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Abstract

Induced technological change (ITC),whereby the relative price effects of reducing greenhouse gas emissions
stimulate innovation that mitigates the cost of abatement, is both tantalizing to decision makers and challenging
to represent in the computational economic and engineering models used to analyze climate change policy. This
overview reconciles the divergent views of technology and technological change within different types of
models, elucidates the theoretical underpinnings of ITC, introduces the reader to the techniques of their practical
implementation, and evaluates the implications for models' results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is a brief overview of the subtleties and challenges involved in endogenizing
technological progress in computational models for climate policy analysis. Its focus is on induced
technological change (ITC), which in the climate context is the expansion of substitution possibilities
for greenhouse gas (GHG) intensive inputs to production—principally fossil fuels—facilitated by
inventive responses to the price changes induced by policies to mitigate global warming.

The future trajectory of technology is perhaps the most important factor influencing the cost of
mitigating climate change. Concerns over the adverse economic consequences of policies to cut
carbon dioxide (CO2) emissions are motivated by the lack of carbon-free energy supply options
which will be able to substitute for fossil fuels in the foreseeable future, and the limited
possibilities for using other inputs to substitutes for the global economy's demand for energy.
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Fig. 1. Endogenous technological change and GHG mitigation: the big picture.
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Innovations which facilitate substitution on either the demand or supply side are therefore seen as
the saving grace which can moderate the cost of climate policies.

Computational investigations of the costs of reducing GHG emissions policies often treat
technological progress as exogenous and invariant to the effects of abatement policies. In an
intertemporal optimization framework, autonomous technological advance favors a “wait-and-see”
strategy of continuing to emit at high levels while allowing innovation to lower future abatement
costs (e.g., Wigley et al., 1996; Manne and Richels, 1997). By contrast, ITC implies that such
beneficial innovation may be stimulated by near-term actions such as subsidies for the research and
promotion of carbon-free energy supplies or energy efficiency improvements, or simply aggressive
programs of abatement, thus favoring an “act now” strategy (e.g., Grubb et al., 1995).

At issue are analysts' assumptions about the response of innovation to policy-induced input
price changes and the consequent shift in substitution possibilities. Since Hicks (1932) initial
articulation of the ITC hypothesis, theoretical and empirical elaboration of the mechanisms by
which prices affect the rate and direction of innovation have until recently proved elusive.1 But in
spite of this caveat, the idea that forcing producers to bear the costs of cutting pollution induces
technological change that both alleviates the costs of abatement and increases profits still captures
the imagination of environmental advocates and scholars alike.2

Fig. 1 captures the essence of the issue. While the direct effects of emission taxes or quotas on
welfare (i) have been well studied (see, e.g. Weyant (ed.), 1999), we still have only a limited
1 Hicks (1932, p. 124): “a change in the relative prices of factors of production is itself a spur to invention, and to
invention of a particular kind—directed to economizing the use of a factor which has become relatively expensive”.
Attempts by Kennedy (1964), von Weizsacker (1965) and Ahmad (1966) to develop this hypothesis into a theory led to a
sizeable literature (for surveys, see Binswanger and Ruttan, 1978; Thirtle and Ruttan, 1987) which after much argument
and criticism (e.g. Samuelson, 1965; Nordhaus, 1973a) faded from view in the 1970s. The topic has seen a revival thanks
to Acemoglu (2002) model of directed technical change, which continues to spawn applications in the environmental
policy arena (e.g., Smulders and de Nooij, 2003).
2 This is the so-called “Porter hypothesis”—see, e.g., Ashford et al. (1985), Ashford (1994) and Porter and van der

Linde (1995)—as well as Palmer et al. (1995) for criticisms. In a reconciliation of these positions, Popp (2005)
demonstrates that when the outcome of pollution-saving R&D is uncertain, a tax on pollution which reduces a firm's
expected profit will induce innovation which has a high probability of lowering profits even further but which
nonetheless has a low probability of increases profits above their pre-tax level.
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understanding of how such measures may induce technological change (ii) and what the
economic and environmental consequences of this may be (iii). Thus, to gain further insight into
the influence of ITC on the optimal program of mitigation (iv) requires an elaboration of the
mechanisms which drive the feedback loop (ii)–(iii).

To represent this feedback loop in climate policy simulations, exogenous technological change
must be replaced by a formulation which renders both the rate and the direction of innovation
endogenous. It is necessary for the analyst to designate which variables represent the inputs to and
the outputs of innovation, develop a reduced-form structural representation of the transformation
between the former and the latter, and express the result with models using specific algebraic
functions and numerical parameterizations. Building on previous reviews,3 this paper sheds light on
how these architectural options are constrained by the different structural representations of
technology in the two main classes of climate policy simulations: “bottom-up” engineering models
and “top-down” macroeconomic models.4 The result is a concise roadmap to the practical methods
of implementing the basic theoretical elements of technological change, which points to promising
directions for future investigations of the nexus between climate policy and ITC.

The remainder of the paper is organized into four sections. Section 2 lays the groundwork for the
succeeding discussions by introducing a simple conceptual framework for understanding the
different representations of technology in climate policy models. Section 3 examines engineering
and economic conceptions of technological change, reconciling the former's description of “micro-
scale technological change” with the latter's description of substitution. Section 4 is the meat of the
paper, which compares and contrasts the various methods of representing technological change
within climate policy models. Section 5 provides a summary and conclusions.

2. What is “Technology”? insights from production theory

Throughout the paper we employ the analytical device of a hypothetical producer, who in each
time period t={0,…,T} generates output, Y(t), according to a production function, Q, denominated
over two inputs: a quantity C(t) of a clean good (e.g., a composite of capital, labor and non-energy
intermediate inputs) and a quantityD(t) of a dirty good (e.g., fossil fuels) which generates pollution:

Y ðtÞ ¼ Q½CðtÞ;DðtÞ�: ð1Þ
In the neoclassical model of production, Q represents the envelope of feasible techniques of

combining quantities of C and D to produce the level of output Y. Each technique may be thought
3 e.g., Azar and Dowlatabadi (1999), Grubler et al. (1999), Weyant and Olavson (1999), Grubb et al. (2002), Goulder
(2004), and especially Loeschel (2002, 2004).
4 Bottom-up models (e.g., MARKAL—Löschel, 2004) refer to primal activity analysis simulations that solve for the

levels of capacity of energy transformation and conversion technologies that minimize the cost of fulfilling demands for
energy services that are either specified according to demand curves or derived from a simple aggregate macroeconomic
model (e.g. Manne et al., 1995). They contain a detailed description of the energy system in the form of a technology
matrix that represents the level of capacity of individual processes for transforming different primary energy resources
into a range of energy carriers, and for converting these commodities into energy services that satisfy final demands. Top-
down models refer to macroeconomic simulations which come in two flavors: primal aggregate Ramsey growth models
with an environmental sector (e.g., DICE and RICE—Nordhaus and Boyer, 2000), and primal–dual CGE models (e.g.,
EPPA—Paltsev et al., 2005) that solve for the set of commodity and factor prices, and the levels of industry activity and
household income that clear all markets in the economy, given aggregate factor endowments, households' consumption
technologies (specified by their utility functions) and industries' transformation technologies (specified by their
production functions).
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of as a particular production process for combining clean and dirty inputs in a fixed proportion
given by the benchmark unit demands C̄ and D̄, respectively. Thus, for technique m∈M,5

YmðtÞ ¼ min½CmðtÞ=C̄m ;DmðtÞ=D̄m �: ð2Þ
If O(t)⊂M is the subset of techniques operated at time t, then the overall levels of output and

demands for inputs in Eq. (1) are given by the corresponding sums over all active techniques:

Y ðtÞ ¼ P
m∈OðtÞ

YmðtÞ; CðtÞ ¼ P
m∈OðtÞ

CmðtÞ and DðtÞ ¼ P
m∈OðtÞ

DmðtÞ.

