Global Vulnerability of Crop Yields to Climate Change

Abstract

Using a newly-available panel dataset of gridded annual crop yields in conjunction with a

dynamic econometric model that distinguishes between farmers' short-run and long-run re-

sponses to weather shocks and accounts for adaptation, we investigate the risk to global crop

yields from climate warming. Over broad spatial domains we observe only slight moderation

of short-run impacts by farmers' long-run adjustments. In the absence of additional margins

of adaptation beyond those pursued historically, projections constructed using an ensemble of

21 climate model simulations suggest that the climate change could reduce global crop yields

by 3-12% by mid-century and 11-25% by century's end, under a vigorous warming scenario.

JEL Codes: N5, O13, Q1, Q54

Keywords: Panel data, climate change, adaptation, crop yields.

1 Introduction

There has long been concern about the potential risks to crop production posed by projected shifts in the Earth's climate, and the extent to which agricultural systems will be able to adapt to these changes to sustain food supplies. While recent research has sought to address this question by elucidating how farmers have historically been able to adapt to temperature and precipitation shifts (Blanc and Reilly, 2017), the issue is far from settled. Meta-analyses suggest that adaptation could prevent most yield losses for wheat and rice (Challinor et al, 2014), and cross-sectional studies of the response of land values or farm revenue to different locations to variations in climate caution that estimates of the negative effects of climate change that omit adaptation are likely overstated (Mendelsohn and Massetti, 2017). By contrast, the bulk of the empirical climate change economics literature uses cross-section/time-series econometric modeling to estimate the responses of crop yields to weather shocks, which addresses the potential for adaptation only implicitly (Dell et al, 2014). A key exception is Burke and Emerick (2016), who employ a long-differences approach to highlight that adjustments of maize and soybean cultivation in the United States (US) over time-frames of decades or more have resulted in only modest attenuation of the adverse effects of extreme heat exposures on yield losses. Burke and Emerick show that if such limits to adaptation persist, projected increases in growing season temperatures due to climate change portend substantial yield declines. These findings raise the possibility that the challenge of adapting to climate warming may be pervasive. The fact that US lies at the world technological frontier bodes ominously for future yields and production in technologically less advanced agricultural systems, particularly in the tropics where 40% of the world's population live and extreme high temperature increases are projected to exceed those in the US. Moreover, the fact that maize and soybeans account for nearly half of the world's supply of dietary energy suggests that resulting risks to world food supplies could be severe—even in the presence of farmers' adjustments.

In this paper we investigate the impacts of climate change on crop yields across the globe in the presence of agricultural adaptation, focusing on maize, rice, wheat and soybeans, which together account for 75% of global dietary energy intake (Cassman, 1999). Using a newly-available panel dataset of gridded annual crop yields, we statistically distinguish between farmers' responses to weather shocks in the short run and the long run in different agroclimatic zones across the globe.

We infer adaptation as the difference between long-run and short-run yield responses to weather in a dynamic empirical model, an approach that differs from Burke and Emerick's comparison between static panel and long difference responses.¹

Our long-run semi-elasticities of yield to temperature and precipitation exposure are consistent with Burke and Emerick's findings, and, critically, show that they generalize to additional crops as well as to agricultural systems across the world. We assess the consequences for climate change impacts on crop yields in different locations by combining these estimates with changes in exposure to different intervals of temperature and precipitation at the middle and the end of the century calculated from an ensemble of simulations of 21 earth system models (ESMs). As early as mid-century, under vigorous warming most crops experience declining yields across more than 75% of the places where they are cultivated, with distributions of yield shocks that in the long run show only slightly attenuation—and in a few cases amplification—relative to those in the short run. The variance of the distributions of yield shocks arises predominantly out of variation in temperature and precipitation exposures across locations as opposed to among ESM simulations, which across crops substantially agree on yield reductions in response to vigorous warming of <10% circa 2050 and <25% circa 2090.

The rest of the paper is organized as follows. Section 2 presents and discusses our dynamic empirical model of yield responses to weather in the short- and the long-run. Section 3 describes the data used, and the econometric issues that arise in operationalizing this model. Section 4 describes the empirical results, with a detailed discussion of regional vulnerabilities to the adverse effects of weather extremes and the role of irrigation in moderating them. Section 5 uses the estimated semi-elasticities to temperature and precipitation exposure to calculate climate-induced changes in crop yields under future climate. Section 6 concludes with a brief summary of our findings, major caveats, and potential directions for future research.

¹We also use Burke and Emerick (2016) adaptation metric for comparison and robustness checks. See Section 4.

2 Empirical Approach: A Dynamic Model of Agricultural Production and Yield Adjustment

Our empirical model of yields is derived from crop producers' maximization of expected profit. Adapting the static production framework of Pope and Just (1996) and Moschini (2001), a representative price-taking farmer's profit function is denominated over yield (Y) and vectors of input prices (deflated by the price of output, (Y), uncertain weather exposures (\mathcal{E}) , and exogenous factors (X): $\Pi(Y, \mathbf{W}, \mathcal{E}, \mathbf{X})$. When actual weather exposures align with expectations (indicated using a star), ex-post profit is in equilibrium with its ex-ante target level: $\Pi^*(Y^*, \mathbf{W}, \mathcal{E}^*, \mathbf{X})$. Static profit maximization describes farmers' within-growing-season behavior for field crops that follow regular planting and harvesting cycles. We assume that from one crop cycle to the next the producer determines the adjustment of profit to its equilibrium level within a dynamic adjustment cost framework (Nickell, 1985; Hallam and Zanoli, 1993; Fanelli, 2006). Conditional on the information available at each time period (t), the farmer minimizes expected discounted adjustment costs made up of two components: the divergence of profit from its target equilibrium level and the inter-period variance of profit. We show in Appendix A that the solution to this problem is a partial adjustment process for profit, which, when the profit function takes a loglinear form, implies the follow error correcting process for yield:

$$\Delta y_t = \alpha + \gamma + \beta' \Delta \mathcal{E}_t + \delta' \Delta \mathbf{x}_t - \Omega[y_{t-1} - \boldsymbol{\eta}' \mathcal{E}_{t-1} - \boldsymbol{\xi}' \mathbf{x}_{t-1} - \gamma t] + v_t$$
 (1)

in which Δ indicates inter-period differences, and y and x denote the logarithms of yield and other observables.

For the purposes of empirical analysis we model each location in our dataset (which we index using i) as a representative producer. In this setup, the trending levels and constant average rates of growth of prices, technology and (perhaps to a lesser extent) profit expectations are likely be similar for multiple grid cells. Given the likelihood of different locations within the same country sharing institutional and economic fundamentals, we assume that α is a grid-cell level fixed effect capturing unobserved heterogeneous location-specific time-invariant influences, while γ varies over countries, j(i). We further allow the profit function to vary geographically, particularly in re-

sponse to weather exposures, which influence yield expectations and farmers' static and dynamic calculus. We therefore group grid cells into agroclimatic zones or irrigation regimes, z(i), and stratify the parameters β , δ , η and ξ and Ω accordingly. Expressing weather exposures as vectors of growing season days associated with different intervals of temperature (\mathcal{E}^T) and precipitation (\mathcal{E}^P), we arrive at our final panel error-correction model (ECM) specification:

$$\Delta y_{i,t} = \alpha_i + \gamma_{j(i)} + \sum_{z(i)} \left\{ \boldsymbol{\beta}_z^{T'} \Delta \boldsymbol{\mathcal{E}}_{i,t}^T + \boldsymbol{\beta}_z^{P'} \Delta \boldsymbol{\mathcal{E}}_{i,t}^P + \boldsymbol{\delta}_z' \Delta \mathbf{x}_{i,t} \right\}$$

$$- \sum_{z(i)} \Omega_z \left[y_{i,t-1} - \boldsymbol{\eta}_z^{T'} \boldsymbol{\mathcal{E}}_{i,t-1}^T - \boldsymbol{\eta}_z^{P'} \boldsymbol{\mathcal{E}}_{i,t-1}^P - \boldsymbol{\xi}_z' \mathbf{x}_{i,t-1} - \gamma_{j(i)} t \right] + u_{i,t}$$
 (2)

This specification decomposes observed yield adjustments into short- and long-run components. The first component is identified by the interannual covariation between yields and meteorology, captured by the first-difference terms in curly braces. We attribute the corresponding parameters, β , to farmers' responses to weather shocks over the short run, over which no adaptation occurs. The second component is identified by the average covariation between yield changes and past meteorology, captured by the lagged terms in square braces. We attribute the corresponding parameters, η , to farmers' long-run responses to climate. Given the long time-frame of these adjustments, we assume that they represent farmers' adaptation. It is useful to understand how our ECM specification relates to existing empirical models. Eq. (2) is a representation of the equivalent Autoregressive Distributed Lag (ADL) Model (1,1) model:

$$y_{i,t} = \alpha_i + \sum_{z(i)} \left\{ (1 - \Omega_z) y_{i,t-1} + \gamma_{j(i)} (1 + \Omega_z) t + \boldsymbol{\beta}_z^T \boldsymbol{\mathcal{E}}_{i,t}^T + \boldsymbol{\beta}_z^P \boldsymbol{\mathcal{E}}_{i,t}^P + \boldsymbol{\delta}_z' \mathbf{x}_{i,t} + \left(\Omega_z \boldsymbol{\eta}_z^T - \boldsymbol{\beta}_z^T \right)' \boldsymbol{\mathcal{E}}_{i,t-1}^T + \left(\Omega_z \boldsymbol{\eta}_z^T - \boldsymbol{\beta}_z^T \right)' \boldsymbol{\mathcal{E}}_{i,t-1}^P + (\Omega_z \boldsymbol{\xi}_z - \boldsymbol{\delta}_z)' \mathbf{x}_{i,t-1} \right\} + u_{i,t}$$
(3)

which encompasses two limiting cases: permanent shocks ($\Omega_z \to 0$) which give rise to the first-difference specification with no adjustment:

$$\Delta y_{i,t} = \alpha_i + \gamma_{j(i)} + \sum_{z(i)} \left(\boldsymbol{\beta}_z^{T'} \Delta \boldsymbol{\mathcal{E}}_{i,t}^T + \boldsymbol{\beta}_z^{P'} \Delta \boldsymbol{\mathcal{E}}_{i,t}^P + \boldsymbol{\delta}_z' \Delta \mathbf{x}_{i,t} \right) + u_{i,t}^{\text{First Difference}}$$
(4)

and instantaneous adjustment ($\Omega_z \to 1$) which gives rise to the static specification with lagged covariates:

$$y_{i,t} = \alpha_i + 2\gamma_{j(i)}t + \sum_{z(i)} \left\{ \boldsymbol{\beta}_z^T \boldsymbol{\mathcal{E}}_{i,t}^T + \boldsymbol{\beta}_z^P \boldsymbol{\mathcal{E}}_{i,t}^P + \boldsymbol{\delta}_z' \mathbf{x}_{i,t} + \left(\boldsymbol{\eta}_z^T - \boldsymbol{\beta}_z^T \right)' \boldsymbol{\mathcal{E}}_{i,t-1}^T + \left(\boldsymbol{\eta}_z^T - \boldsymbol{\beta}_z^T \right)' \boldsymbol{\mathcal{E}}_{i,t-1}^P + \left(\boldsymbol{\xi}_z - \boldsymbol{\delta}_z \right)' \mathbf{x}_{i,t-1} \right\} + u_{i,t}^{\text{Static-Lag}}$$
(5)

The latter specification differs from the traditional static model (e.g., Schlenker and Roberts, 2009; Fisher et al, 2012; Blanc and Schlenker, 2017):

$$y_{i,t} = {}^*\alpha_i + {}^*\gamma_{j(i)}t + \sum_z \left\{ {}^*\eta_z^{T'} \mathcal{E}_{i,t}^T + {}^*\eta_z^{P'} \mathcal{E}_{i,t}^P + {}^*\xi_z' \mathbf{x}_{i,t} \right\} + {}^*u_{i,t}^{\text{Static}}$$
(6)

In particular, (5) and (6) converge to the long-run effect ($\eta = {}^*\eta$ and $\xi = {}^*\xi$) only in expectation, a fact that we can use to derive Burke and Emerick's long difference estimator. Averaging the dependent and independent variables over n time periods, we define $\overline{y}_{i,t} = \frac{1}{n} \sum_{\tau=-n/2}^{n/2} y_{i,t+\tau}$, $\overline{\mathcal{E}}_{i,t} = \frac{1}{n} \sum_{\tau=n/2}^{n/2} \mathcal{E}_{i,t+\tau}$ and $\overline{\mathbf{x}}_{i,t} = \frac{1}{n} \sum_{\tau=n/2}^{n/2} \mathbf{x}_{i,t+\tau}$. Taking similar averages of (3) for sufficiently large n, the fact that $\overline{y}_{i,t-1} \to \overline{y}_{i,t}$, $\overline{\mathcal{E}}_{i,t-1} \to \overline{\mathcal{E}}_{i,t}$ and $\mathbf{x}_{i,t-1} \to \mathbf{x}_{i,t}$ suggests that differencing the resulting expression for two points in time > n periods apart gives rise to the cross-sectional regression:

$$\Delta \overline{y}_{i} = \gamma_{j(i)} \Delta t + \sum_{z} \left\{ \boldsymbol{\eta}_{z}^{T'} \Delta \overline{\boldsymbol{\mathcal{E}}}_{i}^{T} + \boldsymbol{\eta}_{z}^{P'} \Delta \overline{\boldsymbol{\mathcal{E}}}_{i}^{P} + \boldsymbol{\xi}_{z}' \Delta \overline{\mathbf{x}}_{i} \right\} + u_{i}^{\text{Long Difference}}$$
(7)

whose parameters are identical to our long-run effect. The key implication is that our estimates of long-run responses of yields to temperature and precipitation are directly comparable to Burke and Emerick, with the principal difference between their approach and ours being the "no adaptation" counterfactual to which the long run is compared to. Their measure of adaptation is $1 - \eta/*\eta$ whereas ours is $1 - \eta/\beta$. If substantial historical adaptation occurred, we would expect to see $||\eta|| \ll ||\beta||$.

3 Data and Econometric Issues

3.1 Data

There are two principal data inputs to our econometric model. For our dependent variable we used an unbalanced panel of annual yields of four major crops (maize, soybean, rice and spring and winter wheat) recorded across the world on a 1.125° grid for the period 1981-2011 (Iizumi et al, 2014; Iizumi and Ramankutty, 2016). The dataset downscales time series of annual production and harvested area at the country level maintained by the U.N. Food & Agriculture Organization (FAO), using gridded data on historical remotely sensed net primary productivity (NPP) from the U.S. National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (NOAA/AVHRR).² Our meteorological covariates were derived from historical 3-hourly global surface temperature and precipitation fields on a 0.25° grid from the Global Land Data Assimilation System (GLDAS) (Rodell et al, 2004), matched to the years above.

Several modifications to these data were necessary to get them into a form suitable for estimation of eq. (2). Fine scale meteorological fields were aggregated to match the coarser spatial resolution of the yield dataset and truncated within each year to a fixed crop- and cell-specific growing season defined by a global crop calendar dataset of planting and harvesting dates circa year 2000 (Sacks et al, 2010). We considered the main cropping season only, which reduced the spatial extent of some crops (e.g., rice in China—see Fig. 1). We then temporally aggregated the resulting array of growing season weather to construct fields of daily mean temperature and total precipitation, which we subsequently binned into counts of daily exposure in 14 temperature intervals and 12 precipitation intervals. These are our exposure covariates, \mathcal{E}^T and \mathcal{E}^P .

With respect to crop prices, we use country-level prices from the FAOSTAT database⁴. To use these data would require us to forgo a significant share of our observations, and therefore we always show results with and without prices.

²Given our empirical approach, obvious concerns are that these yield estimates rely on meteorological information for their construction, and yield measurements may be contaminated by accounting for greenness not associated to crop yields. While we have verified that this is not the case through extensive personal communications with the dataset's author, we discuss the potential limitations of employing downscaled crop yields in Section 6. More details of the dataset are provided in the Appendix.

³Yield in the main cropping season is highly correlated with FAO reported yields.

⁴FAO data accessed from www.fao.org on January 2020.

At the global scale of our study, we need to consider the possibility that the manner in which yields respond to weather will vary across the different management regimes and climates in which a given crop is grown. The likely effect is heterogeneity in the estimated parameters of eq. (2). We therefore allow them to vary geographically in two different ways. We first consider variation according to management regime. To operationalize this, we classify grid cells as irrigated or rainfed using the MIRCA2000 dataset of irrigated areas (Portmann et al, 2010), in conjunction with the M3-Cropland dataset of harvested area by crop (Monfreda et al, 2008). As both of these datasets are static, circa year 2000, we have no choice but to apply the same classification to every year in our sample period. For each crop, irrigated grid cells were defined as those for which the crop in question constituted at least 10% of the cell's total harvested area, and the irrigated fraction of the cell exceeded the rainfed fraction.

The second possibility we consider follows from eq. (A.1), namely, that across dissimilar climates, differences in producers' target yields in response to weather expectations generate dynamics of adjustment to weather shocks that vary systematically over space. Exploiting the high spatial resolution of the crop yield data, we apply k-means clustering (Hartigan and Wong, 1979) to identify swaths of contiguous grid cells that share similar long-term average values of yields, growing season temperature and precipitation. The number of clusters was not pre-defined, but was determined by the algorithm based on the data. For each crop, three broad groupings were identified, which we attribute to agroclimatic zones⁵.

The two stratifications are mapped in Figure 1, which the world's major areas of high yields and intensive cultivation of calorie crops—the so-called "calorie sheds" of the US midwest, northeastern China, northern India, and the southeastern portions of Europe and S. America—are clearly visible. Summaries of harvested area, yields and weather exposures for the full slate of calorie crops are given in the Appendix (Table A.1, Fig. A.2). The majority of grid-cells are rainfed. In irrigated cultivation, the largest fraction of harvested area is accounted for by rice (37%), followed by maize (24%), winter wheat (20%), soybeans (12%), and spring wheat (9%). Rice, soybeans, and maize are grown in cells with higher average growing season temperatures (21-24°C) compared to wheat (7-17°C). Soybeans and rice cultivation is concentrated in areas with moderate total grow-

⁵Since the agroclimatic zones are identified also on the basis of average yield conditions, they also reflect differences in long-term average technology, land quality, and input availability, see (Ramankutti et al, 2018).

ing season precipitation, while irrigated maize and winter wheat are grown in dry conditions (mean precipitation of only 13 and 6 mm). Interestingly, only for maize, rice, and winter wheat do cells with rainfed and irrigated production differ substantially in the amount of total precipitation.

Crop yields are consistently higher in irrigated areas. Looking at characteristics of crops grown across the different agroclimatic zones, crops grown under drier climate include maize in zone 3, winter wheat in zone 2 and 3, and spring wheat across all zones. Spring wheat, however, is also grown at average low temperatures. Rice and soybeans in zone 1 and maize in zone 3 are grown also under relatively low precipitation levels, if compared to the other zones with the same crop, or even to irrigated rice and soybeans, which have on average higher precipitation levels. The highest temperature conditions are found in rice zone 2 and 3, soybeans zone 2 and 3, maize zone 1 and 3. Note that maize grown in zone 3 accounts for the 15% of harvested grid cells. Maize in zone 3 has also the highest productivity (1.5 tons/ha in log), a value that is only slightly lower to the productivity of irrigated maize (1.5 tons/ha) and rice (1.4 tons/ha). We expect the most vulnerable crops to be maize in zone 3, rice in zone 1, soybeans and winter wheat in zone 2 and 3.

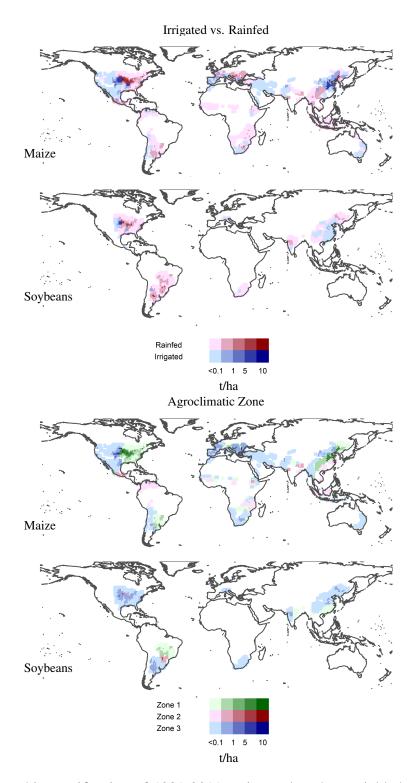


Figure 1: Geographic stratification of 1981-2011 maize and soybean yields by irrigation regime and agroclimatic zone. Darker colors indicate grid cells with higher yields. Additional crops in Appendix (Fig. A.2)

Our projections of yield impacts are constructed from average weather exposures $\widetilde{\mathcal{E}}_0^T$, $\widetilde{\mathcal{E}}_0^P$, and $\widetilde{\mathcal{E}}_{t^*}^T$ derived from the NASA Earth Exchange Global Daily Downscaled Projections (NEXGDDP) dataset. NEX-GDDP is a large ensemble of downscaled and biased-corrected 0.25° gridded daily meteorological fields from 21 ESMs that simulate vigorous (RCP 8.5) and moderate (RCP 4.5) warming under the Coupled Model Intercomparison, Phase V (CMIP5) climate model exercise. Daily mean temperature and precipitation over the 1986-2005 historical period (t=0), and for the 2041-2060 mid-century and 2080-2099 late-century periods ($t=t^*$), were truncated to the growing seasons of our five crops, binned to generate counts of daily exposure in the same temperature and precipitation intervals as our historical dataset, and stratified geographically according to our irrigation and agroclimatic zones in Fig. 1. The resulting exposure projections were combined with our fitted temperature and precipitation semi-elasticities to calculate the fractional changes in the yields of individual crops (see Section 5).

3.2 Econometric issues

We run separate panel regressions for each crop. Even with our large sample, multicollinearity precluded identification of the coefficients of eq. (2) jointly stratified by agroclimatic zone and irrigation regime. We therefore stratify the parameters along each of these dimensions separately. Additionally, while eq. (2) incorporates both grid-cell and country fixed effects, the latter are not identified when country-level time trends are included. Our final empirical specification therefore includes grid-cell fixed effects and country-level time trends. We assume that representative producers within the same agroclimatic zones and irrigation regime have a similar decision making process, and employ multiway clustered standard errors (Cameron et al, 2011), clustering by country and year⁶

⁶Results are similar when using Conley standard errors (Conley, 1999).

4 Empirical results

4.1 Weather Sensitivity of US Rainfed Yields: Replicating and Extending Burke and Emerick (2016)

We begin by using our gridded data on yields and weather to replicate Burke and Emerick (2016)'s analysis for rainfed maize and soybeans in the US. Tables 1 and 2 show long-difference, static fixed-effects and ECM estimates of the yield effects of weather exposures specified in two ways. The first, following Burke and Emerick, is growing degree days (GDDs) stratified by days with average temperature (\overline{T}) above and below 29°C, and total growing season precipitation and its square. The second is the annual count of days over the growing season that fall into six temperature (°C) and precipitation (mm/day) intervals (bins).

In Table 1 (maize), coefficients on GDDs $> 29^{\circ}\text{C}$ (hereafter GDD29) in the long difference and the panel specifications (columns 1-2 and 5-6, respectively) are negative and significant. The ratio of the former to the latter is 0.5, indicating a 50% reduction in the yield impacts of accumulated extreme heat over the long run. This figure mirrors the ratio of the long- and short-run coefficients in the ECM (columns 9-10), which suggests that farmers adjustments amount to a 50% attenuation in yield sensitivity to accumulated extreme heat over the long run. Our preferred specification using binned weather exposures (columns 3-4, 7-8 and 11-12) highlights the nonlinearity in crop yields response to temperature, with semi-elasticities of yield that become increasingly negative with exposure to hotter temperatures, corroborating (Schlenker and Roberts, 2009). Compared to GDD29, the effect of $\overline{T} \geq 30^{\circ}\text{C}$ days is much larger for the ratio of the long difference and the panel coefficients (90% attenuation in yield impact over the long run, columns 3 and 7), but the lack of significance of the former estimates prevents us from drawing firm conclusions. In our preferred ECM estimates (columns 11-12) the ratio of the short- and long-run coefficients indicates that adjustment attenuates yield sensitivity by 30-33%.

Similarly in Table 2 (soybeans), the ratio of the GDD29 long difference and panel coefficients is 0.5, indicating a 50% reduction in the impact of accumulated extreme heat. However, the ratio of the ECM long- and short-run GDD29 coefficients exceeds unity, suggesting that adjustments may have had the opposite effect, making production 25% *more* sensitive to accumulated extreme heat.

For our preferred bin specification, estimated semi-elasticities of exposure to $\overline{T} \geq 30^{\circ}\text{C}$ days are positive for the ratio of the long-difference and panel coefficients (impact attenuation of 42% over the long-run), but are negative and larger for the ratio of the ECM coefficients (impact amplification of 64% over the long run -columns 11-12, compared to 25% -columns 9-10 for GDD29).

Re-running our suite of regressions for the same panels of grid cells with covariates constructed from the PRISM climate dataset ⁷ (Appendix Tables A.6 and A.7) produced noisy estimates that precluded precise estimates of adaptation using Burke and Emerick's method. Looking first at maize, in the long difference specification, effects of GDD29 are insignificant, small in magnitude, and of counterintuitive sign, while in the panel specification, their effect is similar in sign but slightly larger in absolute terms to the corresponding estimates in Table 1. By contrast, in the ECM specification, the short- and long-run impacts of GDD29 (columns 9-10) are both negative and significant, and the latter exceeds the former (column 10), indicating that long-run adjustment increases yield sensitivity to accumulated extreme heat by 33%. The results are similar in our preferred specification, in which exposure to $\overline{T} > 30^{\circ} \text{C}$ days has an adverse effect on yields that increases by 9% over the long run (column 12). Soybeans exhibit a similar pattern, with long-difference estimates that are of the expected sign but not significant, panel estimates that are negative and two-thirds as large as those in Table 1, and ECM estimates that show near identical short- and long-run impacts for GDD29 (moderate to no attenuation in yield impacts, columns 9-10 in Table A.7). The panel and ECM estimates of the short-run impact of $\overline{T} \geq 30^{\circ} \text{C}$ days are similar, while the long-run impacts are 50-70% larger (columns 11-12).

Tables A.8 and A.9 summarize the results of extending the foregoing analysis to other rainfed crops in the US.⁸ Winter wheats yield sensitivity follows a pattern similar to maize and soybeans, with short- and long-run ECM estimates that suggest that adjustment moderates impacts from GDD29 by 49% and from $\overline{T} \geq 30^{\circ}\text{C}$ days by 19%. Spring wheat yields sensitivity to extreme heat is less clear cut, with impacts of GDD29 and $\overline{T} \geq 30^{\circ}\text{C}$ that are counterintuitive in sign, most of which are not significant. Exposure to $27.5 \leq \overline{T} < 30^{\circ}\text{C}$ days exhibits impacts of the expected sign in the long-difference, panel and ECM specifications, but are insignificant save for the ECM long run.

⁷Parameter-elevation Regressions on Independent Slopes Model (PRISM), Climate Group, Oregon State University, http://prism.oregonstate.edu, accessed on 10 October 2019

⁸The sample of cells with rainfed rice was too small to permit estimation.

Table 1: Yield responses in US—Rainfed Maize

		Long differences (15y)	s (15y) —			Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
$GDD < 29^{\circ}C$	-0.0001 (0.0002)	-0.0001 (0.0002)			-0.0002* (0.00003)	-0.0002* (0.00003)			-0.0001^* (0.00003)	-0.00004 (0.00003)		
$GDD > 29^{\circ}C$	-0.001^* (0.0004)	-0.001* (0.0004)			-0.002^* (0.0002)	-0.002* (0.0002)			-0.002* (0.0003)	-0.002* (0.0003)		
Total P	0.0002* (0.0001)	0.0002* (0.0001)			0.0002* (0.00005)	0.0002* (0.00005)			0.0002* (0.0001)	0.0002* (0.0001)		
Total P Squared	-0.00000*	-0.00000*			-0.00000*	-0.00000*			-0.00000*	-0.00000*		
$\overline{T} < 15^{\circ} ext{C}$	(0.000)	(0.000)	0.002	0.002	(000.0)	(000:0)	-0.001+	-0.001	(0.00.0)	(0.000)	-0.003*	-0.003*
$22.5^{\circ} \text{C} \le \overline{T} < 25^{\circ} \text{C}$			0.003	(0.003) 0.003			(0.001) $-0.002*$	(0.001) $-0.002*$			(0.001) $-0.003*$	(0.001) $-0.002*$
$25^{\circ}\mathrm{C} \le \overline{T} < 27.5^{\circ}\mathrm{C}$			0.0003	0.0003			(0.0004) $-0.003*$	(0.0004) $-0.003*$			(0.001) $-0.004*$	(0.001) $-0.003*$
27.5° C $\leq \overline{T} < 30^{\circ}$ C			(0.002) -0.003	(0.002) -0.003			(0.001) -0.004^*	(0.0003) -0.004*			(0.001) $-0.006*$	(0.001) -0.004*
$\overline{T} \geq 30^{\circ} \mathrm{C}$			(0.002) -0.001	(0.002) -0.001			(0.001) $-0.010*$	(0.001) -0.009*			(0.001) $-0.010*$	(0.001) -0.009*
$P < 5 \mathrm{mm}$			(0.002) -0.001	(0.002) -0.001			(0.001) $-0.002*$	(0.001) $-0.002*$			(0.001) $-0.002*$	(0.001) $-0.002*$
LR: GDD $< 29^{\circ}$ C			(0.001)	(0.001)			(0.001)	(0.001)	0.0001+	0.0002*	(0.001)	(0.001)
LR: GDD $> 29^{\circ}$ C									(0.0001) -0.001	(0.0001) -0.001		
LR: Total P									(0.001) 0.0003*	(0.001) $0.0003*$		
LR: Total P Squared									(0.0001) -0.00000*	(0.0001) -0.00000*		
LR: $\overline{T} < 15^{\circ}\mathrm{C}$									(0.000)	(0.000)	+600.00	*600.0—
LR: 22.5° C $\leq \overline{T} < 25^{\circ}$ C											(0.002) -0.004^*	(0.002) $-0.004*$
LR: 25° C $\leq \overline{T} < 27.5^{\circ}$ C											(0.001) $-0.005*$	(0.001)
LR: 27.5° C $\leq \overline{T} < 30^{\circ}$ C											(0.002) $-0.009*$	(0.002) $-0.006*$
LR: $\overline{T} \ge 30^{\circ} \text{C}$											(0.002) -0.007*	(0.002) -0.006*
LR: $P < 5$ mm											(0.002) -0.004^*	(0.002) -0.004*
Error correction coef.									-0.569*	-0.560*	(0.001) $-0.537*$ (0.043)	(0.001) $-0.551*$ (0.045)
T LR/SR ratio P LR/SR ratio						$\begin{array}{c} 0.4^a \\ 1.08^e \end{array}$		$\begin{array}{c} 0.1^b \\ 0.77^f \end{array}$	(2000)	$\begin{array}{c} (0.35^c) \\ 0.35^c \\ 1.35^g \end{array}$	(212:0)	0.59^d 2.24^h
N Adjusted \mathbb{R}^2	342 0.609	342 0.611	342 0.596	342 0.597	10,490 0.827	10,490 0.837	10,490 0.827	10,490 0.834	10,148 0.385	10,148 0.425	10,148 0.381	10,148 0.416
Notes: Sionificance levels + n < 0.1 * n < 0.05 TR indicates long-run effect the negative of the estimated narameter divided by the error correction coefficient in snecifications (9)-(12)	* L O / *	Polibai B I B	nin-soloto	effect the ne	to ett fo exiter	imated paramet	er divided by	the error corre	tion coefficient	in specification	(0)-(12)	

Notes: Significance levels + p < 0.1, * p < 0.05. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12). ^a Ratio of GDD29 semi-elasticities in long difference (2) and panel (6) specifications.
^b Ratio of $\overline{T} \ge 30^{\circ}$ C semi-elasticities in long difference (4) and panel (8) specifications.

 $^{^{}c}$ Ratio of short- and long-run GDD29 semi-elasticities in ECM specification (10). d Ratio of short- and long-run $\overline{T} \ge 30^{\circ}$ C semi-elasticities in ECM specification (12). c Ratio of precipitation semi-elasticities in long difference (2) and panel (6) specifications. f Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (12).

Table 2: Yield responses in US—Rainfed Soybeans

		-Long differences (15y	ses (15y) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
$\mathrm{GDD} < 29^{\circ}\mathrm{C}$	0.0001 (0.0003)	0.0001 (0.0003)			-0.0001^* (0.00004)	-0.0001 ⁺ (0.00003)			-0.0002* (0.00003)	-0.0001^* (0.00002)		
$GDD > 29^{\circ}C$	-0.002* (0.001)	-0.002* (0.001)			-0.004* (0.001)	-0.004* (0.001)			-0.004* (0.001)	-0.004^* (0.001)		
Total P	-0.00002	-0.00002			0.0001*	0.0001^*			0.0002*	0.0002*		
Total P Squared	(0.000) -0.000	(0.0001) -0.000 (0.000)			(00000) -0.000000*	(0.0000) -0.00000*			(0.0000* -0.00000* (0.000)	(0.0000 *) -0.00000*		
$\overline{T} < 15^{\circ} \text{C}$	(000:0)	(000:0)	0.0002	0.001	(000:0)	(000:0)	-0.002*	-0.001^*	(000:0)	(000:0)	-0.003*	-0.003*
22.5° C $\leq \overline{T} < 25^{\circ}$ C			(0.003) 0.002 (0.003)	(0.003) 0.002 (0.003)			(0.0003) -0.001*	(0.0003) $-0.001+$			(0.0005) $-0.002*$	(0.0005) $-0.002*$
$25^{\circ}\mathrm{C} \le \overline{T} < 27.5^{\circ}\mathrm{C}$			0.0001	0.0002			(0.001) $-0.002*$	-0.002^{*}			(0.001) -0.004*	(0.001) -0.003*
$27.5^{\circ}\text{C} \le \overline{T} < 30^{\circ}\text{C}$			(0.003) 0.001	(0.003) 0.001			(0.001) $-0.002*$	(0.0003) -0.001*			(0.001) $-0.005*$	(0.0005) -0.004^*
$\overline{T} \ge 30^{\circ} \text{C}$			(0.004) -0.007	(0.004) -0.006			$\begin{pmatrix} 0.001 \\ -0.012^* \\ 0.001 \end{pmatrix}$	(0.001) $-0.012*$			(0.001) -0.014^{*}	(0.001) -0.014^*
Precip. < 5 mm			(0.003) 0.001	(0.003) 0.001			(0.001) -0.001	(0.001) -0.001			(0.001) -0.0002	(0.001) -0.0004
LR: GDD $< 29^{\circ}$ C			(0.001)	(0.001)			(0.0004)	(0.0004)	-0.0003*	-0.0002*	(0.0003)	(0.0004)
LR: GDD $> 29^{\circ}$ C									$(0.0001) \\ -0.005*$	(0.0001) -0.005*		
LR: Total P									(0.001) $0.0003*$	(0.001) $0.0003*$		
LR: Total P Squared									(0.0001) -0.00000*	(0.0001) -0.00000*		
LR: $\overline{T} < 15^{\circ}\mathrm{C}$									(0.000)	(0.000)	*20000-	-0.007*
LR: 22.5° C $\leq \overline{T} < 25^{\circ}$ C											(0.002) $-0.005*$	(0.002) $-0.005*$
LR: 25° C $\leq \overline{T} < 27.5^{\circ}$ C											(0.002) -0.009*	(0.002) -0.009*
LR: 27.5° C $\leq \overline{T} < 30^{\circ}$ C											(0.002) $-0.013*$	(0.002) -0.012*
LR: $\overline{T} \ge 30^{\circ}$ C											(0.002) $-0.023*$	(0.002) $-0.022*$
LR: $P < 5$ mm											(0.003) -0.002	(0.003) $-0.003*$
Error correction coef.									-0.456*	-0.429*	(0.001) -0.437*	-0.428*
T LR/SR ratio						0.62^a		0.53^b	(0.029)	$\frac{(0.039)}{1.37^c}$	(660.0)	$\frac{(0.045)}{1.64^d}$
P LK/SK ratio N	294	294	294	294	9,102	-0.17^{e} 9.102	9,102	-2.2° 9,102	8.808	2.15 ⁹ 8.808	8.808	6.01″ 8.808
Adjusted R ²	0.408	0.411	(0.412	0.837	0.850	0.832	0.843	0.407	0.426	0.392	0.403
Notes: Significance levels $+ n < 0.1$. * $n < 0.05$. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12)	r n < 0.1 * n	< 0.05. LR in	dicates long	-run effect. tl	he negative of th	he estimated nar	ameter divide	d by the error	correction coeffi	cient in specific	(1)-(0) ations	

Notes: Significance levels +p < 0.1, * p < 0.05. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12). a Ratio of GDD29 semi-elasticities in long difference (2) and panel (6) specifications.

