asymmetric payouts (a, b) where

p(Xt = 1) = p and p(Xt = −1) = q = 1− p

Then the objective expected utility function is

p ln(1 + bω) + (1− p) ln(1− aω)

with optimal solution

ω? =
bp− aq
ab

=
p− q
σ

If a = b = 1 this reduces to the pure Kelly criterion.

A common case occurs when a = 1. We can now interpret b as the odds O that the
market is willing to offer the invest if the event occurs and so we write b = O. The rule
becomes

ω? =
p ·O − q

O

We now provide a counter-intuitive example.
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Market You p ω?

4/1 3/1 1/4 1/16
12/1 9/1 1/10 1/40

Table 1: Kelly rule

Example: Betting Consider the following two betting situations described in Table 1.
Assume two possible market opportunities: one where it offers you 4/1 when you have
personal odds of 3/1 and a second one when it offers you 12/1 while you think the odds are
9/1. In expected return these two scenarios are identical both offering a 33% gain. In terms
of maximizing long-run growth, however, they are not identical. From Table 1, the Kelly
criteria advises an allocation that is twice as much capital to the lower odds proposition:
1/16 weight versus 1/40.

Specifically, we have the following optimal weight calculation ω? = (pO − q)/O with
allocations

(1/4)× 4− (3/4)

4
=

1

16
and

(1/10)× 12− (9/10)

12
=

1

40

respectively. We now turn to the continuous-time setting and find Merton’s rule.

Continuously Compounded Returns: In a continuous-time setting, let µ denote the
expected return, σ the volatility and γ the risk aversion. Suppose that the risky asset follows
a Black-Scholes geometric Brownian motion model

dSt = St (µdt+ σdBt)

for a constant volatility σ. Then the value of the asset at time T is

ST = S0 exp

{(
µ− 1

2
σ2

)
T + σ

√
tZ

}
where Z ∼ N(0, 1). This model implies that returns are log-normally distributed.

Now consider the evolution of wealth for an investor who keep a constantly rebalanced
weight ω allocated to the risky asset and (1 − ω) to the risk-free rate rf . Her wealth W ω

t

now evolves according to dW ω
t /W

ω
t = {(1− ω)rf + ωµ} dt + ωσdBt. Let α = µ + 0.5σ2 be

the expected arithmetic return on the market. Then, using Itô’s lemma, we can solve for
wealth at time t with Z ∼ N (0, 1) as

Wt = W0 exp

{
(rf + ω(µ− rf )−

1

2
ω2σ2)t+ ωσ

√
tZ

}
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Similarly, the expected utility of wealth is

1

1− γ
exp

{
(1− γ)

(
rf + ω(α− rf )−

1

2
ω2σ2 +

1

2
(1− γ)ω2σ2

)}

Long-run Growth rate This leads to a natural definition of the growth rate as

G(ω) , ω(α− rf )−
γ

2
ω2σ2

Maximize the growth rate with respect to ω leads to the optimal allocation

ω? =
1

γ

α− rf
σ2

If γ = 1, this is known as the pure Kelly rule. Fractional Kelly rules are, as their name
indicates, rules that allocate a fraction of the Kelly rule to the risky asset via the agents risk
aversion γ.

This analysis can be seen as a utility interpretation of fractional Kelly rules and agrees
with Stein’s lemma approach in the previous section.

We can analytically compute the growth rate of wealth at the optimal allocation as:

G(ω?) =
1

γ

(
1− 1

2γ

)(
α− rf
σ

)2

and if γ < 1
2
, a case of an agent with extremely low risk aversion, then G(ω?) < 0.

Estimation risk also affects the growth rate: if estimation error mistakenly lets leads
to using twice the optimal rule, then we have lost all of the growth of our portfolio as
G(2ω?) = 0.

We now provide an equivalence with the Kelly criterion by scaling wealth in terms of
volatility units. In the continuous case, let the investor be faced with a sequence of returns
where the payout has expectation E(RT ) = µ

p(RT = σ) = p =
1

2
+

1

2

α− rf
σ

and p(RT = −σ) = q =
1

2
− 1

2

α− rf
σ

Given (µ, σ), the optimal Kelly rule is

ω? =
p− q
σ

=
α− rf
σ
· 1

σ
=

µ

σ2

This provides our equivalence with Merton’s rule.
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Example S&P500: Consider a simple example of logarithmic utility (CRRA with γ = 1).
This is a pure Kelly rule. We assume iid log-normal stock returns with an annualized expected
excess return of 5.7% and a volatility of 16% which is consistent will long-run equity returns.
In our continuous time formulation ω? = 0.057/0.162 = 2.22 and the Kelly criterion which
imply that the investor borrows 122% of wealth to invest a total of 220% in stocks. This is
a the risk-profile of the Kelly criterion. One also sees that the allocation is highly sensitive
to estimation error in µ̂. We consider dynamic learning in a later section and show how the
long horizon and learning affects the allocation today.