In the case where the set M completely specifies all possible means of producing output—at t
or any other period—then Q is all-encompassing and immutable. In this world the production
function is an essentially static concept, with the only margin of adjustment being substitution,
whereby the producer is able to switch among different known and available techniques of
production in response to a change in the relative price of inputs. The magnitude of this shift is
determined the shares of the two inputs in production, their relative prices, and the elasticity of
substitution, σ, which determines the curvature of Q.6

Fig. 2(A) is the textbook illustration of this process. The feasible production set, shown in gray,
defines the combinations of C and D which can generate a unit of Y. The heavy arc defining the
boundary of this set is the unit isoquant, which corresponds to the level curve of Q, or the locus of
production techniques which utilize the smallest amounts of C and D per unit output. Techniques
such as A0 in the interior of the production set use larger quantities of C and/or D, and are therefore
comparatively inefficient. Thus, of the set of available techniques, A(t)⊂M, the isoquant is the
smooth approximation to the sequence of linear combinations of the efficient subset, A1–A4.

In each time period a profit-maximizing producer can generate a unit of output by employing one
or more frontier techniques, which combines C andD in the fixed proportion D̄m /C̄m , shown by the
slope of the dashed rays running through them.7 In competitive equilibrium the producer chooses the
quantity of each input so as to equalize its marginal physical productivity and its market price. In unit
input space, the point where this occurs corresponds to the combination of techniques at which the
slope of the relative price line is tangent to the unit isoquant.8 Thus, if at time t the dirty input is
relatively inexpensive, a situation represented by the price line PP, then the producer will employ
technique (2), so thatO(t)=A2. If at t+1 a pollution tax makes D relatively dearer, the relative price
line rotates counter-clockwise to P′P′ and the producer shifts to A3.

The foregoing description highlights a deep duality and important semantic distinctions between
the conceptions of technology in bottom-up and top-down models. The former typically represent
the individualAs, treating each as “a technology”, i.e., an activity or process of a particular type. The
shift from A2 to A3 is “technology substitution”, referred to as “microscale technological change” by
5 Bottom-up studies often refer to these as “linear” technologies because they are specified in terms of their cost
functions, i.e., the dual of Eq. (2).
6 The elasticity of substitution can be thought of as the percentage change in the relative quantities of the inputs to

production induced by a one-percent change in relative input prices, with the price and quantity of output held constant.
Mathematically, r ¼ − dðC=DÞ

C=D � dðpc=pDÞ
pc=pD

� �
.

7 e.g., the gently-sloped ray through technique A4 indicates that it employs inputs of the clean input relatively
intensively, while the steeply-sloped ray through A1 indicates that it is relatively pollution-intensive.
8 Using the fact that under conditions of perfect competition and constant returns to scale the marginal product of each

input is equal to its price (∂Q /∂C=pC and ∂Q /∂D=pD), the total derivative of Eq. (1) can be rearranged to yield dD /
dC=− pC /pD, which is the marginal rate of technical substitution (i.e., the slope of the isoquant) at the point of tangency
in D–C space.
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Grubler et al. (1999). By contrast, macroeconomic models rarely represent discrete activities but
instead consider “the technology” to be the entire envelopeQ, whose discrete elements all exist prior
to the relative price change, but may not all have been operated. The shift from A2 to A3 is therefore
regarded as substitution. To understand the subtleties of this distinction it is necessary to clarify what
is meant by technological change.

3. Technological change and its inducement

3.1. Economic vs. engineering conceptions of technological change

Technological progress is a change in the character of productive activity. This change can be
radical, creating fundamentally new products or processes, or incremental, improving the
performance or efficiency of ones which already exist. Technological change encompasses the
processes of invention, innovation or development, and diffusion or adoption. Invention is fueled by
individual human creativity and the state of scientific knowledge, while development relies on
engineering know-how to scale-up working prototypes into commercially useful, routinized pro-
duction processes, whose widespread adoption by firms depends on both ruling prices and the level
of producers' technical knowledge.

The narrower economic conception of technological progress is the change in the character of
production, with prices held constant, which enables more output to be produced using the same
quantities of inputs, or, symmetrically, which allows the same level of output to be produced from
smaller quantities of inputs. In the present context, innovation alters the recipe for combining C and
D to make Y, a process which constitutes an evolution in the shape of the production function. The
implication is that Q is no longer the envelope of all possible production techniques, only those
feasible at time t. Radical technological change is synonymous with the appearance in subsequent
periods of new techniques, while incremental technical change corresponds to increases over time in
the efficiency with which known techniques transform inputs into output. Technical progress occurs
if either of these processes shifts the unit isoquant inward toward the origin.

Fig. 2(B) provides an illustration. First, imagine that at t, prices are constant at PP and the
production function is given by Q. Then radical technological change creates the new technique
A5, which is capable of generating a unit of output using the same amount of D as A2, but with
one-third less of input C. The result is an expansion of the feasible production set and a shift in the
unit isoquant toward the origin to Q V, which is a new transformation frontier given by the
sequence of linear combinations of {A1, A5, A4}. A2 and A3 are eclipsed, and join A0 in the interior
of the production set. The key outcome is the shift in the point of tangency between the relative
price line and the isoquant, with the producer shifting from A2 to a combination of techniques A1

and A5, using relatively less of the dirty input in the process.
A similar outcome arises if instead of radical innovation there is incremental improvement in the

efficiency of techniques A2 and A3, represented by their inward shifts to A2′ and A3′. The necessary
condition here is the differentialmovement of each technique along its ray toward the frontier, with
the largest improvements being concentrated in the most pollution-intensive activities. Thus, with
incremental technological change the sequence of techniques which define Q and Q′ are identical,
but the change is in the character of its constituent activities. In this case the producer also adopts a
cleaner technique of production, shifting from A2 to a combination of A2′ and A3′.

The C-using and D-saving shift of the production frontier in Fig. 2(B) is an example of biased
technical change, which occurs when an innovation saves relatively more of one input to
production than another. The strength of this effect is known as the bias of technical progress,



Fig. 2. Substitution versus technical progress.

544 I. Sue Wing / Energy Economics 28 (2006) 539–562
which is the rate of change in the shares of the inputs to production when the prices of inputs and
output are held constant (Binswanger and Ruttan, 1978). Fig. 2(C) illustrates the alternative case
of neutral technical progress, in which the rates of reduction in input demand are identical, and
shift the entire isoquant toward the origin without changing its shape. The upshot is that with
unchanged relative prices the producer sticks with technique A2, but is able to create a unit of
output from proportionately fewer units of all inputs.

But while technical progress implies an expansion of the subset of efficient techniques and/or a
change in their efficiencies, the converse is not necessarily true. Obvious examples are a small
increase in the efficiency of A0 or the appearance of a new technique within the grey area, both of
which are improvements which have no effect on the position of the unit isoquant. It is less
obvious, however, that a shift in the frontier does not automatically imply progress. This is
illustrated by the pathological case of “ineffectual innovation” in Fig. 2(D). Despite the efficiency
improvement from A5 to A5′, this technique is sufficiently distant from the pre-existing production
point A2 in normalized input space that the producer continues to be use the latter. However, this
taxonomic convention is complicated by price changes. If prices shift from PP to P′P′ in Fig. 2
(B), then the existence of a highly efficient technique such as A5′ facilitates greater substitution of
C for D than would be the case in Fig. 2(A). Only then can it be said that progress has actually
taken place.