Taken together, these results confirm that that the long-run equilibrium to which US producers of rainfed maize, soybeans and winter wheat adjust is one in which exposure to daily temperatures in excess of 29°C continues to substantially reduce yields. Our novels findings are that farmers' adjustment, despite being rapid (our estimated error-correction coefficients indicate adjustment to equilibrium in 1.8-3.5 years), does not necessarily translate into adaptation as conventionally understood in the climate change policy literature. Crucially, impacts of high temperature extremes over the long run do not decline in magnitude relative to those in the short run—quite the opposite, in many cases they increase. One could hypothesize that this result might be due to farmers pursuing run-of-the-mill adaptation that lowers the long-run sensitivity of crop yields to non-extreme temperatures. Yet, our ECM bin specification estimates in columns 11-12 find no evidence for such behavior. The ratios of long-run to short-run impacts for daily temperature intervals of $27.5 \le \overline{T} < 30^{\circ}\text{C}$, $25 \le \overline{T} < 27.5^{\circ}\text{C}$ and even $22.5 \le \overline{T} < 25^{\circ}\text{C}$ are all larger in magnitude and significant for maize, soybeans and winter wheat.

A second key finding is adverse long-run impacts of extreme low precipitation, an effect that has long been identified by agronomic simulations, but has received limited attention in the empirical impacts literature (Lobell et al, 2011). The panel and ECM bin specifications show impacts of days with total precipitation $P < 5 \mathrm{mm}$ that are negative and in the short run one quarter as large as those with $\overline{T} \geq 30^{\circ}\mathrm{C}$ in the case of maize and winter wheat. Compared to the effects of extreme high temperatures, the corresponding long-run ECM impacts are two thirds as large for maize, 14% as large for soybeans, and one-third as large for winter wheat. For spring wheat, the negative impact of $P < 5 \mathrm{mm}$ days slightly exceeds that for $\overline{T} \geq 30^{\circ}\mathrm{C}$ days in the panel specification (though the latter is not significant) and for $27.5 \leq \overline{T} < 30^{\circ}\mathrm{C}$ in the long-run component of the ECM. Moreover, the long-run sensitivity to $P < 5 \mathrm{mm}$ days exceeds its short-run counterpart for all crops, and the ratio of the former to the latter is generally larger than that for $\overline{T} \geq 30^{\circ}\mathrm{C}$ days.

The key implication of these results is that farmers adjustment may increase the vulnerability of crop yields to adverse weather shocks.

4.2 Weather Sensitivity of Global Rainfed Crop Yields

This section addresses the extent to which our US results are representative of broader patterns of yield sensitivity to weather extremes in the rest of the world. Tables 3 and 4 summarize the results for maize and soybeans, results for other calorie crops are relegated to the Appendix (Tables A.10-A.12). Long-difference estimates are for the most part not significant, but indicate modest negative impacts of GDD29 for every crop except soybeans. Panel and short-run ECM estimates of GDD>29 impact are similarly significant, negative and modest in magnitude for maize, soybeans and rice. Long-run ECM estimates are significant only for soybeans, which exhibits a 66% reduction in sensitivity to accumulated extreme heat over the long run.

In our preferred bin specification, the yield impacts of days with $\overline{T} \geq 30^{\circ}\text{C}$ and P < 5mm are generally negative. Long-difference estimates are rarely significant. Panel and short-run ECM estimates of temperature impacts are significant and modestly sized for maize, soybeans and rice, and precipitation impacts are significant for maize and wheat, with the two specifications exhibiting nearly identical results. The patterns of sign and significance are similar for long-run ECM estimates, with significant negative effects of extreme high temperatures on maize, soybeans and rice, and of extreme low precipitation on all crops—with particularly large impacts on spring wheat. Compared to our US results, long-run temperature impacts were one-half to one-sixth as large for maize, soybeans and rice, and long-run precipitation impacts were of similar magnitude for maize and soybeans, and half as large for wheat.

Despite their qualitative similarity to our results for the US, the smaller magnitude of impacts raises questions of potential for aggregation bias. As well, estimated rate of adjustment toward equilibrium is nearly instantaneous, with the error-correction coefficients indicating that farmers adjust fully in a little over a year. But perhaps the biggest substantive difference is that the magnitudes of the long-run and short-run ECM parameter estimates indicate that the effects of $\overline{T} \geq 30^{\circ}$ C days are attenuated by 19%, 29%, 74% for maize, soybeans and winter wheat, respectively, while only the impact on rice is amplified—by a slight 9%. This result indicates that, on average, producer adjustment is associated with increased resilience to the effects of extreme high temperatures outside the US. However, this result does not hold for extreme low precipitation. Similar to in the US, impacts of P < 5mm days are between 5% and 52% larger in the long-run for most crops

Table 3: Yield responses in Rest of World—Rainfed Maize

		—Long differences (15y)	es (15y) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
$\mathrm{GDD} < 29^{\circ}\mathrm{C}$	0.0001	0.0001			-0.0004^{*}	-0.0004^{*}			-0.0004*	-0.0004*		
$GDD > 29^{\circ}C$	_0.001 _0.001	_0.001 _0.001			-0.001*	-0.001^*			-0.001*	-0.001*		
Total P	0.00002	0.00002			0.00004*	0.00004*			0.00004*	0.00004^*		
Total P Squared	(0.00002) -0.000	(0.00002) -0.000			(0.00001) -0.000*	(0.00001) $-0.000*$			(0.00001) -0.000*	(0.00001) -0.000*		
$\overline{T} < 15^{\circ}\mathrm{C}$	(0.000)	(0.000)	-0.0002	-0.0002	(0.000)	(0.000)	0.001	0.001^{+}	(0.000)	(0.000)	0.001	0.001
22.5° C $\leq \overline{T} < 25^{\circ}$ C			(0.001)	(0.001) 0.0002			(0.001)	(0.001) $-0.003*$			(0.001) $-0.003*$	(0.001) $-0.003*$
$25^{\circ}\mathrm{C} \le \overline{T} < 27.5^{\circ}\mathrm{C}$			(0.001) -0.0002	(0.001) -0.0002			(0.001) -0.004*	(0.001) -0.004^*			(0.001) -0.004*	(0.001) -0.004*
$27.5^{\circ}\text{C} \le \overline{T} < 30^{\circ}\text{C}$			(0.001) -0.00001	(0.001) -0.00003			(0.001) $-0.005*$	(0.001) $-0.005*$			(0.001) $-0.005*$	(0.001) $-0.005*$
$\overline{T} \geq 30^{\circ} \mathrm{C}$			(0.001) -0.004	(0.001) -0.004			(0.001) -0.009*	(0.001) $-0.010*$			(0.001) $-0.010*$	(0.001) $-0.010*$
$P < 5 \mathrm{mm}$			(0.002) $-0.002*$	$(0.002) \\ -0.002*$			(0.002) $-0.003*$	(0.002) $-0.003*$			(0.002) -0.004^*	(0.002) $-0.004*$
LR: GDD $< 29^{\circ}$ C			(0.001)	(0.001)			(0.001)	(0.001)	-0.0004*	-0.0004*	(0.001)	(0.001)
LR: GDD $> 29^{\circ}$ C									(0.0001) -0.0003	(0.0001) -0.001		
LR: Total P									$(0.001) \ 0.0001*$	$(0.0004) \ 0.0001^*$		
LR: Total P Squared									(0.00001) $-0.000*$	(0.0001) $-0.000*$		
LR: $\overline{T} < 15^{\circ}$ C									(0.000)	(0.000)	0.002+	0.002+
LR: 22.5° C $\leq \overline{T} < 25^{\circ}$ C											(0.001) $-0.002*$	(0.001) $-0.003*$
LR: 25° C $\leq \overline{T} < 27.5^{\circ}$ C											(0.001) -0.004*	(0.001) $-0.004*$
LR: 27.5° C $\leq \overline{T} < 30^{\circ}$ C											(0.001) $-0.005*$	(0.001) $-0.005*$
LR: $\overline{T} \ge 30^{\circ}$ C											(0.001) $-0.008*$	(0.001) $-0.008*$
I.R: P < 5mm											(0.002) -0.004*	(0.002) $-0.004*$
-									1	- - - - - -	(0.001)	(0.001)
Error correction coef.									-0.853* (0.033)	-0.861^* (0.034)	-0.849* (0.034)	-0.856* (0.035)
T LR/SR ratio						0.97^{a}		0.37^b		0.47^{c}		0.81^d
P LR/SR ratio		900			0)()(0.56^e	0)0)0	0.63^{f}	000	1.27^{g}	000	1.23^{h}
$^{\prime\prime}$ Adjusted $ m R^2$	1,237 0.744	1,229 0.741	1,237 0.744	1,229 0.741	30,308 0.915	34,161 0.917	30,308 0.916	34,161 0.918	33,070 0.455	32,821 0.461	33,070 0.462	32,821 0.468
Notes: Significance levels $+ p < 0.11$, * $p < 0.05$. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12)	p < 0.1, * p <	0.05. LR indicat	tes long-run e	ffect, the negati	ive of the estima	ited parameter d	fivided by th	le error correc	tion coefficient i	n specifications	(9)-(12).	

Notes: Significance levels +p < 0.1, * p < 0.05. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12). a Ratio of GDD29 semi-elasticities in long difference (2) and panel (6) specifications. b Ratio of $\overline{T} \ge 30^{\circ}$ C semi-elasticities in long difference (4) and panel (8) specifications.

 $[^]c$ Ratio of short- and long-run GDD29 semi-elasticities in ECM specification (10). d Ratio of short- and long-run $\overline{T} \ge 30^{\circ}$ C semi-elasticities in ECM specification (12). e Ratio of precipitation semi-elasticities in long difference (2) and panel (6) specifications. f Ratio of P < 5mm semi-elasticities in long difference (4) and panel (8) specifications. g Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). h Ratio of short- and long-run P < 5mm semi-elasticities in ECM specification (12).

Table 4: Yield responses in Rest of World—Rainfed Soybeans

		-Lono differences (15v)				- Panel				ECM		
	(1)	3	3	(4)	(5)	(9)	6	(8)	(6)	(10)	(11)	(12)
$GDD < 29^{\circ}C$	0.00004	0.00004			-0.0001	-0.0002+			-0.0002	-0.0003+		
$GDD > 29^{\circ}C$	0.002	0.002			(0.0002) $-0.003*$	(0.0001) $-0.003*$			(0.0002) -0.003*	(0.0001) $-0.003*$		
Total P	$(0.002) \\ 0.0001$	(0.002) 0.0001			$(0.001) \\ 0.0001* \\ (0.0001) $	(0.001) 0.0001^*			$(0.001) \\ 0.0001* \\ (0.0001)$	$(0.001) \\ 0.0001^* $		
Total P Squared	(0.00005) -0.000	(0.00005) -0.000			(0.0004) $-0.000*$	(0.00004)			(0.0004) $-0.000*$	(0.00004) $-0.000*$		
$\overline{T} < 15^{\circ}\mathrm{C}$	(0.000)	(0.000)	-0.005	-0.005	(0.000)	(0.000)	0.001	0.002	(0.000)	(0.000)	0.002	0.003+
22.5° C $\leq \overline{T} < 25^{\circ}$ C			(0.005) -0.003	(0.005) -0.003			(0.001) -0.001	(0.001) $-0.002*$			(0.001) -0.001	(0.001) $-0.002*$
$25^{\circ} \text{C} \le \overline{T} < 27.5^{\circ} \text{C}$			(0.003) -0.002	(0.003) -0.002			(0.001) -0.002	(0.001) -0.002 ⁺			(0.001) -0.002	(0.001) $-0.003+$
27.5° C $\leq \overline{T} < 30^{\circ}$ C			(0.003) -0.004	(0.003) -0.004			(0.001) -0.003	(0.001) -0.004^*			(0.001) -0.003	(0.001) -0.004^*
$\overline{T} \ge 30^{\circ} \text{C}$			(0.003) -0.005	(0.003) -0.005			(0.002) $-0.010*$	(0.002) -0.012*			(0.002) -0.009*	(0.002) $-0.011*$
$P < 5 \mathrm{mm}$			(0.004) -0.005	(0.004) -0.005 (0.003)			(0.004) -0.003	(0.005) -0.003			(0.004) -0.003	(0.005) -0.003 (0.002)
LR: GDD $< 29^{\circ}$ C			(200.0)						-0.0002	-0.0002*		
LR: GDD $> 29^{\circ}$ C									(0.0001) -0.001*	$(0.0001) \\ -0.001*$		
LR: Total P									(0.0005) $0.0002*$	(0.0005) $0.0002*$		
LR: Total P Squared									(0.0004) -0.000*	(0.00004) $-0.000*$		
LR: $\overline{T} < 15^{\circ}\text{C}$									(0.000)	(0.000)	0.002	0.003*
LR: 22.5° C $\leq \overline{T} < 25^{\circ}$ C											(0.002) -0.002	(0.002) -0.002*
LR: 25° C $\leq \overline{T} < 27.5^{\circ}$ C											(0.001) -0.002	(0.001) $-0.002*$
LR: 27.5° C $\leq \overline{T} < 30^{\circ}$ C											(0.001) -0.003*	(0.001) -0.003*
LR: $\overline{T} \ge 30^{\circ} \text{C}$											(0.001)	(0.001)
LR: $P < 5$ mm											(0.002) -0.004^{+}	(0.003) -0.004 ⁺
Error correction coef.									*898.0-	-0.875*	-0.881*	(0.002)
T LR/SR ratio						-0.56^{a}		0.39^b	(0.026)	$(0.027) \\ 0.52^{c} \\ 1.23^{g}$	(0.024)	$(0.024) \\ 0.71^d \\ 1.52^h$
N Adjusted \mathbb{R}^2	733 0.414	733 0.413	733 0.427	733 0.426	21,896 0.844	18,872 0.836	21,896 0.838	18,872 0.828	21,163 0.479	18,071	21,163 0.453	18,071 0.459
	٠											

Notes: Significance levels + p < 0.1, * p < 0.05. LR indicates long-run effect, the negative of the estimated parameter divided by the error correction coefficient in specifications (9)-(12). Ratio of GDD29 semi-elasticities in long difference (2) and panel (6) specifications. ^b Ratio of $\overline{T} \ge 30^{\circ}\text{C}$ semi-elasticities in long difference (3) and panel (6) specifications. ^f Ratio of short- and long-run GDD29 semi-elasticities in Long difference (2) and panel (6) specifications. ^f Ratio of P < 5mm semi-elasticities in long difference (2) and panel (6) specifications. ^f Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation semi-elasticities in ECM specification (10). ^h Ratio of short- and long-run precipitation (10) specification (10) speci

(spring wheat is the exception).

An important question raised by these results is whether the benefits of vulnerability reduction accrue to rich nations with advanced agricultural systems, or to developing countries. Precisely where in the world these impacts arise, and whether the apparently maladaptive consequences of adjustment are concentrated in a few regions, will be apparent from more fine-grained regional stratification of estimates. It is to this we now turn.

4.3 Regional Crop Yield Sensitivity in the Long-Run: The Role of Irrigation

In this section we address two questions: which regions are especially vulnerable to the adverse effects of weather extremes on rainfed yields, and to what extent are these impacts moderated by irrigation, which is *the* principal adaptation to extreme heat. With warming temperatures, it is anticipated that farmers will increase both irrigated area under cultivation and crop water application over the course of the growing season. However, adjustment along this adaptation margin will only be effective if there is sufficient water available for irrigation: in particular, declines in growing season precipitation—and more extreme low precipitation days, will likely constrain irrigation that is reliant on surface water, hindering the moderating effect on the yield impacts of heat. To conserve space, we focus on the results of our preferred binned weather specification, estimated via ECM. Detailed results are consigned to an online appendix (rainfed crops are summarized in Tables B.1-B.33 and irrigated crops in Tables B.34-B.65).

Table 5 summarizes the regional breakdown in the long-run responses of calorie crop yields to $\overline{T} \geq 30^{\circ}\mathrm{C}$ and $\overline{P} < 5\mathrm{mm}$ days. Yields exhibit negative long-run responses to high temperature extremes in more than half, and to low precipitation extremes in nearly 70%, of rainfed crop × region combinations. Adverse effects are concentrated in the Americas, including the US, and to a lesser extent, Africa. Asia, and especially Europe experience comparatively few significant impacts. Compared to irrigated cultivation, significant adverse effects of extremes on rainfed crops tend to be more widespread and larger in magnitude. High temperature exposure exerts the dominant effect, with the fractional reduction in annual yields from an additional $\overline{T} \geq 30^{\circ}\mathrm{C}$ day, an order of two to three times as large as those from an addition $P < 5\mathrm{mm}$ day. Extreme heat exposure exerts large reductions on yields of maize and rice in Africa, soybeans and wheat in US

and the Americas, and spring wheat in Europe. Dry days have their largest negative effects on yields of maize and winter wheat worldwide-especially in Africa, soybeans in the US and rest of the Americas, and particularly spring wheat in the US, rest of Americas, and Asia.

The results illustrate the effectiveness of irrigation for adaptation to temperature extremes. Irrigated yields respond negatively in the long run to high temperature extremes in 15% of irrigated crop × region combinations, and exhibit positive long-run responses in the case of US rice and winter wheat in the US and Asia. Notwithstanding this, irrigation may not be a panacea, for two reasons. First, across many regions, crop water application has not completely shielded production from the effects of high temperature exposures. Residual adverse yield impacts persist over the long run for maize in US and the Americas, rice in Africa, and soybeans in the US. Second and more worrisome is the broader extent across crops and regions of adverse impacts of dry days over the long run. Irrigated yields respond negatively in the long run to high temperature extremes in more than 35% of irrigated crop × region combinations: maize worldwide, winter wheat in the US and Asia, and particularly soybeans in the US. Although irrigation attenuates both the magnitude and geographic breadth of negative low-precipitation responses, this result suggests that there may be a tradeoff between adaptation to heat versus to drought, with farmers reliance on irrigation making cultivation more vulnerable to water availability constraints caused by dry growing season days.

Table 5 also sheds light on the extent to which Burke and Emerick's findings apply more broadly. In 36% (42%) of rainfed crop × region combinations where high temperature (low precipitation) has significant adverse long run impacts, the latter responses are larger in magnitude than their short-run counterparts. For irrigated cultivation, the corresponding prevalence of significant and greater than unitary adaptation ratios is 42% and 55%. Thus, even though we cannot observe the individual margins along which farmers adjust within our grid-cell samples, our results demonstrate that, in aggregate across different crops and regions, one-third to one-half of adjustments to a long-run equilibrium in which yields exhibit increased sensitivity to extremes.

An alternative stratification of our data according to Fig. 1's agroclimatic zones tells a consistent story. Yields are significantly adversely affected by high temperature and low precipitation extremes in 60-70% of rainfed crop × AEZ combinations. High temperatures especially reduce maize and soybean yields worldwide; precipitation strongly reduces maize yields in zones 1 and

Table 5: Yield response to extreme high temperature and low precipitation exposures, by region and irrigation regime

	USA	Americas	Europe	Asia	Africa	Zone 1	Zone 2	Zone 3
]	Rainfed: \overline{T}	⁷ ≥ 30°C			
Maize	-0.006	-0.008	b	-0.002	-0.015^d	-0.008	-0.007	-0.01
Rice	c	0.005	c	b	-0.011^d	-0.01^d	0.006	b
Soybeans	-0.022^d	-0.012	c	-0.008	b	-0.005	-0.035^d	-0.013
Spring Wheat ^a	-0.015	-0.01^d	-0.016^d	0.01	b	b	b	-0.009^d
Winter Wheat	-0.009	-0.014^d	b	b	b	0.012	b	-0.01^d
			I	Rainfed: P	0 < 5 mm			
Maize	-0.004^d	-0.004^d	-0.003	-0.001^d	-0.009	-0.003^d	b	-0.008^d
Rice	c	-0.001	c	b	b	b	0.002	-0.001
Soybeans	-0.003	-0.003^d	b	b	-0.01^d	b	b	-0.004^d
Spring Wheat	-0.016^d	-0.011^d	0.002	-0.012	b	0.004	-0.015^d	-0.007
Winter Wheat	-0.003	-0.002	-0.002	-0.003	-0.013	0	-0.005	-0.004
			I	frrigated: $\overline{7}$	$\overline{\Gamma} \ge 30^{\circ} \text{C}$			
Maize	-0.015^d	-0.013	b	b	b	-0.01	b	-0.006
Rice	0.01	b	b	b	-0.011^d	-0.003	b	b
Soybeans	-0.025^d	c	c	b	c	b	c	-0.018^d
Spring Wheat ^a	c	c	c	b	c	0.008	c	b
Winter Wheat	0.011	b	c	0.004	b	b	0.003	b
			I	rrigated: F	0 < 5 mm			
Maize	-0.004	-0.007^d	-0.002	-0.004^d	-0.014^d	-0.002	b	-0.01^d
Rice	b	-0.001	0.002	0.001	b	-0.002^d	b	0.002
Soybeans	-0.009^d	c	c	b	c	0.005	c	b
Spring Wheat	c	c	c	b	c	b	c	b
Winter Wheat	-0.002^d	b	c	-0.004^d	b	b	-0.006^d	-0.003

 $[^]a$ Coefficient on $27.5^{\circ}\text{C} \leq T < 30^{\circ}\text{C}$ bin (while all coefficients refer to the $T \geq 30^{\circ}\text{C}$ bin, for spring wheat the more significant $27.5^{\circ}\text{C} \leq T < 30^{\circ}\text{C}$ bin is shown); b Not significant at the 10% level; c Insufficient observations; d Adaptation ratio > 1.

3, and spring wheat yields in zones 2 and 3. Irrigation moderates but does not completely eliminate geographic scope and magnitude of impacts, reducing negative and significant temperature and precipitation responses to 27% and 40%, respectively, of crop × AEZ combinations. About one third of negative long-run impacts are of larger magnitude than their short-run counterparts, corroborating our finding of adjustment leading to worse impacts of weather extremes over the long run.

Finally, we note that the fixed-effects estimates of the yield impacts of extremes are in broad agreement with the patterns reported here, though of course they do not distinguish between short-and long-run impacts. (See Appendix Table A.13 for details.)

4.4 Vulnerability of Yields to Climate Change

We now consider the implications of our findings for the impacts of future warming. Table 6 summarizes the crop \times region \times irrigation regime combinations for which vigorous warming simulated by 21 ESMs is predicted to cause substantially more extreme high temperature and low precipitation growing-season days by the end of the century. Increases in the frequency of hot days are ubiquitous, and across ESMs and grid cells their distributions tend to be strongly positively skewed. Median increases are largest in locations in the US, rest of the Americas, and Africa where maize, soybeans and rice are currently cultivated, in US and Europe where spring wheat is grown, and in the US where winter wheat is grown. Comparing the median increases in hot days in areas of rainfed and irrigated cultivation, the exhibit that tend to be larger for in the US, Asia and Africa (an exception is African maize) but smaller throughout the Americas.

Table 6: Change in extreme high temperature and low precipitation days, 2080-2099 mean relative to 1986-2005 mean, by region and irrigation regime (RCP 8.5)

	USA		Americas	as	Europe	e	Asia	۳	Africa	_	Zone 1		Zone 2		Zone	3
							R	Rainfed:	$T \ge 30^{\circ} \text{C}$							
Maize	33.10 [0.45, 94]	2	18.10 [0,		6.90 [0,	56]	12.25 [0,	110]	34.80 [0,	120		120]	83.90 [0,	160]	15.30 [0,	94]
Rice	76.50 [56,	94]	86.25 [0,					120]	37.75 [0,	140	40.30		72.70 [0,	160]	70.65	170]
Soybeans 42.40 [1,	42.40 [1,	<u>66</u>	46.40 [0.5,	140]	3.40 [0,	57]	16.30 [0,	100]	13.65 [0,	110	19.30 [0,	[96]	83.90 [0.9,	140]	51.30 [0.3	130]
Spring Wheat	10.95 [0,	36]	0.90 [0,		6.40 [0,	32]		42]	0.75[0,	110	4.65		5.30 [0,	40]	1.95	38]
Winter Wheat	8.15 [0,	29]	2.40 [0,		0.60 [0,	16]		44	2.10 [0,	35]	4.70		15.55 [0,	72]	1.95	26]
							R	Rainfed:	P < 5mm							
Maize	0.15 [-6.8,	9.6]	0.70 [-8.4,	, 21]	5.00 [-3.4, 14]	4, 14]	-0.65 [-11,	, 7.1]	0.80 [-15,		-0.10 [-10,		2.20 [-16,		0.75 [-7,	
Rice	2.45 [-1.2,	11]	3.05 [-12,	26]			-3.75 [-18		0.00 [-16,		0.30 [-14,		1.50 [-13,	23]	3.10 [-16	
	0.45 [-7.7,	8.3]	0.70 [-9.6,	, 14]	3.35 [-8.5	5, 17]	-2.50 [-12,		1.25 [-7,	•	-0.65 [-9.3,		3.25 [-15,		-0.10 [-11	
	-0.25 [-3.7,	4.6]	-0.35 [-8.2,	, 5]	1.45 [-4.3, 8	3, 8.2]	0.65 [-4.]		-6.30 [-38,	10]	0.75 [-4.2,	7.1]	0.85 [-3.6,		0.45 [-9.5,	, 9.3]
	-1.80 [-9.1,	9.9]	0.70 [-9, 11]	11]	0.70 [-9,	11]	0.70 [-5.9,), 9.8]	1.95 [-0.05		0.55 [-7.9,		0.90 [-2.7,	[6.9]	-1.20 [-9.5,	
							II	Irrigated:	$T \ge 30^{\circ} \text{C}$							
Maize	34.40 [0,	93]	2.00 [0,	120]	14.85 [0,	79]	33.30	, 88]	7.75 [0,	110	58.00 [0.1,			93]	22.55 [0,	81]
Rice	83.45 [52,	110	_	150]	4.30 [0,	64]	14.95 [0,		45.75 [0,	150]	10.00 [0,	110]	51.17	150]	19.40 [0,	170]
Soybeans	49.95 [8.4,	<u>8</u>	0.15 [0,	100]	0.00 [0,	37]	54.55	5, 100]	61.45 [22,	100	1 43.90 [0.05,	, 99]		100]	55.10 [0.6	[86]
Spring Wheat	2.55 [0,	43]	0.00 [0,	130]	1.50 [0,	7.5]		37]					5.10	45]	2.10 [0,	110
Winter Wheat	2.25 [0,	37]	0.15 [0,	42]			10.10	44	10.40 [0,	79]	0.25 [0,	14]	17.85 [0,	54]	0.30 [0,	24]
							П	Irrigated:	P < 5mm							
Maize	0.10 [-4.4,	7.2]	0.40 [-4.4, 10]	, 10]	4.40 [-0.9, 1), 14]	0.00 [-7.3,	3, 4.9]	1.85 [-7.1,	7.2]	-0.40 [-9.2,	11]	1.70 [-7.6, 8	[9.8]	0.20 [-4.3, 6	, 6.8]
Rice	1.55 [-5.2,	12]	-0.75 [-15,	19]	4.30 [-6.9), 18]	-2.90 [-14		0.60 [-20,		-2.05 [-13,	9.1]	-0.05 [-13,	17]	-1.55 [-18	, 27]
Soybeans	1.35 [-4.5, 8	8		, 31]	9.05 [-3.]	1, 23	-0.70 [-9.9,), 8.4]	2.48 [-2.7,		-0.20 [-8.8,	7.1]	2.65 [-6.9,	15]	0.30 [-9.7	, 10]
Spring Wheat	-0.55 [-4,	2.4]		4.8]	-3.20 [-7.7,	7, 2.5]	-0.65	4, 2.7]	1.10 [-5.9,	10]			-0.30 [-2.8,	2.6]	-1.75 [-9.8	; 5.5]
Winter Wheat	0.15 [-8.1,	6.1]		, 11]			0.00 [-5.4	1, 5.2]	0.55 [-0.1,	5.1]	0.65 [-8,	11]	0.15 [-2.3,	4.4]	-1.40 [-8.4	., 7]

Table entries show median of the distribution of the present-day to late-century change in the average number of days in each temperature and precipitation interval across cultivated grid cells in each region and 21 climate models. 5th and 95th percentiles of the distribution are shown in square braces. Bold entries indicate the crop × region × irrigation regime combinations for which extreme high temperature and low precipitation exposures have significant negative long-run impacts coincide with a likelihood of substantial increases in exposure to extreme days. By contrast, trends in dry extremes are much less pronounced, reflecting the greater uncertainty in ESM projections of climate change impacts on precipitation. The support of the distribution of changes in P < 5mm days across ESMs and grid cells includes zero for every crop \times region \times irrigation regime combination, with medians that are negative for 30% of combinations and small in magnitude (fewer than 10 days), and—as with temperature—longer upper tails. The largest median shifts are concentrated in Europe, particularly areas of current rainfed and irrigated maize, and irrigated rice and soybean cultivation.

The table also highlights crop × region × irrigation regime combinations that appear to be especially vulnerable to climate change, i.e., ones for which increases in hot and dry days coincide with significant long-run yield declines associated with those extremes. Corroborating prior studies, we find that the largest vulnerability is associated with shifting temperature extremes, especially for rainfed cultivation. The main hotspots are the US (maize, soybeans and winter wheat) and Africa (maize and rice), as well as soybeans in Asia and the Americas, and spring wheat in Europe. Vulnerability to low precipitation extremes is confined to European maize. The pattern of impacts suggests that while increasing cultivation in currently irrigated areas might reduce these vulnerabilities, there are still likely to be residual risks to US maize and soybeans, African rice, and—for precipitation—European maize.

The foregoing results shed light on yield vulnerability over the very long run. Nearer-term exposures at mid-century time-frames, summarized in Table A.14, exhibit shifts in extreme days that follow a qualitatively similar patterns but are less than half as large, with a substantial fraction being an order of magnitude smaller. Fig. A.3 illustrates that, by comparison, the smaller average temperature rise projected to occur by the 2050s primarily increases the number of *non*-extreme days ($25 \le \overline{T} < 30$ for maize, soybeans and rice, and $22.5 \le \overline{T} < 27.5$ for wheat). Our preferred specification estimates that negative and significant long-run impacts of days with the latter average temperatures are widespread. Even though the magnitudes of these coefficients are generally smaller than in Table 5, the relatively larger numbers of additional days in the corresponding temperature bins at mid-century suggests that climate change will have discernable impacts on calorie crop yields by 2050. Acceleration of warming toward centurys end is accompanied by increases in

⁹For rainfed crops: maize everywhere except Europe, rice in the Americas, wheat in the US, Americas and Europe, and soybeans in Asia and Africa; for irrigated crops: maize in the US, the Americas and Africa, rice in Asia, soybeans in the US, Americas and Asia, and wheat in the Americas and Asia. See Tables 6 and A.14.

the number of days in the $27.5 \le \overline{T} < 30$ interval for all crops, and in the $25 \le \overline{T} < 27.5$ interval for maize and wheat (Fig. A.3), increasing downward pressure on yields.

5 Projecting the impacts of climate change

We use our fitted econometric model to project the long-run changes in crop yields associated with climatically-driven shifts in meteorological exposure. Let t=0 and $t=t^*$ denote current and future periods, in which the average values of weather exposures are given by $\widetilde{\boldsymbol{\mathcal{E}}}_0^T$ and $\widetilde{\boldsymbol{\mathcal{E}}}_{t^*}^P$ and $\widetilde{\boldsymbol{\mathcal{E}}}_{t^*}^P$.

In a changing climate, the weather-sensitive component of log yield with and without adaptation is given by:

$$\Upsilon_{i,0}^{\text{Adaptation}} = \widehat{\boldsymbol{\eta}}_{z(i)}^{T'} \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^{T} + \widehat{\boldsymbol{\eta}}_{z(i)}^{P'} \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^{P} + \gamma_{j(i)} t^{*}$$
(8)

$$\Upsilon_{i,0}^{\text{No Adaptation}} = \widehat{\boldsymbol{\beta}}_{z(i)}^{T'} \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^{T} + \widehat{\boldsymbol{\beta}}_{z(i)}^{P'} \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^{P} + \gamma_{j(i)} t^{*}$$

$$\tag{9}$$

The time trends $\gamma_{j(i)}t^*$ take into account future exogenous changes in crop productivity. The impacts of climate change on future yields in the presence and absence of adaptation are computed by taking the antilog of the difference between (9) and (8):

$$\varphi_{i,t^*}^{\text{Climate, Adaptation}} = \exp\left\{\widehat{\boldsymbol{\eta}}_{z(i)}^{T'} \left(\widetilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^T - \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^T\right) + \widehat{\boldsymbol{\eta}}_{z(i)}^{P'} \left(\widetilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^P - \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^P\right)\right\}$$
(10)

$$\varphi_{i,t^*}^{\text{Climate, No adaptation}} = \exp\left\{\widehat{\boldsymbol{\beta}}_{z(i)}^{T'} \left(\widetilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^T - \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^T\right) + \widehat{\boldsymbol{\beta}}_{z(i)}^{P'} \left(\widetilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^P - \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^P\right)\right\}$$
(11)

Fig. A.3 illustrates the changes in the distribution of average daily temperature over the growing season to which these baseline quantities of crop yields are likely to be exposed, under a high warming (RCP 8.5) scenario. The box plots show the median of our ensemble of ESM projections $\widetilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^T - \widetilde{\boldsymbol{\mathcal{E}}}_{i,0}^T$. Over the annual growing season of our empirical dataset, the temperature shift associated with climate warming induces a decline in cool days and an increase in hot days. At the medians of their respective cultivated grid cells, maize, soybeans and rice experience only slight

changes in the number of cool ($< 10^{\circ}$ C) days, fewer warm ($15 - 27.5^{\circ}$ C) days and more frequent hot ($\ge 27.5^{\circ}$ C) days. From mid- to late-century the amplitude of declines in the number of warm days and increases in the number hot days becomes more accentuated, with a marked increase in the frequency of extreme high temperature ($\ge 30^{\circ}$ C) days. Spring wheat's exposure pattern is qualitatively similar, but shifted toward lower temperatures and slightly more pronounced in amplitude, with declines in both cool and moderate temperature days, increases in warm days and little change in the frequency of hot days. Winter wheat exhibits a qualitatively different pattern, made up of modest declines in $< 5^{\circ}$ days that are offset by small increases in the frequency of a broad range of temperatures. As before, these patterns are accentuated with the acceleration of warming toward century's end.

Among the different ESMs there is much less consensus regarding patterns of precipitation exposure (Fig. A.4). Consequently, for all crops the changes in the frequency of growing season days in different intervals of precipitation at the multi-model median $(\tilde{\boldsymbol{\mathcal{E}}}_{i,t^*}^P - \tilde{\boldsymbol{\mathcal{E}}}_{i,0}^P)$ are uniformly much smaller, and, for the majority of intervals, less than one day. Exceptions are extreme low (<5 mm) precipitation, which increase by approximately one day for winter wheat circa 2090 and maize at both mid- and late-century, and decline by 1-2 days for rice and soybeans. These two crops also see a slight (1-day) increase in late-century exposure to extreme high (\geq 55 mm) precipitation.