The fractional Kelly rule leads to a more realistic allocation. Suppose that γ = 3.
Then the informational ratio is

µ

σ
=

0.057

0.16
= 0.357 and ω? =

1

3

0.057

0.162
= 74.2%

An investor with such a level of risk aversion then has a more reasonable 74.2% allocation.

This analysis ignores the equilibrium implications. If every investor acted this way,
then this would drive up prices and drive down the equity premium of 5.7%.

5 Long Run Asset Allocation

Discussions of long term investment policy revolve around measures of the expected
long-term return on a risky portfolio such as the global market index. In this section we
review how optimal Bayesian asset allocation leads to a estimate of long run expected returns
with very attractive properties. We first give a background on the estimates resulting from
the classical literature, and their potential shortcoming.

5.1 Background on Classical Estimation

To concentrate on the main issue, that of the uncertainty in the mean, we assume that
variance is known and that returns are not auto-correlated, see Jacquier et al. (2005) and
Jacquier (2008) for a robustness analysis. Recall that, as financial returns exhibit very little
auto-correlation, there is no gain in observing the data more frequently. In this context, we
therefore consider a sample of T annual i.i.d. log-normal returns log(1 + R) ∼ N(µ, σ2).
The reader will quickly see that she can adapt the discussion to any estimator of the mean
return given its associated variance. The long-term, H-period return, or wealth return per
dollar invested is log-normal. Long-term investors and policy-makers seek an estimate of its
expected compound return

E(VH) = eH(µ+ 0.5σ2). (3)

The MLE estimate of µ is the sample mean, it corresponds to the Bayesian posterior
mean with no prior information. For long-term forecasts, practitioners used to choose a
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point estimate by compounding the sample geometric return G = 1
T

log PT

P1
. This amounts

to estimating E(VH) by eµ̂H . Academics, however, tended to substitute µ̂ in the theoretical
expectation (3), often invoking a maximum likelihood (ML) justification, where the estimator
of a function is approximated by the function of the estimator. This second suggestion is
equivalent to the compounding H times of the arithmetic sample mean. The difference in
these two estimates becomes very large in the long run. Using Siegel’s (1994) geometric and
arithmetic averages of 7% and 8.5%, the two approaches grow $1 to $160 versus $454 over
75 years. Jacquier et al. (2003) show that the ML approach makes little sense; as H is
often of a magnitude comparable to T , the ML estimator suffers from an enormous upward
bias due to the Jensen effect. An unbiased estimator is U = exp{H(µ̂ + 0.5σ2(1 − H

T
))}, a

simple log-linear combination of the geometric and arithmetic estimators. Observe how the
compounding factor is linearly decreasing in H. Jacquier et al. (2005) argue that there is
little justification for mere unbiasedness, and derive a minimum mean squared error classical
estimator of E(VH):

M = eH(µ̂+ 0.5σ2(1− 3H
T

)). (4)

These estimators nest the ML (aka arithmetic) estimator, only justified with extremely
small H

T
, and the geometric estimator, itself only justified when H happens to be equal to T

3
.

For both U and M , the compounding factor decreases linearly with the horizon H, with a
downward penalty increasing with H

T
. This is desirable because, (1) H affects the amount of

compounding that magnifies (by Jensen effect) the upward bias due to the estimation error
in µ, and (2) T reduces the uncertainty in µ. For realistic values of µ, σ, T,H, the penalty is
quite severe; longer term investors must be far more modest in their predictions than shorter
term investors, given the same base estimator of µ.

However, since the compounding factor decreases linearly, it can lead for to expected
returns lower than the risk-free rate, even negative, for long enough horizons. This feature of
the estimator makes no economic sense; any discount factor should tend to no lower than the
risk-free rate as the horizon increases. We now turn to a simple Bayesian estimator based
on optimal asset allocation, which naturally incorporates this desired feature.

5.2 Bayesian Estimation of the Long Run Expected Return

Parameter uncertainty has an important impact on the optimal allocation. This has
been recognized since Brown (1976). Intuitively, the proper distribution for the investor
to consider is the predictive density, which gets inflated by the uncertainty in the mean.
Relative to the case with known parameters, the optimal allocation is then lower in the risky
asset.