3.2. Technological change vs. substitution

The foregoing examples shed light on the relationship between substitution and technical
change. Once we relax the assumption of constant prices, technological change in the broadest
sense of the term can be logically thought of as a two-step process of innovation followed by



Fig. 3. Substitution vs. technical change: a conceptual classification.
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substitution toward newly-available techniques. The general caution is that maintaining a neat
conceptual distinction between substitution and technical change is not a straightforward task.9

To classify an observed shift in technique it is necessary to discern whether the production
process which ends up being used pre-dates the price change. Several cases are possible in Fig. 2
(A), a taxonomy for which is given in Fig. 3. If A3 does not exist in period t then technical
progress has clearly taken place. If it does exist, the question is whether A3 has been operated prior
to t, or is a still “new” in the sense of being available but unused. In the first instance, once A3 has
not experienced intervening efficiency improvements, then the shift is clearly substitution. If A3

has never been used but has been available at sufficient scale, then whether or not substitution has
occurred is ambiguous. But in any case this circumstance seems implausible, as it is unlikely that
producers will build up sizeable capacity in unprofitable technologies only to leave them idle in
expectation of uncertain future price changes. The more likely alternative is where A3 has been
invented but is not a fully-fledged production process at t. Then the movement from A3 to A2 must
involve development, diffusion, and scale-up of operations, all of which are components of
technological change.

The unit isoquant is thus a snapshot of the techniques amongst which the producer is assumed
to be able to shift frictionlessly over a certain time-frame. The length of this interval (which in
climate policy models is on the order of 5–10 years) distinguishes substitution—which is
9 This point harks back to anold debate on the possibility of econometrically identifying both the elasticity of substitution and
the bias of technological change given prices and quantities of inputs and output (Nerlove, 1967; Diamond et al., 1978). This
question has been rendered moot by the use of flexible cost and production functions such as the translog or generalized
Leontief, in which bias of technical progress is given by the coefficient on the time-trend in an input's intensity or share,
controlling statistically for the effects of the prices and/or quantities of inputs and the scale of production.



Fig. 4. The elasticity of substitution as an efficiency parameter.

546 I. Sue Wing / Energy Economics 28 (2006) 539–562
considered to be a contemporaneous phenomenon, from technological change—which,
depending on how radical a new technology is, may take several decades. Judgments about
the scope of substitution possibilities in the short run are implicit in the value of the elasticity of
substitution, which is perhaps the most important exogenous parameter employed in the
numerical calibration of top-down models.

Fig. 4 portrays a hypothetical situation where benchmark data indicate that Ȳ units of output
are produced from C̄3 units of the clean input and D̄3 units of the dirty input at relative input prices
PP. The missing piece of necessary information is the elasticity of substitution, whose value
defines the curvature of the isoquant through Ā2 which is tangent to PP.10 While Ā2 is a known
benchmark, there is often a dearth of information about the range of alternative activities to which
the producer can switch in the short run, implying that σ must be assumed. For given shifts in
relative prices, a low elasticity σL reflects the availability of alternatives such as A1 and A3 whose
input proportions are similar to Ā2, while a high elasticity σH reflects the availability of the
radically different (and relatively efficient) alternatives A1′ and A3′.

If a given expenditure on research allows technological breakthroughs appear with some
constant flow probability, then the more time the producer has to adjust to a given price change,
the greater the chance of that an innovation comes into being which is capable of transforming
currently unprofitable techniques with radically different input proportions into feasible
production alternatives at the new ruling prices. Thus, the larger the value of σ, the greater the
potential for conflating long-run substitution with elements of technological change.

An important corollary is that with stable prices, the availability of new clean production
techniques (i.e., ones close to the C axis) is likely to have little contemporaneous impact on
production. This point is suggested by Fig. 5, which plots historical data on average U.S. fossil
fuel prices from DOE/EIA, trends in patenting of energy supply and demand technologies from
10 Models' predictive validity rests on their ability to replicate real-world observations. Calibration refers to the
numerical procedures which solve for the values of the coefficients in a model's equations which enable the model to
reproduce the data on which it is empirically benchmarked. Because there are frequently fewer observations than
unknown parameters, the calibration problem is often under-determined, and can only be solved if the modeler
exogenously specifies the values of key parameters (Jorgenson, 1984; McKitrick, 1998; Dawkins et al., 2001). Where
econometric estimates are not available, the latter are often based on assumptions and judgment.



547I. Sue Wing / Energy Economics 28 (2006) 539–562
Popp (2001, 2002), indices of the effects of substitution and embodied technical progress on
industries' energy intensity, and an index of aggregate energy intensity net of structural change
from Sue Wing and Eckaus (2004). Despite the surge in energy technology patenting in response
to the first energy price shock (epoch I), it took many more years of high prices (epoch II) before
aggregate energy intensity began to decline. This lag is suggestive of the time and resources
Fig. 5. The impact of energy prices on technological change and energy intensity. Sources: DOE/EIA (various years); Popp
(2001, 2002); Sue Wing and Eckaus (2004).



Fig. 6. The Ahmad–Binswanger–Ruttan model of ITC.
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necessary for producers to move between invention and substitution. In particular, Sue Wing and
Eckaus find that while energy intensity was temporarily diminished by substitution during this
period, the former's sustained decline (even after the collapse of energy prices) was due to
embodied technical change—namely, the capitalization of energy-saving innovations into
industries' stocks of equipment, machinery and especially information technology capital.

The implication is that we should be pessimistic about the likelihood of success of subsidies to
bring high-efficiency or low-carbon technologies “down off the shelf ” and into commercial use
without complementary measures to increase the price of inputs which embody GHGs (IPCC
2001: §7.3.4.1). This raises the question of how prices affect both patenting (i.e., invention) and
the intervening processes of innovation and diffusion, which we turn to next.

3.3. Understanding inducement

In what is perhaps the clearest theoretical articulation of ITC, Ahmad (1966) and Binswanger
and Ruttan (1978) treat the isoquant in Figs. 2 and 3 as only one of many potential families of
techniques for producing output under different relative price regimes. Each of these alternative
production functions represents a draw from a superset of production possibilities which is
determined by the state of technological knowledge in each period. The key determinant of the
alternative which is actually realized is the innovation possibility curve (IPC), which represents
the efficient frontier of this superset in input space, and defines the envelope of unit isoquants
which the producer is capable of developing with a given research and development
expenditure.

Fig. 6 provides an illustration. The IPC in each period is given by the dashed lines and the
heavy curves show the production functions which are actually realized. The latter are the ones
that share a common point of tangency with the relative price line and the IPC, so that the
marginal rates of technical substitution along the isoquant and the technology menu both equal
the relative price ratio. Prices therefore not only induce the producer to select the particular
technique which lies at the point of tangency between the relative price line and the unit isoquant,



549I. Sue Wing / Energy Economics 28 (2006) 539–562
they also induce the selection of the family of activities which lies at the point of tangency
between the relative price line and the IPC.