Given the range of climatic conditions in the grid cells where each crop is grown, there is considerable variation in the aforementioned patterns of climate change exposure¹⁰. Even so, by mid-century more than three-quarters of the grid cells where each crop is grown experience increases in $\geq 30^{\circ}$ C days, and a similar fraction of grid cells where spring wheat are grown experience increases in days with < 5 mm of precipitation. Given our yield responses in Tables 5 and A.13,these shifts raise the possibility that farmers will sustain losses even in the presence of adaptation, and indeed this is exactly what we see.

We estimate the yield impacts of the changes in temperature and precipitation in a high warming scenario (RCP 8.5), at the grid-cell level in the short and the long run, using eqs. (11) and (10). The results of these calculations are summarized graphically in the Appendix (Figs. A.5 and A.6).

¹⁰The distribution of temperature and precipitation bins in the historical and future periods assembled over the crop-specific regions and growing seasons are shown in appendix Figs. A.11 - A.14.

The crucial implication is that the historical patterns of intra-zonal adjustment inferred by our empirical model suggest that adaptation is unlikely to be a panacea. Not only do our long-run model parameters suggest that changes in yields in response to future climate change will be negative for greater than 75% of grid cell \times ESM realizations, but in a few cases in the long run they are worse than in the short run. This phenomenon is of particular concern for irrigated rice, soybeans in zone 1, and winter wheat in zones 1 and 2^{11} . The magnitude of impacts is substantial, with interquartile range yield reductions circa 2050 from 3% to 12%, and from 11% to 25% circa 2090.

Impacts are heterogeneous among agroclimatic zones, with some experiencing much larger yield declines than others and no consistent pattern of zonal impacts across crops. With the exception of rice cultivation, irrigation generally moderates the adverse effects of temperature and precipitation change, and for spring wheat may even result in yield improvements (though this effect is more pronounced in the short run). We speculate that residual negative impacts in grid cells that we identify as irrigated may reflect underlying unmeasured irrigation intensity and efficacy, which in turn is a function of water resource scarcity—which we note will also affected by climate change. Regarding the heterogeneity in impacts, the interqartile ranges of yield shocks do not differ dramatically across ESMs. Consequently, the boxplots largely capture the effect of spatial variation in future meteorology.

The manner in which impacts at the median of our ensemble projections (RCP 8.5) plays out over space is elaborated in Fig. 2^{12} . Yields decline for most crops in most grid cells, with the largest reductions concentrated in areas that overlap the major calorie sheds. Consistent with Fig. A.5, circa 2050 median yields decline for the majority of cells in the 3%-12% range, interspersed with isolated regions of more severe losses (16-30%). Circa 2090 the latter expand in extent and increase in intensity to 32-57%, particularly for maize, soybeans and wheat.

¹¹It is important to keep in mind that our projections are static with respect to the irrigation regime and the agroclimatic zones, which are likely to change in the future.

¹²Results for mid- and end-of-century, and for the RCP 4.5 moderate warming scenario, are summarized in Figs. A.7 and A.8. Both figures' spatial patterns are broadly similar, but smaller in magnitude.

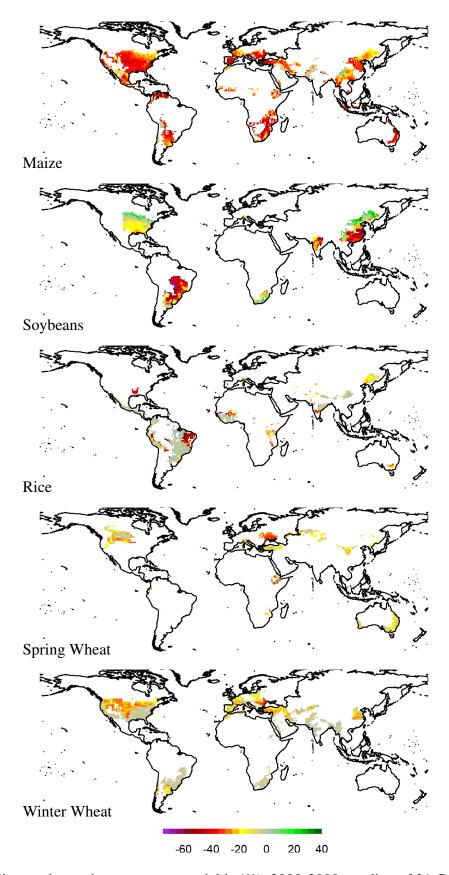


Figure 2: Climate change impacts on crop yields (%), 2080-2099, median of 21 GCMs, RCP 8.5.

Looking more holistically at the distribution of impacts across crops in our projection ensemble, we investigate whether our results are due to different ESMs generating similar geographic patterns of impacts on yields (Figure 3)¹³. Strong agreement on gains in crop yields is found for rice across different zones (Brazil, East Africa, Western India), and to a lower extent for wheat (Brazil, India, USA, China, Europe). Models also tend to agree on moderate (0-10%) reductions of yields of maize, soybeans, winnter wheat—less so for spring wheat —across all major cultivating regions. Circa 2050, very large yield losses (>25%) are found across most models in a few grid cells in the United States, Brazil, South Europe, South Africa, South East China, and Australia especially for maize and soybeans. Toward the end of the century, the scope of areas experiencing such severe negative impacts increases substantially and emerge also for wheat especially in United States and North Europe.

¹³Results for mid- and end-of-century, and for the RCP 4.5 moderate warming scenario, are summarized in Figs. A.9 and A.10.

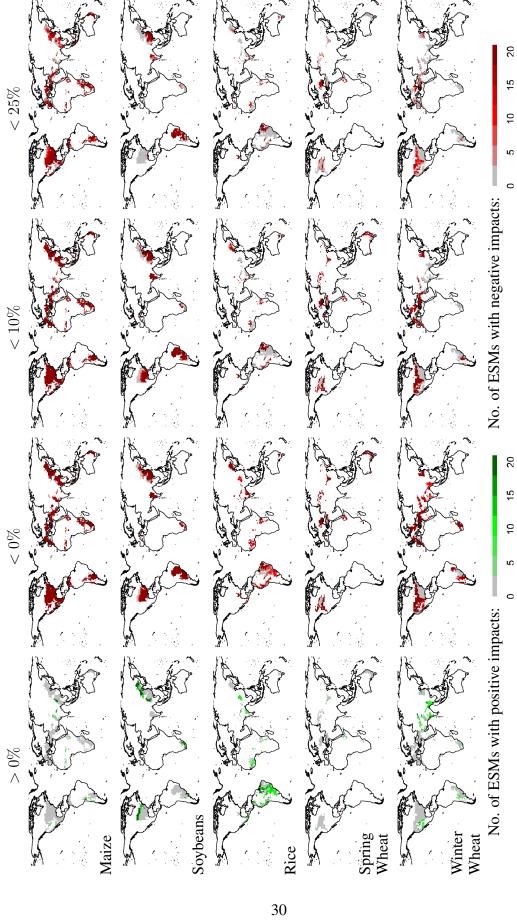


Figure 3: Agreement among earth system models on yield impacts, 2080-2099; RCP8.5

6 Discussion and Conclusion

We have used gridded crop yield and weather data to empirically model the temperature and precipitation responses of four crops responsible for 75% of global calorie intake. Using a dynamic econometric framework, we distinguish yields' responses in the short run, which we attribute to weather fluctuations—to which we assume farmers are largely unable to adjust, from those in the long run, which we attribute to climate—that manifests itself over long time frames on which we assume that substantial adaptation is possible. In our theoretical set-up, optimizing farmers are assumed to produce the same crop over a fixed amount of available land within each grid cell. In this context, examples of short-run adaptation include changes in the quantity of fertilizers and irrigation, if available. Long-run adaptation could include changes in crop varieties, different planting and harvesting dates, changes in the degree of mechanization as well as different types of nutrients and fertilizers.

Our econometric estimates corroborate Burke and Emerick's (2016) finding of limited historical adaptation in yield responses to weather shocks. Moreover, exploiting the high spatial resolution of the global crop yield dataset, we are able to further extend their results - limited to the United States - to the globe, showing that the inability of historical adaptation to mitigate climate-driven shocks varies significantly across crops, irrigation regime, as well as geographic zones.

Projecting climatically-driven changes in crop yields, by combining our estimated responses over the period 1981-2011 with temperature and precipitation fields from an ensemble of climate model simulations, we find substantial agreement among ESMs on crop yield declines of <10% by mid-century and <25% by century's end especially for soybeans, maize, and winter wheat.

Our key finding is that the brunt of yield losses falls on major crop producing and exporting countries. This raises the key question of what additional margins of adjustment beyond those pursued historically (whose net ameliorative effect we have shown to be small) might affect our results. There are many ways in which supply-side adaptation might take place, all of which require additional, deliberate investment. At the intensive margin there is development and diffusion of heat-resistant cultivars, increases in the quantity and/or quality of inputs, or improving management practices for more effective input utilization, and shifting planting and harvesting dates

to reduce exposures to high temperatures during particularly vulnerable crop growth phases (e.g., anthesis), or increase the number of annual planting/harvesting cycles. At the extensive margin, farmers in a particular location can switch to crops that are more suitable to changing climatic conditions, or, over broad geographic domains there can be shifts in the locations where crops are grown, non-agricultural land may be brought into cultivation to increase output, or additional land may be irrigated (Sloat et al, 2020), with concomitant increases in surface water diversion or groundwater mining.

Supply-side adjustments, residual supply losses, and increasing world prices of crops and food commodities are likely to be an imperfect form of adjustment. This possibility raises further questions with regards to the potential contribution of demand-side adaptations, such as changes in dietary composition and shifting patterns of international trade. Warming's heterogeneous influences on different crops across locations should not obscure the fact that its fundamental impact is to substantially reduce the supply of crops from all major sources. Improving our understanding of the efficacy of adaptation strategies that might forestalling, or merely lower the cost of coping with, this adverse outcome requires a sustained program of future research.

Our study is not without caveats associated primarily with the high-resolution global gridded crop yield dataset derived using statistical downscaling approaches (see Appendix A for details on how the gridded crop yields are assembled in the Iizumi dataset). As noted by a recent study Yu et al (2020), more readily available data pertaining to statistics at coarser administrative units, or aggregated data at national scales, do not reveal diversity and spatial patterns, thus making them less informative for subsequent spatially explicit agricultural and environmental analyses. Moreover, downscaling of yield and area harvested statistics onto grids has increasingly provided a basis for recent economic modeling and analysis (see Hertel et al (2019) for review). For instance, global gridded agricultural datasets have expanded the inclusion of agronomic variables, as examplefied by the recent gridded 'pesticide use' dataset (Maggi et al, 2019) made available by NASA Socioeconomic Data and Applications Center (SEDAC), and another on 'harvested and yield by farming system type' (Yu et al, 2020) provided by the International Food Policy Research Institute (IFPRI).

While the downscaled country-level agricultural production datasets do facilitate a detailed spatiotemporal analysis, their usage under a panel data setting could lead to potential artificial precision in the estimates. For instance, given that the primary input source of data is the country-level

data (Fig. A.1), observations within a country could be mechanically correlated¹⁴. Nevertheless, we believe that this limitation is a trade-off, as the advantage of employing downscaled data outweights the potential marginal bias in our otherwise precise estimates, as shown by the precision of our estimated coefficients (Readers are guided to Appendix A and B for a full set of regression results). A systematic comparison or meta-analysis of agricultural impacts assessment employing different data sources of climate and agricultural production is left for future research.

¹⁴The amount of independent variation within a country then depends on the relative variances of the country-level FAO data and the NPP data from year-to-year. See Secton A.1 in Appendix for a description of the downscaling methodology in the Iizumi dataset

References

- Blanc, E., Reilly, J. (2017). Approaches to assessing climate change impacts on agriculture: an overview of the debate, Review of Environmental Economics and Policy 11(2):247-57.
- Blanc, E., and W. Schlenker (2017). The use of panel models in assessments of climate impacts on agriculture, Review of Environmental Economics and Policy 11(2):258-79.
- Burke, M., and K. Emerick, (2016). Adaptation to climate change: evidence from US agriculture, American Economic Journal: Economic Policy 8(3):106-40.
- Cameron, A.C., J. Gelbach and D. Miller (2011). Robust Inference with Multi-Way Clustering, Journal of Business and Economic Statistics 29: 238-249.
- Cassman, K.G. (1999). Ecological Intensification of Cereal Production Systems: Yield Potential, Soil Quality, and Precision Agriculture, PNAS 96: 5952-5959.
- Challinor, A. J., J. Watson, D. B. Lobell, S. M. Howden, D. R. Smith, and N. Chhetri (2014). A meta-analysis of crop yield under climate change and adaptation, Nature Climate Change 4(4):287-91.
- Conley, T.G. (1999). Gmm estimation with cross sectional dependence, Journal of econometrics 92: 1.45.
- Dell, M., B. F. Jones, and B. A. Olken (2014). What Do We Learn from the Weather? The New Climate Economy Literature, Journal of Economic Literature, 52(3), 740798.
- Fanelli L. (2006), Dynamic adjustment cost models with forward-looking behaviour, Econometrics Journal 9: 23-47.
- Fisher, A. C., W. M. Hanemann, M. J. Roberts, and W. Schlenker, (2012). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather: comment, American Economic Review 102(7):3749-60.
- U.N. Food & Agriculture Organization (2003). Food Energy—Methods of Analysis and Conversion Factors, FAO Food & Nutrition Paper No. 77, Rome: FAO.

- Hallam Z., Zanoli R. (1993). Error correction models and agricultural supply response. European Review of Agricultural Economics. 20 15166.
- Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28, 100-108.
- Hertel, T.W., West, A.P.T, Börner J., Villoria, N.B. (2019). A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14 053003.
- Iizumi, T. and N. Ramankutty (2016). Changes in yield variability of major crops for 19812010 explained by climate change, Environmental Research Letters 11: 034003.
- Iizumi, T., M. Yokozawa, G. Sakurai, M. Travasso, V. Romanenkov, P. Oettli, T. Newby, Y. Ishigooka and J. Furuya (2014). Historical changes in global yields: major cereal and legume crops from 1982 to 2006, Global Ecology and Biogeography 23: 346-57.
- Lobell, D. B., Schlenker W., and J. Costa-Roberts (2011). Climate Trends and Global Crop Production Since 1980, Science: 333: 616-620
- Maggi, F., Tang F. H. M., Cecilia D. la and A. McBratney (2019). PEST-CHEMGRIDS, Global Gridded Maps of the Top 20 Crop-specific Pesticide Application Rates from 2015 to 2025. Nature Scientific Data 6 (170):1-20.
- Mendelsohn, R., Massetti, E. (2017). The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence, Review of Environmental Economics and Policy, 11 (2): 280-298.
- Monfreda, C., N. Ramankutty and J.A. Foley (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles 22: GB1022.
- Moschini, G.C. (2001). Production risk and the estimation of ex-ante cost functions, Journal of Econometrics 100: 357-380.
- Nickell, S. (1985). Error Correction, Partial Adjustment and All That: An Expository Note, Oxford Bulletin of Economics and Statistics 47: 119-129.

- Pope, R., and R.E. Just (1996). Empirical implementation of ex ante cost functions, Journal of Econometrics 72: 231-249.
- Portmann, F.T., S. Siebert and P. Doll (2010). MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles 24: GB1011.
- Ramankutti et al (2018). Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security, Annual Review of Plant Biology 69: 14.1-14.27.
- Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Toll, D. (2004).
 The Global Land Data Assimilation System (GLDAS), Bulletin of the American Meteorological Society 85: 381-394.
- Sacks, W. J., Deryng, D., Foley, J. A. and Ramankutty, N. (2010). Crop planting dates: an analysis of global patterns, Global Ecology and Biogeography, 19: 607-620.
- Schlenker, W. and M.J. Roberts (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change, PNAS 106: 15594-15598.
- Sloat, L.L, Davis, S.J., Gerber, J. S., Moore, F.C., Ray D.K., West, P.C. and Mueller, N.D. (2020). Climate adaptation by crop migration. Nature Communications 11: 1243.
- Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P. (2020). A cultivated planet in 2010: 2 the global gridded agricultural production maps, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-11, in review.

Appendix A

A.1 Data

Here we briefly summarize the methodology used in Iizumi et al (2014) to derive the gridded yield data used in our study (referred here as the Iizumi dataset).

The Izumi dataset is a hybrid of FAO country yield data, satellite-derived crop-specific vegetation index and global crop datasets on crop calendar, harvested area, and production shares achieved by different growing season. The grid-cell yields (tonnes/hectare) are based on the estimations by a model that aligns National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer (NOAA-AVHRR) net primary production (NPP), FAO national yield statistics, crop calendar (Sacks et al. 2010) and harvested area (Monfreda et al. 2008) in the year 2000, and share of crop production by cropping system in the 1990's from USDA reports (USDA, 1994, 2013). The crop-specific NPP is estimated from the normalized differential vegetation index (NDVI) only for grid cells with harvested areas from the gridded M3-Crops data from (Monfreda et al. 2008). Grid-cell yield estimates are validated using subnational yield statistics (Iizumi et al. 2014; Iizumi and Ramankutty, 2016; Iizumi and Sakai, 2020). For the steps involved in deriving crop specific NPP and estimating yields, readers are referred to the steps in Figure A1, and the detailed description in Iizumi et al. (2014).

A valid concern can arise that the downscaling methodology employed in (Iizumi et al, 2014) would pick up greenness not associated to crop yields. As highlighted by the authors, the information that is derived from satellite-derived estimates and utilized in the algorithm, is related only to the spatial variations in accumulated crop-specific NPP from sowing to harvesting season, across grid-cells, within a country. The grid-cell yield estimates are a function of agricultural statistics (FAO yield, crop mask and crop calendar), and findings from field experiments (crop-specific radiation use efficiency, RUE). Importantly, the statistical characteristics of the grid-cell yield estimates agree with those derived from another global yield dataset solely based on national/subnational yield statistics (Iizumi et al, 2018).

A number of application studies conducted by independent groups e.g., (Schauberger et al, 2017; Famien et al, 2018) have demonstrated that the dataset is a useful source of information in

studying yields at subnational scale. The advantage of Iizumi dataset is that it offers a consistent spatial representativeness of yields across grid cells owing to the use of satellite data. However, grid-cell yields in the dataset are modeled data and those in minor crop-producing regions are considered less reliable than in major crop-producing regions due to the inherent limitations of satellite remote sensing in capturing crop status in areas where crop is sparsely grown (Iizumi et al, 2018). The quality of grid-cell yield data varies by the extent of cropland within a grid cell. Because we do not consider minor cropping regions in our analysis, we believe our econometric results are not affected by the limitations of Iizumi data (in minor crop-producing regions). In addition, to ensure that any potential remaining contamination of measurements (such as greenness not associated with crop yields) is not included in our sample, our data filtering procedure discussed in main text further reduces any such possibility.

Crop-specific NPP from NDVI

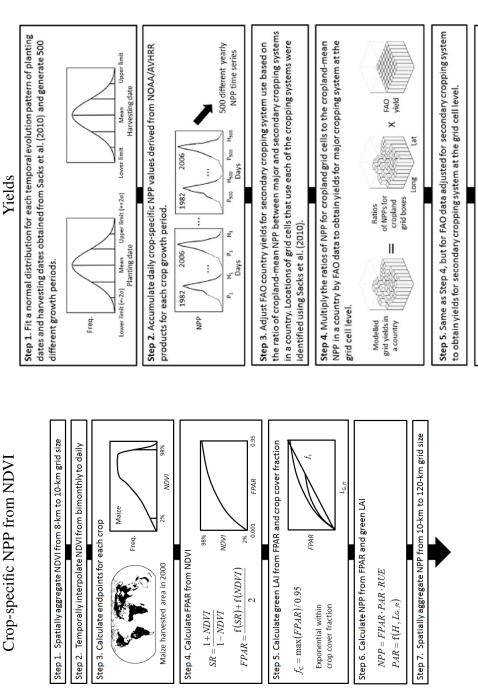


Figure A.1: Diagrammatic illustration of Iizumi et al's (2014) estimation of crop-specific NPP and gridded yields. Source: Iizumi et al

Step 6. Calculate the cropping-system-mean modelled yields (if multiple cropping

systems used in a grid cell). Share of crop production by cropping system in the 1990s was obtained from U.S. Department of Agriculture (USDA, 1994, 2013)

A.2 Derivation of the Empirical Model

Our starting point is the static production framework of Pope and Just (1996) and Moschini (2001). Slightly adapting their model, we define an expected yield function denominated over vectors of inputs to production, M, uncertain weather exposures, \mathcal{E} , and exogenous factors, X and parameterized by θ :

$$g(\mathbf{M}, \boldsymbol{\mathcal{E}}^*, \mathbf{X}; \boldsymbol{\theta}) = \mathbb{E}[G(\mathbf{M}, \boldsymbol{\mathcal{E}}, \mathbf{X}; \boldsymbol{\theta})]$$
(A.1)

In a given period a producer solves a static expected profit maximization problem in two steps. Let W denote the relative prices of the vector of inputs, normalized by the price of the agricultural commodity being produced. We assume that the farmer takes these prices as given, and first chooses the optimal quantities of inputs to produce output that meets an expected level of yield, Y^* , conditional on expected weather:

$$h(Y^*, \mathbf{W}, \boldsymbol{\mathcal{E}}^*, \mathbf{X}; \boldsymbol{\theta}) = \arg\min_{\mathbf{M}} \left\{ \mathbf{W} \cdot \mathbf{M} | Y^* \leq g(\mathbf{M}, \boldsymbol{\mathcal{E}}^*, \mathbf{X}; \boldsymbol{\theta}) \right\}$$

This first-stage solution defines an ex-ante cost function that summarizes the farmer's optimal input choices:

$$C(Y^*, \mathbf{W}, \mathcal{E}^*, \mathbf{X}; \boldsymbol{\theta}) = \mathbf{W} \cdot h(Y^*, \mathbf{W}, \mathcal{E}^*, \mathbf{X}; \boldsymbol{\theta})$$
(A.2)

The producer next chooses the optimal level of expected yield to maximize expected profit. Normalizing the output price to unity, this second sub-problem can be expressed as:

$$\Pi = \max_{\mathbf{V}^*} \left\{ Y^* - C(Y^*, \mathbf{W}, \boldsymbol{\mathcal{E}}^*, \mathbf{X}; \boldsymbol{\theta}) \right\}$$

When actual weather exposures align with expectations, ex-post profit is in equilibrium with its ex-ante target level: $\Pi^*(Y^*, \mathbf{W}, \boldsymbol{\mathcal{E}}^*, \mathbf{X}; \boldsymbol{\theta})$. When they diverge, ex-post yield and profit are Y and $\Pi(Y, \mathbf{W}, \boldsymbol{\mathcal{E}}, \mathbf{X}; \boldsymbol{\theta})$.

The foregoing static model appropriately describes production of the types of fields crops we consider here, which follow a regular annual planting and harvesting cycle. We assume that from one crop cycle to the next the producer determines the speed of adjustment of profit to its equilibrium level. We model this process using the dynamic adjustment cost framework introduced by Nickell (1985) and elaborated by Hallam and Zanoli (1993) and Fanelli (2006). The farmer minimizes expected discounted adjustment costs, conditional on the information available at each time period. We assume that adjustment costs are made up of two components: the divergence of profit from its target equilibrium level and the inter-period variance of profit. Using t to index time periods, and π^* and π to denote the logarithms of ex-ante and ex-post instantaneous profit, producers' dynamic behaviour is captured by the quadratic loss minimization problem:

$$\min_{\pi_{t+\tau}} \left\{ \mathcal{L} = \mathbb{E}_t \sum_{\tau=0}^{\infty} \rho^{\tau} \left[\Lambda (\pi_{t+\tau} - \pi_{t+\tau}^*)^2 + (\pi_{t+\tau} - \pi_{t+\tau-1})^2 \right] \right\}$$

where ρ is the discount factor. Using Δ to indicate first differences, the first-order necessary condition to this problem is the Euler equation:

$$\Delta \pi_t = \rho \mathbb{E}_t \Delta \pi_{t+1} - \Lambda (\pi_t - \pi_t^*)$$

which, using the fact that $\mathbb{E}_t \pi_{t+1} = \pi_t^*$ and $\mathbb{E}_t \pi_t = \pi_t$, yields the simple partial adjustment rule:

$$\pi_t - \pi_{t-1} = -(\rho + \Lambda)(\pi_t - \pi_t^*)$$

It is convenient to reformulate this expression as:1

$$\Delta \pi_t = -\Omega(\pi_{t-1} - \pi_t^*) \tag{A.3}$$

in which Ω is the error-correcting speed of adjustment parameter. The difference in yield from one period to the next is a fraction $\Omega \in (0,1)$ of the previous period disequilibrium error. As $\Omega \to 1$, the farmer's speed of adjustment increases, becoming instantaneous in the limit.

Our empirical representation of the profit function follows a loglinear specification:

¹The partial adjustment rule implies $\pi_t = 1/(1 + \rho + \Lambda)\pi_{t-1} + (\rho + \Lambda)/(1 + \rho + \Lambda)\pi_t^*$. Subtracting π_{t-1} from both sides and rearranging yields eq. (A.3), with $\Omega = (\rho + \Lambda)/(1 + \rho + \Lambda)$.

$$\pi_t = \vartheta + \kappa y_t + \chi' \mathcal{E}_t + \zeta' \mathbf{x}_t + \mathbf{v}_1' \mathbf{w}_t + \mathbf{v}_2' \mathbf{b}_t + \overline{\omega}_t$$
 (A.4)

Here, y, \mathbf{w} , \mathbf{x} and \mathbf{b} are the logarithms of yield, input prices, observable control variables and additional relevant factors such as the state of technology which are not observed by the econometrician, ϑ , κ , χ , ζ , and υ are parameters, and ϖ is a random disturbance term. Input price data are not available, so we approximate the joint effects of \mathbf{w} and \mathbf{b} as a time-varying function, $\Gamma(t)$. Crucially, (A.3) and (A.4) together suggest that the partial adjustment of profit implicitly defines an error correcting process for yield. Specifying $\Gamma(t)$ as a time-trend with a constant slope, γ , results in the error-correction model (2) in the text.

A.3 Stratification: Irrigation Regime and Agroclimatic Zone

$$\Delta y_t = \{ -\Omega(\kappa^{-1}\vartheta - \pi_t^*) - \kappa^{-1}\Delta\Gamma(t) \} - \kappa^{-1}\chi'\Delta\boldsymbol{\mathcal{E}}_t - \kappa^{-1}\zeta'\Delta\mathbf{x}_t$$
$$-\Omega[y_{t-1} + \kappa^{-1}\chi'\boldsymbol{\mathcal{E}}_{t-1} + \kappa^{-1}\zeta'\mathbf{x}_{t-1} + \kappa^{-1}\Gamma(t-1)] - \kappa^{-1}\{\varpi_t - (1-\Omega)\varpi_{t-1}\}$$

²Combining (A.3) and (A.4) and rearranging, we obtain:

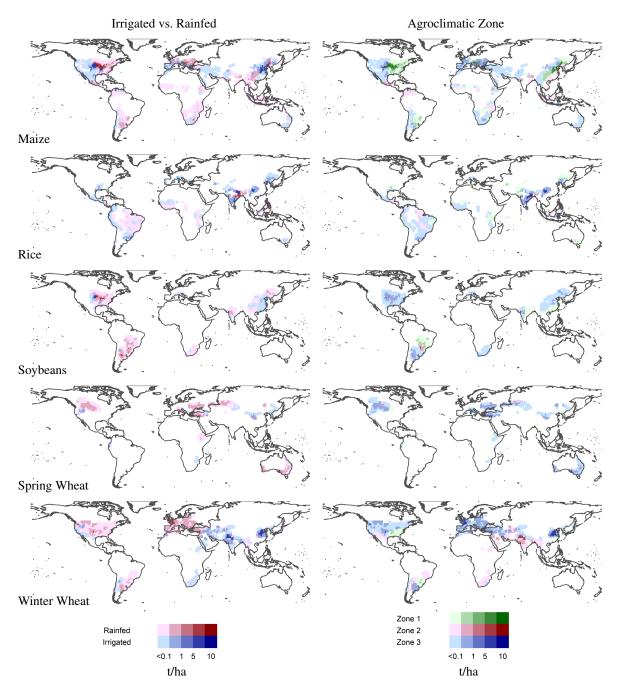


Figure A.2: Geographic stratification of 1981-2011 crop yields by irrigation regime and agroclimatic zone. Darker colors indicate grid cells with higher yields.

A.4 Additional results

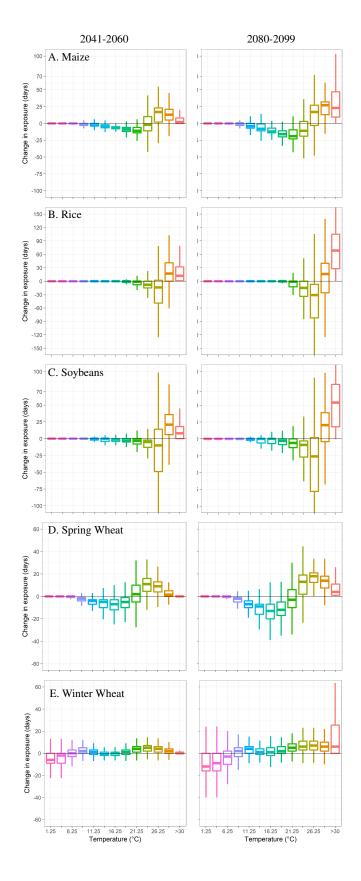


Figure A.3: Mid- and late-century baseline crop exposure to shifting growing season temperatures, median of 21 ESMs, RCP 8.5.

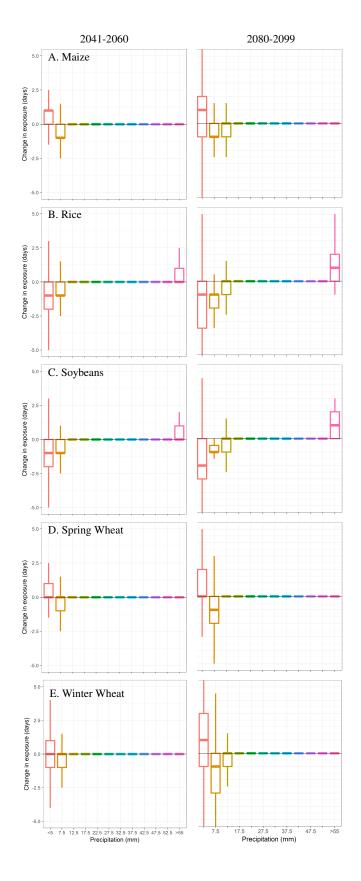


Figure A.4: Mid- and late-century baseline crop exposure to shifting growing season precipitation, median of 21 ESMs, RCP 8.5.

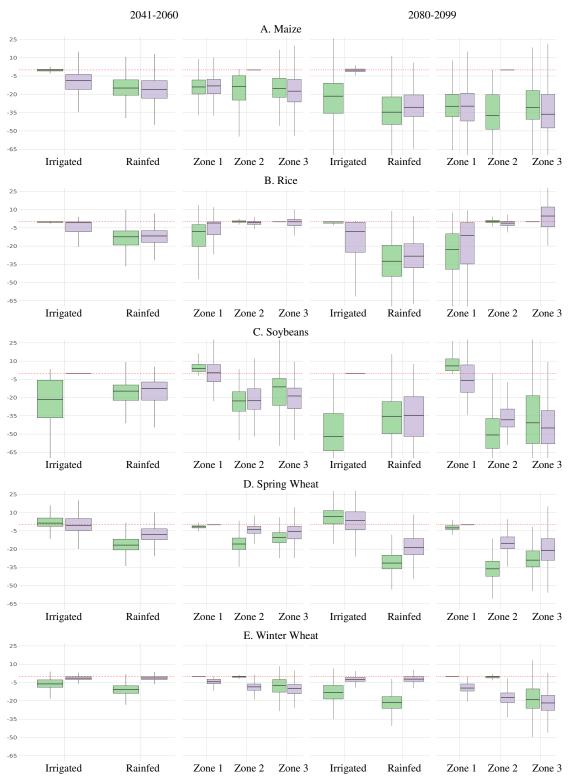


Figure A.5: Inter- and intra-zonal distributions of the percentage impacts of mid- and late-century climate change on crop yields at the median of 21 ESM simulations, RCP8.5. Zones correspond to Fig. 1. Impacts calculated using the short-run parameters of eq. (2) shown in green, and using long-run parameters in gray. Red line is no impact threshold.

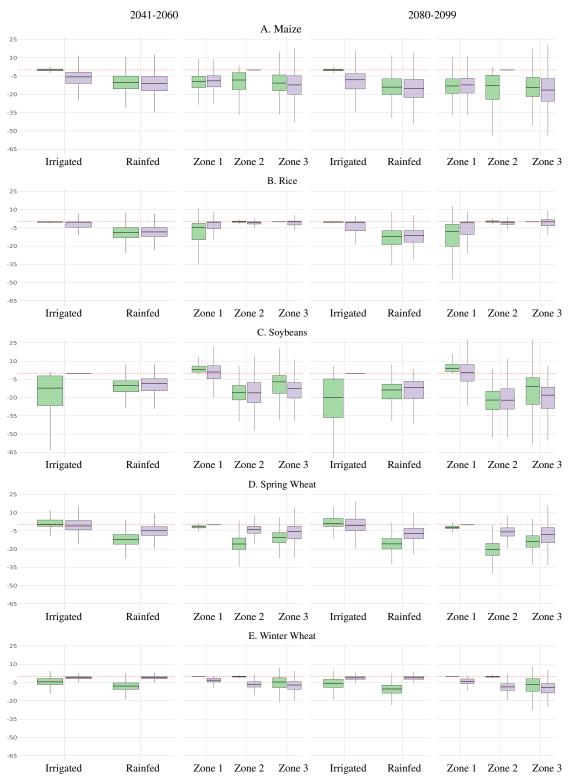


Figure A.6: Inter- and intra-zonal distributions of the percentage impacts of mid- and late-century climate change on crop yields at the median of 21 ESM simulations, RCP4.5. Zones correspond to Fig. 1. Impacts calculated using the short-run parameters of (2) shown in green, and using long-run parameters in gray. Red line is no impact threshold.

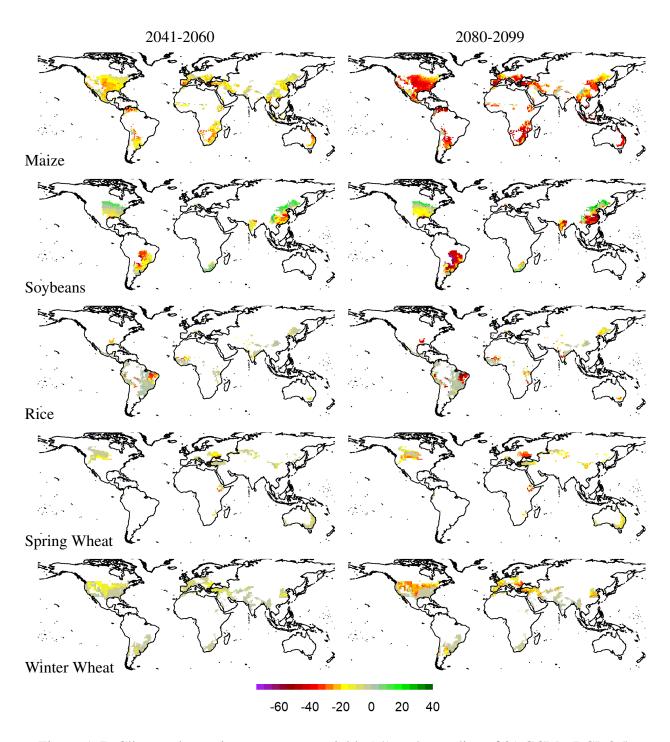


Figure A.7: Climate change impacts on crop yields (%) at the median of 21 GCMs, RCP 8.5.