Consider first the classic Merton (1969) asset allocation, it is a framework with one
risky asset with a i.i.d. normally distributed log-return N(µ, σ2), a risk-free return rf , and
a power utility with risk aversion γ. If all parameters are known, Merton (1969) shows that,
with continuous re-balancing, the horizon H is irrelevant and drops out of the computation.
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He derives the now well-known optimal allocation,

w∗ =
α− rf
γσ2

(5)

where α = µ + 0.5σ2 is the expected arithmetic one-period return. To obtain this result,
assuming constant rebalancing to an allocation w, it is easy to show first that the random
H period return is log normally distributed as

log(VH |α, σ) ∼ N
[
(r0(1− w) + wα− 0.5w2σ2)H,w2σ2H

]
. (6)

The expected utility of this random wealth is then:

E[U(VH)] =
1

1− γ
exp

[
(1− γ)H(r0 + w(α− r0)− 0.5w2σ2 + 0.5(1− γ)w2σ2)

]
. (7)

The maximum likelihood estimator of µ is the standard average of past log-returns
µ̂ ∼ N(µ, σ2/T ). With diffuse priors, the Bayesian posterior of µ is numerically equivalent,
albeit with the well-known difference in interpretation. It is clear that simply substituting
α̂ in eqn (7) or (5) is not the optimal solution. Jacquier (2008) derives the Bayesian optimal
allocation with uncertainty in µ. The investor must consider the predictive utility, i.e., the
utility of the predictive density of the H period return. Because the integrations over the
parameter and over the distribution of returns can be exchanged, one can also view this as
integrating µ out of the conditional expected utility in (7), using its posterior distribution.
The expected (predictive) utility becomes:

E[U(VH)] =
1

1− γ
exp

[
(1− γ)H[r0 + w(α̂− r0)− 0.5w2σ2 + 0.5(1− γ)w2σ2(1 +

H

T
)]

]
. (8)

We observe that α has been replaced by its posterior mean α̂, and there is a new term
in H/T at the end. Maximizing the expected utility in (8), Jacquier (2008) finds the optimal
asset allocation under uncertainty:

w∗ =
α̂− r0

σ2
[
γ(1 + H

T
)− H

T

] . (9)

Figure 1 plots the optimal allocation versus the horizon for an investors with a relative risk
aversion of 4 and standard values of the mean and variance of the market return.It shows
that the effect of uncertainty on the optimal allocation is important for realistic values of
µ, rf , σ, γ.

Insert Figure 1 here.

This optimal allocation in (9) implies an estimate of the expected long-term return
under uncertainty. For this investor with risk aversion γ, denote α∗ this risk-adjusted future
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expected return, where the risk is estimation risk. For this risk-adjusted return, the optimal
allocation would be the Merton allocation in (5). Equating the two allocations, we find that
this risk-adjusted estimate is:

α? − rf =
α̂− rf

1 + H
T

(1− 1
γ
)
. (10)

It can be rewritten in terms of µ if desired. Figure 2 shows this estimate versus the hori-
zon. Even with a moderate risk aversion of 4, it reinforces the stark (low expected return)
prediction of the minimum mean squared error estimate in (4).

Insert Figure 2 here

This estimate is optimal for a given investor with risk aversion γ. Now, not only
investors with different horizons but also investors with different risk aversion, formulate
different optimal point forecasts. Note that the estimate in (10) can never be below the risk-
free rate. This is to be expected since it is consistent with the Bayesian optimal allocation
which has a lower bound of zero for the very long run.

Another related approach is the classic Black and Litterman (1991, 1992) framework
for combining investor views with market equilibrium. In a multivariate returns setting the
optimal allocation rule is ω? = 1

γ
Σ−1µ – the question is how to specify (µ,Σ) pairs? For

example, given Σ̂, BL derive Bayesian inference for µ given market equilibrium model and a
priori views on the returns of pre-specified portfolios which take the form

(µ̂|µ) ∼ N
(
µ, τ Σ̂

)
and (Q|µ) ∼ N

(
Pµ, Ω̂

)
.

Combining views, the implied posterior is (µ|µ̂, Q) ∼ N (Bb,B) woth mean and variance
specified by B = (τ Σ̂)−1 + P ′Ω̂−1P and b = (τ Σ̂)−1µ̂ + P ′Ω−1Q. These posterior moments
are then used in the optimal allocation rule.

6 Dynamic Bayes Learning

When the opportunity set varies in time, the agent that maximising long run growth
will take this into account in his decision rule today. The Bayesian dynamic portfolio problem
dates to Bellman and Kalaba (1956, 1958). Here we will follow the analysis of Ferguson and
Gilstein (1985) and consider the extensions to CRRA utility and to exchangeable return
distributions where the agent will engage in dynamic learning.

Remember that in an i.i.d. discrete setting, the classic Kelly rule is for p > 1
2
,

ω? = p− q = 2p− 1
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and zero otherwise. The investor never bets on outcomes which have unfavorable (given his
views) odds, or even fair odds due to risk aversion.

Now if returns are still independent but have time-varying known probabilities pt we
can still solve for the optimal allocation: for pt >

1
2

invest

ω?t =
pγ
−1

t−1 − q
γ−1

t−1

pγ
−1

t−1 + qγ
−1

t−1

If pt is unknown, a myopic Bayes rule is to track the sufficient statistics under a Beta prior
Be(α, β) distribution with T observations y = (y1, . . . , yT ) as

E(p|y) =
α
∑T

t=1 yt
T + α + β

and uses a myopic plug-in rule by replacing p with E(p|yT ).