Given the state of technical knowledge in period t, relative prices PP determine both the
production function QQ and the active technique A1. Over a span of k periods, the increase in
knowledge due to the secular progress of scientific discovery makes innovation more efficient,
causing the IPC to move toward the origin in a neutral fashion. The production function thus
shifts inward until it is jointly tangent with the new IPC and the relative price schedule. The
upshot is that even with constant prices, biased technical progress can occur as the production
function moves to Q′Q′. If relative prices change to P′P′ the producer's instantaneous response is
to shift to technique A2, which gives rise to a slight reduction in the demand for the dirty input.11

But over time, prices serve to direct the process of technical change, causing the entire production
function to shift to Q″Q″ and the producer's shift to the vastly different technique A2″ on this
frontier, which employs a far smaller input of D. The shift from QQ to Q″Q″ thereby represents
price-induced C-using and D-saving technical progress.12

Fig. 6 is also suggestive of the importance of σ. By pinning down the curvature of QQ, it
determines which realization of the production function will be jointly tangent to the IPC and the
relative price line. The elasticity of substitution is therefore a de facto technology parameter
(Jacoby et al., this volume), which leads immediately to the question of whether there exist similar
parameters which determine the position and curvature of the IPC. It turns out that the answer is
no. Although the Ahmad–Binswanger–Ruttan framework provides a short-cut to the outcome of
ITC, the IPC's shape is determined by the mechanisms through which technological change
proceeds.

Recall that the IPC's distance from the origin is indicative of the overall efficiency of
production, which in turn is determined by the economy's stock of skills, experience, ideas and
blueprints. Collectively these can be viewed as an intangible asset—“knowledge capital”—
whose accumulation is driven by education and the additions to economically-useful human
understanding as a result of production experience or investments in research. The IPC's position
and curvature reflect the potential influence of prices on both the precursors and the outcome of
the accumulation process, namely, the inducement of R&D and the influence of intangible capital
on the character of the set A.

To understand why, it is necessary to develop a process-based elaboration of the feedback loop
in Fig. 1. An example is illustrated schematically in Fig. 7. Besides inducing contemporaneous
substitution among tangible inputs, shifts in pD /pC also stimulate inventive activity in the form of
R&D (A) through a mechanism which still is not well understood. But although the need to
mitigate rising unit costs creates the demand for innovation, the supply is constrained by the
firm's current revenues, which determine the pool of resources available for research (B). The key
implication is that quantity of R&D is determined by the equilibration of the forces (A) and (B).
Innovation can be thought of as the process by which R&D is transformed into new knowledge
(C). Together, these factors are responsible for endogenously shifting the IPC toward the origin.

Because it is the outcome of the accumulation process, technological change occurs only with
a lag. In the analogue of diffusion or adoption, the envelope of substitution possibilities shifts in
11 A technical detail is that once the production function at t is realized given prices and the state of knowledge, the
remainder of the IPC disappears. Therefore, in Fig. 6 the price change does not cause the contemporaneous movement of
QQ along IPC(t). Rather, the prices P′P′ determine a new point of tangency between the production function and the IPC
at t+1.
12 Jones (2005) uses the concept of the IPC to build up production functions from stochastic microfoundations.



Fig. 7. A process-based model of ITC.
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response to the increased supply of knowledge (D) and the effect of relative prices on the
incorporation of knowledge into the production function (E).13 These processes enhance
productivity and profits (F) either by increasing the efficiency of production or facilitating the
substitution of knowledge for relatively costly tangible inputs. By specifying the differential
improvements in the efficiency with which C and D are employed, these factors implicitly define
the curvature of the IPC.

In the present context it is useful to think of knowledge not as monolithic but as heterogeneous
in character, differentiated in terms of the ideas, blueprints, etc. that improve the producer's
efficiency of employing C versus that of using D. As we shall see, the implication is that all six of
13 The deeper point here is the essential dependence of the input-saving consequences of an invention on relative prices,
notwithstanding the inventor's intention to save on one input or another. Samuelson (1965: 355) captures the essence of
the issue: “For the most part, labor saving innovation has a spurious attractiveness to economists because of a fortuitous
verbal muddle. When writers list inventions, they find it easy to list labor-saving ones and exceedingly difficult to list
capital-saving ones. (Cannan is much-quoted for his brilliance in being able to think up wireless as a capital-saving
invention, the syllable ‘less’ apparently being a guarantee that it does in fact save capital!) That this is all fallacious
becomes apparent when one examines a mathematical production function and tries to decide in advance whether a
particular described invention changes the partial derivatives of the marginal-productivity imputation one way or another.
Thus, consider a locomotive. It is big and heavy. So the literary mind thinks that it must correspond to a capital-using
invention and hence to a labor-saving invention. Or think of a complex Rube Goldberg-like modern contraption. It is
intricate and round about. So it must be regarded as labor-saving and capital-using. And yet there is not the slightest
pretext for such inference. In the steady state, when human labor is organized through time with locomotives rather than
without them, there is no way to tell in advance whether the relative share of labor in comparison with property has gone
up or down in the steady state with production at all stages vertically integrated. We have the unfortunate tendency to use
labor as the denominator in making productivity statements. Any invention, whether capital or labor saving, just by virtue
of its definition as an invention rather than a disimprovement will, other things being equal, result in more output with the
same labor or the same output with less labor. That could be said with any factor substituted for labor. But we know how
difficult it is with a changing technology to get commensurable non-labor factors to put in the denominator of a
productivity comparison. So we tend to concentrate on labor, and then we fall for the pun, or play on words, which infers
a labor-saving invention whenever there is an invention. Thus, consider a simple case where output acts as if it were
produced by a Cobb–Douglas [C–D] function with coefficients 3/4 and 1/4. Now let the locomotive, or the wheel, or fire,
or the calculus be invented. Now can one have the least idea whether the function is merely increased in scale as against
being twisted one way or the other in terms of its C–D coefficients? And when considers embodied technical change, and
changing elasticities of substitution, as one must be prepared to do, how far from intuitive the problem becomes”.
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the foregoing factors play a role in determining the shape of the IPC. Armed with this
understanding, we are now equipped to examine the methods by which technological change is
represented in computational models for climate policy analysis.

4. Technological change in climate policy simulations

4.1. Exogenous input-augmenting technological change

In climate policy, the bulk of modeling analyses treat technological change as exogenous. The
most common method of representing technical change is through parametric improvements in
efficiency which alter the shape of the envelope of techniques. The typical device consists of
augmentation coefficients, α, applied to each input, whose values grow over time:

Y ðtÞ ¼ Q½aCðtÞCðtÞ; aDðtÞDðtÞ�: ð3Þ

Neutral efficiency improvement occurs when αD(t)=αC(t)=α(t). Provided the production
function has “nice” properties,14 Eq. (3) can be re-written Y(t)=α(t) Q[C(t), D(t)], where α now
defines the overall rate of technical progress.