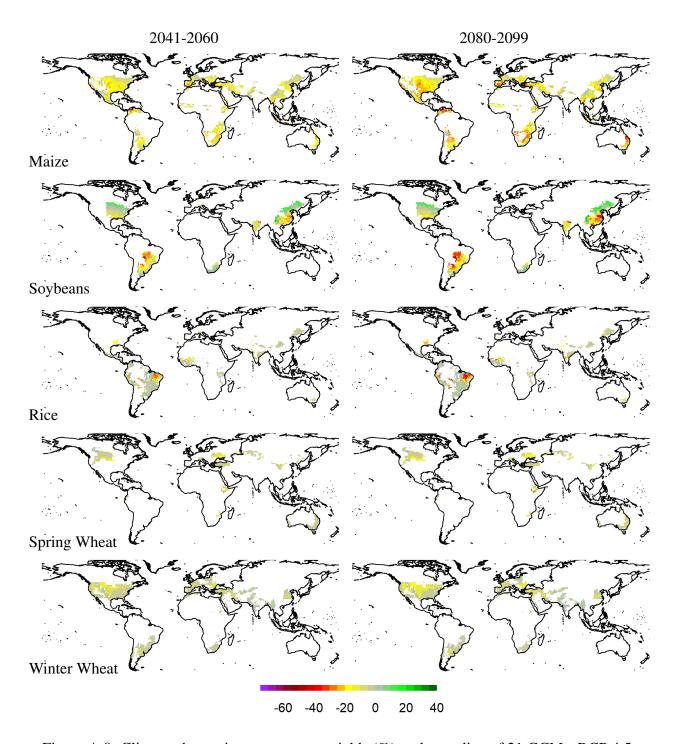


Figure A.8: Climate change impacts on crop yields (%) at the median of 21 GCMs, RCP 4.5.

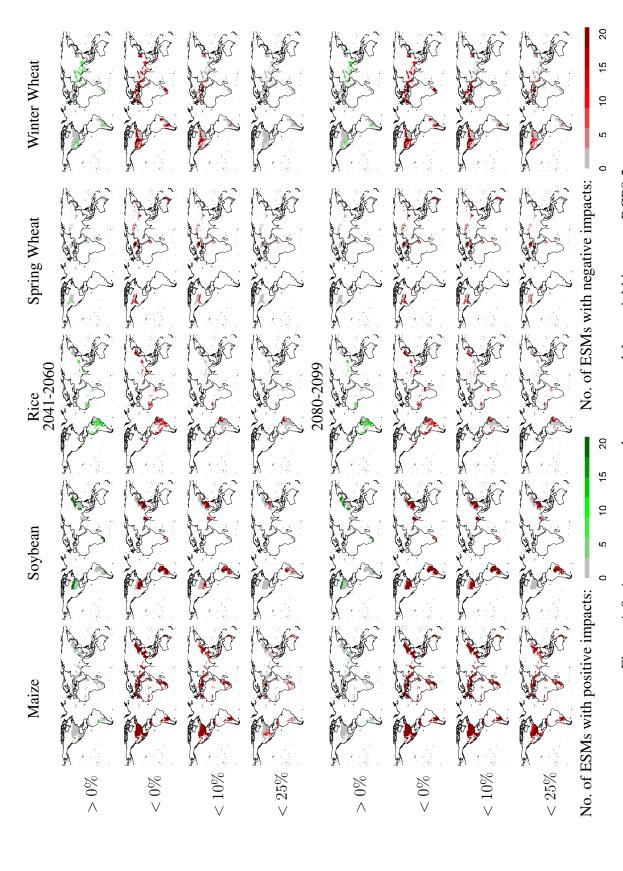


Figure A.9: Agreement among earth system models on yield impacts: RCP8.5

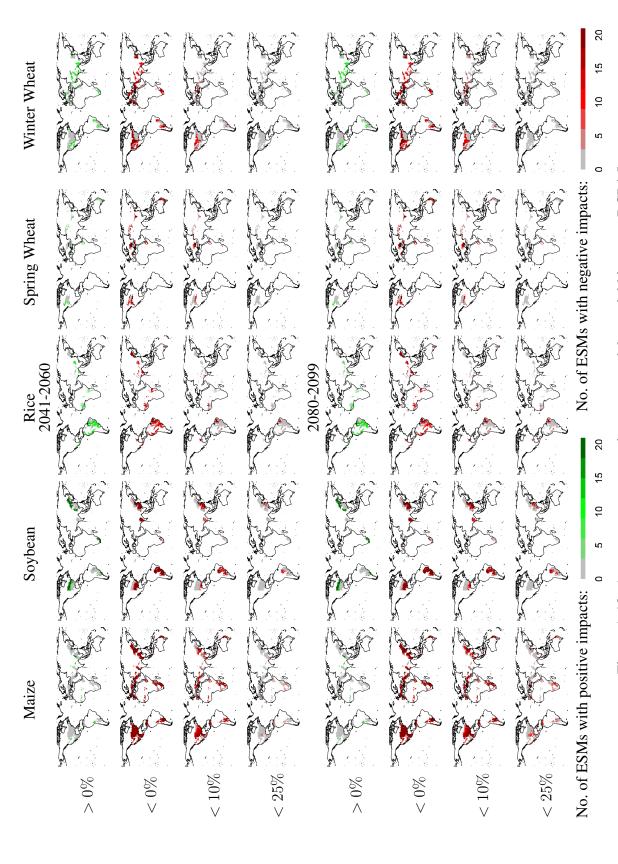


Figure A.10: Agreement among earth system models on yield impacts: RCP4.5

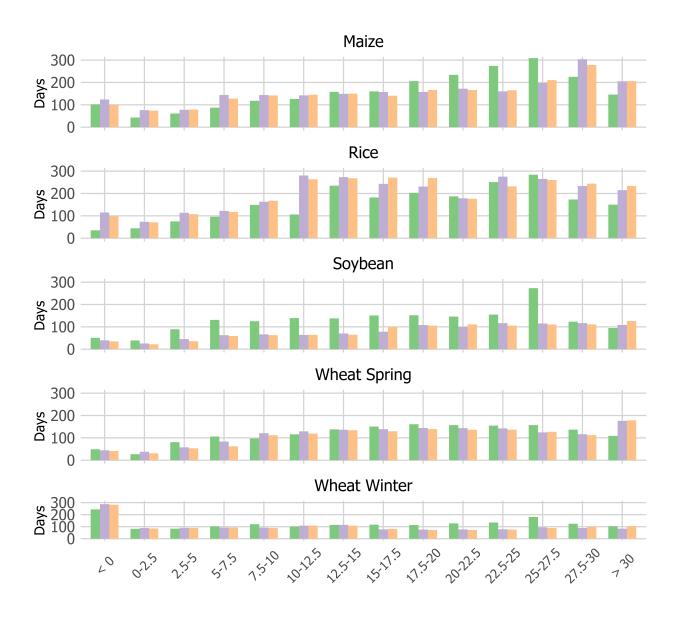


Figure A.11: Growing season exposure to temperature bins (°C) in historical (average 1981-2011, GLDAS) and RCP 4.5 (average 2041-2060 and 2080-2099) for the 21 multi-model ensemble. The distributions represent the climatic conditions over the crop-specific grid-cells and growing seasons in our sample

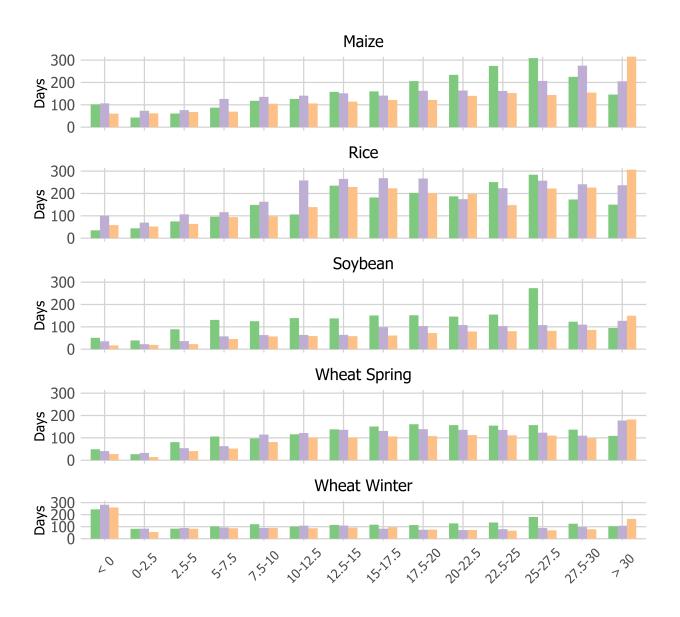


Figure A.12: Growing season exposure to temperature bins (°C) in historical (average 1981-2011, GLDAS) and RCP 8.5 (average 2041-2060 and 2080-2099) for the 21 multi-model ensemble. The distributions represent the climatic conditions over the crop-specific grid-cells and growing seasons in our sample

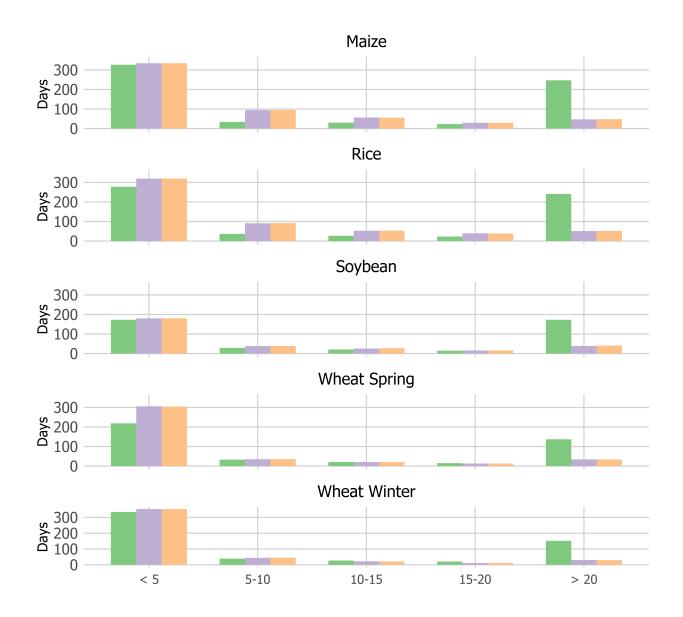


Figure A.13: Growing season exposure to precipitation bins (mm)in historical (average 1981-2011, GLDAS) and RCP 4.5 (average 2041-2060 and 2080-2099) for the 21 multi-model ensemble. The distributions represent the climatic conditions over the crop-specific grid-cells and growing seasons in our sample

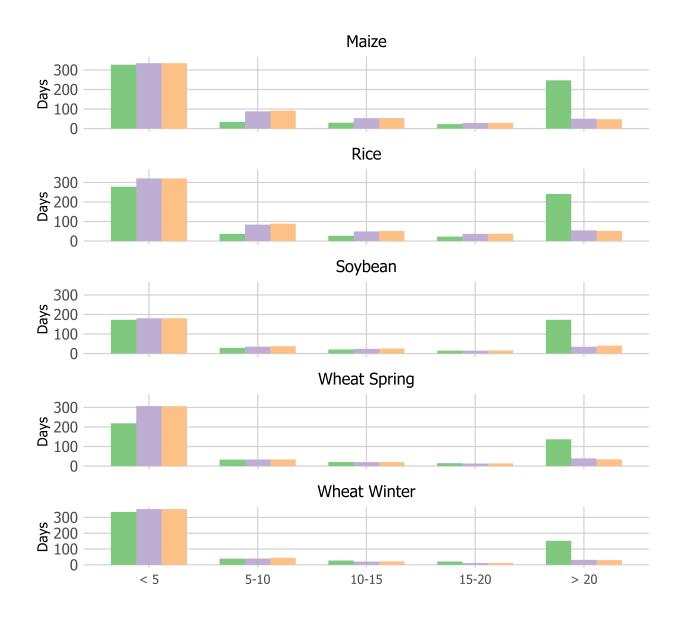


Figure A.14: Growing season exposure to precipitation bins (mm) in historical (average 1981-2011, GLDAS) and RCP 8.5 (average 2041-2060 and 2080-2099) for the 21 multi-model ensemble. The distributions represent the climatic conditions over the crop-specific grid-cells and growing seasons in our sample

Table A.1: Descriptive statistics

	Mai	ize	Spring	Wheat	Winter	Wheat	Ric	ce	Soyb	eans
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
		Rainf	ed grid	-cells						
Num. obs.	50,471		20,524		42,325		20,540)	31,547	
Harvested area (10 ³ ha)	41.7	75.7	83.4	85.2	51.2	71.2	20.4	61.8	58.7	103.0
Log yield (t/ha)	1.1	0.8	0.6	0.7	0.9	0.6	0.6	0.6	0.5	0.4
Avg. growing season T ($^{\circ}$ C)	20.9	4.7	16.8	3.3	10.6	5.7	24.3	3.9	21.7	3.9
Avg. growing season P (mm)	27.2	18.7	14.2	8.6	13.7	9.2	48.2	22.6	33.1	17.7
Growing season days $T > 27.5^{\circ}$ C	14.6	29.5	1.6	6.4	2.2	6.8	14.3	29.7	12.5	22.3
Growing season days $P < 5 \text{ mm}$	77.3	35.1	83.4	31.2	163.6	49.1	39.9	34.9	62.9	31.6
			ted grid	-cells						
Observations	15,714		1,952		10,704		12,170		4,180	
Harvested area (10 ³ ha)	31.9	70.4	16.5	24.5	79.2	128.2	47.6	94.8	31.8	62.7
Log yield (t/ha)	1.5	0.8	1	0.8	0.9	0.7	1.4	0.6	0.6	0.4
Avg. growing season T ($^{\circ}$ C)	21.7	5.5	16.4	4.1	13.9	7.2	21.7	5.2	22.4	2.8
Avg. growing season P (mm)	13.2	12.6	14.6	12.9	6.1	6.5	32.4	19.3	33.5	18.7
Growing season days $T \ge 27.5^{\circ} \text{C}$	24.2	36.4	1.8	7.5	9.2	14.1	20.5	36.1	22.7	23.7
Growing season days $P < 5 \text{ mm}$	99.6	34.3		21.2	164.4	41.6	65	34.2	61.7	27.2
			imatic Z	Zone 1						
Observations	29,721		3,863		11,682		12,611		19,801	
Harvested area (10 ³ ha)	61.2		199.5	88.3	21.4	31.7	14.7	34.1	58.8	105.1
Log yield (t/ha)	1.2	0.8	0.4	0.6	1.1	0.5	1.1	0.8	0.6	0.4
Avg. growing season T (°C)	21.2	4.4	17.2	2.2	12.2	4	21.4	5.7	20.2	3.7
Avg. growing season P (mm)	29.9	7.4	12.4	4.9	25.4	8.4	20.3	9	20.6	6.1
Growing season days $T \ge 27.5^{\circ}$ C	14.8	28.1	1.4	5.2	0.9	2.6	18.8	38	9.8	19.5
Growing season days $P < 5 \text{ mm}$	68.2	24.3		28.3	120.4	29.2	80	33.7	82.6	20.3
		Agrocl	imatic 2	Zone 2						
Observations	5,916		9,426		15,305		13,551		5,058	
Harvested area (10 ³ ha)	26.0	48.7	53.5	56.6	49.5	100.8	41.8	93.5	45.7	80.7
Log yield (t/ha)	0.6	0.5	0.6	0.7	0.7	0.7	0.8	0.7	0.5	0.4
Avg. growing season T (°C)	24.7	2.8	16.5	3.5	17.7	4.6	24.2	3.5	25	2
Avg. growing season P (mm)	66	19.9	13.8	8.4	5	3.9	46.4	8	67.1	10.7
Growing season days $T \ge 27.5^{\circ}$ C	22.6	35.3	1.4	6.1	10.8	14.3	16.9	30	16.6	24.8
Growing season days $P < 5 \text{ mm}$	26.8		84.2	31.1	154	39.2	37.1	22.3	18.7	16.4
			imatic 2	Zone 3						
Observations	30,548		9,187		26,042		6,548		10,868	
Harvested area (10 ³ ha)	20.9	46.2		55.8	77.1	88.5	37.6	91.8	54.3	96.7
Log yield (t/ha)	1.3	0.9	0.7	0.7	1	0.6	0.7	0.5	0.5	0.5
Avg. growing season T (°C)	20.3	5.4	16.8	3.7	7.1	4	25.2	2	23.1	3.1
Avg. growing season P (mm)	9.9	5.9	15.5	10.7	10.5	4.8	76.4	13.2		6.6
Growing season days $T > 27.5$ °C	17.8	33.6	1.9	7.3	0.6	2.4	11.7	23.6	19.4	25.6
Growing season days $P < 5$ mm	107.5	27.6	82.5	30.8	188.9	42.7	15	14.5	47.2	21.1

Table A.2-A.12 Covaria	te Labels
$\overline{\text{GDD} < 29^{\circ}\text{C}}$	GDD_0_29
$\mathrm{GDD} > 29^{\circ}\mathrm{C}$	GDD_gt_29
Total P	gs_total_P
Total P Squared	gs_total_P_sq
$\overline{T} < 15^{\circ}\mathrm{C}$	tas_115
$22.5^{\circ}\mathrm{C}{\leq \overline{T}} < 25^{\circ}\mathrm{C}$	tas_22p5_25
$25^{\circ}\mathrm{C}{\leq \overline{T}} < 27.5^{\circ}\mathrm{C}$	tas_25_27p5
$27.5^{\circ}\mathrm{C} {\leq \overline{T}} < 30^{\circ}\mathrm{C}$	tas_27p5_30
$\overline{T} \geq 30^{\circ}\mathrm{C}$	tas_ge30
P < 5mm	pr_15
LR: GDD $< 29^{\circ}$ C	GDD_0_29.L
LR: GDD $> 29^{\circ}$ C	GDD_gt_29.L
LR: Total P	gs_total_P.L
LR: Total P Squared	gs_total_P_sq.L
LR: $\overline{T} < 15^{\circ}\mathrm{C}$	tas_l15.L
LR: 22.5° C $\leq \overline{T} < 25^{\circ}$ C	Ctas_22p5_25.L
LR: $25^{\circ}\text{C} \le \overline{T} < 27.5^{\circ}\text{C}$	Ctas_25_27p5.L
LR: 27.5° C $\leq \overline{T} < 30^{\circ}$ C	Ctas_27p5_30.L
LR: $\overline{T} \ge 30^{\circ}$ C	$tas_ge30.L$
LR: $P < 5$ mm	pr_15.L
Error correction coef.	log_yield.L

Table A.2: Yield responses in US—Rainfed Maize

(1) GDD_0.29	(2) (3) (3) (4) (1) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	002 003 003 0003 0002 0002 0001 0001 000	(4) 0.002 (0.003)	(5) -0.0002* (0.00003) -0.002*	(6)	<u>(</u>)	(8)	(9) -0.0001* (0.00003)	(10) -0.00004 (0.00003)	(11)	(12)
29 -P -Sq 5-25 27p5			0.002	-0.0002* (0.00003) $-0.002*$	-0.0002*			-0.0001^* (0.00003)	-0.00004 (0.00003)		
tas_22p5_25 tas_25_27p5 tas_27p5_30			()	(0.0002) 0.0002* (0.00005) -0.00000* (0.000)	(0.0002) (0.0002) (0.0002) (0.00005) (0.000)	-0.001	-0.001 (0.001)	(0.0003) (0.0003) (0.0001) (0.0001) (0.000)	-0.002* (0.0003) 0.0002* (0.0001) -0.00000*	-0.003* -	-0.003* (0.001)
tas_ge30			1 1			$\begin{array}{c} -0.002* \\ -0.002* \\ (0.004) \\ -0.003* \\ (0.001) \\ -0.004* \\ (0.001) \\ -0.010* \end{array}$	(0.0004) -0.002* (0.0004) -0.003* (0.0005) -0.004*				$\begin{pmatrix} 0.001 \\ 0.001 \\ 0.001 \end{pmatrix}$ $\begin{pmatrix} 0.001 \\ 0.001 \\ 0.001 \end{pmatrix}$ $\begin{pmatrix} 0.001 \\ 0.001 \\ 0.009 \end{pmatrix}$
pr.15			(0.002) -0.001 (0.001)			(0.001) $-0.002*$ (0.001)	$(0.001) \\ -0.002* \\ (0.001)$			(0.001) -0.002^* - (0.001)	(0.001) $-0.002*$ (0.001)
GDD_0_29.L								0.0001 + (0.0001)	0.0002* (0.0001)		
GDD-gt-29.L								-0.001 (0.001)	-0.001 (0.001)		
gs_total_P_sq.L								(0.0003) (0.0001) -0.00000*	(0.0003) (0.0001) $-0.00000*$		
tas_115.L									(222)		-0.009*
tas_22p5_25.L										(0.002) -0.004^* -	(0.002) -0.004* (0.001)
tas-25-27p5.L											-0.003* -0.003* (0.002)
tas_27p5_30.L											-0.006* (0.002)
tas-ge30.L											-0.006* (0.002)
pr.15.L											-0.004^* (0.001)
log_yield.L								-0.569* (0.035)	-0.560* (0.042)	-0.537^{*} - (0.043)	-0.551* (0.045)
T LR/SR ratio P LR/SR ratio					0.4		0.1		0.35		0.59
	7 7	Z X	X	N	, Y	N S		N S	, X		, Y
State FE Y Grid-cell FE N	× ×	× ×	× ×	$\lambda >$	<i>∠</i> ≽	<i>ҳ</i> ≽	$\prec >$	<i>≿</i>	< ≻		<i>\</i> \ \
State trends N N 342	N 342	N 342	N 342	$\frac{Y}{10.490}$	$\frac{Y}{10.490}$	$\frac{Y}{10.490}$	$\frac{Y}{10.490}$	$N_{10,148}$	$\frac{N}{10,148}$	$\frac{N}{10,148}$	$\frac{N}{10.148}$
Adjusted R ² 0.609	0.611	0.596	0.597	0.827	0.837	0.827	0.834	0.385	0.425		0.416

Notes: Significance levels + $p<0.1,\ ^{\ast }$ p<0.05

Table A.3: Yield responses in US—Rainfed Soybeans

		Tong differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD.0.29 GDD.gt.29 gs.total.P.sq tas.115 tas.22p5.25 tas.27p5.30 tas.27p5.30 pr.15	0.0001 (0.0003) -0.002* (0.001) -0.00002 (0.0001) (0.000)	0.0001 (0.0003) -0.002* (0.001) -0.00002 (0.0001) (0.000)	0.0002 (0.003) (0.003) (0.003) (0.004) (0.004) (0.005) (0.005)	'	-0.0001* (0.0004) -0.004* (0.001) 0.0001* (0.0003) -0.00000* (0.000)	-0.0001+ (0.0003) -0.004* (0.001) (0.0003) -0.00000* (0.000)	-0.002* (0.0003) (0.0003) (0.001) (0.001) (0.001) (0.001) (0.001)	-0.001* (0.0003) -0.001+ (0.001) -0.002* (0.001) -0.0013* (0.001)	-0.0002* (0.0003) -0.004* (0.001) 0.0002* (0.0004) -0.00000*	-0.0001* (0.00002) -0.004* (0.001) 0.0002* (0.0000) (0.000)	0.003* (0.0005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)	-0.003* (0.0005) -0.002* (0.001) -0.003* (0.001) -0.004* (0.001)
GDD_gt_29.L GDD_gt_29.L gs_total_P.L gs_total_P.sq.L			(0.001)	(0.001)			(0.0004)	(0.0004)	-0.0003* (0.0001) -0.005* (0.001) 0.0003* (0.0001) -0.00000*	-0.0002* (0.0001) -0.005* (0.001) 0.0003* (0.0001) -0.00000*	(0.0005)	(0.0004)
tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_ge30.L pr_15.L											-0.007* (0.002) -0.005* (0.002) -0.009* (0.002) -0.013* (0.002) -0.003	-0.007* (0.002) -0.005* (0.002) -0.009* (0.002) -0.012* (0.002) (0.002)
log-yield.L TLR/SR ratio PLR/SR ratio Prices State FE Grid-cell FE State trends	N N N N N N N N N N N N N N N N N N N	Y X N N N N N N N N N N N N N N N N N N	N Y N N S 294	Y X N N N N	$N \\ N \\ Y \\ Y \\ Y \\ 9,102$	$\begin{array}{c} 0.62 \\ -0.17 \\ Y \\ 9,102 \end{array}$	N N Y Y 9,102	$\begin{array}{c} 0.53 \\ -2.2 \\ Y \\ N \\ Y \\ Y \\ Y \\ Y \\ Y \\ 9,102 \end{array}$	$\begin{array}{c} -0.456^* \\ (0.029) \\ N \\ N \\ Y \\ N \\ N \\ N \\ 8,808 \end{array}$	$\begin{array}{c} -0.429* \\ (0.039) \\ 1.37 \\ 2.15 \\ Y \\ Y \\ N \\ N \\ N \\ N \\ N \\ 8,808 \end{array}$	(0.001) -0.437* (0.035) N N Y N N N N N N N N	$\begin{array}{c} (0.001) \\ -0.428* \\ (0.043) \\ 1.64 \\ 6.01 \\ Y \\ Y \\ Y \\ N \\ 8.808 \end{array}$
Adjusted R ²	0.408	0.411	0.410	0.412	0.837	0.850	0.832	0.843	0.407	0.426	0.392	0.403

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table A.4: Yield responses in Rest of World—Rainfed Maize

		—Long differences (15v)	es (15v)			- Panel -				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0001 (0.0002)	0.0001 (0.0002)			-0.0004^{*} (0.0001)	-0.0004^{*} (0.0001)			-0.0004^{*} (0.0001)	-0.0004^{*} (0.0001)		
GDD-gl-29 gs-total_P	-0.001 (0.001) 0.00002	-0.001 (0.001) 0.00002			(0.0004) $0.00004*$	(0.0003) $0.00004*$			(0.0004) $(0.0004*$	(0.0003) $0.00004*$		
gs_total_P_sq	(0.00002)	(0.00002) -0.000			(0.00001) $-0.000*$	(0.00001) $-0.000*$			(0.00001)	(0.00001) -0.000*		
tas_115	(0.000)	(0.000)	-0.0002	-0.0002	(0.000)	(000.0)	0.001	0.001+	(0.00.0)	(0.000)	0.001	0.001
tas_22p5_25			(0.001) 0.0002	0.001 0.0002			(0.001) $-0.003*$	(0.001) -0.003*			(0.001) $-0.003*$	(0.001) $-0.003*$
tas_25_27p5			(0.001) -0.0002	(0.001) -0.0002			(0.001) -0.004^*	(0.001) -0.004*			(0.001) -0.004*	(0.001) -0.004^*
tas_27p5_30			(0.001) -0.00001	(0.001) -0.00003			(0.001) -0.005*	(0.001) -0.005*			(0.001) -0.005*	(0.001) $-0.005*$
tas_ge30			(0.001) -0.004	(0.001) -0.004			(0.001) -0.009*	(0.001) $-0.010*$			(0.001) $-0.010*$	(0.001) $-0.010*$
pr.15			-0.002*	(0.002* -0.002*			(0.002) $-0.003*$	-0.003*			(0.002) $-0.004*$	-0.004^{*}
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0004*	-0.0004^{*}	(0.001)	(0.001)
GDD-gt-29.L									(0.0001) -0.0003	(0.0001) -0.001		
gs_total_P.L									0.0001*	(0.0004) 0.0001*		
gs-total-P-sq.L									(0.0001) -0.000* (0.000)	(0.0001) -0.000* (0.000)		
tas_115.L									(000.0)	(000.0)	0.002+	0.002+
tas_22p5_25.L											(0.001) $-0.002*$	(0.001) $-0.003*$
tas_25_27p5.L											(0.001) -0.004*	(0.001) -0.004^*
tas_27p5_30.L											(0.001) -0.005*	(0.001) -0.005*
tas_ge30.L											(0.001) -0.008*	(0.001) -0.008*
pr_15.L											(0.002) -0.004	(0.002) -0.004^*
log-yield.L									-0.853*	-0.861*	(0.001) $-0.849*$	(0.001) -0.856^*
T LR/SR ratio						0.97		0.37	(0.033)	(0.034) 0.47	(0.034)	0.81
P LR/SR ratio Prices	Z	7	×	7	>	$\frac{0.56}{V}$	>	0.63 Y	Z	$\frac{1.27}{Y}$	Z	$\frac{1.23}{7}$
Country FE	; , ;	· 🗡 :	; 🗸 ;	, _X ;	; Z ;	· 2 ;	; 2 ;	· 2 :	;	· 2 :	; 2 ;	· Z ;
Grid-cell FE Country trends	< >	Z Z	≥ ≥	< >	× ×	× ×	× ×	~ <i>~</i>	× ×	>- >-	<i>ب</i> د بد	~ <i>~</i>
N Adinsted R ²	1,237	1,229	1,237	1,229	36,368	34,161	36,368	34,161	35,070 0.455	32,821 0.461	35,070	32,821 0.468

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table A.5: Yield responses in Rest of World—Rainfed Soybeans

		-Long differences (15v)	15v) —			- Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.00004 (0.0003)	0.00004 (0.0003)			-0.0001 (0.0002)	-0.0002^{+} (0.0001)			-0.0002 (0.0002)	-0.0003^{+} (0.0001)		
GDD-gt_29	(0.002)	(0.002)			-0.003^{*} (0.001)	(0.001)			(0.003)	-0.003^{*} (0.001)		
gs_total_P	0.0001 (0.00005)	0.0001 (0.00005)			0.0001* (0.00004)	0.0001* (0.00004)			0.0001^* (0.00004)	0.0001^* (0.00004)		
gs_total_P_sq	(0.000)	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)		
tas_115			-0.005	-0.005			0.001	0.002			0.002	0.003+
tas_22p5_25			-0.003				(0.001)	(0.001) $-0.002*$			(0.001)	-0.002*
tas_25_27p5			-0.002				$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$			$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$	(0.001) -0.003 ⁺
tas_27p5_30			(0.003) -0.004				(0.001) -0.003	(0.001) -0.004^*			(0.001) -0.003	(0.001) -0.004*
tas_ge30			(0.003) -0.005			·	(0.002) $-0.010*$	$\begin{pmatrix} 0.002 \\ -0.012 * \\ 0.005 \end{pmatrix}$			(0.002) $-0.009*$	(0.002) $-0.011*$
pr.15			0.004	(0.004) (0.004) -0.005 -0.005			(0.004) -0.003	(0.003) -0.003			(0.004) -0.003	(0.003) -0.003
GDD_0_29.L			(600.0)	(0.003)			(0.002)	(0.007)	-0.0002	-0.0002*	(0.002)	(0.007)
GDD-gt_29.L									(0.0001) $-0.001*$	(0.0001) $-0.001*$		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0004) -0.000*	(0.0004) -0.000* (0.000)		
tas_115.L									(0.000)	(0.000)	0.002	0.003*
tas_22p5_25.L											(0.002) -0.002	(0.002) $-0.002*$
tas_25_27p5.L											(0.001) -0.002	(0.001) $-0.002*$
tas_27p5_30.L											(0.001) $-0.003*$	(0.001) -0.003*
tas_ge30.L											(0.001) $-0.007*$	(0.001) -0.008*
pr-15.L											(0.002) -0.004	(0.003) -0.004 ⁺
log_yield.L									-0.868*	-0.875*	(0.002) $-0.881*$	(0.002) $-0.890*$
T LR/SR ratio						-0.56		0.39	(0.020)	(0.027) 0.52	(0.024)	(0.024) 0.71
P LK/SK ratio Prices	N	λ	Z	λ	×	V	Z	Y	N	1.23 Y	Z	Y
Country FE	;	· ~ ;	;	, _K	: Z ;	\ \ \ \ \ \	;	· 2 ?	: Z ;	2 2 3	;	2 2
Grid-cell FE Country trends	≥ ≥	× ×	< >	< <	~ ~	~ ~	<i>K K</i>	~	×	~ <i>~</i>	×	<i>K k</i>
N Adinsted $ m R^2$	733	733	733	733	21,896	18,872	21,896	18,872	21,163	18,071	21,163	18,071

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table A.6: Burke-Emerick Replication (PRISM weather, grid cells E. of 100th Meridian)—Rainfed Maize

(4) (5) (6) (7) (8) (9) (10) -0.0001* -0.0001* -0.0001* -0.0001 -0.0003 (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) -0.0003 (0.0002) (0.0002) (0.0000) -0.00000* -0.00000* -0.00000* -0.00000* -0.00000 0.00000 (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0001) (0.001)			Long differences (15v)	(15v) —			Panel				ECM		
10,00004 0,0001 0,00002 0,00002 0,00002 0,00002 0,0000002 0,0000002 0,0000002 0,000002 0,000002 0,000002 0,000002 0,000002 0			(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
COUCHAPT COUNTY	GDD_0_29 GDD_gt_29	0.00004 (0.0001) 0.0001	0.0001 (0.0001) 0.0002			-0.0001* (0.00003) $-0.003*$	-0.0001^* (0.00003) -0.003^*			$\begin{array}{c} -0.0001 \\ (0.00004) \\ -0.003* \end{array}$	$\begin{array}{c} 0.00000\\ (0.00004)\\ -0.003* \end{array}$		
1,000,000 1,00	gs_total_P	(0.001) $0.001*$	(0.001)			(0.0003) $0.001*$	(0.0002) $0.001*$			(0.0003) $0.001*$	(0.0003) $0.001*$		
25 (0.002) (0.003) (0.003) (0.003) (0.0003) (0.0002) (0.0001) (0.0	gs_total_P_sq	(0.0004) $-0.00000*$	(0.0004) -0.00000* (0.00000)			(0.0002) -0.00000* (0.00000)	(0.0002) -0.00000* (0.00000)			(0.0002) -0.000000* (0.00000)	(0.0003) $-0.00000*$		
25 (0.002) (0.	tas_115	(00000)	(00000:0)	0.003		(00000:0)	(00000000000000000000000000000000000000	-0.003*	-0.002*	(00000:0)	(00000)	-0.005*	-0.005*
p5 (0.001) (0.002) (0.003) (0.003) (0.004) (0.	tas_22p5_25			0.0005	_			(0.001) $-0.002*$	(0.0003) $-0.002*$			(0.001) $-0.003*$	(0.001) -0.002* (0.001)
30	tas_25_27p5			0.0001	-			(0.001) $-0.004*$	(0.0003) $-0.003*$			-0.005*	(0.001) $-0.003*$
9.1.	tas_27p5_30			(0.001) -0.002	(0.001) -0.002			(0.0004) $-0.005*$	(0.0004) -0.004^*			(0.001) -0.005*	(0.003) -0.004* (0.001)
9.1.	tas_ge30			$\begin{pmatrix} 0.002 \\ -0.001 \\ 0.003 \end{pmatrix}$	(0.002) -0.001			(0.001) $-0.011*$	(0.001) $-0.010*$			(0.001) $-0.011*$	(0.001) $-0.011*$
9.1. 9.2. 9.3. 9.4. 9.5.	pr-15			-0.001	$\begin{array}{c} (0.002) \\ -0.001 \\ (0.001) \end{array}$			0.00002	(0.001) -0.0004			-0.003*	(0.001) $-0.002*$
99.L 1.	GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	0.0003*	0.0003*	(0.001)	(0.001)
1. (1001)	GDD-gt-29.L									(0.0001) -0.003*	(0.00003) -0.004*		
25.L 26.00000 26.00000 26.00000 26.00000 26.00000 26.00000 26.L 26.L 27.L 28.L 29.L 20.L	gs_total_P.L									0.001*	0.001*		
25.L 25.L 95.L 96.001 97.L 98.L 1.34 1.34 1.35	gs_total_P_sq.L									(0.0000) -0.00000 (0.00000)	(0.0004) -0.00000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tas_115.L									(00000:0)	(00000)	-0.014^{*}	-0.014*
27p5.L 5.30.L 6.0002) 6.30.L 6.1002 6.30.L 6.1002 6.0003 6.0003 6.1003 6	tas_22p5_25.L											(0.001) -0.004*	(0.001) -0.003+
5.30.L	tas_25_27p5.L											(0.002) -0.007*	(0.001) -0.006*
0.L OLT OLT OLT OLT OLT OLT OLT O	tas_27p5_30.L											(0.00z) -0.007*	(0.001) -0.006*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tas-ge30.L											(0.003) -0.011*	(0.002) $-0.012*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pr-15.L											(0.003) -0.009*	(0.003) -0.007*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	log_yield.L									-0.514*	-0.453*	(0.001) -0.497^*	(0.001) -0.470*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T L.R/SR ratio						-0.07		0.1	(0.045)	(0.050)	(0.064)	(0.064) 1.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P LR/SR ratio						1.34		1.36		0.86		4.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Prices	≥ >	۷ ۲	2 >	۷ ۸	≥ ≥	× ×	2 2	×	≥ ≥	× ×	2 2	×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	State FE Grid-cell FE	N N	N N	N N	N	λ	λ	λ ,	λ	λ	$\lambda \sim$	X X	λ ,
303 303 303 303 9,288 9,288 9,288 8,983 8,983 8,983 8,983 8,983 0.649 0.605 0.612 0.832 0.851 0.831 0.846 0.420 0.420 0.426	State trends	N	N_{000}	Z c	N	Y .	Y	Y	Y .	N_{0}	N		N
	$\frac{N}{\text{Adjusted R}^2}$	303 0.639	303 0.649	303 0.605	303 0.612	9,288 0.832	9,288 0.851	9,288 0.831	9,288 0.846	8,985 0.420	8,985 0.482		8,985 0.467