To be fully Bayesian, we consider the exchangeable case where the investor can learn
from experience. The solution of maximizing discounted expected utility has a very different
solution. We need to solve for the value function using Bellman’s equation and take account
of the fact that in the future he will be using Bayes rule and learning from prices.

Bayes Learning Consider a conjugate Bernoulli-Beta model where (y|p) ∼ Ber(p) and
prior distribution (p|a, b) ∼ Be(a, b) for given hyperparameters.

Value function If we consider the case of power utility, the agent solves

max
ω

E [U(WT )|W0 = x] = x1−γVT (a, b)

where VT is the value function at period n.

Let fT (x|α, β) denote the optimal value of E
(
W 1−γ
T |W0 = x

)
when the prior distri-

bution is p ∼ Be(α, β). The posterior is then Be (α + 1, β) given a success and
Be (α, β + 1) given a failure. At the initial condition, we have f0(x|α, β) = x1−γ.
We can then solve for the value function recursively using the identity

f1(x|α, β) = max
0≤b≤x

{
α

α + β
(x+ b)1−γ +

β

α + β
(x− b)1−γ

}
= max

0≤c≤1

{
α

α + β
(1 + c)1−γ +

β

α + β
(1− c)1−γ

}
= x1−γV1(α, β)

Following recursively, we find

Vk(a, b) = max
0≤c≤1

{
a

a+ b
Vk−1(a+ 1, b)(1 + c)1−γ +

b

a+ b
Vk−1(a, b+ 1)(1− c)1−γ

}
13



The optimal allocation is then

ωk(a, b) =

(
1− w
1 + w

)+

where w =

(
bVk−1(a, b+ 1)

aVk−1(a+ 1, b)

)γ−1

, γ > 1

In the myopic Kelly case where γ = 1, we have the rule ωk(α, β) = 0 for α < β as one
might expect. You will no invest if you prior mean says the the bet is unfair.

This is not true in general though due to the learning effect. For example, with a
uniform prior

w10(1, 1) = 0.875 and w9(1, 2) = 0

w10(1, 1) = 0.973 and w9(1, 2) = 0.117

and the investor allocates a large portion to the risky asset. Even in the case where he
sees a failure and he thinks that the odds are two to one against him, he is still willing
to invest w9(1, 2) = 0.117 that is 11.7% of his wealth.

We therefore have the important effect of Bayesian learning on asset allocation, that
the agent will invest in the first period even though the expected return is negative and s/he
is risk averse!

7 Discussion

Bayesian thinking is central to finance and asset allocation. Stein’s lemma provides
a useful tool for analyze first order maximum expected utility conditions. The classic Kelly
and Merton allocation rules correspond to Bayes rules where the investor maximizes the
expected long-run growth rate of accumulation. These rules are sensitive to estimation risk
and Bayesian estimation methods provide the necessary inputs for expected returns and
volatility.

Under the maximum growth condition when returns are independent these rules are
myopic. Investors will not be willing to allocate any capital to unfavorable bets. However,
when the invest opportunity set is extended to allow for Bayesian learning with exchangeable
return distributions, we see that risk-averse investors are willing to hold a small amount of
the risky asset in the hope that they will learn in the future that conditions are improved in
the future.

There are many avenues for future research. One currently active area is to use learn-
ing methods to explain bubbles and speculative behaviour (see, Harrison and Kreps, 1978,
Scheinkman and Xiong, 2003 and Stein, 2009). Early models in this literature ”explained”
bubbles by incorporating agents who are persistently “naive” and do not update beliefs
coherently. The recent literature has focused more on the dynamics of Bayesian learning
and belief structures. For example, Morris (1996) allows agents to do some beta-binomial
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updating of their beliefs, and Heaton and Polson (2011) use prices to learn whether one is
smart or dumb money in a market.

An interesing vignette comes from the South Sea bubble of 1720. The English parlia-
ment passed the Bubble Act in the following year 1721 trying to ban future bubbles. At the
height of the bubble, the price-earnings multiple of the stock was between 150 and 190 based
on current earnings. In the first six month of 1720 the South sea stock rose 500 percent.
The major ”news” being only the large demand for their shares. A number of investors lost
large sums of money. Sir Isaac Newton (1642-1729) who was Master of the Mint from 1699
to 1729 and who put England on the Gold standard in 1717, reportedly lost £20,000 in the
Bubble. He was quoted as saying I can predict the motion of Heavenly bodies but not the
behavior of the stock-market.
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Figure 1: Bayesian Long-term asset allocation under uncertainty
Diffuse prior on µ.
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