Biased technical progress occurs when αD(t)≠αC(t). In climate policy models this is used
extensively to represent the empirically-observed phenomenon of expanding output accompanied
by declining energy- and emissions intensity. IfD denotes carbon-rich fossil fuels, the direction of
technical progress is determined by the autonomous energy efficiency improvement (AEEI)
parameter, which defines the degree to which the neutral rate of technological progress overstates
the augmentation of fossil fuels, αD′:

Y ðtÞ ¼ aðtÞ½CðtÞ; aDVðtÞDðtÞ�: ð4Þ

Here, AEEI(t)=α ˙D′(t) /αD′(t), with − α˙(t) /α(t)bAEEI≤0.15 In bottom-up simulations, the
analogous procedure is to stipulate technology-specific neutral productivity parameters, αm,
whose values increase over time

YmðtÞ ¼ amðtÞmin½CmðtÞ=C̄m ;DmðtÞ=D̄m �d ð5Þ

The rate of efficiency improvement is determined by demand decoupling factor (DDFs):
DDFm(t)=α˙(t) /αm(t). For biased technical progress synonymous with the AEEI the DDFs must
generally increase with the ratio Cm

¯ /Dm
¯ , implying that improvements are concentrated in

activities which are relatively clean.
14 Technically, if Q[· ] is homogeneous of degree one in its arguments (reflecting constancy of returns to scale in
production and perfect competition in input and output markets) then α represents the rate of total input productivity,
analogous to the Solow residual. The result is the shift in the unit isoquant illustrated in Fig. 2(C).
15 A dot over a variable denotes a time-derivative. The first documented use of the AEEI is Edmonds and Reilly (1985),
who cite the historical reduction in the energy intensity of GDP with increasing economic development as justification for
a declining coefficient on energy input. They create a simulation model with an exogenously increasing index of energy-
saving technology (the equivalent of αD above) whose inverse is used to attenuate price-determined demands for fuels.
This trick is routinely employed in climate policy models, whose AEEI values tend to cluster around 1%.



552 I. Sue Wing / Energy Economics 28 (2006) 539–562
The limitations of this approach are by now well known.16 First, the rate and direction of
technical change are both pre-specified by the modeler and invariant to the effects of climate
policy, with the result that substitution is the only mechanism through which climate mitigation
measures can affect input demands. Second, technical progress is subsumed under the rubric of
incremental improvement, leaving no room for radical technological change. We take up this
issue next.

4.2. Backstop technologies: Semi-endogenous technological change

To represent radical technological change, we need a way to model the appearance of wholly
new production techniques. In top-down simulations this is often an alternative production
function, Q′, which switches on in future periods in response to rising prices—a “backstop”
technology.17 These are often techniques which are forecast to become available after a certain
future date, t̄b, and only actually produce output once their unit costs of production, p′, become
competitive with that of the conventional technology, p:

Y ðtÞ ¼ Q V½CðtÞ;DðtÞ� if p VðtÞVpðtÞ and tzt̄b : ð6Þ
In bottom-up models the expansion of the set of operable technologies is explicitly

represented, most often by designating the timing with which individual activities become
available. The notation above can be used to capture this procedure for backstop technique b:

YbðtÞ ¼ min½CbðtÞ=C̄b ;DbðtÞ=D̄b �; ð7Þ
where b∈A(t) if t≥ t̄ b.

Eqs. (6) and (7) are referred to as semi-endogenous because the timing of the backstop's
penetration is determined by the values of other variables for which the model solved.
Nevertheless, given the impossibility of representing the creation of new techniques whose
characteristics are not known at the start of the simulation and somehow emerge endogenously,
the modeler must still make predictions about the key parameters tb̄, C̄b and D̄b. The result is a
sequence of available techniques {Ā(0),…,Ā(T )} which is inevitably exogenous, but which can
have huge impacts on long-run mitigation costs. Because backstops are idealized representations
of generic unprofitable or speculative energy technologies, it is inevitable that their parameters
will be based in large part on engineering judgment. Consequently, the more radical the
technology or the farther in the future it appears, the more uncertain its attributes.

Another issue is the nature of the transition between Q and Q′. It is plausible for these
techniques to coexist for a number of periods, with the latter gaining market share at the expense
of the former. In top-down models, as soon as p′≤p the backstop usually takes over the entire
market in what is known as “flip-flop” or “bang-bang” behavior. This dynamic stems from the
16 In multi-sectoral economic models the AEEI is a short-hand approximation for not only energy-saving innovation, but
also the shift in the composition of the economy toward activities that demand smaller quantities of fossil fuels,
environmental policies restricting the use of fossil fuels, and the removal of “market barriers” to the diffusion of more
energy-efficient technologies. Sue Wing and Eckaus (2005) assess the implications of this for the role of technological
change in projecting baseline emissions.
17 Coined by Nordhaus (1973b), the term backstop refers to a production process which becomes available only at high
input prices, but can generate an unlimited quantity of output at constant marginal cost (a classic example is the
plutonium breeder reactor). Within models, the practical effect is to cap the long-run rise in fossil-fuel prices due to their
depletion or restrictions on their supply mandated by GHG emission reduction policies.
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perfect substitutability of the outputs of the two production functions, which modelers remedy by
imposing ad-hoc bounds on the backstop penetration rate, specifying the outputs of Q and Q′ as
imperfect substitutes (Popp, 2004b; Sue Wing, in press) or modeling the clean input as being in
imperfectly elastic supply. With respect to the latter, Sue Wing (in press) focuses on capital as a
component of C, modeling that input as activity-specific and imperfectly malleable. An additional
device which is employed to regulate the penetration of the backstop is a fixed factor, ZB, which
replaces the dirty input:

Y ðtÞ ¼ Q V½CðtÞ; ZBðtÞ� ð8Þ

ZB is a proxy for non-price “market barriers” such as technical standards or the lack of
complementary infrastructure whose evolution proceeds exogenously (McFarland et al., 2004;
Jacoby et al., this volume), or for the scarcity of technical know-how necessary to operate Q
competitively—which may be alleviated by investment in R&D (Popp, 2004b).

Similar issues arise in bottom-up simulations, as Section 4.4 elaborates. But even though
formulations such as Eq. (7) are a mainstay of energy systemmodels, their impact on the simulation
results is difficult to judge because of the multiplicity of activities represented therein, each of whose
attributes—especially t̄ b—tend to be poorly documented.18 Furthermore, the results reflect the
trajectory of activities which are operated, O(t), from which it is not possible to reconstruct the
evolution of the envelope of available techniques, A(t). All this points to the need for bottom-up
studies which explicitly track the time paths of the sets O and A, and apportion the changes in
emissions and system costs between shifts of the former (i.e., substitution) and the expansion of the
latter (i.e., technological change).

4.3. Price-induced input augmentation

The most direct way of appending inducement to the framework of Eq. (4) is to formalize the
Ahmad–Binswanger–Ruttan model by specifying the augmentation coefficients as functions of
the relative prices of the inputs. What is required is a relation, ψ, which is the analogue of the IPC,
and whose function is to translate shifts in relative prices into changes in the values of the
augmentation coefficients:

:
aiðtÞ ¼ w½ pCðtÞ; pDðtÞ� i ¼ fC;Dg: ð9Þ

Formulations of this kind are rarely used.19 The reasons are the lack of empirical information
about the shape of ψ, the difficulty of specifying a function which can simultaneously capture
both complementarities and tradeoffs among the augmentation of different inputs (especially
when the number of inputs is large), and the challenge of representing the potential for small price
changes to stimulate technological change while simultaneously allowing large increases to stifle
innovation.
18 For example, IIASA's Carbon Dioxide Technology (CO2DB) Database contains detailed technical, economic and
environmental characteristics of 3000-odd energy technologies, but the basis of these data in the peer reviewed literature
is unclear.
19 Dowlatabadi (1998) and Dowlatabadi and Oravetz (1996, in press) specify ψ as a function of per capita GDP and
current and lagged energy prices. Jakeman et al. (2004) model the aggregate amount of innovation as exogenous but
endogenously allocate the resulting pool of “technological change” among industries according to their unit costs.
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4.4. Learning by doing: a critical assessment