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table A.7: Burke-Emerick Replication (PRISM weather, grid cells E. of 100th Meridian)—Rainfed Soybeans

		-Long differences (15v)	(15v) —			- Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0001 (0.0002)	0.0001 (0.0002)			-0.0001^* (0.00003)	-0.00004^{+} (0.00002)			-0.0001^* (0.00004)	-0.0001* (0.00004)		
(7-18-UO)	(0.001)	(0.001)			(0.0003)	(0.0003)			(0.0003)	(0.0003)		
gs_total_P	0.0004 (0.0005)	0.0004 (0.0005)			0.001^* (0.0001)	0.001^* (0.0001)			0.001* (0.0001)	0.001^* (0.0001)		
gs_total_P_sq	0.00000 (0.00000)	(0.00000)			*000000	-0.00000*			*000000-	*000000-		
tas_115			0.002	0.002		(2222)	-0.001^*	-0.001^*		(2000)	-0.003*	-0.003*
tas_22p5_25			0.003	0.004			(0.0003) $-0.001*$	(0.0004) -0.001^*			(0.001) $-0.002*$	(0.001) $-0.002*$
tas_25_27p5			0.003	0.001			(0.0005) -0.002*	(0.0005) $-0.002*$			(0.001) -0.004^*	(0.001) $-0.003*$
tas_27p5_30			0.0003	0.0002			(0.0003) $-0.001*$	(0.0003) -0.0003			(0.0004) $-0.002*$	(0.0004) $-0.002*$
tas_ge30			(0.002) -0.002	(0.002) -0.003			(0.0003) -0.009*	(0.0004) -0.009*			(0.001) $-0.010*$	(0.001) $-0.010*$
pr.15			(0.003) -0.002	(0.003) -0.002			0.0002	(0.001) -0.0002			(0.001) $-0.002*$	(0.001) $-0.002*$
GDD_0_29.L			(0.001)	(0.001)			(c000.0)	(6000.0)	-0.0001	-0.0002^{+}	(0.001)	(0.001)
GDD-gt-29.L									$(0.0001) \\ -0.002*$	(0.0001) $-0.003*$		
gs_total_P.L									$(0.001) \\ 0.002* \\ (0.003)$	0.002*		
gs_total_P_sq.L									(0.0000) -0.00000*	(0.00003) -0.000000*		
tas_115.L									(0.0000)	(0.00000)	-0.011*	*600.0
tas_22p5_25.L											(0.001) $-0.003+$	(0.001) $-0.003+$
tas_25_27p5.L											(0.002) $-0.013*$	$\begin{pmatrix} 0.002 \\ -0.012^* \end{pmatrix}$
tas_27p5_30.L											(0.002) -0.006*	(0.002) -0.006*
tas_ge30.L											(0.002) $-0.015*$	(0.002) -0.017*
pr_15.L											(0.003) -0.009*	(0.00) -0.009*
log-yield.L									-0.428*	-0.363*	(0.002) $-0.442*$	(0.002) -0.394^*
T LR/SR ratio						0.13		0.3	(0.033)	1.12	(0.040)	(0.044) 1.73
P LR/SR ratio	>	>	Z	7	>	0.66 V	>	7.55	>	$\frac{2.46}{V}$	>	5.67
State FE	; , ;	, _X ;	; _K ;	· :	;	. 2 :	; 2 ;	, _Z ;	; 2 ;	. Z ;	; 2 ;	, ₂ ;
Grid-cell FE State trends	< >	<	< >	< >	>- >-	\ \	~ <i>~</i>	>- >-	> ≥	> ×	≻ ≥	> , ≥
N Adinated D2	275	275	275	275	8,520	8,520	8,520	8,520	8,245	8,245	8,245	8,245
W naterial	610.0	/100	0.323	0.321	0.007	0.900	0.001	0.093	0.403	0.450	0.370	0.450

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table A.8: Yield responses in US-Rainfed Winter Wheat

		—Long differences (15y)	.s (15y) —			Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11) (12)	2)
GDD_0-29 GDD_gt_29	$\begin{array}{c} -0.0002 \\ (0.0001) \\ -0.006 \end{array}$	$\begin{array}{c} -0.0002 \\ (0.0001) \\ -0.006 \end{array}$			-0.0001* (0.00004) $-0.004*$	-0.0001^* (0.00004) -0.004^*			-0.0001^* (0.00004) -0.002	$\begin{array}{c} -0.00004 \\ (0.00004) \\ -0.004^* \end{array}$		
gs_total_P	(0.004) 0.0001	(0.004) 0.0001			(0.001) $0.0001*$	(0.001) $0.0001*$			(0.002) $0.0002*$	(0.001) $0.0002*$		
gs_total_P_sq	(0.0001) -0.000+ (0.000)	(0.0001) -0.000+ (0.000)			(0.00004) $-0.000*$	(0.00004) -0.000* (0.000)			(0.0004) -0.000* (0.000)	(0.00004) $-0.000*$		
tas_115			0.002	0.002		(2001)	0.001+	0.001*		(2)	0.001* 0	0.0003
tas_22p5_25			0.0001	0.0001			-0.002* (0.001)	-0.002*				-0.001*
tas_25_27p5			(0.003) -0.005	(0.005)			-0.003*	-0.003*				(0.001) $(0.002*)$
tas_27p5_30			(0.003)	(0.003) -0.003			(0.001) -0.009*	(0.001) -0.009*			'	(0.001) -0.008* (0.003)
tas_ge30			(0.004) -0.017	'			(0.002) $-0.011*$	(0.002) $-0.012*$ (0.003)			'	(0.002) $-0.011*$
pr-15			(0.003) -0.001	(0.003) (0.001)			(0.003) $-0.003*$	(0.003) (0.003)				(0.003) -0.003*
GDD_0_29.L			(100.0)	(100.0)			(100.0)	(100:0)	-0.0001	0.00000		(100:
GDD-gt-29.L									(0.0001) -0.0001	(0.0001) -0.002		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) -0.000* (0.000)	(0.0001) -0.000* (0.000)		
tas_115.L									(2000)	(222)		.001
tas_22p5_25.L											(0.001) (0 $-0.004*$ -0	(0.001) -0.003*
tas_25_27p5.L												(0.001) -0.003* (0.001)
tas_27p5_30.L											$\begin{pmatrix} 0.001 \\ -0.004 \\ 0.003 \end{pmatrix}$	(0.001) -0.007* (0.003)
tas_ge30.L											- 1	(0.002) -0.009* (0.004)
pr_15.L												(0.004) -0.003* (0.001)
log_yield.L									-0.848*	-0.897*	- 1	(0.001) -0.899* (0.056)
T LR/SR ratio						1.32		1.38	(0.000)	(0.060) 0.51	0 (890.0) 0	0.82
P LR/SR ratio Prices	N	<i>></i>	Z	λ	N	0.76 Y	×	V	×	V	N X	r
State FE	, X ;	· X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. X	N	N	2 2	N X	N.	N	N	
State trends	× ×	۲ ک	2 2	<	χ,	λ,		χ_{L}	N N	N		
$\frac{N}{\text{Adjusted R}^2}$	499	499	499	499	14,970	14,970 0.867	14,970	14,970	14,471 0,447	14,471 0.483	14,471 14,4 0,426 0.4	14,471 0.475
6												

Notes: Significance levels " p < 0.1 , * p < 0.05

Table A.9: Yield responses in US—Spring Wheat

GDD_0_29)										
bs 6	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
25 p5 30	-0.001 (0.0004) 0.010 (0.016) 0.001* (0.0004) -0.00000* (0.00000)	-0.0004 (0.0004) 0.007 (0.015) 0.001* (0.0003) -0.00000*		0.010 (0.006) 0.004 (0.013) -0.020 (0.020) (0.024)	-0.0003* (0.0001) 0.004+ (0.002) 0.001* (0.000) (0.000)	-0.0003* (0.0001) 0.003 (0.002) 0.001 * (0.0001) -0.00000*	0.004* (0.0005) (0.001) (0.001) (0.003) (0.002)	0.004* (0.0004) (0.001) (0.001) (0.003) (0.003) (0.003)	-0.0003* (0.0001) 0.012* (0.003) 0.001* (0.0001) -0.00000*	-0.0001 (0.0001) 0.010* (0.002) 0.001* (0.0001) -0.00000*	0.004* (0.001) (0.002) (0.002) (0.003) (0.003)	0.003* (0.001) (0.001) (0.002) (0.002) (0.002)
pr.15 GDD.0.29.L GDD.et.29.L gs.total.P.L			0.082 (0.063) -0.004 (0.006)	0.009 (0.007) (0.005)			-0.006 -0.008* (0.003)	-0.007 -0.008* (0.003)	-0.0005* (0.0001) 0.028* (0.006) 0.001* (0.0002) -0.00000*	-0.0003* (0.0001) 0.007 (0.006) 0.001* (0.0002) -0.00000*	0.017 (0.007) (0.003)	0.013 (0.003) (0.003)
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_ge30.L pr_15.L											0.009* (0.002) 0.003 0.003 (0.004) $0.004)$ $0.006)$ $0.066*$ $0.066*$	0.005* (0.001) -0.0003 (0.001) -0.005* -0.015+ (0.008) 0.018 (0.015)
log-yield.L T LR/SR ratio P LR/SR ratio Prices State FE Grid-cell FE State trends N	N N N N N N N N N N N N N N N N N N N	Y Y N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	X X X X X X X X X X X X X X X X X X X	N N N N N N N N N N N N N N N N N N N	2.08 2.17 2.17 N Y Y Y Y Y S,591	N N Y Y Y Y Y Y Y S 2591	-9.43 0.66 N Y Y Y Y Y S.591	$\begin{array}{c} -0.759* \\ (0.047) \\ N \\ N \\ Y \\ N \\ N \\ N \\ N \\ N \\ N \\ N$	-0.860* (0.034) 0.72 1.5 Y X X X X X 3,472	(0.004) (0.004) $-0.728*$ (0.048) N N Y Y N	(0.003) -0.833* (0.038) 1.44 1.67 Y Y Y Y N N N N N N N N N N 1.44 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table A.10: Yield responses in Rest of World—Rainfed Rice

		-Long differences (15v)				Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0002	-0.0002			-0.0002*	-0.0002*			-0.0002*	-0.0002 ⁺		
GDD-gt_29	-0.003	-0.003			-0.001*	-0.001*			-0.001*	-0.001*		
gs_total_P	$(0.004) \\ 0.00002$	$(0.004) \\ 0.00001$			(0.0002) 0.00000	$(0.0002) \\ 0.00001$			(0.0003) 0.00000	(0.0002) 0.00000		
os total P so	(0.00002)	(0.00003)			(0.00001)	(0.00000)			(0.00001)	(0.00000)		
he- r-mioi-eg	(0.000)	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)		
tas_115			0.001	0.001			-0.0002	-0.0002			-0.0002	-0.0001
tas_22p5_25			(0.002) -0.002				(0.001) -0.0004	-0.0001			-0.0004	-0.0001
tas_25_27p5			(0.002)	(0.003) -0.002			(0.0003) $-0.001*$	(0.0002) -0.001*			(0.0004) $-0.001*$	(0.0002) $-0.001*$
tas_27p5_30			(0.003) -0.001	(0.003) -0.001			(0.0003) $-0.002*$	(0.0003) $-0.001*$			(0.0004) $-0.002*$	(0.0003) $-0.002*$
tas_ge30			$\begin{pmatrix} 0.004 \\ -0.003 \\ 0.011 \end{pmatrix}$				(0.0005) -0.005*	$\begin{pmatrix} 0.0003 \\ -0.005* \\ 0.001 \end{pmatrix}$			(0.001) $-0.005*$	(0.001) $-0.005*$
pr.15			0.001				(0.002) -0.001	(0.001) -0.001			(0.002) -0.001	(0.001) -0.001
GDD_0_29.L			(0.002)	(0.002)			(0.0004)	(0.0004)	-0.0002*	-0.0002*	(0.0004)	(0.0004)
GDD-gt-29.L									(0.0001) -0.001	(0.0001) -0.001		
gs_total_P.L									0.00001	0.00001		
gs_total_P_sq.L									(0.0001) -0.000+ (0.000)	(0.000±)		
tas_115.L									(0,000)	(000.0)	0.0002	0.0002
tas_22p5_25.L											(0.001) -0.0005	(0.001) -0.0002
tas_25_27p5.L											(0.0004) $-0.001*$	(0.0004) -0.0004
tas_27p5_30.L											(0.0003) $-0.002*$	(0.0004) $-0.001*$
tas-ge30.L											(0.0004) $-0.006+$	(00000) -0.006+
pr-15.L											(0.003) $-0.001+$	(0.003) $-0.001+$
log-yield.L									-0.782*	*0.770*	(0.0004) -0.781^*	(0.004) -0.768*
T LR/SR ratio						2.72		0.79	(0.031)	(0.035) 0.95	(0.031)	(0.034) 1.09
P LR/SR ratio Prices	Z	7	Z	>	Z	$\frac{2.49}{V}$	>	-2.06	×	7 2.5	>	$1.24 \\ Y$
Country FE	; _~ ;		; ~ ;	· ~ :	: Z ;	2;	. 2 ;	2;	. Z ;	2;	. Z ;	\ Z ;
Grid-cell FE Country trends	<	≥ ≿	2	<	~ ~	~ <i>~</i>	×	~ <i>~</i>	~ ~	~ ~	×	~ ~
N Set 1	653	620	653	620	18,952	18,104	18,952	18,104	18,280	17,437	18,280	17,437
Adjusted R ²	0.820	0.809	0.816	0.805	0.947	0.949	0.947	0.949	0.380	0.3/3	0.382	0.377

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table A.11: Yield responses in Rest of World—Rainfed Winter Wheat

		—Long differences (15v)	s (15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	0.001* (0.0002) -0.0002	0.001* (0.0002) -0.0002 (0.002)			-0.0001* (0.0001) 0.00003	-0.0001* (0.0001) -0.00004			-0.0001* (0.0001) 0.0002	-0.0001* (0.0001) 0.0002		
gs_total_P	(0.0001)	0.0001 (0.0001)			0.0001* (0.00004)	0.0001^* (0.00004)			0.0001^* (0.00004)	0.0002* (0.00004)		
gs_total_P_sq	(0.000)	(0.000)			(0.000)	(0.000)				-0.000* (0.000)		
tas_115			-0.006*	-0.005*			0.004*	0.004*			0.004*	0.004*
tas_22p5_25			0.004*	0.005			(0.001) -0.002	(0.001) $-0.002+$			(0.001) $-0.002*$	(0.001) -0.002* (0.001)
tas_25_27p5			0.002	0.006+			(0.001) -0.003	(0.001) -0.003*			(0.001) $-0.003*$	(0.001) -0.003* (0.001)
tas_27p5_30			0.007*				(0.001) -0.001	(0.001) -0.001			$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$	(0.001) -0.002
tas_ge30			$\begin{pmatrix} 0.002 \\ -0.001 \end{pmatrix}$	(0.003) -0.0004			(0.001) -0.003	(0.001) -0.003			(0.001) -0.003	(0.001) -0.003 (0.004)
pr.15			(0.003) -0.001	(0.003) -0.001			(0.00 1) -0.002*	(0.004) $-0.002*$			(0.004) $-0.002*$	(0.00 1) -0.002* (0.001)
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.00000	-0.00000	(0.001)	(0.001)
GDD-gt-29.L									0.0002	0.0004		
gs_total_P.L									0.0001*	0.0001		
gs_total_P_sq.L									(0.0004) -0.000*	(0.0004) -0.000* (0.000)		
tas_115.L									(0.000)	(0.000)	0.003*	0.003*
tas_22p5_25.L											(0.001) -0.001	(0.001) -0.001 (0.003)
tas_25_27p5.L											$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.003 \end{pmatrix}$	(0.002) -0.002
tas_27p5_30.L											0.003	0.003+
tas_ge30.L											$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.005 \end{pmatrix}$	(0.001) -0.001
pr-15.L											(0.003) $-0.002*$	(0.003) -0.002*
log-yield.L									-0.851^{*}	-0.855*	(0.001) $-0.849*$	(0.001) $-0.853*$
T LR/SR ratio						4.82		0.12	(0.045)	(0.047) 2.57	(0.045)	(0.047) 0.26
P LK/SK ratio	Z	7	Z	λ	N	0.57 Y	N	0.51 Y	N	0.98 Y	×	V
Country FE	: ~ :	, , ;	; _~ ;		;	· 2 ;	; > ;	· 2 :	; 2 ;	· 2 :	; > ;	. 2 :
Grid-cell FE Country trends	≥ ≥	< >	< ≥	≥ ≥	× ×	× ×	× ×	× ×	×	>- >-	~ <i>~</i>	×
N Adingted D2	856	846	856	846	25,610	24,987	25,610	24,987	24,721	12	721	24,112 0.433
N posenfav	0.771		0.771	0.70	0.001	7000	0.000	0.001	C	ć.	00:10	0.4.0

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table A.12: Yield responses in Rest of World—Rainfed Spring Wheat

		—Long differences (15y)	(15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0002 (0.0004)	-0.0002 (0.0004)			-0.001^* (0.0001)	-0.001^* (0.0001)			-0.001^* (0.0002)	-0.001^* (0.0001)		
GDD_gt_29	(0.002)	-0.001 (0.002)			(0.002)	(0.001)			(0.002)	(0.002)		
gs_total_P	-0.00004 (0.0001)	-0.00004 (0.0001)			0.0002^* (0.0001)	0.0002^* (0.0001)			0.0002* (0.0001)	0.0002^* (0.0001)		
gs_total_P_sq	(0.000)	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)		
tas_115			0.005	0.005			0.005*	0.005*			0.005*	0.005*
tas_22p5_25			0.0001				(0.001) $-0.004*$	-0.003*			-0.004^{*}	-0.003*
tas_25_27p5			$\begin{pmatrix} 0.002 \\ -0.004 \\ 0.003 \end{pmatrix}$	- 1			(0.001) -0.006*	(0.001) -0.006*			(0.001) -0.007*	(0.001) -0.007* (0.003)
tas_27p5_30			0.002				(0.001) -0.008*	(0.001) -0.009*			(0.002) -0.009*	(0.002) $-0.008*$
tas_ge30			-0.006	1			(0.003) -0.005	(0.003) -0.005			(0.005) (0.005)	(0.003) -0.005
pr.15			-0.002				(0.000) -0.008*	- 1			(0.00g) -0.00g*	(0.009) -0.008* (0.003)
GDD_0_29.L			(0.004)				(0.007)		-0.001^{*}	-0.001^{*}	(0.007)	(0.002)
GDD-gt-29.L									0.003	(0.0002) 0.003		
gs_total_P.L									(0.003) $0.0001+$	0.002)		
gs_total_P_sq.L									(0.0001) -0.000+	(0.0001) -0.000+ (0.000)		
tas_115.L									(0.000)	(0,000)	*900.0	*900.0
tas_22p5_25.L											(0.003) $-0.003+$	(0.003) -0.002
tas_25_27p5.L											(0.001) -0.004*	(0.002) -0.004*
tas_27p5_30.L											(0.002) -0.007	(0.002) -0.006
tas_ge30.L											0.004	(0.004) 0.002
pr-15.L											(0.011) -0.007*	(0.009) $-0.007*$
log-yield.L									*096.0-	-0.969*	(0.002) $-0.956*$	(0.002) -0.965*
T LR/SR ratio						-1.67		1.22	(0.053)	(0.051) 3.96	(0.049)	(0.047) -0.39
P LR/SR ratio	>	>	>	>	>	-0.24	Z	0.24	>	0.81	>	0.85
Country FE	λ :	λ	ζ ,	λ	N N	N	< Z	N N	2 2	N N	z Z	N
Grid-cell FE	≥ ≥	2 2	2 2	≥ ≥	× ×	> >	× ×	د	× ×	λ <i>λ</i>	۷ ۲	4
N Admisted D2		555	555	555	14,853	44.5	14,853	14,544	14,297	13,957	14,297	13,957
N pasenfact		700.0	0000	0.00	2000			0.00	202.0	0.517	0.010	77.00

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table A.13: Yield response to extreme high temperature and low precipitation exposures, by region and irrigation regime (Fixed-Effects specification)

	USA	Americas	Europe	Asia	Africa	Zone 1	Zone 2	Zone 3
				ainfed: T	' ≥ 30°C			
Maize	-0.009	-0.009	b	-0.005	-0.013	-0.009	-0.006	-0.013
Rice	c	b	c	b	-0.009	-0.007	b	b
Soybeans	-0.012	-0.012	c	-0.011	b	-0.007	-0.013	-0.013
Spring Wheat ^a	b	b	-0.019	b	b	b	b	-0.009
Winter Wheat	-0.012	-0.013	-0.052	b	b	b	-0.003	-0.01
			R	ainfed: P	<5 mm			
Maize	-0.002	-0.003	-0.003	b	-0.009	-0.002	b	-0.006
Rice	c	-0.001	c	0.001	-0.003	-0.001	0.001	-0.001
Soybeans	-0.001	-0.002	b	b	-0.008	b	-0.002	-0.002
Spring Wheat	-0.008	-0.005	-0.003	-0.014	b	b	-0.011	-0.008
Winter Wheat	-0.003	-0.002	-0.002	-0.003	-0.014	0	-0.005	-0.004
				rigated: $\it T$	$^{"} \ge 30^{\circ} \text{C}$			
Maize	-0.014	-0.013	b	b	0.039	-0.011	b	-0.008
Rice	b	-0.003	b	-0.005	-0.011	-0.005	b	-0.003
Soybeans	-0.013	c	c	b	c	b	c	-0.01
Spring Wheat ^a	c	c	c	b	c	0.004	c	b
Winter Wheat	b	-0.008	c	b	-0.011	b	-0.003	b
			Irr	rigated: F	P < 5 mm	1		
Maize	-0.005	-0.005	-0.003	-0.003	-0.011	-0.002	0.003	-0.007
Rice	b	b	b	0.002	b	-0.001	b	0.002
Soybeans	-0.004	c	c	0.002	c	0.003	c	b
Spring Wheat	c	c	c	-0.004	c	0.006	c	-0.004
Winter Wheat	-0.001	-0.002	c	-0.003	-0.007	b	-0.003	-0.004

 $[^]a$ Coefficient on 27.5° C $\leq T \leq 30^{\circ}$ C bin; b Not significant at the 10% level; c Insufficient observations.

Table A.14: Change in extreme high temperature and low precipitation days, 2041-2060 mean relative to 1986-2005 mean, by region and irrigation regime (RCP 8.5)

	USA		Americas	as	Europe		Asia		Africa		Zone 1		Zone 2		Zone 3	~
							Rai	Rainfed:	$T \ge 30^{\circ} \text{C}$							
Maize	4.70 [0,	50]	2.10 [0,	91]	0.25 [0,	10]	2		6.90 [0,	57]	2.70 [0,		[0,	120]		44]
Rice	46.35 [27,	59]	9.10 [0,	[96]			0.30 [0,	53]	2.70 [0,	[2]	4.10 [0,	75]	8.00 [0,	91]	4.00 [0,	95]
	7.80 [0,	52]	6.05 [0,	78]		8.6]			1.45 [0,	35]	2.20 [0,		[0,	[88]		71]
heat	0.60 [0,	7.3]	0.00 [0,	0.9]	0.45 [0,	4.9]			0.00 [0,	[09	0.30 [0,		[0,	12]		7]
Winter Wheat	0.80 [0,	8.2]	0.25[0,	19]		1.4]	0.10 [0,		0.10 [0,	15]	0.45 [0,		[0,	26]		[9
							Rai	infed:	P < 5mm							
Maize	0.05 [-5.7, 6.2]	6.2]	0.40 [-5.7,	14]	1.65 [-3.7, 8.6]	8.6]	-0.20 [-7,		0.50 [-9.7,	7.9]	[-6.9,	9.4]	[-9.4,	16]	0.40 [-4.8	
Rice	1.23 [-3.5,	8.1]	1.30 [-8,	15]		-	-1.80 [-11,		0.05 [-10,	9.4]	[-9,	8.5]	[-9,	14]	1.35 [-9.5	
Soybeans	0.30 [-5.5,	5.6]	0.45 [-6.6	, 8.7]	0.60 [-5.8,	9.2]	[-8.1		1.05 [-4,	6.2]	[-6.3,	5.6]		9.8]	-0.05 [-7.2	
heat	-0.10 [-2.9,	3.8]	-0.50 [-4.8	, 3.6]	0.35 [-3.7,	5.3]	[-2.9]		-2.75 [-20,	7.8]	[-3.2,	5]	[-2.7,	4.4]	-0.05 [-5.2	
	-1.20 [-6.2,	6.7]	2, 6.7] 0.65 [-6,	7.8]	-0.75 [-6.9,	7.4]	0.20 [-4,	5.6]	1.00 [-0.65,	6.7]	0.00 [-5.5,	9.8]	[-2.2,	4.7]	-0.95 [-6.6,	, 6.7]
							Irrig	;ated:	$\leq L$							
Maize	4.95 [0,	55]	0.05 [0,	[69]			[0,	52]	0.85 [0,	42]	19.15 [0,		[8,		2.95 [0,	46]
Rice	37.20 [16,	[89]	0.50[0,	[68	0.10 [0,	11]	1.50 [0,	20]	18.55 [0,	[68	0.75 [0,	53]	9.75 [0,	87]	0.75 [0,	77]
Soybeans	11.25 [0.55,	, 51]	0.00 [0,	42]			[0,	[99	16.48 [1.4,	42]	8.80 [0,		[0.25,		26.35 [0,	55]
Spring Wheat	0.00 [0,	11]	0.00 [0,	30]			[0,	7]	14.95 [0,	47]			[0,		0.10 [0,	26]
Winter Wheat	0.10[0,	16]	0.00 [0,	15]			[0,	22]	1.15 [0,	34]	0.00 [0,	1.8]			0.00 [0,	5.9]
							Irrig	igated:	P < 5mm							
Maize	0.00 [-3.6, 5.3]	5.3]	0.20 [-3,	6.7]	[-2.3,	8.4]	[-5.2]	3.7]	1.10 [-3.6,	5.8]	[-6.2,		[-6.8,		0.10 [-3.1	
Rice	0.10 [-5.9, 7.7] -0.15 [-8.2,]	7.7]	-0.15 [-8.2	, 11]	1.25 [-4.4,	9.4]	-1.25 [-8.2,	, 4.5]	0.15 [-12,	9.6]	-0.85 [-7.8,	[9	0.10 [-8.2,	10]	-0.60 [-10,	14]
Soybeans	0.75 [-4,	6.4]	2.48 [-7,	14]	[-3.2,	14]	[-6.7]	6.5]	1.90 [-1.3,	6.1]	[-6.1,		[-6.3,		-0.10 [-6.6	
Spring Wheat	-0.30 [-2.7,	7]	-2.40 [-13,	3.5]	[-4.3,	7]	[-3.4	2.1]	0.55 [-5.9,	7.1]			[-2.2,		-0.95 [-5.6	
Winter Wheat	0.20 [-5.1,	4.5]	0.90 [-1.5	, 6.4]		-	[-3.6	3.5]	0.25 [-0.5,	3.4]	0.05 [-5.2, 6.6]		[-1.8,		-0.85 [-5.3	

Table entries show median of the distribution of the present-day to late-century change in the average number of days in each temperature and precipitation interval across cultivated grid cells in each region and 21 climate models. 5^{th} and 95^{th} percentiles of the distribution are shown in square braces. Bold entries indicate the crop × region × irrigation regime combinations for which extreme high temperature and low precipitation exposures have significant negative long-run impacts coincide with a likelihood of substantial increases in exposure to extreme days.

References - Appendix A

- Famien, A.M. S. Janicot, A.D. Ochou M. Vrac, D. Defrance, B. Sultan B and T. Nol (2018). A bias-corrected CMIP5 dataset for Africa using the CDF-t method a contribution to agricultural impact studies, Earth Syst. Dynam., 9, 313338.
- Fanelli L. (2006), Dynamic adjustment cost models with forward-looking behaviour, Econometrics Journal 9: 23-47.
- Hallam Z., Zanoli R. (1993). Error correction models and agricultural supply response. European Review of Agricultural Economics. 20 15166.
- Iizumi, T. and N. Ramankutty (2016). Changes in yield variability of major crops for 19812010 explained by climate change, Environmental Research Letters 11: 034003.
- Iizumi, T., M. Yokozawa, G. Sakurai, M. Travasso, V. Romanenkov, P. Oettli, T. Newby, Y. Ishigooka and J. Furuya (2014). Historical changes in global yields: major cereal and legume crops from 1982 to 2006, Global Ecology and Biogeography 23: 346-57.
- Iizumi T., M. Kotoku, W. Kim, P.C. West, J.S. Gerber and M.E. Brown (2018). Uncertainties of potentials and recent changes in global yields of major crops resulting from census- and satellite-based yield datasets at multiple resolutions. PLoS ONE 13(9): e0203809.
- Iizumi T. and T. Sakai (2020). The global dataset of historical yields for major crops 19812016. Nature SciData 7:97.
- Monfreda, C., N. Ramankutty and J.A. Foley (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles 22: GB1022.
- Moschini, G.C. (2001). Production risk and the estimation of ex-ante cost functions, Journal of Econometrics 100: 357-380.
- Nickell, S. (1985). Error Correction, Partial Adjustment and All That: An Expository Note, Oxford Bulletin of Economics and Statistics 47: 119-129.

- Pope, R., and R.E. Just (1996). Empirical implementation of ex ante cost functions, Journal of Econometrics 72: 231-249.
- Sacks, W. J., Deryng, D., Foley, J. A. and Ramankutty, N. (2010). Crop planting dates: an analysis of global patterns, Global Ecology and Biogeography, 19: 607-620.
- Schauberger, B., C. Gornott, and F. Wechsung (2017). Global evaluation of a semiempirical model for yield anomalies and application to withinseason yield forecasting. Glob. Change Biol. 23, 47504764.
- USDA (1994). Major world crop areas and climatic profiles. Available at https://naldc.nal.usda.gov/download/CAT88895275/PDF (accessed 24 Jan 2020).
- USDA (2013). Major world crop areas and climatic profiles. Available at https://ipad.fas.usda.gov/ogamaps/cropproductionmaps.aspx (accessed 03 Mar 2020).

Appendix B (*** NOT FOR PUBLICATION ***)

Table B.1: Yield responses in Americas—Rainfed Maize

(4) (5) (6) (7) (8) (9) (10) (10) (10) (10) (10) (10) (10) (10			Long differences (15v)	(15v) —			——Panel				ECM		
25 - 0.0002			(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)			(12)
29.L 20.L	GDD_0.29 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_25_27p5 tas_27p5_30 tas_27p5_30 tas_27p5_30	-0.0002 (0.0001) -0.003* (0.0003) (0.00003) -0.000+ (0.000)	-0.00001 (0.0002) -0.004* (0.00001) (0.00002) -0.000 (0.000)	0.002* (0.001) -0.001) (0.002) -0.0004) (0.002) (0.002) (0.002) (0.002)		-0.0002 (0.0002) -0.003* (0.001) 0.00003+ (0.0001) -0.000+ (0.000)	-0.0002 (0.0002) -0.003* (0.001) 0.00003+ (0.00001) -0.000 (0.000)	~ * - * - * - *		-0.0002 (0.002) -0.003* (0.001) 0.00003* (0.000)	-0.0001 (0.0002) -0.003* (0.001) (0.00003* (0.00001) -0.000+ (0.000)	0.00002 (0.001) -0.002 (0.001) -0.002 (0.002) -0.010* (0.001) (0.001)	-0.0001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
L. 5.25.L. 5.25.L. 5.25.L. 5.25.L. 5.25.L. 5.30.L. 5.3	GDD-0.29.L GDD-gt.29.L gs.total.P.L gs.total.P.sq.L									-0.0001 (0.0002) -0.003* (0.0004) 0.00004* (0.0001) -0.000*	-0.0001 (0.0002) -0.003* (0.0005) 0.00004* (0.00001) -0.000*		
ALL Consider the following problem of the fol	tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L											$\begin{array}{c} 0.00002\\ (0.001)\\ -0.001\\ (0.001)\\ -0.002\\ (0.002)\\ -0.002\\ \end{array}$	0.00002 (0.001) -0.001 (0.001) -0.001 (0.001) (0.001)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tas.g.su.L pr.15.L log.yield.L									-0.863* (0.066)	-0.860* (0.070)	$\begin{array}{c} -0.010 \\ (0.002) \\ -0.005 \\ (0.001) \\ -0.850 \\ (0.062) \end{array}$	$ \begin{array}{c} -0.009 \\ (0.002) \\ -0.005 * \\ (0.001) \\ -0.847 * \\ (0.067) \end{array} $
349 349 349 349 10,611 10,611 10,611 10,611 10,262 10,262 0.821 0.827 0.818 0.824 0.945 0.945 0.946 0.945 0.415 0.417	T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE	2 2 2 2	<i>≽ ≿ ≿</i> ≥	2 2 2 2	× × × ×	∠ < > >	$ \begin{array}{c} 1.47 \\ 0.42 \\ Y \\ N \\ Y \\ Y \\ Y \end{array} $	4 4 5 5	$1.1 \\ -0.02 \\ Y \\ X \\ Y \\ Y \\ Y$	\(\hat{\chi}\)	0.98 1.39 <i>Y</i> <i>Y</i>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.93 V V V
	N Adjusted R ²	349	349 0.827	349	349	10,611			10,611 0.946	10,262 0.415	10,262	10,262 0.428	10,262

Notes: Significance levels $\ ^{+}$ $p<0.1,\ ^{*}$ p<0.05

Table B.2: Yield responses in Americas—Rainfed Soybeans

		-I one differences (15v)	(15v) —			Panel -				FCM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0005 (0.0003)	-0.0005 (0.0003)			-0.0004 (0.0002)	0.0003 (0.0002)			-0.0004+ (0.0002)	-0.0004^{+} (0.0002)		
GDD-gt-29	0.001	0.001			-0.002* (0.0003)	-0.002* (0.0003)			-0.001	-0.001		
gs_total_P	-0.0001+	-0.0001			0.0001*	0.0001*			0.0001*	0.0001*		
gs_total_P_sq	0.000	0.000			(0.0003 -0.000* (0.000)	(0.000* -0.000* (0.000)			-0.000* -0.000*	-0.000* (0.000)		
tas_115			-0.013*	- 1	(222)	(222)	*600.0	0.009*	(2000)		0.010*	0.010*
tas_22p5_25			(0.002) -0.008*	(0.002) -0.008*			$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.001 \end{pmatrix}$	(0.002) -0.002			(0.002) -0.002	(0.002) -0.002
tas_25_27p5			(0.001) $-0.007*$	- 1			(0.001) -0.003	(0.001) -0.002			(0.001) -0.003	(0.001) -0.003
tas_27p5_30			(0.002) -0.008*				(0.002) -0.003	(0.002) -0.003			(0.002) $-0.003+$	(0.002) -0.003 ⁺
tas_g30			$\begin{pmatrix} 0.002 \\ -0.004 \end{pmatrix}$	(0.002) -0.004			(0.001) $-0.011*$	(0.001) $-0.010*$			(0.001) $-0.010*$	(100.0) -0.009*
pr_15			0.0005	0.0005			(0.003) -0.003	(0.004) -0.003			(0.003) -0.004	(0.003) -0.004
GDD_0_29.L			(0.001)	(0.001)			(0.002)	(0.002)	-0.0003*	-0.0003*	(0.007)	(0.002)
GDD-gt-29.L									$(0.0001) \\ -0.001^{+}$	(0.0001) -0.0004		
gs_total_P.L									0.0002*	$\begin{array}{c} (0.001) \\ 0.0002^* \\ \end{array}$		
gs_total_P_sq.L									(0.000°) -0.000°	(0.0003) -0.000* (0.000)		
tas_115.L									(200:0)	(0000)	0.008*	*600.00
tas_22p5_25.L											(0.004) -0.003+	(0.004) -0.003
tas_25_27p5.L											(0.002) -0.003	(0.002) -0.002
tas-27p5-30.L											(0.002) -0.004*	(0.002) -0.003*
tas-g30.L											(0.001) -0.009*	(0.001) -0.007
pr-15.L											(0.004) -0.005*	(0.004) -0.005*
log_yield.L									-0.849*	-0.863*	(0.002) -0.888*	(0.002) -0.904^*
T LR/SR ratio						-0.38		0.36	(0.070)	0.41	(0.014)	0.002
P LK/SK ratio Prices	N	λ	Z	λ	N	-0.46 Y	×	-0.14	N	$\frac{1.15}{Y}$	Z	$\frac{1.35}{Y}$
Country FE	Y	λ;	7 ;	, X	N	N ;	N	N	N	N	N :	N
Grid-cell FE Country trends	<	≥ ≿	< >	< <	×	× ×	~	~	× ×	~ ~	~	~ <i>~</i>
N S C C C C C C C C C C C C C C C C C C	305	305	305	305	9,153	9,153	9,153	9,153	8,848	8,848	8,848	8,848
Adjusted R ²	0.621	0.621	0.068	0.668	0.734	0.737	0.720	0.723	0.512	0.517	0.482	0.488

Notes: Significance levels + $p<0.1,\,^{\ast}$ p<0.05

Table B.3: Yield responses in Americas—Rainfed Rice

		-Long differences (15y)	(15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_029 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_25_27p5 tas_27p5_30 tas_27p5_30 tas_g30	-0.001* (0.0002) 0.006* (0.002) 0.00003 (0.0004) -0.000 (0.000)	-0.001* (0.0002) 0.006* (0.002) 0.00003 (0.00004) -0.000 (0.000)	0.001 (0.003) (0.003) (0.004) (0.004) (0.001) (0.001)	0.001 (0.003) (0.003) (0.004) (0.004) (0.004) (0.001) (0.001)	-0.0002* (0.0001) 0.001* (0.0003) 0.00000 (0.00000) -0.000 (0.000)	-0.0002* (0.0001) 0.001* (0.0003) 0.00000 (0.00000) -0.000 (0.000)	$\begin{array}{c} -0.0001\\ (0.0003)\\ -0.0001\\ (0.0002)\\ (0.0002)\\ (0.0002)\\ (0.0002)\\ (0.0002)\\ (0.0002)\\ (0.0001)\\ \end{array}$	-0.0002 (0.0004) -0.00005 (0.0001) -0.001* (0.0002) (0.001) -0.001*	-0.0003* (0.0001) 0.0005 (0.0004) 0.00000 (0.00000) -0.000 (0.000)	-0.0003* (0.0001) 0.0004 (0.0003) -0.00000 (0.0000) (0.000)	$\begin{array}{c} -0.00003\\ (0.0003)\\ -0.00018\\ (0.0001)*\\ (0.0002)\\ -0.001*\\ (0.0004)\\ 0.001\\ (0.0001)\\ \end{array}$	-0.00004 (0.0003) (0.0001) (0.0002) (0.0004) (0.0004) (0.001) (0.001)
GDD_029.L GDD_gt_29.L gs_total_P.L gs_total_P.sq.L									-0.0003* (0.00004) 0.003* (0.0003) 0.00001+ (0.00000) -0.000+ (0.0000)	-0.0003* (0.0005) 0.003* (0.0000) (0.0000) -0.000 (0.0000)		
tas.22p5.25.L tas.25.27p5.L tas.27p5.L											-0.0001 (0.0005) -0.00002 (0.0003) -0.0005 (0.0003) -0.002*	-0.0002 (0.001) 0.00004 (0.0003) -0.0003 (0.0003) (0.0004)
tas-g30.L pr.15.L log vield I.									*592 0—	*6220	$\begin{array}{c} (0.006) \\ (0.006) \\ (0.001) \\ -0.001* \\ (0.0003) \\ -0.761* \end{array}$	$\begin{pmatrix} 0.006 * \\ 0.006 * \\ -0.001 * \\ 0.0003 \end{pmatrix}$
T LR/SR ratio						6.19 12.94		$\frac{4.87}{-1.67}$	(0.036)	(0.040) 6.03 -6.98	(0.036)	(0.039) 5.66 1.37
Prices Country FE	2 >	\ \ \	× ×	× ×	2 2	<i>></i> ≺	Z Z	> ≺	2 2	<i>></i>	2 2	× ≺
Grid-cell FE	N	N	, N	N	λ ;	: A :	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	: X :	: X :	X = X	: <i>L</i> :	: <i>L</i> :
Country trends N	N 441	N 441	× 4 14 14	$^{\times}$ $_{1}^{2}$	Y 13,255	$\frac{Y}{13,244}$	$\frac{Y}{13,255}$	Y 13,244	Y 12,812	Y 12,798	Y 12,812	Y 12,798
Adjusted R ²	0.721	0.721	0.707	0.708	096.0	0.961	0.961	0.961	0.370	0.375	0.376	0.382

Notes: Significance levels $\,^{\scriptscriptstyle +}\,p < 0.1,\,^{\scriptscriptstyle *}\,p < 0.05$

Table B.4: Yield responses in Americas—Rainfed Winter Wheat

GDD_0_29 - (GDD_gt_29 - (GD)_gt_29 - (GD)_gt		,	•			121121						
1 1 1	(1)	(2)	(3)	(4)	(5)	(9)	(<u>C</u>)	(8)	(6)	(10)	(11)	(12)
_	-0.0003 (0.0004) -0.011* (0.004) -0.0001* (0.0000) (0.000)	-0.0003 (0.0003) -0.011* (0.004) -0.0001* (0.00002) (0.0000)	0.006 (0.006) 0.005 (0.003) -0.006 (0.008)	0.006 (0.005) 0.005 (0.003) -0.006 (0.008)	-0.0003+ (0.0002) -0.004* (0.001) 0.00005 (0.00004) -0.000*	-0.0003+ (0.0002) -0.004* (0.001) 0.0001 (0.00004) (0.000)	0.004* (0.001) (0.002) (0.002) (0.003)	1 1	-0.0003+ (0.001) -0.005* (0.001) 0.001 (0.0003) -0.000* (0.000)	-0.0003 + (0.0001) -0.005* (0.0001) 0.0001 + (0.00003) -0.000* (0.000)	0.003* (0.001) -0.003 (0.002) -0.004+ (0.002)	0.003* (0.001) -0.003 (0.001) -0.004+ (0.002)
tas_27p5_30 tas_g30 pr_15 GDD_0_29_L GDD_gt_29_L gs_total_P_L			$\begin{array}{c} 0.020 \\ 0.015 \\ -0.070 \\ 0.045 \\ \end{array}$ $\begin{array}{c} 0.045 \\ -0.003 \\ \end{array}$	$\begin{array}{c} 0.020 \\ 0.015 \\ -0.069 \\ 0.046 \\ \end{array}$			-0.002** (0.001) -0.016** (0.003) (0.001)	-0.002* (0.001) (0.003) (0.003) (0.001)	-0.00001 (0.0001) -0.005* (0.001) 0.00004 (0.00003) -0.000*	$\begin{array}{c} -0.00002\\ (0.0001)\\ -0.004*\\ (0.001)\\ 0.0001+\\ (0.00003)\\ -0.000*\\ (0.000)\end{array}$	* $^{-0.004}$ * $^{-0.001}$ $^{-0.011}$ $^{-0.017}$ $^{-0.001}$ $^{-0.001}$ $^{-0.001}$	-0.004* (0.0003) -0.016* (0.001) (0.001)
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L pr_15.L											0.002* (0.001) (0.003) (0.003) (0.003) (0.004* (0.007) (0.007) (0.007)	0.002* (0.001) -0.0001 (0.003) (0.003) 0.004* (0.001) (0.006) 0.0017*
log-yield.L T.LR/SR ratio P.LR/SR ratio Prices Country FE Grid-cell FE Country trends N Adjusted R ² 0	N N N N 248 0.573	Y Y N N 248 0.572	N N N 248 0.578	Y Y N N 248 0.576	N N Y Y 7,591 0.782	2.52 -2.92 Y N Y Y Y Y 7,591 0.782	N N Y Y 7,591 0.780	4.4 4.4 7 7 7,591 0.780	-0.851^* (0.035) N N Y	$\begin{array}{c} -0.853^* \\ (0.035) \\ 0.91 \\ 0.86 \\ Y \\ Y \\ Y \\ Y \\ Y \\ Y \\ 7,343 \\ 0.421 \end{array}$	-0.859* (0.035) N N Y Y 7,343 0.412	$\begin{array}{c} -0.859 * \\ (0.033) \\ 1.04 \\ 1.29 \\ Y \\ 7.343 \\ 0.418 \end{array}$

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.5: Yield responses in Americas—Rainfed Spring Wheat

GDD_0.29		,	•			121121						
1 1 1	(1)	(2)	(3)	(4)	(5)	(9)	(<u>C</u>)	(8)	(6)	(10)	(11)	(12)
_	-0.0003 (0.0004) -0.011* (0.004) -0.0001* (0.0000) (0.000)	-0.0003 (0.0003) -0.011* (0.004) -0.0001* (0.00002) (0.0000)	0.006 (0.006) 0.005 (0.003) -0.006 (0.008)	0.006 (0.005) 0.005 (0.003) -0.006 (0.008)	-0.0003+ (0.0002) -0.004* (0.001) 0.00005 (0.00004) -0.000*	-0.0003+ (0.0002) -0.004* (0.001) 0.0001 (0.00004) (0.000)	0.004* (0.001) (0.002) (0.002) (0.003)	1 1	-0.0003+ (0.001) -0.005* (0.001) 0.001 (0.0003) -0.000* (0.000)	-0.0003 + (0.0001) -0.005* (0.0001) 0.0001 + (0.00003) -0.000* (0.000)	0.003* (0.001) -0.003 (0.002) -0.004+ (0.002)	0.003* (0.001) -0.003 (0.001) -0.004+ (0.002)
tas_27p5_30 tas_g30 pr_15 GDD_0_29_L GDD_gt_29_L gs_total_P_L			$\begin{array}{c} 0.020 \\ 0.015 \\ -0.070 \\ 0.045 \\ \end{array}$ $\begin{array}{c} 0.045 \\ -0.003 \\ \end{array}$	$\begin{array}{c} 0.020 \\ 0.015 \\ -0.069 \\ 0.046 \\ \end{array}$			-0.002** (0.001) -0.016** (0.003) (0.001)	-0.002* (0.001) (0.003) (0.003) (0.001)	-0.00001 (0.0001) -0.005* (0.001) 0.00004 (0.00003) -0.000*	$\begin{array}{c} -0.00002\\ (0.0001)\\ -0.004*\\ (0.001)\\ 0.0001+\\ (0.00003)\\ -0.000*\\ (0.000)\end{array}$	* $^{-0.004}$ * $^{-0.001}$ $^{-0.011}$ $^{-0.017}$ $^{-0.001}$ $^{-0.001}$ $^{-0.001}$	-0.004* (0.0003) -0.016* (0.001) (0.001)
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L pr_15.L											0.002* (0.001) (0.003) (0.003) (0.003) (0.004* (0.007) (0.007) (0.007)	0.002* (0.001) -0.0001 (0.003) (0.003) 0.004* (0.001) (0.006) 0.0017*
log-yield.L T.LR/SR ratio P.LR/SR ratio Prices Country FE Grid-cell FE Country trends N Adjusted R ² 0	N N N N 248 0.573	Y Y N N 248 0.572	N N N 248 0.578	Y Y N N 248 0.576	N N Y Y 7,591 0.782	2.52 -2.92 Y N Y Y Y Y 7,591 0.782	N N Y Y 7,591 0.780	4.4 4.4 7 7 7,591 0.780	-0.851^* (0.035) N N Y	$\begin{array}{c} -0.853^* \\ (0.035) \\ 0.91 \\ 0.86 \\ Y \\ Y \\ Y \\ Y \\ Y \\ Y \\ 7,343 \\ 0.421 \end{array}$	-0.859* (0.035) N N Y Y 7,343 0.412	$\begin{array}{c} -0.859 * \\ (0.033) \\ 1.04 \\ 1.29 \\ Y \\ 7.343 \\ 0.418 \end{array}$

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table B.6: Yield responses in Europe—Rainfed Maize

(1) GDD_0.29 0.001 GDD_gt_29 0.0004 GDD_gt_29 0.0009 gs_total_P 0.0000 gs_total_P.sq 0.00000 tas_115 tas_22p5_25 tas_22p5_25		$(2) \qquad (3)$	(3)	(4)	9	Ş	į					(21)
bs 5	01				(2)	(0)	(7)	(8)	(6)	(10)	(11)	(71)
- 6 bs	(0.0004)	0.001 (0.0004)			-0.0003 ⁺ (0.0002)	-0.0003 (0.0002)			-0.0003 ⁺ (0.0002)	-0.0003 ⁺ (0.0002)		
bs 5	40* 19)	-0.041 (0.023)			-0.006 (0.007)	-0.005 (0.006)			-0.007 (0.008)	-0.006 (0.007)		
.P.sq (-0.0002* (0.0001)	-0.0001* (0.0001)			0.0002* (0.0001)	0.0002* (0.0001)			0.0002* (0.0001)	0.0002^* (0.0001)		
5.25	0.00000*	0.00000*			(0.000) (0.000)	+00000+			*000000 -0.000000*	(0.000)		
tas_22p5_25			-0.003	-0.002			0.0001	0.00004			0.0003	0.0003
2077 3C 3ct			0.004	0.006		•	(0.001) -0.005*	-0.005*			-0.005*	(0.001) $-0.005*$
tas_23_21p3			$\begin{pmatrix} 0.004 \\ 0.002 \\ 0.002 \end{pmatrix}$	(0.004) -0.001			(0.001) -0.009*	(0.001) -0.009*			(0.001) -0.009*	(0.001) -0.008*
tas_27p5_30			-0.024^{+}	(0.004)		•	(0.002) -0.023	(0.002) -0.021			$\begin{pmatrix} 0.002 \\ -0.023 \\ 0.013 \end{pmatrix}$	(0.002) -0.020
tas_g30			-0.028	(0.011) -0.028			0.001	0.001			-0.005	(0.016) -0.004
pr.15			0.002	0.002		•	(0.003) -0.003*	(0.003) -0.003*			-0.003^{*}	(0.003) $-0.003*$
GDD_0_29.L			(0.002)	(0.002)			(0.001)	(0.001)	-0.0004*	-0.0003*	(0.001)	(0.001)
GDD-gt-29.L									(0.0002) -0.001	0.001		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) -0.0000+	(0.000°) -0.000°		
tas_115.L									(0.000)	(0.000)	0.001+	0.001
tas_22p5_25.L											(0.001) -0.006*	(0.001) -0.006*
tas_25_27p5.L											(0.003) -0.009*	(0.003) -0.008*
tas_27p5_30.L											(0.003) -0.021	(0.003) -0.019
tas_g30.L											0.010*	0.012
pr.15.L											(0.003) -0.002*	(0.004) $-0.003*$
log_yield.L									-0.902*	-0.911^{*}	(0.001) $-0.921*$	$(0.0005) \\ -0.926* \\ (0.050)$
T LR/SR ratio						8.12	1	-20.38	(0.020)	(0.023) -0.16	(0.024)	(0.029) -2.75
P LK/SK ratio Prices N		Y	Z	λ	×	Y	X	-0.82 Y	Z	V	×	0.85 Y
y FE		× ×	χ	× ×	2 2	2 >	2 >	≥ >	2 >	2 2	2 2	2 >
qs		< ×	2 2	2 X	. X	- X	λ,	λ	- X	λ,	λ,	λ,
N 151 Adjusted \mathbb{R}^2 0.876	\ <i>\</i>	143 0.876	151	143	4,164 0.806	4,043	4,164	4,043	4,011	3,892	4,011	3,892

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.7: Yield responses in Europe—Rainfed Winter Wheat

		-Long differences (15v)	(15v) —			Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	$\begin{array}{c} 0.0005 \\ (0.0003) \\ -0.035 \end{array}$	0.0005 (0.0003) 0.029			-0.0001 (0.0001) $-0.089*$	$\begin{array}{c} -0.0001 \\ (0.0001) \\ -0.099 * \end{array}$			-0.0001 (0.0001) $-0.077*$	-0.0001 + (0.00005) -0.091 *		
gs-total_P	$(0.076) \\ 0.0002* \\ (0.0001)$	(0.039) 0.0002*			(0.034) $0.0002*$	(0.035) $0.0002*$			(0.033) 0.0002*	(0.034) $0.0002*$		
gs_total_P_sq	(0.000) -0.00000* (0.000)	(0.001) $-0.00000*$ (0.000)			(0.000) -0.000000* (0.000)	-0.00000* (0.000)			(0.000) (0.000)	(0.000)		
tas_115			-0.004 (0.003)	-0.005 (0.003)			0.004^* (0.002)	0.004^* (0.002)			0.004^* (0.002)	0.004^* (0.002)
tas_22p5_25			0.003	0.003			-0.005^*				-0.005^{*}	-0.004^{*}
tas_25_27p5			0.015*	(0.015 + 0.015 + 0.008)			0.001				0.001	0.001
tas_27p5_30			0.035	0.038			(0.003) $-0.052*$	- 1			(0.003) $-0.047*$	(0.003) $-0.050*$
tas_g30			(0.031) -0.205	(0.031) -0.186 (0.253)			(0.000) -0.037				(0.030)	(0.001) -0.043
pr.15			(0.210) -0.001	(0.23) -0.001			$\begin{pmatrix} 0.045 \\ -0.002 \\ 0.001 \end{pmatrix}$				(0.039) -0.002	(0.040) -0.002
GDD-0-29.L			(0.001)	(0.001)			(0.001)		0.00004	0.00005	(0.001)	(0.001)
GDD-gt_29.L									(0.0001) -0.035+	(0.001) -0.063*		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) $-0.00000*$ (0.000)	(0.0001) $-0.00000*$ (0.000)		
tas_115.L									(200		0.003	0.003
tas_22p5_25.L											(0.002) -0.004*	(0.002) -0.004^*
tas_25_27p5.L											(0.001) -0.004 ⁺	(0.001) -0.003 (0.003)
tas_27p5_30.L											(0.002) $-0.026*$	(0.003) -0.028*
tas_g30.L											0.069*	0.036
pr.15.L											(0.029) -0.002	(0.039) -0.002
log-yield.L									-0.932*	-0.935*	(0.002) $-0.931*$	(0.002) -0.934^*
T LR/SR ratio						-0.3		3.54	(0.034)	0.69	(0.000)	(0.031) -0.84 1.33
P LK/SK rano Prices	N	Y	N	χ	N	0.82 Y	Z	V	N	0.89 Y	Z	1.23 Y
Country FE	X	× ×	× ×	× ×	2 2	2 >	2 2	2 >	2 >	2 >	2 >	2 2
Country trends	<u> </u>	\ \ !	<	<	X	Λ,	χ_{F}	λ,	χ_{L}	χ,	λ,	χ_{L}
$\frac{N}{\text{Adjusted R}^2}$	253 0.725	249	253	249	7,187	7,131	7,187	7,131	6,932	6,874	6,932	6,874

Notes: Significance levels * $p<0.1,\ ^{\ast }$ p<0.05

Table B.8: Yield responses in Europe—Rainfed Spring Wheat

		-Long differences (15y)	(15y) —							ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11) (12)	
GDD_0_29	-0.0003 (0.0005)	-0.0003 (0.0005)			-0.001^* (0.0002)	-0.001^* (0.0002)			-0.0004^{+} (0.0002)	-0.0005* (0.0002)		
GDD-gt-29	-0.016* (0.006)	-0.016* (0.006)			-0.009* (0.002)	-0.008* (0.003)			-0.013^{*} (0.002)	-0.011* (0.002)		
gs_total_P	-0.0004 (0.0003)	-0.0004 (0.0003)			0.0002* (0.0001)	0.0003* (0.0001)			0.0004^* (0.0001)	0.0003* (0.0001)		
gs_total_P_sq	0.00000)	0.00000)			(0.00000)	_0.00000 ⁺			-0.00000*			
tas_115	(2222)		-0.008	-0.008			0.009*	0.009*	(2222)		*900.0 *2000	0.006*
tas_22p5_25			0.004)				-0.005*	- 1				04*
tas_25_27p5			(0.004) -0.001	'			(0.001) -0.004				'	03
tas_27p5_30			(0.001) $-0.046*$				(0.002) $-0.020*$					15*
tas_g30			(0.004) $0.053*$				(0.003) $-0.017*$					04) 21* 57
pr.15			(0.018) -0.002				(0.003) -0.002					02) 03)
GDD_0_29.L			(0.003)	(0.003)			(0.003)	(0.003)	-0.001*	-0.001*	(0.003)	(2)
GDD-gt-29.L									(0.0002) -0.030*	(0.0001) $-0.031*$		
gs-total_P.L									(0.004) $0.0002*$	(0.005) $0.0001+$		
gs_total_P_sq.L									(0.00003) -0.000000*	(c0000.0) *000.0—		
tas_115.L									(0.00.0)	(0.00.0)	*600.0 *800.0	0.009*
tas_22p5_25.L												05*
tas_25_27p5.L											- 1	(0.001) -0.009*
tas_27p5_30.L											(0.001) (0.001) -0.022^* -0.016	01) 16
tas_g30.L											- 1	11. 58* 53.
pr_15.L												02
log-yield.L									-0.946*	-0.957*		(97* (97*
T LR/SR ratio						2.05		-3.44	(0.055)	(0.018) 2.69	(0.051) (0.023) 2.72	223)
P LR/SR ratio	Z	>	×	>	N	-1.38 v	Z	0.49	×	0.28 V	N V	4
Country FE	X	X	λ	χ_{r}	z Z	Z Z	. X	N N	Z Z	N N		
Grid-cell FE	Z ×	≥ ≥	2 8	2 2	\ \ \	\ \	۲ ۲	۲ ۲	× ×	ξ <i>λ</i>	Y Y	
Country trends N	IN 137	137	137	137	r 2,934	2,934	2,934	r 2,934	2,797	2,797	1(7
Adjusted R ²	0.622	0.619	0.645	0.642	0.877	0.880	0.873	0.876	0.523	0.546		_

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.9: Yield responses in Asia—Rainfed Maize

		—Long differences (15v)	s (15v) —			Panel				ECM-		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0005* (0.0002)	0.0005* (0.0002)			-0.0001 (0.0002)	-0.0001 (0.0001)			-0.0001 (0.0001)	-0.0001 (0.0001)		
GDD-gt_29	-0.001 (0.001)	-0.001 (0.001)			-0.001 (0.001)	-0.001* (0.0004)			-0.001 (0.001)	-0.001* (0.0004)		
gs_total_P	0.00004	0.00004			0.00001	0.00001			0.00001	0.00001		
gs_total_P_sq	0.000	(0.000) -0.000 (0.000)			-0.000 -0.000	-0.000+ (0.000)			-0.000 -0.000	-0.000+ 0.000+		
tas_115	(0.000)	(0.000)	-0.00002	-0.0001	(0.00)	(0.000)	0.002	0.002	(000.0)	(000.0)	0.002	0.002
tas_22p5_25			0.003*	0.003			(0.002) -0.0002	(0.002) $-0.001*$			(0.002) -0.0003	$\begin{pmatrix} 0.002 \\ -0.001^* \end{pmatrix}$
tas_25_27p5			0.004*	$(0.0003) \\ 0.004^{*}$			$\begin{pmatrix} 0.0003 \\ -0.00002 \\ 0.001 \end{pmatrix}$	(0.0002) $-0.001*$			$\begin{pmatrix} 0.0002 \\ -0.0001 \\ 0.001 \end{pmatrix}$	(0.0002) -0.001*
tas_27p5_30			0.004*	0.001 0.004^*			$\begin{pmatrix} 0.001 \\ -0.0004 \\ 0.001 \end{pmatrix}$	(0.0003) -0.001+			(0.001) -0.0003	(0.0003) -0.001
tas_g30			0.002	0.001 0.001			$\begin{pmatrix} 0.001 \\ -0.003 \\ 0.002 \end{pmatrix}$	(0.001) -0.005* (0.003)			(0.001) -0.004	(0.001) $-0.005*$
pr.15			(0.002) -0.002	(0.002) -0.002			$\begin{pmatrix} 0.002 \\ -0.001 \end{pmatrix}$	(0.002) -0.0004			(0.002) -0.001	(0.002) -0.0003
GDD-0-29.L			(6,009)	(6,00.0)			(0.001)	(0.001)	-0.0003	-0.0003	(0.001)	(0.001)
GDD-gt_29.L									(0.0002) 0.001	(0.0002) 0.0001		
gs_total_P.L									0.00002+	0.00002*		
gs_total_P_sq.L									(0.0001) -0.000*	(0.0001) -0.000*		
tas_115.L									(0.000)	(0.000)	0.004	0.004
tas_22p5_25.L											(0.003) -0.001	(0.003) $-0.001*$
tas_25_27p5.L											$\begin{pmatrix} 0.001 \\ -0.0005 \\ 0.001 \end{pmatrix}$	(0.0003) $-0.001+$
tas_27p5_30.L											(0.001) -0.001	(0.0004) $-0.001*$
tas_g30.L											(0.001) -0.001	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.003 \end{pmatrix}$
pr_15.L											(0.003) -0.002*	(0.002) -0.001
log_yield.L									-0.771^*	*662.0	(0.001) $-0.772*$	(0.001) $-0.797*$
T LR/SR ratio						0.65		-0.3	(0.000)	(0.070) -0.07	(0.000)	0.38
P LR/SR ratio	×	^	Z	>	Z	3.07	>	5.08	×	1.77	Z	3.04
Country FE	;	, _/ ,	; _X ;	, _/ ,	. 2 :	, _Z ;	. 2 :	. 2	. × :	. 2 :	;	, 2 ;
Grid-cell FE Country trends	<	Z Z	<	2	~ <i>~</i>	~ <i>~</i>	~ <i>~</i>	× ×	× ×	× ×	~ <i>~</i>	~ <i>~</i>
N Adiusted \mathbb{R}^2	463	463	463	463	14,038	12,053	14,038	12,053 0.892	13,568	0.409	13,568	11,572

Notes: Significance levels + $p<0.1,\ ^{\ast }$ p<0.05

Table B.10: Yield responses in Asia—Rainfed Soybeans

(4) (5) (6) (7) (8) (9) (10) (1) (10,001) (10,0002) (10,0003) (10,0001) (10			Tong differences (15v)	(v\$1) ss			Panel				ECM		
29 (10,0001) (10,		(1)	(2)	(3)	(4)	(5)			(8)	(6)		(11)	(12)
2-5.2 (0.0024) (0.0024) (0.0024) (0.0002) (0.0004) (0.0002) (0.0004) (0.0002) (0.0004) (0.0002) (0.00	GDD-0.29 GDD-gt.29 gs.total.P gs.total.P-sq tas.115	0.0004* (0.0001) 0.002 (0.002) (0.0001+ (0.0002) 0.000*	0.0004* (0.0001) 0.002 (0.002) 0.0001+ (0.00002) 0.000*	0.002	0.002	0.0002* (0.0001) -0.003* (0.001) 0.0001 (0.0004) -0.000+ (0.000)	-0.00004 (0.0005) -0.004* (0.001) 0.0001+ (0.00004) (0.00004)	-0.001* (0.0001)	0.001*	0.0001+ (0.001) -0.003* (0.001) 0.0001 (0.0004) -0.000+ (0.000)	-0.00005 (0.001) -0.004* (0.001) 0.0001* (0.0003) -0.000*	-0.0003* (0.0004)	0.0004+
1.291	tas_22p5_25 tas_25_27p5 tas_27p5_30 tas_230 pr_15			(0.003) (0.003) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)	(0.003*) (0.003*) (0.001) (0.001) (0.001) (0.0001) (0.0001) (0.0001)			0.001 (0.0004) 0.002* (0.001) 0.0001 (0.002) (0.006) (0.006)	0.0002) 0.0003 0.0003 (0.0005) 0.0002 (0.002) 0.0001 (0.006)	5		(0.001+ (0.0004) (0.0005) (0.0003) (0.002) (0.006) (0.006) (0.006)	(0.001) (0.001) (0.001) (0.001) (0.003) (0.007) (0.007) (0.001)
L. D.	GDD_029.L GDD_gt_29.L gs_total_P.L gs_total_P.sq.L									0.0001+ (0.0003) -0.001* (0.0003) 0.0001* (0.0005) -0.000*	-0.0001* (0.00004) -0.002* (0.0004) (0.00004) -0.000*		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L											0.0001 (0.0002) 0.0002 (0.0001) (0.0001) -0.002* (0.0001) -0.005*	0.001* (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.003) (0.003)
N Y N Y N Y N	log-yield.L T LR/SR ratio P LR/SR ratio						-0.43 0.78	ı	-0.02 -22.51	-0.867* (0.012)	-0.901* (0.017) 0.53 1.46	$\begin{pmatrix} 0.002 \\ -0.868* \\ (0.020) \end{pmatrix}$	(0.002) -0.899* (0.012) 0.78 -3.86
341 341 341 10,180 7,188 10,180 7,188 9,839 6,779 9,839 0.162 0.162 0.087 0.087 0.847 0.866 0.843 0.862 0.465 0.465 0.465	Prices Country FE Grid-cell FE Country trends	2245	\$ \$ \$ \$ \$	2245	<i>S S & &</i>	$\mathcal{L} \mathcal{L} \mathcal{S} \mathcal{S}$	$\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$		$\mathcal{L}\mathcal{L}\mathcal{S}\mathcal{L}$	$\mathcal{L}\mathcal{L}\mathcal{S}\mathcal{S}$		$\mathcal{L}\mathcal{L}\mathcal{S}\mathcal{S}$	A A S A
	N Adjusted R ²	341	341	341	341	10,180	7,188	10,180	7,188	9,839	6,779	9,839	6,779

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.11: Yield responses in Asia—Rainfed Rice

		ong differences (15v)	(5v)							ECM		
	(1)	(2)	3	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
GDD-0.29 GDD-gt.29 gs-total.P	$\begin{array}{c} -0.0004 \\ (0.001) \\ -0.005* \\ (0.001) \\ -0.00005+ \\ (0.0002) \\ 0.000 \end{array}$	-0.0003 (0.001) -0.005* (0.001) -0.00005 (0.00003)			-0.0001 (0.0001) -0.002* (0.0004) -0.00002 (0.00001)	-0.0001 (0.0001) -0.002* (0.001) -0.00002 (0.00001)			-0.00001 (0.0001) -0.002* (0.001) -0.00002 (0.00001)	-0.00003 (0.0001) -0.002+ (0.001) -0.00001 (0.00001)		
tas.115 tas.22p5.25	(0.000)	(0.000)	0.003 (0.003) 0.001		(0.000)	(0.000)	0.0005 (0.001) 0.001		(0.000)	(0.000)	0.001 (0.001)	0.001 (0.001)
tas_25_27p5			0.004	(0.004) 0.003 (0.005)			0.001	(0.001) 0.0003 (0.001)			0.001)	0.001
tas_27p5_30			0.003	0.003			0.001	0.0005			0.001 + 0.00	0.001
tas_g30			(0.013) (0.013)	-0.013			-0.002	-0.003 (0.002)			(0.001)	(0.001) (0.001)
pr.15			(0.003) (0.003)	(0.001 - 0.001)			0.001	0.001			0.001	0.001
GDD_0_29.L			(2000)	(200.0)			(100.0)	(100.0)	-0.0001	-0.0001	(100.0)	(100.0)
GDD-gt-29.L									(0.0001) -0.001* (0.0003)	$\begin{pmatrix} 0.0001 \\ -0.001 * \\ 0.0003 \end{pmatrix}$		
gs_total_P.L									-0.00000 -0.00000	-0.00000		
gs_total_P_sq.L									(0.0001) -0.000 (0.000)	(0.0001) -0.000 (0.000)		
tas_115.L									(200-0)	(2222)	0.00002	-0.0002
tas_22p5_25.L											0.001	0.001
tas_25_27p5.L											0.001	0.0004
tas_27p5_30.L											0.0002	$\begin{array}{c} (0.001) \\ -0.00002 \\ (0.001) \end{array}$
tas_g30.L											(0.001) -0.002	$\begin{array}{c} (0.001) \\ -0.001 \\ (0.002) \end{array}$
pr-15.L											0.001	0.001
log_yield.L									-0.956*	*0960*	(0.001) $-0.959*$	(0.001) -0.966^*
T LR/SR ratio						3.22		4.9	(0.022)	(0.031) 0.67	(0.021)	(0.031) 0.8
P LK/SK ratio Prices	N	λ	Z	χ	N	7 2.88 Y	Z	$-0.56 \ Y$	N	0.06 Y	Z	0.78 Y
Country FE	> ×	> 2	× ×	× ×	≥ >	2 >	2 >	2 2	≥ >	2 2	2 2	≥ >
Country trends	N N	2 2	2 2	2 2	X	Λ .	ζ,	χ_{r}	λ,	Λ,	ζ,	χ_{r}
$\frac{N}{ ext{Adjusted R}^2}$	88 0.435	88 0.428	88	88	2,652 0.921	2,434	2,652	2,434	2,559 0.494	2,331	2,559	2,331
اد												

Notes: Significance levels " p < 0.1 , $^{\ast} \, p < 0.05$

Table B.12: Yield responses in Asia—Rainfed Winter Wheat

		Tong differences (15v)	3 (15v) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.001^* (0.0002)	0.001* (0.0002)			0.00001 (0.0001)	0.00002 (0.0001)			-0.00002 (0.0001)	-0.00002 (0.0001)		
92-18-000	(0.001)	(0.001)			(0.0004)	(0.0005)			(0.0003)	(0.0003)		
gs_total_r	(0.0001)	(0.0001)			(0.0001)	(0.0001)			(0.0001)	(0.0001)		
gs_total_P_sq	-0.000 (0.000)	-0.000 (0.000)			*00000 (0.000)	-0.000* (0.000)			-0.000*	-0.000* (0.000)		
tas_115			-0.010*	-0.009^{+}			0.003	0.003			0.004+	0.004*
tas_22p5_25			0.003	0.001			-0.0001	0.0001			(0.002) (0.004)	-0.0002
tas_25_27p5			0.007	(0.003) $(0.011+$			(0.001) -0.002	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$			(0.001) -0.002	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$
tas_27p5_30			0.009*				0.003*	0.003*			(0.001) $0.002*$	0.003*
tas_g30			(0.004) -0.001	- -			0.002	0.002			0.003	0.003
pr.15			(0.003) -0.001	(0.009) -0.001			(0.003) -0.003+	(0.004) $-0.003*$			(0.002) -0.003+	(0.002) $-0.003*$
GDD_0_29.L			(0.002)	(0.002)			(0.002)	(0.002)	-0.0001	-0.0001	(0.002)	(0.001)
GDD-gt-29.L									(0.0001) 0.0005	0.001		
gs_total_P.L									0.0001*	(0.001) $0.0002*$		
gs_total_P_sq.L									(0.0001) -0.000*	(0.0001) -0.000*		
tas_115.L									(000:0)	(0.000)	0.003	0.003
tas_22p5_25.L											(0.003) -0.002	(0.002) -0.003
tas_25_27p5.L											(0.002) -0.003	(0.002) -0.003
tas_27p5_30.L											0.005	0.005*
tas_g30.L											0.001	(0.002) 0.002
pr_15.L											(0.003) -0.003	(0.003) -0.003
log_yield.L									-0.737*	-0.736^{*}	(0.002) $-0.725*$	(0.002) -0.725*
T LR/SR ratio						0.49		-0.29	(0.036)	(0.104) 1.56	(0.092)	(0.101) 0.73
P LR/SR ratio	Z	۵	Z	>	>	1.01	Ν	0.41	Z	1.08	Z	0.97 V
Country FE	λ	λ	λ,	λ,	Z Z	N	z Z	N	2 2	N	2 2	N
Grid-cell FE	2 2	2 2	2 2	≥ ≥	۷ ۲	× ×	د	× ×	× ×	~ ~	> >	۷
N Adjusted D2	267	262	267	262	8,173	7,635	8,173	7,635	7,876	7,353	7,876	7,353
W parenfact	001:0	101.0	0.4.0	0010	0.000	0.040	0.000	6000	00000	0/5:0	0.0.0	0.0.0