Perhaps the most popular method of endogenizing technological change is learning by doing
(LBD), which is based on Arrow's (1962) model of unit cost decline driven by producers'
accumulation of knowledge via their experience with the use of particular techniques of
production. This approach is favored by bottom-up models, which employ cumulative capacity—
or production, as the utilization decision is not explicitly represented—as the proxy for
experience.20 In a given period, each activity's demand decoupling factor is specified as an
increasing function of the history of its output:

amðtÞ ¼ w½VmðtÞ; km�; ð10Þ
where VmðtÞ ¼

R t
0 YmðsÞds is an index of cumulative production at t, and ψ is an experience

function (ψ, ψ′≥0, ψ″b0). The key parameter is the learning rate, λm, which determines the
increase in productivity, or symmetrically the reduction in unit costs, as a result from a doubling
of V. A typical formulation is ψ=Vm

ζm, in which the learning exponent ζm=log(1+λm) / log 2.21

Under this approach ITC is the stimulation by climate policies of aggressive near-term
investment in high-cost, low-carbon energy technologies, which then enjoy cost reductions due to
LBD (e.g., Grubler and Messner, 1998: Fig. 4). The upshot is uniformly greater mitigation effort
early in the simulation horizon, and often large reductions in overall policy costs relative to the
no-learning baseline. This outcome is the result of perfect-foresight models' balancing the
discounted future outlays from switching away from conventional energy technologies against
the discounted future savings in energy supply costs due to learning in alternative technologies.
Subsidizing capacity addition in initially-unprofitable alternative technologies permits the
accumulation of experience with their operation, inducing declines in their unit costs which
enable them to more quickly compete with conventional technologies, and yield the societal
benefits of the subsequent stream of savings on energy costs. Models' implicit subsidization of
the initial unit cost differential (especially between fossil fuels and renewables) is thus
rationalized as a “learning investment” in generating these future benefits (Wene, 2000).

Although widely used, the LBD approach suffers from a number of important limitations. First
and foremost, introducing LBD makes the problem of minimizing total energy system cost non-
convex, giving rise to multiple equilibria and attendant instability of models' numerical
solution.22 The positive feedback of cost reductions on output and further experience gains in Eq.
(10) predisposes learning technologies to become dominant only a few periods after their
introduction, which can cause intertemporal bottom-up models to exhibit implausible market
share dynamics. As with backstop technologies, the common remedy is to include penetration
constrains on technologies which enjoy LBD (e.g., upper bounds on capacity or investment rates),
but their effect is to render the trajectories of cost reductions exogenous (Loulou et al., 2004: 71–
20 “The first question is that of choosing the economic variable which represents ‘experience’. The examples given
above suggest the possibility of using cumulative output (the total of output from the beginning of time) as an index of
experience, but this does not seem entirely satisfactory. If the rate of output is constant then the stimulus to learning
presented would appear to be constant, and the learning that does take place is a gradual approach to equilibrium
behavior”. (Arrow, 1962: 155–156).
21 Grubb et al. (1995) and Goulder and Matthai (2000) employ a different formulation in which cost reductions due to
learning are a function of cumulative abatement. In top-down framework of Eq. (4) this is equivalent to an acceleration of
the AEEI with reduction in the use of the dirty input: AEEI(t)=−ψ[D(t)].
22 Manne and Barreto (2004) demonstrate multiplicity of equilibria in a simple three-technology model with LBD.
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72). However, the main problems with these antidotes are their tenuous theoretical and empirical
bases, and particularly their tendency to be poorly documented.23 In large bottom-up models, the
sheer number of activities—each with a different learning rate, whose cost reductions may even
be amplified by inter-technology spillovers due to “learning clusters” (e.g., Gritsevskyi and
Nakicenovic, 2000)24—only exacerbates this lack of transparency.

A second issue is the critical assumption shared by virtually all LBD studies that carbon-free
technologies experience the most rapid learning and cost reductions, while their conventional
counterparts enjoy little or no improvement. Renewables then often grow to satisfy a large share
of total energy demand (Mattson and Wene, 1997; van der Zwaan et al., 2002), sometimes even
without the imposition of climate mitigation measures (Chakravorty et al., 1997). Not only is this
outcome quite speculative given our limited understanding of the association between unit cost
reductions and the diffusion of new technologies, it is virtually a pre-determined the outcome of
the simulation.25 Not only is the potential for activities to learn fundamentally exogenous, even
modest learning potentials predestine them to rapidly increase their market share once they
become operational. The simulated producer's role is then relegated to allocating capacity
accordingly.

The third shortcoming is the phenomenological, heuristic character of LBD itself. That cost
reductions flow automatically from capacity additions in new technologies is not just mechanistic,
it implies that innovation is a costless by-product of clean production, rather than the outcome of
deliberate, costly investments in research. Thus, apart from shedding light on the production
subsidies justified by the influence of learning potentials on the timing and technological
characteristics of responses to emission or concentration targets,26 the LBD approach is
unsatisfying because it yields little insight into the forces which drive ITC, even as it holds out the
possibility of a technological “free lunch”.
23 Consistent with Arrow's intuition (cf. footnote 18), technologies do not learn forever but achieve a steady state once
they gain sizeable market share (Nakicenovic, 2002), which implies an upper bound on αm given by its cost reduction
potential—the difference between the cost of a unit of capacity of m at t=0 and some ultimate “floor” cost at t=∞. The
problem is that the latter is unknown and is often arbitrarily assumed. According to Grubler et al. (1999): “[If one]
assumes that the cost of the incremental technology falls at an exogenously determined rate [then] the result is typical for
simple optimization models: a new technology diffuses rapidly and widely at the moment it becomes cheaper than
alternatives. Indeed, large-scale technology optimization models, which are widely used to assess the costs of abating
various environmental problems, display similar ‘flip-flop’ behavior. Published runs typically do not illustrate such
behavior only because additional constraints, such as restrictions on the rate and pattern of technological diffusion, tuned
according to the modeler's sense of plausibility, are widely used to make the outputs appear more realistic. Like sausage,
the final product is evidently tasty, but the method of producing it is best left shrouded in mystery”.
24 A cluster is a subset of available technologies x each of whose unit costs depends on the sum of the cumulative
capacities of all the technologies in the cluster. Thus for any m∈x, VmðtÞ ¼

R t
0

P
meX YmðsÞds.

25 Chakravorty et al's result seems far-fetched, given renewable energy technologies' low capacity factors and the
abundance of low-cost hydrocarbon resources (e.g., Gregory and Rogner, 1998). The use of a technology's cumulative
capacity as a sufficient statistic for the impact of LBD conflates the accumulation of experience with economies of scale
and the embodiment of technological progress in the firm's capital equipment. An additional complication is that time
series of the costs of new energy technologies are barely long enough to statistically distinguish these factors. Isoard and
Soria (2001) is one of the few studies to rigorously document such estimates—and their shortcomings—in the peer-
reviewed literature (see, e.g., McDonald and Schrattenholzer, 2001: Table 2). The consequent dearth of information on
learning rates in energy technologies has led modelers to adopt progress ratios drawn from a range of non-energy
manufactured goods (e.g., Dutton and Thomas, 1984).
26 See, e.g., van der Zwaan et al. (2002), Gerlagh and van der Zwaan (2003) and Gerlagh et al. (2004). These studies'
strength is their disaggregation of energy production into only two activities (generic fossil and non-fossil technologies),
which makes their analysis transparent and simplifies interpretation of their simulation results.
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Attempts to address this limitation have focused on the complementarities between costly
R&D and cost reductions due to learning.27 Kouvaritakis et al. (2000) incorporate this effect by
including cumulative research, Ωm, as an additional argument in the experience function:

w ¼ VmðtÞfmXmðtÞlm ; ð11Þ
where XmðtÞ ¼

R t
0 RmðsÞds, μm indicates the strength of the effect of R&D on learning, and m-

specific R&D,Rm, is modeled as an additional control variable. In so far as this formulation amplifies
the cost-reducing effect of cumulative production it is likely to exacerbate the non-convexity
described above.Moreover, the assumption that renewables enjoy larger values of μ than fossil fuels
can bias the simulation toward a carbon-free future to an even greater extent. Nevertheless, Eq. (11)
is important because it acknowledges that the reconfiguration of the production function is a direct
outcome of the application of new knowledge—for which experience, and in turn, cumulative
capacity, aremerely proxies, andmoreover, which is costly to accumulate.28 It is therefore a gateway
to the explicit representation of the processes of technological change.