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.13: Yield responses in Asia—Rainfed Spring Wheat

		Tong differences (15v)	(15v) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29 gs_total_P	0.001* (0.0002) 0.00004 (0.001) 0.0001	0.001* (0.0002) 0.0001 (0.001) 0.0001			$\begin{array}{c} 0.00001\\ (0.0001)\\ 0.0003\\ (0.0004)\\ 0.0001* \end{array}$	$\begin{array}{c} 0.00002 \\ (0.0001) \\ 0.0002 \\ (0.0005) \\ 0.0001* \end{array}$			$\begin{array}{c} -0.00002 \\ (0.0001) \\ 0.001+ \\ (0.0003) \\ 0.0001* \end{array}$	$\begin{array}{c} -0.00002\\ (0.0001)\\ 0.0005+\\ (0.0003)\\ 0.0001* \end{array}$		
gs_total_P_sq	(0.0002) -0.000 (0.000)	(0.0002) -0.000 (0.000)			(0.0001) $-0.000*$ (0.000)	(0.0001) $-0.000*$ (0.000)			(0.0001) $-0.000*$ (0.000)	(0.0001) $-0.000*$ (0.000)		
tas_115			-0.010* (0.004)	1			0.003 (0.002)	0.003 (0.002)	•		0.004^{+} (0.002)	
tas_22p5_25 tas_25_27p5			0.003 (0.003)	0.001 (0.003) $0.011+$			-0.0001 (0.001) -0.002	$\begin{pmatrix} 0.0001 \\ (0.001) \\ -0.002 \end{pmatrix}$			-0.0004 (0.001) -0.002	-0.0002 (0.001) -0.002
tas_27p5_30			(0.005)	_			(0.001) $0.003*$	(0.001)			(0.001) $0.002*$	(0.001)
tas_g30			(0.004) -0.001	(0.004) -0.001			(0.001) 0.002	(0.001) 0.002			(0.001)	(0.001) 0.003
pr.15			$\begin{pmatrix} 0.003 \\ -0.001 \end{pmatrix}$	- 1			(0.003+ -0.003+ (0.003)	(0.004) $-0.003*$			-0.003	(0.002) $-0.003*$
GDD_0_29.L			(200:0)				(200:0)	(200.0)	-0.0001	-0.0001	(200.0)	(0.001)
GDD_gt_29.L									0.0001	0.001		
gs_total_P.L									0.001	0.0002*		
gs-total_P-sq.L									(0.0001) -0.000* (0.000)	(0.0001) -0.000* (0.000)		
tas_115.L									(000:0)	(200:0)	0.003	0.003
tas_22p5_25.L											(0.003) -0.002	(0.002) -0.003
tas_25_27p5.L											(0.002) -0.003	(0.002) -0.003
tas_27p5_30.L											0.005*	0.005*
tas_g30.L											0.001	0.002
pr_15.L											(0.003) -0.003	(0.003) -0.003
log_yield.L									-0.737*	-0.736*	(0.002) $-0.725*$	(0.002) -0.725^*
T LR/SR ratio						0.49		-0.29	(0.030)	1.56	(0.032)	0.73
P LK/SK ratio Prices	Z	λ	N	λ	Z	1.01 Y	Z	V	Z	Y	Z	0.97 Y
Country FE	× ×	××	7 5	× ×	2 >	2 >	2 >	2 2	2 >	2 5	2 2	2 >
Country trends	< ×	۲ ۸	< ×	< ×	λ,	λ,	λ,	λ,	λ,	. X	λ,	λ,
N Adinsted R ²	267	262	267	262	8,173	7,635	8,173	7,635	7,876	7,353	7,876	7,353
N pagenfaxy	001	1000	6	000	0.00	0.0	0.00	66.0	00000	0.00	0.0.0	0.0.0

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table B.14: Yield responses in Africa—Rainfed Maize

		-Long differences (15y)	s (15y) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0003 (0.0004)	-0.0003 (0.0004)			-0.001^* (0.0001)	-0.001^* (0.0001)			-0.001* (0.0001)	-0.001^* (0.0001)		
GDD-gt-29	-0.00003	-0.00002			-0.001+	-0.001^{+}			_0.001+ (0.001)	-0.001+		
gs total P	(0.001) 0.00005	(0.001) 0.00005			$(0.0003) \\ 0.0003*$	(0.0003) $0.0003*$			(0.0003) $0.0003*$	$(0.0003) \\ 0.0003*$		
	(0.0001)	(0.0001)			(0.0001)	(0.0001)			(0.0001)	(0.0001)		
gs_total_P_sq	-0.000	0.000			*000000*	-0.00000*			-0.00000*	-0.00000*		
tas_115	(0.000)	(0.000)	-0.010	-0.010	(0.000)	(0.000)	0.003	0.003	(0.000)	(0.000)	0.002	0.002
tas_22p5_25			(0.011) -0.002	(0.011) -0.001			(0.002) -0.004*	(0.002) -0.004*			(0.002) -0.004^*	(0.002) -0.004^*
tas_25_27p5			(0.002) -0.005	(0.002) -0.005			(0.001) -0.007*	(0.001) $-0.007*$			(0.001) -0.008*	(0.001) -0.008* (0.868)
tas_27p5_30			(0.004)	(0.004) -0.004			(0.002) -0.010*	(0.002) $-0.010*$			(0.002) -0.011^*	(0.002) $-0.011*$
tas_g30			(0.005) -0.004	1			(0.003) $-0.013*$	(0.003) $-0.013*$			(0.003) -0.014^*	(0.003) -0.014^*
pr.15			(0.007)	(0.007) -0.008*			(0.003) -0.008*	(0.003) $-0.009*$			(0.003) $-0.009*$	(0.003) $-0.009*$
GDD_0_29.L			(600.0)	(enn.n)			(0.001)	(0.001)	-0.001*	-0.001*	(0.001)	(0.001)
GDD_gt_29.L									(0.0002) -0.001	(0.0003) -0.001		
gs_total_P.L									0.0003*	0.0003*		
gs_total_P_sq.L									(0.0001) -0.000000*	(0.0001) -0.000000*		
tas_115.L									(0.000)	(000:0)	0.001	0.001
tas_22p5_25.L											(0.001) -0.003	(0.001) $-0.003+$
tas_25_27p5.L											(0.002) -0.007*	(0.002) -0.007*
tas_27p5_30.L											(0.002) $-0.011*$	(0.002) $-0.012*$
tas_g30.L											(0.003) $-0.015*$	(0.003) $-0.015*$
pr_15.L											(0.005) $-0.009*$	(0.005) $-0.009*$
log_vield.L									*658.0-	-0.859*	(0.003) $-0.867*$	(0.003) -0.867*
						1			(0.050)	(0.051)	(0.056)	(0.056)
T LK/SR ratio P LR/SR ratio						0.05 0.18		0.3 0.94		1.27		1.11
Prices	N	χ	N	Y	N	λ	N	Y	N	λ	N	Y
Country FE Grid-cell FE	> ≺	> ×	> ≺	> ≺	× ×	≥ >	× ×	∠	≥ >	≥ >	≥ >	≥ >
Country trends	Z Z	N	,	,	λ,	ζ,	λ,	λ	λ	ζ,	λ,	λ
$N_{\Delta dinsted R^2}$	231	231	231	231	6,265	6,164	6,265	6,164	5,982	5,848	5,982	5,848
- A page fax							60.0	7000	1000			

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.15: Yield responses in Africa—Rainfed Soybeans

		-Long differences (15v)	(15v)			Panel				ECM		
	(1)	(2)	(3)	4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.001^* (0.00000)	-0.001^* (0.00000)			-0.0002	-0.0002			-0.00003+	-0.0003 ⁺ (0.00004)		
GDD-gt-29	-0.148*	-0.148*			-0.004	-0.009			-0.002	-0.008		
gs_total_P	$(0.00000) \ 0.001^*$	$(0.00000) \ 0.001^*$			$(0.009) \\ 0.0005*$	$(0.011) \\ 0.0005^{+}$			$(0.010) \\ 0.0005*$	$(0.012) \\ 0.0005^*$		
	(0.000)	(0.000)			(0.00004)	(0.00004)			(0.00003)	(0.00003)		
gs_total_P_sq	-0.00000* (0.000)	-0.00000* (0.000)			-0.00000* (0.000)	*000000 (0:000)			-0.00000* (0.000)	-0.00000* (0.000)		
tas_115			-0.018^{*}	-0.018^*			-0.001	-0.0004			0.002^{+}	0.003*
tas_22p5_25			(0.001) -0.002	(0.001) -0.002			(0.0004) -0.002	(0.0002) -0.001			(0.0003) -0.001	(0.00000) -0.001
tas_25_27p5			(0.001) -0.021	(0.001) -0.021			(0.0003) $-0.006+$	(0.0003) $-0.006+$			(0.0003) $-0.006+$	(0.0003) $-0.006+$
tas_27p5_30			(0.002) $-0.105*$	(0.002) $-0.105*$			(0.001) -0.009	(0.001) -0.009			(0.000) -0.009	(0.001) -0.009
tas_g30			(0.006) -0.154	(0.006) -0.154			0.002	(0.002) -0.005			0.002)	(0.002) -0.009
pr_15			(0.058) $-0.013*$	(0.058) $-0.013*$			(0.004) -0.008*	(0.006) -0.008 ⁺			(0.010) -0.008*	(0.013) $-0.007*$
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0001*	-0.0001	(0.000.0)	(0.0004)
GDD-gt-29.L									(0.00003) -0.009	(0.0001) -0.022		
gs_total_P.L									0.001*	0.001*		
gs_total_P_sq.L									(0.00002) -0.000000*	(0.00004) -0.000000*		
tas_115.L									(0.000)	(0.000)	0.005*	*900.0
tas_22p5_25.L											(0.0003) $-0.0003*$	$\begin{pmatrix} 0.0002 \\ 0.0001 \\ 0.0003 \end{pmatrix}$
tas_25_27p5.L											(0.0001) $-0.005*$	$(0.0002) -0.004^*$
tas_27p5_30.L											(0.00003) $-0.006*$	(0.001) -0.007*
tas-g30.L											(0.0004) -0.017	(0.001) -0.043
pr_l5.L											(0.044) $-0.010*$	(0.045) $-0.010*$
log-yield.L									-0.863*	-0.872*	(0.0003) -0.877*	(0.001) -0.888* (0.001)
T LR/SR ratio						15.83		33.55	(0.009)	(0.005) 2.98	(0.000)	(U.UU1) 5
P LR/SR ratio	Z	7	>	>	Z	$\frac{1.41}{V}$	>	$\frac{1.62}{V}$	Z	V	>	$\frac{1.35}{V}$
Country FE	; _X ;	, _{>} , ;	; 🗸 ;	, , ;	; > ;	· 2 ;	; > ;	, % ;	; > ;	. Z ;	: 2 :	. 2 ;
Grid-cell FE Country trends	<	< ≿	≥ ≥	< >	× ×	× ×	~ <i>~</i>	× ×	× ×	>- >-	× ×	×
N Adingted D2	73	73	73	73	2,182	2,182	2,182	2,182	2,109	2,109	2,109	2,109
	0.011	1100	200		0000	L1775	201-0	5	(17.00	20.5.0	555	1

Notes: Significance levels $\,^{\scriptscriptstyle +}\,p < 0.1,\,^{\scriptscriptstyle *}\,p < 0.05$

Table B.16: Yield responses in Africa—Rainfed Rice

		-Long differences (15y)	s (15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	0.0001 (0.001) -0.007	0.002 (0.002) -0.009			-0.0004* (0.0002) -0.001*	-0.0004* (0.0001) -0.001*			$ \begin{array}{c} -0.0004 \\ (0.0002) \\ -0.001* \\ 0.0003 \end{array} $	-0.0003+ (0.0001) -0.001*		
gs_total_P	(0.0001) (0.00004)	(0.000) (0.0001)			0.00004 (0.00005)	0.0001^* $0.00003)$			$0.00004 \\ (0.00005)$	0.0001^* (0.00003)		
gs_total_P_sq	-0.000 (0.000)	-0.000 (0.000)	,		(0.000)	-0.000* (0.000)			-0.000 (0.000)	-0.000* (0.000)	;	
tas_115 tas_22p5_25			-0.019 (0.028) 0.001	$0.171* \\ (0.052) \\ 0.001$			-0.019+ (0.010) $-0.002*$	-0.040* (0.001) $-0.003*$			-0.024^{*} (0.005) -0.003^{*}	-0.027* (0.006) -0.003*
tas_25_27p5			(0.0003) 0.002				(0.0002) -0.002*	(0.0004) $-0.003*$			(0.0004) -0.002*	(0.0003)
tas_27p5_30			(0.003) 0.004	0.007)			(0.001) $-0.003*$	(0.001) $-0.005*$			(0.001) $-0.003*$	(0.001) -0.003*
tas_g30			(0.005) -0.016	(0.009) -0.013			(0.001) $-0.007*$	(0.001) -0.009*			(0.001) -0.007*	(0.001) -0.008*
pr.15			(0.023) -0.003	0.021 0.002			(0.002) $-0.002+$	(0.001) -0.003*			(0.002) -0.002*	(0.001) -0.002* (0.001)
GDD_0_29.L			(0.004)	(0,000)			(0.001)	(0.001)	-0.0002	0.00003	(0.001)	(0.001)
GDD-gt_29.L									(0.0003) -0.001	(0.0003) $-0.001+$		
gs_total_P.L									0.0001	0.0001*		
gs_total_P_sq.L									(0.0001) -0.000 (0.000)	(0.000) -0.000+		
tas_115.L									(000.0)	(0.000)	-0.076+	-0.153*
tas_22p5_25.L											(0.045) $-0.003*$	(0.006) -0.004*
tas_25_27p5.L											(0.001) -0.001	(0.001) -0.002
tas_27p5_30.L											(0.001) -0.004^*	(0.002) -0.004*
tas_g30.L											(0.002) -0.009*	(0.002) $-0.011*$
pr.15.L											(0.003) -0.002	(0.003) -0.002
log_yield.L									-0.709*	*0.670*	(0.002) -0.705*	(0.002) -0.672*
T LR/SR ratio						10.07		1.42	(0.054)	(0.050) 1.3	(0.048)	(0.050) 1.3
P LR/SR ratio		<u> </u>		È	,	1.65		79.0-	ž	1.44		0.91
Prices Country FE	< >	<i>د</i>	≥ ≻	×	≥ ≥	> ≥	≥ ≥	≻ ≥	< >	≻ ≥	≥ ≥	≻ ≥
Grid-cell FE	N	N	N	N	$\overline{\lambda}$	λ	λ	λ	$\overline{\lambda}$	λ	λ	$\overline{\lambda}$
Country trends	N 118	× 8	× 1	N 9	Y 2006	Υ ς	7	Y	Υ 3775	, X	Y 2775	Y
Adjusted R ²	0.760	0.772	0.739	0.735	2,803 0.746	2,240 0.749	2,803 0.748	2,240 0.749	2,733 0.359	2,134 0.360	2,733 0.367	2,134

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table B.17: Yield responses in Africa—Rainfed Winter Wheat

		-Long differences (15v)	(15v) —			- Panel				ECM .		
	(1)	(2)	(3)	(4)	(5)	(9)	()	(8)	(6)	(10)	(11)	(12)
GDD_029 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_25_27p5 tas_27p5_30 tas_27p5_30 tas_27p5_30	-0.0002 (0.001) -0.002 (0.002) 0.001 (0.0004) -0.00000+ (0.00000)	-0.0002 (0.001) -0.002 (0.002) 0.001 (0.0004) -0.00000+ (0.00000)	0.005) 0.005) 0.009+ 0.004) 0.014 0.018) 0.001) 0.001)	0.005) 0.010+ 0.004) 0.015 0.015 0.015 0.017 0.017 0.019 0.010 0.016 0.001	-0.0003* (0.0001) -0.0002 (0.001) 0.0005* (0.0000) (0.00000)	-0.0003* (0.0001) -0.00005 (0.0002) -0.00000 (0.00000)	0.003* (0.001) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)	0.003* (0.001) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)	-0.0004* (0.001) 0.00003 (0.002) 0.010* (0.002) -0.00000 (0.0000)	-0.0004* (0.0001) 0.0002 (0.001) -0.00000 (0.00000)	0.004* (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)	0.003* (0.001) 0.001 (0.003) -0.003 (0.003) -0.002 (0.003) (0.001)
GDD_0_29.L									-0.0001 (0.0002)	-0.0001 (0.0002)		
GDD-gt-29.L gs_total_P.L									$-0.0002 \ (0.002) \ 0.0005*$	$0.0003 \ (0.001) \ 0.0005*$		
gs_total_P_sq.L									$\begin{array}{c} (0.0002) \\ -0.00000 \\ (0.00000) \end{array}$	(0.0002) -0.00000 (0.00000)		
tas_115.L											0.0005	0.0003
tas_22p5_25.L tas_25_27p5.L											1 1	(0.003) (0.003) (0.008*
tas_27p5_30.L												(0.003)
tas_g30.L											$\begin{pmatrix} 0.000 \\ -0.004 \end{pmatrix} - \begin{pmatrix} 0.011 \\ \end{pmatrix} $	(0.006) -0.002 (0.010)
pr_15.L												(0.013*)
log_yield.L									-0.963*	*690.00	- 1	(0.003) -0.971* (0.065)
T LR/SR ratio P LR/SR ratio						48.54		-1.92 -0.1		1.17		0.91
Prices	N	λ;	N :	`~	N ?	X	Z ?	. X	Z ?	. X	,	. X
Country FE Grid-cell FE	× ×	× ×	× ×	× ×	× ×	× >	<i>∠</i> ⊱	<i>\ \ \ \</i>	× ×	∠ ⊱		<i>∠</i> ⊱
Country trends N	N 88	N 87	× 88	N 87	<i>Y</i> 2,659	Y 2,630	$\frac{Y}{2,659}$	$\frac{Y}{2,630}$	Y 2,570	<i>Y</i> 2,542	Y 2,570 2	Y = 2,542
Adjusted R ²	0.860	0.850	0.854	0.845	0.842	0.843	0.830	0.832	0.582	0.585		0.553

Notes: Significance levels + $p<0.1,\ ^{\ast }p<0.05$

Table B.18: Yield responses in Africa—Rainfed Spring Wheat

		Tong differences (15v)	s (15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD-0.29 GDD-gt.29 gs.total.P gs.total.P.sq tas.115 tas.22p5.25 tas.27p5.30 tas.27p5.30 tas.230	-0.001* (0.00) 0.009* (0.000) 0.0002* (0.000) -0.000*	(0.00) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)	-0.016* (0.000) -0.002* (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)	-0.016* -0.000) (0.000) (0.000) (0.000) 0.032* (0.000) 0.0033* (0.000)	-0.001+ (0.0001) 0.010* (0.0001) 0.0001 (0.0003) -0.00000+ (0.000)	-0.001* (0.0005) 0.009* (0.0001) 0.0002 (0.0001) -0.00000 (0.000)	-0.007* (0.0001) (0.0003) -0.008+ (0.001) (0.005) (0.005) (0.0002)	-0.007* (0.001) (0.001) (0.001) (0.001) (0.005) (0.005) (0.001) (0.001)	-0.002* (0.0001) 0.010* (0.0002) 0.0001 (0.0001) -0.00000 (0.000)	0.001+ (0.0001) 0.010* (0.0002) -0.00001 (0.000)	0.002) 0.003+ 0.002) 0.003+ 0.001) 0.008+ 0.002)	-0.002 (0.001) (0.001) (0.001) (0.001) (0.005) (0.005) (0.0002) (0.0002)
GDD_0_29.L GDD_gt_29.L gs_total_PL gs_total_P_sq.L									-0.001* (0.00004) 0.021* (0.001) -0.00003* (0.0000) -0.00000*	0.0002* (0.00002) 0.018* (0.002) -0.0003* (0.000) (0.000)		
tas.22p5.25.L tas.25.27p5.L tas.27p5.30.L											$\begin{array}{c} -0.015 * \\ (0.0001) \\ -0.0002 * \\ (0.0001) \\ -0.012 * \\ (0.002) \\ 0.047 * \end{array}$	0.002* (0.0001) 0.002* (0.0001) 0.002* (0.0002) (0.002) 0.046*
pr.15.L log-yield.L									-0.910*	-0.930*	$\begin{array}{c} (0.002) \\ 0.011* \\ (0.0003) \\ -0.856* \\ (0.005) \end{array}$	(0.002) 0.017* (0.003) -0.871*
T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE Country trends	3 \times \times \times	3 \leq \leq 4	2	$3 \times \times \times \checkmark$	2 × × × × 5	1.02 1.14 <i>Y</i> <i>Y</i> <i>Y</i> 863	9, Y Y Z 5, Y Y Z	-2.84 -0.62 Y N Y Y Y 863	(5.000) <i>N Y Y 974</i>	(0.003) 1.76 29.16 <i>Y</i> <i>Y</i> 800	(5.005) N Y Y Y 924	6.5 6.5 7 8 7 7 7 800
Adjusted R ²	0.041	0.041	-0.009	-0.009	0.175	0.170	0.157	0.154	0.459	0.521	0.432	0.484

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.19: Yield responses in Zone 1—Rainfed Maize

		I ong differences (15v)	(15v)			- Panel -				FCM		
	(1)	(2)	(3)	(4)	(5)	(9)	()	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0001 (0.0002)	-0.0001 (0.0002)			-0.0002* (0.0001)	-0.0002* (0.0001)			-0.0002* (0.0001)	-0.0002* (0.0001)		
GDD-gt-29	-0.003* (0.001)	-0.003* (0.001)			-0.001^* (0.0003)	-0.001^* (0.0002)			-0.001* (0.0002)	-0.001^* (0.0002)		
gs_total_P	-0.00003 (0.00003)	-0.00003 (0.00003)			0.0001^* (0.00002)	0.0001^* (0.00002)			0.0001^* (0.00002)	0.0001^* (0.00002)		
gs_total_P_sq	0.000)	0.000)			-0.000*	(0.000)			(0.000)	(0.000)		
tas_115			-0.001	(0.001)			-0.001	-0.001			-0.001	-0.001
tas_22p5_25			-0.0002				-0.002^{*}	-0.003*			$\begin{array}{c} (0.001) \\ -0.002^* \\ (0.001) \end{array}$	-0.003*
tas_25_27p5			-0.001	(0.001) (0.001)			(0.001) $-0.003*$	-0.003*			(0.001) $-0.003*$	(0.001) $-0.003*$
tas_27p5_30			(0.002) -0.0002				(0.001) -0.004^*	(0.001) $-0.004*$			(0.001) -0.004* -	(0.001) -0.004^*
tas_g30			(0.002) $-0.008*$	I			(0.001) -0.009*	(0.001) -0.009*			(0.001) -0.009* -	(0.001) -0.009*
pr-15			(0.002) $-0.003*$				(0.001) $-0.002*$	(0.001) -0.002*				(0.001) $-0.002*$
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0001*	-0.0001 ⁺		(0.001)
GDD-gt-29.L									(0.0001) -0.001*	(0.0001) $-0.001*$		
gs_total_P.L									0.0001*	0.0001^{*} 0.0001^{*}		
gs_total_P_sq.L									(0.000* (0.000)	-0.000*		
tas_115.L									(2000)	(2000)	-0.001	-0.001
tas_22p5_25.L											(0.001) $-0.002*$	(0.001) $-0.003*$
tas_25_27p5.L											(0.001) -0.003^* -	(0.001) $-0.003*$
tas_27p5_30.L											(0.001) -0.004* -	(0.001) -0.004^*
tas_g30.L											(0.001) -0.008* -	(0.001) -0.008* (0.003)
pr.15.L												(0.002) -0.003*
log-yield.L									-0.887*	-0.902*	(0.001) -0.883* - (0.027)	(0.001) -0.895*
T LR/SR ratio						2.29		0.84	(0.041)	0.69	(0.097)	0.88
P LK/SK ratio Prices	Z	λ	Z	λ	×	–0.37 Y	X	$\frac{1.52}{Y}$	N	$\frac{1.26}{Y}$	Z	$\frac{1.28}{Y}$
Country FE	X	λ.	λ;	λ;	N	N	Z;	N :	N	N;	N :	N
Grid-cell FE Country trends	≥ ≥	<	2	2	~ <i>~</i>	× ×	~ <i>~</i>	~ <i>~</i>	× ×	~ <i>~</i>	~ ~	~ <i>~</i>
N	877	874	877	874	26,236	24,518		24,518	25,319	_	_	23,579
Adjusted R ²	0.785	0.784	0.78/	0.786	0.946	0.950	0.947	0.951	0.4/5	0.486	0.483	0.494

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table B.20: Yield responses in Zone 1—Rainfed Soybeans

(4) (5) (6) (7) (8) (9) (11) -0.00000 -0.00003			—I one differences (15v)	— (VZI) Se							ECM		
0.0001 0.0002 0.0002 0.0003 0.0001 0		(1)	(2)	(3)	(4)	(5)			(8)	(6)	- 1		(12)
1.	GDD_0.29 GDD_gt_29 gs_total_P_sq tas_115 tas_22p5_25 tas_27p5_30 tas_27p5_30 tas_g30 pr_15	-0.001* (0.0001) 0.002* (0.001) -0.0001 (0.0001) 0.000 (0.000)	-0.001* (0.0001) 0.002* (0.001) -0.0001 (0.000) (0.000)	0.003* (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)		-0.00000 (0.001) -0.002+ (0.001) 0.0001 (0.0004) (0.000)	-0.00003 (0.001) -0.003* (0.001) 0.0001+ (0.00003) -0.000*	-0.005* (0.001) -0.0004) (0.0001) -0.0001 (0.001) (0.004) (0.004)	-0.007* (0.001) (0.002) (0.0002) (0.0002) (0.0003) (0.001) (0.005)	-0.00000 (0.001) -0.002+ (0.001) 0.0001* (0.0003) -0.000*	-0.0001 (0.0001) -0.003+ (0.001) 0.0001* (0.0000) (0.000)	(0.001) (0.001) (0.0001) (0.0001) (0.001) (0.001) (0.001) (0.003) (0.001)	-0.005* (0.001) -0.0002) (0.0002) -0.0001 (0.001) (0.005) (0.005)
5.L 5.L -0.007* -0.007* -0.001 5.L 5.L 5.L 5.L 5.L 5.L 5.L 5.	GDD_029.L GDD_gt_29.L gs_total_PL gs_total_P_sq.L									$\begin{array}{c} -0.0002 \\ (0.0002) \\ 0.0003 \\ (0.0004) \\ 0.0001* \\ (0.00004) \\ -0.000* \\ (0.000) \end{array}$	-0.0002 (0.0002) -0.001+ (0.0005) 0.0001* (0.00003) -0.000*		
atio N Y N	tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L											$\begin{array}{c} -0.007 * \\ (0.002) \\ -0.001 \\ (0.0005) \\ -0.001 \\ (0.0004) \\ -0.002 * \end{array}$	$\begin{array}{c} -0.007 * \\ (0.002) \\ -0.001 * \\ (0.0001) \\ -0.0005 * \\ (0.0002) \\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tas_g30.L pr_15.L log_vield.L									-0.782*	*692'0-	$\begin{pmatrix} 0.0002 \\ -0.003* \\ (0.0005) \\ 0.0003 \\ (0.002) \\ -0.810* \end{pmatrix}$	$\begin{pmatrix} 0.0004 \\ -0.005* \\ (0.001) \\ 0.0002 \\ (0.002) \\ -0.802* \end{pmatrix}$
Y Y Y N	T LR/SR ratio P LR/SR ratio Prices	Z	*	×	×	×	-0.71 - 1.72	N	0.81 7.48 Y	(0.059) N	(0.047) 0.32 1.45	(0.054) N	(0.050) 0.69 0.32 Y
295 295 295 295 8,742 7,826 8,742 7,826 8,447 7,483 8,447 0.385 0.385 0.434 0.434 0.916 0.912 0.915 0.915 0.413 0.406 0.391	Country FE Grid-cell FE Country trends	×	S S	<i>≯</i> ≿ ≿	224	<i>≿</i>	×	<i>≿ </i>	<i>∠</i> ∠ <i>≲</i>	$\prec \prec \preceq$	2 4 5	<i>∠</i> ∠ <i>≲</i>	<i>∠</i> ∠ ≤
	N Adjusted R ²	295 0.385	295 0.385	295 0.434	295 0.434	8,742 0.916	7,826 0.912	8,742 0.915	7,826 0.910	8,447 0.413	7,483 0.406	8,447 0.391	7,483

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.21: Yield responses in Zone 1—Rainfed Rice

		—Long differences (15v)	s (15v)			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.001 (0.001)	0.002^{+} (0.001)			-0.0003 (0.0002)	-0.0002 (0.0002)			-0.0003 (0.0002)	-0.0002 (0.0002)		
GDD-gt-29	-0.010^{+} (0.005)	-0.012* (0.005)			-0.001^* (0.0002)	-0.001* (0.0001)			-0.001^* (0.0002)	-0.001^* (0.0001)		
gs_total_P	0.0001	0.0002			0.00002	0.0001+			0.00002	0.0001^* (0.00002)		
gs_total_P_sq	0.000	0.00000			0.000	0.000			0.000	00000		
tas_115	(2)		-0.003	-0.005			-0.001	-0.001			-0.001	-0.001
tas_22p5_25			0.001	0.004			(0.001) -0.001	0.0002			(0.001) -0.001	0.0001
tas_25_27p5			0.002)	0.011			(0.001) $-0.002*$	(0.001) -0.001			(0.001) $-0.003*$	$\begin{pmatrix} 0.002 \\ -0.001 \end{pmatrix}$
tas_27p5_30			(0.003) $0.013*$	0.018*			(0.001) -0.004^*	(0.001) -0.003*			(0.001) -0.004^*	(0.001) -0.003 ⁺
tas_g30			$\begin{pmatrix} 0.004 \\ -0.020 \\ 0.020 \end{pmatrix}$	(0.008) -0.015			(0.001) -0.008*	(0.001) $-0.007*$			(0.001) -0.008*	(0.002) $-0.008*$
pr.15			0.002	0.005			(0.002) -0.001	(0.002) -0.001			(0.002) -0.001	$\begin{pmatrix} 0.002 \\ -0.001 \end{pmatrix}$
GDD_0_29.L			(0.004)	(0.003)			(0.001)	(0.001)	-0.0004^{*}	-0.0003*	(0.001)	(0.001)
GDD-gt-29.L									(0.0001) $-0.001*$	(0.0001) $-0.001*$		
gs_total_P.L									(0.001) 0.00002 (0.0000E)	0.00003		
gs-total_P-sq.L									0.000	0.000		
tas_115.L									(000:0)	(200:0)	0.0001	0.00002
tas_22p5_25.L											(0.001) -0.001	$\begin{pmatrix} 0.001 \\ -0.0004 \\ 0.003 \end{pmatrix}$
tas_25_27p5.L											(0.001) $-0.002*$	$\begin{pmatrix} 0.002 \\ -0.002 \end{pmatrix}$
tas_27p5_30.L											(0.001) -0.004^*	$\begin{pmatrix} 0.002 \\ -0.004 \\ 0.003 \end{pmatrix}$
tas_g30.L											(0.001) $-0.010*$	(0.002) -0.010*
pr.15.L											(0.003) -0.001	(0.003) -0.001
log-yield.L									-0.822*	-0.813^{*}	(0.001) $-0.823*$	(0.001) -0.816*
T LR/SR ratio						11.78		2.05	(0.007)	$\frac{(0.084)}{1.26}$	(0.009)	(0.080) 1.29
P LK/SR ratio Prices	N	λ	Z	λ	Z	$\frac{3.34}{Y}$	Z	-4.24	N	V	Z	V
Country FE	× ×	7 ×	> ≥	× ×	2 2	≥ >	2 >	× >	2 2	2 2	2 2	2.2
Country trends		2 %	Z Z	2 2	λ,	λ,	λ	λ,	λ,	X	λ,	λ,
N Adjusted \mathbb{R}^2	137 0.869	111 0.872	$\frac{137}{0.871}$	111 0.870	3,742 0.934	3,134 0.940	3,742 0.935	3,134 0.941	3,605 0.427	3,009 0.440	3,605 0.433	3,009 0.446
•												

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.22: Yield responses in Zone 1—Rainfed Winter Wheat

		—Long differences (15v)	(15v)							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	<u>(</u>	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt_29 gs_total_P gs_total_P-sq	-0.0001+ (0.00005) -0.009 (0.009) 0.00001 (0.00003)	-0.0001 (0.0001) -0.009 (0.009) (0.0001) (0.00003) -0.000			-0.0001 (0.001) -0.002 (0.006) -0.0000 (0.0001)	-0.0001 (0.0001) -0.002 (0.006) -0.00001) -0.00001)			$\begin{array}{c} -0.0001 \\ (0.0001) \\ -0.002 \\ (0.006) \\ -0.0000 \\ (0.0001) \\ \end{array}$	$\begin{array}{c} -0.0001\\ (0.0001)\\ -0.002\\ (0.006)\\ 0.00000\\ -0.000\\ \end{array}$		
tas_115 tas_22p5_25	(000.0)	(000.0)	0.001+ (0.001) 0.001	0.001 (0.001) 0.001	(0.000)	(0.000)	$\begin{array}{c} 0.001 \\ (0.001) \\ -0.002 \end{array}$	$\begin{array}{c} 0.001 \\ (0.001) \\ -0.002* \end{array}$	(0.000)	(0.000)	'	0.001 (0.001) -0.003*
tas_25_27p5			(0.001) -0.005*	(0.001) $-0.005*$			(0.001) $-0.003*$	(0.001) $-0.003*$			(0.001) $-0.003*$ (0.00)	(0.001) -0.003* (0.001)
tas_27p5_30			$\begin{pmatrix} 0.001 \\ 0.012^* \\ 0.005 \end{pmatrix}$	$\begin{pmatrix} 0.001 \\ 0.012^* \\ 0.005 \end{pmatrix}$			(0.001) $-0.003*$	(0.001) $-0.003*$ (0.001)				(0.001) -0.003* (0.001)
tas_g30			$\begin{array}{c} (0.035) \\ -0.035 \\ (0.024) \end{array}$	$\begin{array}{c} (0.03) \\ -0.033 \\ (0.025) \end{array}$			(0.01) (0.017)	(0.003) (0.017)				(0.018)
pr-15			0.003* (0.0005)	0.003* (0.0004)			0.001 (0.001)	0.0005 (0.001)			0.001	0.001 (0.001)
GDD_0_29.L									-0.00005	-0.0001		
GDD-gt-29.L									0.005	0.006		
gs-total_P.L									-0.00001	-0.00001		
gs_total_P_sq.L									0.000 (0.000)	0.000 (0.000)		
tas_115.L											0.001	0.001
tas_22p5_25.L											- 1	(0.001) -0.003* (0.001)
tas_25_27p5.L												(0.001) -0.003* (0.001)
tas_27p5_30.L												(0.001) -0.001 (0.003)
tas_g30.L												0.012
pr_15.L												0.0004
log-yield.L									-0.895*	-0.895*		(0.001) -0.900*
T LR/SR ratio						4.77		10.56	(0.034)	(0.034) -3.07		(0.056) -5.15
P LR/SR ratio Prices	×	<i>></i>	×	λ	×	-11.33	×	$\frac{5.61}{Y}$	×	-7.6 Y	Z	V 0.68
Country FE	; _~ ;		; _~ ;	· X :	. Z ;	2;	. Z ;	· Z ;	. 2 :	2;		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Grid-cell FE Country trends	<	<	<	2	~ <i>~</i>	~ <i>~</i>	× ×	<i>K K</i>	<i>K K</i>	<i>κ</i> κ		~
$\frac{N}{\text{Adjusted R}^2}$	355 0.816	354 0.812	355 0.821	354 0.817	10,699 0.899	10,606 0.899	10,699 0.900	10,606	10,343 0.417	10,251 0.418	10,343 1 0.420 (10,251 0.421