4.5. Process-based models of ITC: The stock of knowledge approach

This approach is the algebraic analogue of Fig. 7, but with knowledge represented as a
differentiated asset. Its centerpiece is the stock of knowledge, H, whose accumulation is
determined by obsolescence (which is captured by the rate of depreciation parameter δ) and
investments in research, R, following the perpetual inventory framework developed in the new
economic growth literature:

H
�
i ðtÞ ¼ w½RiðtÞ;HiðtÞ�−dHiðtÞ i ¼ fC;Dg: ð12Þ

Here, ψ is a transformation function which represents the innovation process. A generic
formulation is:

w ¼ biRiðtÞhiHiðtÞnif
X

i

RiðtÞgxi
; ð13Þ

inwhich β denotes the efficiency of innovation, θb1 indicates contemporaneous diminishing returns
to R&D, and ξb1 indicates diminishing returns to intertemporal knowledge spillovers.29 If ω≠0
there is an additional contemporaneous spillover effect due to complementarities among different
lines of research, analogous to the learning clusters in LBD models described in footnote 24.

The stock of knowledge approach is the almost exclusive preserve of top-down models, in
which ITC encompasses three distinct processes: the price effects of climate policy's stimulation
of additional dirty-input saving research, the consequent rise in the rate of accumulation of D-
saving knowledge and expansion of substitution possibilities for D, and the resulting increase in
27 See, e.g., Lieberman (1984); Cohen and Levinthal (1989).
28 Arrow himself clearly notes this in the introduction to his seminal paper (Arrow, 1962: 155–156): “[The] empirical
studies of Abramovitz and Solow [...] do not directly contradict the neo-classical view of the production function as an
expression of technological knowledge. All that has to be added is the obvious fact that knowledge is growing in time.
[…] The acquisition of knowledge is usually what is termed ‘learning’, and […] I do not think that the picture of technical
change as a vast and prolonged process of learning […] is in any way a far-fetched analogy”. The italics are my own.
29 See Rivera-Batiz and Romer (1991), Jones (1995), Jones and Williams (2000) and Popp (2004a). The parameter θ
proxies for duplication externalities in research (“stepping on toes”), while ξ indicates the intensity of creative destruction
(“standing on shoulders”). The necessary condition for an intertemporally convex optimization problem is θ+ξ+ω≤1.
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the substitution of HD for D as a result of relative prices.30 ITC's overall impact tends to be
modest, and turns on reductions the welfare cost of mitigation through the inducement of near-
term emission-saving R&D, as opposed to early abatement. Thus, as suggested by the discussion
in Section 3.3, Eq. (12) is the intertemporal conduit for the real action in models of ITC, namely,
the influence of relative prices on R&D—which can be thought of as an “accumulation effect”,
and the joint impact of relative prices and the expansion of the supply knowledge on production
costs—which can be thought of as a “substitution effect”.

Regarding the latter, the present framework provides an opportunity to endogenize
technological change in the models of earlier sections. In the input augmentation model in Eq.
(3) this is accomplished by specifying each coefficient as a function of its respective knowledge
stock: αi(t)= fi[Hi(t)], with f, f ′N0, f ″b0. Alternatively, C- and D-saving knowledge may be
specified as additional inputs to the production correspondence:

Y ðtÞ ¼ Q½gCfCðtÞ;HCðtÞg; gDfDðtÞ;HDðtÞg�; ð14Þ
where the gis are nested production functions which define the substitutability between each type
of knowledge and its associated input.31 These methods capture incremental technological
change, but radical change can be accommodated as well. The backstop model in Eq. (8) may be
endogenized by specifying a stock of backstop-augmenting knowledge, HB, as an intangible fixed
factor (e.g., ZB=HB).

32

The foregoing devices explicitly model the mechanism via which prices and knowledge
supplies affect the rate and direction of technical change. As discussed in Section 3.3, at each
point in time the IPC is implicitly defined by two factors: the difference in the size of the
knowledge stocks, and either the knowledge elasticity of augmentation (the curvature of f ), or the
elasticity of substitution between each kind of knowledge and its associated tangible input (the
curvature of g). But although these have the potential to tremendously influence mitigation costs
(Sue Wing, 2003), the dearth of empirical estimates on the ease of incorporating knowledge into
production precludes empirical validation of models' calculations of the benefits of ITC.33

Turning now to the accumulation effect, the signal advantage of the stock of knowledge approach
is that the engine of technological change, i.e., research, is fundamentally endogenous. In perfect-
foresight models, R&D is a control variable whose trajectory is implicitly determined by the
30 The main reason appears to be the lack of disaggregate data on R&D at the level of individual energy technologies,
which militates against the calibration of initial knowledge stocks. This is a problem even in the case of Eq. (12).
Although time series of R&D in published statistics may be accumulated into “R&D capital”, these data are often not
disaggregate enough to permit stocks of C- and D-augmenting knowledge to be constructed. The practical consequence is
that in climate policy simulations the starting value for H is arrived at by a variety of ad-hoc means, or calibrated along
with other unknown parameters. For different approaches see Goulder and Schneider (1999), Nordhaus (2002), Sue Wing
(2003) and Popp (2004a).
31 e.g., Popp (2002, 2004a,b,c), in which gD as a CES composite of carbon-energy and energy-saving knowledge.
32 This formulation, due to Popp (2004b), is Y(t)=Q[C(t); g{D(t), B(t)}], where B is a backstop input to production
which is imperfectly substitute for the dirty good (fossil energy), and HB increases elasticity of backstop supply according
to pB=η[HB], η′b0, η″N0. Popp finds that the rate of accumulation of HB exerts a much larger effect on the long-run
penetration of B than the curvature of η.
33 Popp (2001) is the sole study which estimates the elasticities of unit energy demand with respect to the stocks of
energy-saving knowledge in different industries. Comparable estimates of the elasticity of substitution between
knowledge and tangible inputs do not exist, even at the level of aggregate economies. The cost implications can be
understood by considering the case where the gs are Leontief—here the trajectories of HC and HD completely determine
the difference ITC makes for the C–D substitution response to a given relative price change.
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optimality condition which equates its marginal cost with the present value of its future input cost
savings (Popp, 2004a). In recursive–dynamic simulations, the lack of intertemporal linkages forces
modelers to specify R&D supply and demand using functions of current-period variables which are
for the most part ad-hoc. Sue Wing (2003) models the latter conceptually through the device of an
inducement function, ρ. This is a reduced-form representation of the effect on the equilibrium in
R&D markets of input prices (which create the demand for innovation) and the producer's sales (a
proxy for the revenue which determines the resources for the supply of R&D):

RiðtÞ ¼ q½ piðtÞ; Y ðtÞ�: ð15Þ
Despite its shortcomings, this expression captures the balance of influences (A) and (B) in Fig. 7.

This may be seen by assuming a downward-sloping demand curve for the output good and
differentiating with respect to pi using the chain-rule:

∂Ri

∂pi
¼ ∂q

∂pi
ðþÞ

þ ∂q
∂Y
ðþÞ

∂Y
∂p
ð−Þ

∂p
∂pi
ðþÞ

: ð16Þ

The result illustrates that net impact of an increase in pi on R&D is the sum of the effects shown
by the two terms in this expression: the direct effect of Hicksian induced i-saving innovation, and
the indirect adverse effect of pi on unit costs, p, and the consequent reduction in sales, revenue,
and the pool of resources available to finance research. Thus, if the demand for output is
sufficiently elastic, with a large enough increase in pD the indirect effect may dominate, reducing
the time-path of RD relative to its the counterfactual no-policy baseline.

The foregoing arguments suggest that ITC should not be thought of as a process by which climate
policy increases R&D in general. Resources for R&D are supplied inelastically (Goolsbee, 1998),
whichmeans thatmore rapid accumulation of knowledge in one area of the economy is likely to reduce
the rate of accumulation in other areas (Goulder and Schneider, 1999; Popp, 2004a,c). The consequent
“crowding out” effect is an additional precursor of the IPCwhich is rooted in the accumulation process,
and implies the existence of a fundamental tradeoff between RD and RC, or more starkly, between
“economy-growing” and “emission-reducing” innovation.34 This result, which stands in contrast to the
LBD approach, seems to be unaffected by whether knowledge is modeled as homogeneous (Sue
Wing, 2003) or heterogeneous and accumulating differentially (Goulder and Schneider, 1999): in both
of these multi-sectoral simulations, a carbon tax can induce progressive reductions in R&D relative to
its baseline level, not only within individual industries but also at the aggregate level.35
34 e.g., in the sense of the knowledge stocks which drive productivity (α) and pollution augmentation (αD′) in Eq. (4).
Not surprisingly, the effect of ITC on the simulation results is sensitive to the specification of crowding out. Nordhaus
(2002) assumes complete crowding out whereby each additional dollar of R&D displaces an equal value of investment in
physical capital, and finds that knowledge accumulation has very little effect on the economic impacts of climate policy
or the timing of mitigation measures. By contrast, Buonanno et al. (2003) adopt the less plausible assumption of
crowding in whereby a dollar of investment in new knowledge generates both neutral productivity growth and reductions
in abatement costs. Paradoxically, ITC has the effect of increasing the total dollar cost of stabilizing GHG emissions in
their model. Popp (2004a) models each dollar of R&D as crowding out half as much investment, but because of the
higher social return to R&D (e.g., Mansfield, 1996; Jones and Williams, 1998) the effective reduction in investment is
four times as large. Popp finds that a GHG emission limit significantly increases energy-saving R&D relative to the
counterfactual, but does not report the corresponding reduction in the trajectory of the physical capital stock.
35 The reductions in R&D (and, in Goulder and Schneider's model, industries' knowledge stocks) are concentrated in
fossil-fuel production sectors where the incidence of the tax is highest.
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Fortuitously, the impact of crowding out appears to be small. It is also partially alleviated by
assuming the existence of spillovers, or by specifying R&D subsidy policies which correct
distortions in the market for innovation.36 Focusing on the first element, the main caveat is that
assumptions about the locus of spillovers matter crucially for model behavior. Modeling C-
augmenting knowledge as benefiting disproportionately from spillovers (ωCNωD) reduces the costs
and increases the attractiveness of near-term abatement, because the spillover effect compensates for
the diminished accumulation of C-saving knowledge which as a result of crowding out by the
inducement ofD-saving R&D. Similar reasoning implies that costs are amplified in the reverse case
(Goulder and Schneider, 1999). The upshot is that, as with the substitution effect, the importance of
spillovers for knowledge accumulation is belied by a lack of empirical estimates.

We close on this note by indicating that a consistent theme underlying the discussion above is
the challenge posed by the essential unobservability of knowledge itself. The lack of empirically-
validated proxies for C-and D-augmenting knowledge diminishes models' transparency and the
comparability of their results (e.g., footnote 30), and inhibits evaluation of the robustness of their
insights into the influence of ITC. While the focus here has been on structural formulations of the
inducement process, it is only the development of data along the lines of, e.g., Popp (2002), and
estimation of key parameters which govern the incorporation of knowledge in production (e.g.,
Bernstein and Nadiri, 1997; Popp, 2001) which provide the kind of empirical guidance that can
enable the stock of knowledge approach to fulfill its great potential.

5. Summary and conclusions

This paper has given an overview of the methods of representing technological change in the
computational simulations for climate policy analysis. A simple conceptual framework was
developed to compare and contrast the different representations of technology in bottom-up and top-
down climate policy simulations. The framework was then employed to reconcile the bottom-up
engineering conception of “microscale technological change” with the top-down macroeconomic
conception of substitution, and to deductively formulate a process-based representation of ITC along
the lines of the Ahmad–Binswanger–Ruttan model. Finally, the structural foundations of the
methods of representing technological change within climate policy models were described.

While the learning by doing approach to modeling ITC generally results in significantly lower
near-term emissions and dramatic reductions in the cost of emission reductions, the alternative stock-
of knowledge approach tends to produce more modest cost savings and has little impact on the
timing of abatement. Though it may be tempting to interpret this dichotomy in terms of the debate
over adoption of “act-now” versus “wait-and-see” climate policies, it is important to realize that both
of the approaches to modeling ITC appear to indicate early action. The essential difference is
qualitative: in the LBD approach, ITC is synonymous with faster micro-scale shifts to low-carbon
production activities which induce cost reductions themselves—reflecting the guiding assumption
of complementarity between abatement and the overall efficiency of production. By contrast, ITC in
36 Spillovers can be purely intertemporal in nature—the sole option for models with a single stock of knowledge (e.g.,
Popp, 2004a), or be contemporaneous in models with multiple intangible stocks—occurring across industries (Goulder
and Schneider), regions (Buanonno et al) or types of knowledge (Eq. (13)). Popp (2002) uses patent data to estimate the
strength of intertemporal spillovers in energy technologies. Although the productivity impacts of inter-spillovers have
been studied (Bernstein and Nadiri, 1997), the influence of potential complementarities among related lines of energy
research have not been empirically investigated. Distortions include pre-existing taxes on the inputs to R&D (Goulder
and Schneider, 1999; Sue Wing, 2003) and the under-investment in R&D relative to the social optimum as a consequence
of imperfect appropriability (Popp, 2004c).



560 I. Sue Wing / Energy Economics 28 (2006) 539–562
the stock of knowledge approach is associated with faster accumulation of emission-saving
knowledge—which, despite reducing emissions and improving productivity, incurs the opportunity
costs of foregone “economy-growing” R&D-reflecting the guiding assumption of substitutability
between abatement and aggregate efficiency.

This divergence, as well as the advantages and deficiencies of both methods examined in the
paper, suggest the critical importance of investigating the empirical content of the assumptions
which underlie the representation of ITC in climate policy models. Although it is by no means a
simple undertaking, such a program of research is the modeling community's quickest route
toward much-needed validation and reconciliation of its disparate efforts to address the climate
problem.
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