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.23: Yield responses in Zone 1—Rainfed Spring Wheat

		Tong differences (15v)	s (15v) —			- Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_22_7p5	-0.0001+ (0.0005) -0.009 (0.009) 0.00001 (0.0003) -0.000 (0.000)	-0.0001 (0.0001) -0.009 (0.009) (0.00003) -0.000 (0.000)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001)	0.001 (0.001) (0.001) (0.001) (0.001)	-0.0001 (0.0001) -0.002 (0.006) -0.00000 (0.0001) -0.000	-0.0001 (0.0001) -0.002 (0.006) -0.00000 (0.00001) -0.000	0.001 (0.001) (0.001) (0.001) (0.001)	0.001 (0.001) (0.001) (0.001) (0.001)	-0.0001 (0.0001) -0.002 (0.006) -0.00000 (0.0001) -0.000 (0.000)	-0.0001 (0.0001) -0.002 (0.006) 0.00000 (0.00001) -0.000	0.001 (0.001) (0.001) (0.001) (0.001)	0.001 (0.001) (0.001) (0.001) (0.001)
tas_g30 pr_l5 GDD_0_29.L			(0.005) -0.035 (0.024) (0.0003*	$\begin{array}{c} 0.012 \\ 0.005 \\ -0.033 \\ 0.025 \\ 0.003* \\ (0.0004) \end{array}$			(0.001) (0.001) (0.017) (0.001) (0.001)	(0.001) (0.001) (0.017) (0.001) (0.001)	-0.00005 (0.00005)	-0.0001	(0.001) (0.001) (0.017) (0.001) (0.001)	(0.001) (0.001) (0.018) (0.001)
GDD-gt-29.L gs-total-P.L gs-total-P-sq.L									0.005 0.005 0.012) -0.00001 0.000 (0.000)	(0.000) (0.001) (0.00001) (0.00002) (0.000)	5	
tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L											$\begin{array}{c} 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.002 \\ 0.003 \\ 0.003 \\ 0.003 \\ \end{array}$	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.003)
tas.g30.L pr.l5.L log.yield.L									-0.895* (0.034)	-0.895* (0.034)	$ \begin{array}{c} 0.013 \\ 0.030) \\ 0.0004 \\ 0.001) \\ -0.898* \\ 0.038) \end{array} $	$\begin{array}{c} 0.012 \\ 0.031 \\ 0.0004 \\ (0.001) \\ -0.900* \\ \end{array}$
T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE Country trends	N	Y Y S S S S S S S S S S S S S S S S S S	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	× × × × × × × × × × × × × × × × × × ×	$N \\ N \\ Y \\ Y \\ Y \\ Y \\ 10,699$	$4.77 \\ -11.33 \\ Y \\ N \\ Y \\ Y \\ Y \\ Y \\ 10,606$	$N \\ N \\ Y \\ Y \\ Y \\ Y \\ 10,699$	$\begin{array}{c} 10.56 \\ 5.61 \\ Y \\ Y \\ Y \\ Y \\ Y \\ Y \\ 10,606 \end{array}$	$N \\ N \\ Y \\ Y \\ Y \\ 10,343$			-5.15 0.68 Y N Y
Adjusted R ²	0.816	0.812	0.821	0.817	0.899			0.900	0.417			0.421

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.24: Yield responses in Zone 2—Rainfed Maize

		Tong differences (15v)	(15v) —			Panel				——ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_029 GDD_gt_29 gs_total_P gs_total_P-sq	-0.0004 (0.0004) -0.002 (0.001) 0.00000 (0.00003) -0.000 (0.000)	-0.0004 (0.004) -0.002 (0.001) 0.00003 (0.0003) -0.000 (0.000)			-0.0001 (0.001) -0.002* (0.001) 0.00000 (0.00001) -0.000	-0.0001 (0.0001) -0.002* (0.001) 0.00000 (0.00001) -0.000			-0.0001 (0.001) -0.003* (0.001) 0.00000 (0.00001) -0.000 (0.000)	-0.0001+ (0.0001) -0.003* (0.001) 0.00000 (0.00001) -0.000		
tas_115 tas_22p5_25	,		0.003 (0.003) -0.002	0.003 (0.003) -0.002			0.001 (0.001) 0.0001	0.001 (0.001) -0.0001	,		0.001 (0.001) -0.0001	0.0004 (0.001) -0.0002
tas_25_27p5			$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.002 \end{pmatrix}$	$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.002 \end{pmatrix}$			$\begin{pmatrix} 0.0003 \\ -0.0001 \\ 0.001 \end{pmatrix}$	$\begin{pmatrix} 0.0003 \\ -0.0003 \\ 0.001 \end{pmatrix}$			(0.003) (0.001)	(0.0005) (0.0005)
tas_g30			(0.002) -0.005 -0.005	(0.002) -0.005 +0.005			(0.001) (0.001) (0.006*	(0.001) $-0.006*$			(0.001) (0.001) (0.006*	-0.001 (0.001) $-0.007*$
pr-15			0.001	0.001			(0.002) (0.001)	(0.002) -0.0004 (0.001)			-0.001	$\begin{pmatrix} 0.002 \\ -0.001 \\ 0.001 \end{pmatrix}$
GDD_0_29.L			(*00.0)	(4.00.4)			(100.0)	(0.001)	-0.0002	-0.0002^{+}	(0.001)	(100:0)
GDD-gt-29.L									(0.0001) -0.003* (0.001)	$\begin{pmatrix} 0.0001 \\ -0.003* \\ 0.001 \end{pmatrix}$		
gs_total_P.L									0.00000	-0.00000 (0.00001)		
gs_total_P_sq.L									(0.000) (0.000)	(0.000) (0.000)		
tas_115.L									(2001)		-0.001	-0.0003
tas_22p5_25.L											-0.00001	-0.0003
tas_25_27p5.L											-0.0005	(0.0004) -0.001
tas_27p5_30.L											(0.001*)	-0.002*
tas_g30.L											-0.007	(5:001) -0.007* (0.003)
pr_15.L											-0.0002	0.0003
log-yield.L									-0.719*	-0.737*	(0.001) $-0.715*$	(0.001) $-0.732*$
T LR/SR ratio						0.7		0.8	(160.0)	1.14	(160.0)	1.07
Prices	N	*	N	λ	N	Y	N	Y	N	Y.	N	-0.30 Y
Country FE	× ×	× ×	<i>></i>	<i>≻</i> ≥	≥ >	≥ >	≥ >	≥ >	2 2	2 2	2 2	2 2
Country trends	Z Z	, ×	Z Z	z Z	λ	λ,	λ	Λ.	λ	λ	λ	, X
$\frac{N}{\text{Adjusted R}^2}$	190 0.729	190 0.727	190 0.727	190 0.725	5,608 0.895	5,485 0.897	5,608 0.895	5,485 0.897	5,403 0.364	5,277 0.381	5,403 0.365	5,277 0.382
•												

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table B.25: Yield responses in Zone 2—Rainfed Soybeans

(1) (2) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	-Long differences (15v) -			Panel				ECM	M	
0.0003 0.0002) 0.0002) 0.0002) 0.0003 0.000	$(2) \qquad (3)$	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
29.L 29.L P.Sq.L 775.L 1.25.L 1.30.L 2.30.L 2.30.L 2.30.L			-0.0002+ (0.0001) -0.005* (0.001) 0.00004 (0.0000) (0.000)	-0.0002+ (0.0001) -0.005+ (0.002) 0.00004 (0.00004) -0.000	0.003 (0.003) (0.0004)	-0.003 (0.003) (0.0003) (0.0003)	-0.0003* (0.0001) -0.005+ (0.002) 0.0001 (0.000) (0.000)	-0.0003 (0.0001) (0.002) 0.0001 (0.0001) -0.000 (0.000)	-0.005 (0.003) -0.004*	-0.004 (0.003) (0.0004)
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L pr_15.L log_yield.L T_LR/SR ratio	(0.001) (0.002) (0.002) (0.007) (0.0002)*	1			(0.001) (0.001) (0.001) (0.004) (0.001)	(0.001) (0.001) (0.006) (0.006) (0.001)	-0.0003 (0.0003) (0.006) 0.0002* (0.0001)	$\begin{array}{c} -0.0003\\ (0.0002)\\ (0.0001)\\ 0.0001*\\ (0.000)\\ (0.000)\\ \end{array}$	(0.001) -0.006* (0.002) -0.019* (0.001) (0.001)	(0.001) (0.001) (0.003) (0.001)
P LR/SR ratio				0.64		-0.17 1.36	(0.072)	$\begin{array}{c} -0.475 * \\ (0.068) \\ 1.52 \\ 2.38 \end{array}$	-0.015* (0.005) -0.010* (0.002) -0.0103* (0.004) -0.013* (0.008) -0.028* (0.008) -0.013* (0.007)	$\begin{array}{c} -0.014^* \\ (0.006) \\ -0.010^* \\ (0.002) \\ -0.006 \\ (0.004) \\ -0.012^+ \\ (0.007) \\ (0.003) \\ -0.0004 \\ (0.003) \\ -0.0004 \\ (0.001) \\ -0.478^* \\ (0.078) \\ 1.98 \\ 0.04 \end{array}$
Prices N Y Country EE Y Y Grid-cell FE N N		\$ \$ \$ \$ \$	222	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 2 2 2	\$ \times \times \times	X	<i>i i i i i i i i i i</i>	2 2 2 2	\$ \times 2 \times
7V 91 14 0.306		7V 91 0.333	2,781 0.870	53	2,781 0.875	2,753 0.867	2,690 0.376	2,658 0.396	2,690 0.408	2,658 0.431

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p<0.1,\,^{\scriptscriptstyle *}$ p<0.05

Table B.26: Yield responses in Zone 2—Rainfed Rice

		—Long differences (15v)	s (15v) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0001 (0.0004)	0.0001 (0.0004)			-0.0001+ (0.0001)	-0.0001 (0.0001)			-0.0001^* (0.0001)	-0.0001^* (0.0001)		
GDD-gt_29	(0.003)	-0.003 (0.004)			(0.001)	-0.00004 (0.001)			(0.001)	(0.001)		
gs_total_P	-0.00003 (0.00003)	-0.00003 (0.00003)			-0.00002 (0.00002)	-0.00002 (0.00002)			-0.00002 (0.00002)	-0.00002 (0.00002)		
gs_total_P_sq	0.000	0.000			0.000	0.000			0.000	0.000		
tas_115	(2000)	(202:0)	0.012	0.014	(200:0)	(0000)	-0.004^{*}	-0.004^{*}	(000:0)	(2000)	-0.004^{+}	-0.004+
tas_22p5_25			0.001^*	0.001*			0.002 $0.001*$	0.001*			0.001 + 0.00	0.001
tas_25_27p5			$(0.0003) \\ 0.002* \\ (0.002)$	(0.0003) $0.002*$			0.001	(0.0004) 0.001			0.001	0.001)
tas_27p5_30			0.0003 $0.002*$	(0.001) $(0.002+$			0.0003	0.0003			0.0002	0.0002
tas_g30			0.001 0.003	0.003			0.001	0.001			0.004	(0.004) 0.002 (0.003)
pr_15			0.003	0.003			(0.003) 0.001+	0.003 $0.001+$			$0.002 \\ 0.001 \\ + \\ 0.001$	(0.002) 0.001+ (0.001)
GDD_0_29.L			(0.002)	(0.002)			(0.001)	(0.001)	-0.0002*	-0.0002*	(0.001)	(0.001)
GDD-gt.29.L									0.001	(0.001) 0.001		
gs_total_P.L									(0.002) -0.00002	(0.002) -0.00002		
gs_total_P_sq.L									0.000	0.000		
tas_115.L									(0.000)	(0.000)	-0.003	-0.003
tas_22p5_25.L											(0.003) 0.001	(0.003) 0.001
tas_25_27p5.L											0.001	0.001
tas_27p5_30.L											0.0004	0.0001
tas_g30.L											0.001	0.006
pr_15.L											0.002*	0.002*
log-yield.L									-0.730*	-0.732*	(0.001) $-0.738*$	(0.001) $-0.739*$
T LR/SR ratio						72.4		2.24	(0.046)	(0.048) 2.56	(0.048)	(0.051) 2.64
P LR/SR ratio	N	>	Z	>	Ν	$\frac{1.22}{V}$	Z	1.82	N	1.02	Z	1.3
rnces Country FE	× ×	. X	۲ کے	χ.	2 2	$\sim N$	<	$\sim N$	2 2	N K	2 2	N
Grid-cell FE	2 2	2 2	≥ ≥	≥ ≥	۷ ۸	× ×	~ <i>~</i>	۷ ۸	۷ ۸	۷ ۲	<i>\</i>	× ×
N Adinoted D2	240	240	240	240	7,157	7,144	7,157	7,144	6,903	6,885	6,903	6,885
N pagenfay		11000	070.0									

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.27: Yield responses in Zone 2—Rainfed Winter Wheat

		-Long differences (15v)	(15v) —			Panel -				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	6	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0004^{+} (0.0002)	0.0004+ (0.0002)			-0.0002+ (0.0001)	-0.0002+ (0.0001)			-0.0002* (0.0001)	-0.0002^* (0.0001)		
67-18-000	(0.002)	(0.002)			(0.0001)	(0.0005)			(0.0004)	(0.0004)		
gs_total_P	0.001 (0.0004)	0.001 (0.0004)			0.0002^* (0.0001)	0.0002* (0.0001)			0.0002* (0.0001)	0.0002^* (0.0001)		
gs_total_P_sq	-0.00000 (0.00000)	-0.00000+ (0.00000)			(0.000)	-0.000+ (0.000)			-0.000 (0.000)	(0.000)		
tas_115			-0.011^*	-0.011^*			0.002*	0.002*		,	0.002*	0.002*
tas_22p5_25			0.001	0.0001			-0.001	-0.001 (0.001)			-0.001	-0.001 (0.001)
tas_25_27p5			0.004	0.004			-0.002	(0.001)			-0.003*	-0.003*
tas_27p5_30			(0.004) -0.0001	(0.003) (0.001)			$\begin{pmatrix} 0.001 \\ -0.002 \end{pmatrix}$	(0.001) -0.002			(0.001) -0.003	(0.001) -0.003
tas_g30			-0.013	(0.003) -0.013			$\begin{pmatrix} 0.002 \\ -0.002 \end{pmatrix}$	(0.002) -0.003			(0.002) -0.002	(0.002) -0.002
pr-15			$\begin{pmatrix} 0.014 \\ -0.007 \\ 0.005 \end{pmatrix}$	(0.014) -0.008			(0.003) $-0.005*$	(0.003) -0.005*			-0.005	(0.003) -0.005*
GDD_0_29.L			(00.0)	(0000)			(0.007)	(0.002)	0.0001	0.0001	(0.007)	(0.002)
GDD-gt_29.L									(0.0002) 0.0004	(0.0002) 0.001		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) -0.00000*	(0.0000) -0.000000*		
tas_115.L										(222)	0.0001	-0.00003
tas_22p5_25.L											0.001	0.0005
tas_25_27p5.L											(0.002) -0.0001	(0.002) -0.0003
tas_27p5_30.L											0.003	0.003
tas_g30.L											(0.003) -0.0001	0.001
pr_15.L											(0.004) -0.005*	(0.004) -0.005*
log-yield.L									*0.770	-0.769*	(0.003) -0.768*	(0.003) $-0.765*$
T LR/SR ratio					יר	1652.23		5.26	(0.000)	(0.004) 1.86	(0.000)	(0.080) -0.39
P LK/SR ratio Prices	×	`	×	λ	×	$\frac{3.76}{Y}$	×	$\frac{1.51}{Y}$	×	$\frac{1.37}{Y}$	×	1.06 Y
Country FE	, ₁	· X	, ₄	, X	N	N	N.	N	N	N	Z	N
Grid-cell FE Country trends	≥ ≥	< <	≥ ≥	<	~ <i>~</i>	~ <i>~</i>	× ×	~ <i>~</i>	~ <i>~</i>	~ <i>~</i>	~ <i>~</i>	~ ~
N	261	257	261	257	7,887	7,686		7,686	7,613	7,426	7,613	7,426
Adjusted R ²	0.775	0.7.76	0.774	0.773	0.837	0.840	0.83/	0.839	0.419	0.423	0.415	0.420

Notes: Significance levels + $p<0.1,\ ^{\ast }$ p<0.05

Table B.28: Yield responses in Zone 2—Rainfed Spring Wheat

		Long differences (15y)	(15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0004^{+} (0.0002)	0.0004^{+} (0.0002)			-0.0002^{+} (0.0001)	-0.0002^{+} (0.0001)			-0.0002* (0.0001)	-0.0002^* (0.0001)		
67-18-000	(0.002)	(0.002)			(0.0005)	(0.0005)			(0.0004)	(0.0004)		
gs-total_P	(0.0004)	0.001 (0.0004)			0.0002°	0.0002° (0.0001)			(0.0002°)	0.0002° (0.0001)		
gs_total_P_sq	-0.00000 (0.00000)	-0.00000 + (0.00000)			(0.000)	-0.000 $+$ (0.000)			-0.000 (0.000)	-0.000 (0.000)		
tas_115			-0.011^{*} (0.005)	-0.011^* (0.005)			0.002* (0.001)	0.002* (0.001)			0.002* (0.001)	0.002* (0.001)
tas_22p5_25			0.001	0.0001			-0.001	-0.001 (0.001)			-0.001	_0.001 (0.001)
tas_25_27p5			0.004	0.004			-0.002	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.001 \end{pmatrix}$			-0.003*	(0.001) $-0.003*$
tas_27p5_30			-0.0001	(0.003) (0.001)		·	-0.002	$\begin{pmatrix} 0.001 \\ -0.002 \\ 0.003 \end{pmatrix}$			(0.001) -0.003	$\begin{pmatrix} 0.001 \\ -0.003 \\ 0.002 \end{pmatrix}$
tas_g30			-0.013	(0.003) -0.013		•	(0.002)	(0.002) -0.003			$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.003 \end{pmatrix}$	$\begin{pmatrix} 0.002 \\ -0.002 \end{pmatrix}$
pr-15			(0.014) -0.007	(0.014) -0.008		•	(0.003) -0.005*	(0.003) $-0.005*$			(0.003) -0.005*	(0.005) $-0.005*$
GDD_0_29.L			(600.0)	(600.0)			(0.002)	(0.007)	0.0001	0.0001	(0.007)	(0.007)
GDD-gt-29.L									(0.0002) 0.0004	(0.0002) 0.001		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0000) -0.000000*	(0.0001) -0.00000*		
tas_115.L									(0.000)	(0.000)	0.0001	-0.00003
tas_22p5_25.L											0.001	(0.001) 0.0005
tas_25_27p5.L											$\begin{pmatrix} 0.002 \\ -0.0001 \\ 0.003 \end{pmatrix}$	(0.002) -0.0003
tas_27p5_30.L											0.003	0.003
tas_g30.L											(0.003) -0.0001	0.001
pr-15.L											-0.005*	(0.00±) -0.005*
log_yield.L									-0.770*	-0.769*	(0.003) $-0.768*$	(0.003) -0.765*
T LR/SR ratio						1652.23		5.26	(0.083)	$\frac{(0.084)}{1.86}$	(0.085)	(0.086) -0.39
P LR/SR ratio	N	۵	>	>	Z	3.76	Z	1.51	N	1.37	Z	1.06 V
Country FE	λ λ	γ λ	ζ ,	ζ,	<	N	× ×	N	2 2	N	2 2	N P
Grid-cell FE	× ×	× ×	2 >	2 2	۲ ۲	\ \ \	\ \ \	\ \ \	\ \ \	\ \ \	\ \ \	۲ ۲
Country trends N	7v 261	257	7V 261	1V 257	7,887	98	37	7,686	7,613	7,426	7,613	7,426
Adjusted R ²	0.775	0.776	0.774	0.773	0.837			0.839	0.419	0.423	0.415	0.420

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.29: Yield responses in Zone 3—Rainfed Maize

		-Long differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt.29 gs_total_P gs_total_P-sq	0.0004+ (0.002) -0.001 (0.001) 0.0003+ (0.0001) -0.00000 (0.0000)	0.0003+ (0.0002) -0.001 (0.001) (0.0003+ (0.0001) -0.00000			-0.0004* (0.0001) -0.001 (0.001) 0.0003* (0.0001) -0.00000*	-0.0004* (0.001) -0.001+ (0.001) 0.0003* (0.001) -0.00000*			-0.0004* (0.001) -0.001 (0.001) 0.0003* (0.0001) -0.00000*	-0.0004* (0.0001) -0.001+ (0.001) 0.0003* (0.0001) -0.00000*		
tas_115 tas_22p5_25			0.0002 (0.002) 0.003+	0.0004 (0.002) 0.003+			$\begin{array}{c} 0.001 \\ (0.001) \\ -0.003* \\ \end{array}$	0.001 (0.001) -0.003*			$\begin{array}{c} 0.001 \\ (0.001) \\ -0.003* \\ \end{array}$	0.001 (0.001) -0.003*
tas_25_27p5			$\begin{pmatrix} 0.002 \\ -0.001 \\ (0.002) \end{pmatrix}$	(0.002) -0.001 (0.002)			(0.001) $-0.006*$ (0.001)	(0.001) $-0.006*$ (0.001)			(0.001) $-0.006*$ (0.001)	(0.001) $-0.006*$ (0.001)
tas_27p5_30			0.001	0.001 (0.005)			-0.010^{*} (0.002)	-0.010^* (0.002)			-0.010^{*} (0.002)	-0.010^{*} (0.002)
tas_g30 pr_15			-0.005 (0.004) -0.005	-0.005 (0.004) -0.005			-0.012* (0.002) $-0.006*$	-0.013* (0.002) $-0.006*$			-0.013* (0.002) $-0.006*$	-0.013* (0.002) $-0.006*$
GDD-0-29.L			(0.004)	(0.004)			(0.001)	(0.001)	-0.0004*	-0.0004*	(0.001)	(0.001)
GDD-gt-29.L									(0.0001) -0.0001	(0.0001) -0.0002		
gs_total_P.L									0.0004*	0.0004*		
gs_total_P_sq.L									-0.00000* (0.000)	(0.0001) -0.00000* (0.000)		
tas_115.L										(2000)	0.002+	0.002+
tas_22p5_25.L											(0.001) $-0.003*$	(0.001) $-0.003*$
tas_25_27p5.L											-0.005*	(0.001) $-0.005*$
tas_27p5_30.L											(0.001) $-0.010*$	(0.001) $-0.010*$
tas_g30.L											$\begin{array}{c} (0.002) \\ -0.011^* \\ (0.003) \end{array}$	(0.002) $-0.010*$
pr-15.L											-0.008*	(0.003) -0.008* (0.002)
log_yield.L									-0.896*	-0.904*	-0.880*	(0.002) -0.889* (0.043)
T LR/SR ratio						1.06		0.37	(0.011)	0.17	(5.0.0)	0.78
r LNSN iauo Prices	N	*	N	Y	N	V.90	N	V. o.	N	Y	N	Y
Country FE Grid-cell FE	> <	<i>≻</i> ≥	> ×	× ×	∠ ×	≥ >	2 >	× ×	2 >	2 2	2 >	<i>≿</i>
Country trends	N	Z	Z	Z	λ	λ	λ	λ	λ	λ	λ	λ
N Adjusted ${ m R}^2$	522 0.691	517 0.687	522 0.683	517 0.678	15,317 0.899	14,951 0.901	15,317 0.899	14,951 0.900	14,789 0.508	14,406 0.512	14,789 0.504	14,406 0.508

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.30: Yield responses in Zone 3—Rainfed Soybeans

		-Long differences (15v)	(15v) —			- Panel	el			ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt_29 gs_total_P gs_total_P.sq tas_115 tas_22p5_25 tas_27p5_30 tas_27p5_30	0.0004 (0.0002) -0.003* (0.001) (0.0001) -0.000 (0.000)	0.0004 (0.0002) -0.003* (0.001) (0.0001) -0.000 (0.000)	0.002 (0.002) (0.001) (0.001) (0.004) (0.005) (0.005) (0.001)	0.002 0.003* 0.001) 0.001 0.001 0.001 0.004 0.005 0.005 0.005	-0.0001 (0.0001) (0.0002) (0.0002) (0.000) (0.000)	-0.0002 (0.0001) (0.0003* (0.0002* (0.000) (0.000)	-0.00001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)	-0.0001 (0.0001) -0.004* (0.0005) 0.0002* (0.0001) -0.000*	-0.0002+ (0.0001) -0.003* (0.0002) (0.0001) -0.000* (0.000)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
GDD_0_29_L GDD_et_29_L gs_total_P.L gs_total_P.sq.L			(0.003)				(0.001)	(0.001)	-0.0002+ (0.0001) -0.004* (0.0004) 0.0002* (0.0001) -0.00000*	-0.0002* (0.00004) -0.003* (0.0003) (0.0001) -0.000004	ı	(0.001)
tas_22p5_25.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L											0.001 (0.001) -0.002+ (0.001) -0.004* (0.001) (0.001) -0.012*	0.002 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
pr.lb.L log-yield.L						и 1 С		6.00	-0.891^* (0.019)	$-0.915* \\ (0.025)$	$\begin{array}{c} -0.004^{*} \\ (0.002) \\ -0.893^{*} \\ (0.021) \end{array}$	-0.004^{*} (0.002) -0.915^{*} (0.024)
P LR/SR ratio Prices Country FE Grid-cell FE Country trends	$S \leq \mathcal{A} \leq$	****	S S A S	S S A A	$\mathcal{A} \mathcal{A} \mathcal{S} \mathcal{S}$		4488	0.42 Y X Y	$\mathcal{A} \mathcal{A} \mathcal{S} \mathcal{S}$	$\begin{array}{c} 0.35 \\ Y \\ X \\ Y \end{array}$	4422	1.51 Y Y Y Y
N Adjusted R ²	650 0.214	650 0.213	0.228	650 0.227	19,752 0.777	17,672 0.763	19,752 0.771	17,672 0.755	19,102 0.496	17,006 0.506	19,102	17,006

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table B.31: Yield responses in Zone 3—Rainfed Rice

(1) GDD_029	(2) (3) (0.0003+ (0.0001) (0.0003+ (0.0002) (0.00004)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
29				*60000-							
tas_22p5_25 tas_25_27p5 tas_27p5_30	(0.000)	0.002	0.002 (0.002)	(0.0001) 0.0005 (0.001) 0.00000 (0.00001) 0.0000	-0.0002* (0.0001) 0.0004 (0.001) 0.00000 (0.00001) -0.000 (0.000)	0.0005	0.001	-0.0002* (0.0001) 0.00005 (0.001) -0.00000 (0.00001) 0.000	-0.0002* (0.0001) -0.00002 (0.001) -0.00000 (0.00001) -0.0000 (0.0000)	0.001	0.001
tas_g30 pr_15		(0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)	(0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.003)			(0.0003) (0.0003) (0.0004) (0.0005) (0.0005) (0.001) (0.001) (0.0005)	-0.001* (0.0004) -0.001* (0.0003) -0.002* (0.0004) 0.001 (0.001) (0.0005)			-0.001+ (0.0004) -0.001* (0.0004) -0.002* (0.001) 0.00003 (0.001) -0.0003 (0.001)	$\begin{array}{c} -0.001 + \\ (0.0004) \\ -0.001* \\ (0.0004) \\ -0.002* \\ (0.0005) \\ -0.0004 \\ (0.001) \\ (0.0004) \\ \end{array}$
GDD_00_29.L GDD_gt_29.L gs_total_P.L gs_total_P.sq.L								-0.0001 (0.0001) 0.001* (0.0004) 0.00001 (0.00001) -0.000	$\begin{array}{c} -0.0001 \\ (0.0001) \\ 0.002* \\ (0.0004) \\ 0.00001 \\ (0.00001) \\ -0.000 \\ (0.000) \end{array}$		
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L										$\begin{array}{c} 0.0003 \\ (0.001) \\ -0.001 \\ (0.001) \\ -0.002 \\ (0.001) \\ \end{array}$	$\begin{array}{c} 0.0002 \\ (0.001) \\ -0.0011 \\ (0.001) \\ -0.0011 \\ (0.001) \\ -0.002* \\ (0.001) \end{array}$
tas_g30.L pr_15.L log_yield.L								-0.799* (0.038)	-0.784^* (0.036)	0.003* (0.001) $-0.001*$ (0.0005) $-0.803*$ (0.037)	0.003* (0.001) $-0.001*$ (0.0005) $-0.789*$ (0.036)
TLR/SR ratio PLR/SR ratio Prices Country FE Grid-cell FE N Country trends N	$\frac{1}{2}$ \lesssim \lesssim \lesssim	$2 \times 2 \times 5$	$\frac{1}{2} \leq \leq \prec \prec$	$X \times X \times S$	7.59 186.63 <i>Y</i> <i>N</i> <i>Y</i> <i>Y</i>	$2 \times 2 \times 2$	-6.9 0.37 <i>Y</i> <i>Y</i> <i>Y</i>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-66.88 -1.85 -1.85 -1.85 -1.85 -1.85	× × × × ×	7.51 3.27 X X Y Y
Adjusted R^2 0.824	0.817	0.842	0.836	8,083 0.956	0.957	8,083 0.956	0.957	7,801 0.397	0.386	0.400	0.389

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table B.32: Yield responses in Zone 3—Rainfed Winter Wheat

		Long differences (15y)	(15y) —							ECM-		
	(1)	(2)	(3)	(4)	(5)	(9)	(C)	(8)	(6)	(10)	(11) (12)	
GDD_0_29	-0.00001 (0.0002)	-0.00001 (0.0002)			-0.0001^* (0.00003)	-0.0001^* (0.00003)			-0.0001^* (0.00003)	-0.0001* (0.00003)		
GDD-gt-29	0.002 (0.004)	0.002 (0.004)			-0.002 (0.002)	-0.002 (0.002)			-0.002 (0.002)	-0.002 (0.002)		
gs_total_P	0.0002*	0.0002*			0.0003*	0.0003*			0.0003*	0.0003*		
gs_total_P_sq	(00000) -0.000000*	(0.0000) -0.00000*			-0.00000* -0.000000*	-0.00000*			-0.00000*	-0.00000*		
tas_115	(000:0)	(200:0)	0.001	0.001	(000:0)	(000:0)	0.004*	0.004*	(000:0)	(00:0)	0.004* 0.004*	04*
tas_22p5_25			0.004^{*}				(0.001) $-0.003*$	- 1				023
tas_25_27p5			(0.002) -0.001	(0.002) -0.002			(0.001) -0.004^*	(0.001) -0.004^*			(0.001) (0.001) -0.004^* -0.004^*	04*
tas_27p5_30			(0.003) $0.019*$				(0.001) $-0.008*$	(0.001) -0.008*			_ ' _	00 08* 08*
tas_g30			(0.003) -0.007	(0.003) -0.007			(0.003) $-0.010*$	(0.003) $-0.010*$				(20) (30) (4)
pr_15			(0.008) -0.002*	(0.003) $-0.002*$			(0.005) -0.004 *	(0.003) $-0.004*$			(0.004) (0.004) -0.004^* -0.004^*	04 04 01 01
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0001+	-0.0001 ⁺		(10
GDD-gt_29.L									(0.0001) -0.003	(0.0001) -0.003		
gs_total_P.L									0.0003*	0.0003*		
gs_total_P_sq.L									(0.0001) -0.000000*	(0.0001) -0.00000*		
tas_115.L									(000:0)	(20.0)	0.003* 0.003*	03*
tas_22p5_25.L												04*
tas_25_27p5.L												01)
tas_27p5_30.L											(0.001) (0.001) -0.011* -0.011*	11.
tas_g30.L												(10°)
pr_15.L											_ '	(50 (50 (50 (50 (50 (50)
log_yield.L									-0.976*	-0.982*		
T LR/SR ratio						-1.01		0.72	(0.021)	(0.020) 1.48	(0.019) (0.017) 1.11	1.0
P LR/SR ratio	,	,	;	;	;	0.51	;	0.5	;	0.98	1.03	က
Prices Country FE	≥ >	۷ , ۲	< ≻	× ×	< >	≻ , ≥	< >	> >	< ≥	> ×	× ×	
Grid-cell FE	N	, N	, Z	××	ζ,	λ	λ	ζ;	λ	λ		
Country trends	N 7	N 2	N 5	× 5	$Y_{00,cc}$	Y 31.065	Y	Y 21.065	Y 21 5 26	Y_{106}	Y Y 7	y
Adjusted R ²	0.686	0.667	0.690	0.670	0.882	0.883	0.877	0.878	0.521			ای ه

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.33: Yield responses in Zone 3—Rainfed Spring Wheat

		Long differences (15y)	(15y) —							ECM-		
	(1)	(2)	(3)	(4)	(5)	(9)	(C)	(8)	(6)	(10)	(11) (12)	
GDD_0_29	-0.00001 (0.0002)	-0.00001 (0.0002)			-0.0001^* (0.00003)	-0.0001^* (0.00003)			-0.0001^* (0.00003)	-0.0001* (0.00003)		
GDD-gt-29	0.002 (0.004)	0.002 (0.004)			-0.002 (0.002)	-0.002 (0.002)			-0.002 (0.002)	-0.002 (0.002)		
gs_total_P	0.0002*	0.0002*			0.0003*	0.0003*			0.0003*	0.0003*		
gs_total_P_sq	(00000) -0.000000*	(0.0000) -0.00000*			-0.00000* -0.000000*	-0.00000*			-0.00000*	-0.00000*		
tas_115	(000:0)	(200:0)	0.001	0.001	(000:0)	(000:0)	0.004*	0.004*	(000:0)	(00:0)	0.004* 0.004*	04*
tas_22p5_25			0.004^{*}				(0.001) $-0.003*$	- 1				023
tas_25_27p5			(0.002) -0.001	(0.002) -0.002			(0.001) -0.004^*	(0.001) -0.004^*			(0.001) (0.001) -0.004^* -0.004^*	04*
tas_27p5_30			(0.003) $0.019*$				(0.001) $-0.008*$	(0.001) -0.008*			_ ' _	00 08* 08*
tas_g30			(0.003) -0.007	(0.003) -0.007			(0.003) $-0.010*$	(0.003) $-0.010*$				(20) (30) (4)
pr_15			(0.008) -0.002*	(0.003) $-0.002*$			(0.005) -0.004 *	(0.003) $-0.004*$			(0.004) (0.004) -0.004^* -0.004^*	04 04 01 01
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0001+	-0.0001 ⁺		(10
GDD-gt_29.L									(0.0001) -0.003	(0.0001) -0.003		
gs_total_P.L									0.0003*	0.0003*		
gs_total_P_sq.L									(0.0001) -0.000000*	(0.0001) -0.00000*		
tas_115.L									(000:0)	(20.0)	0.003* 0.003*	03*
tas_22p5_25.L												04*
tas_25_27p5.L												01)
tas_27p5_30.L											(0.001) (0.001) -0.011* -0.011*	11.
tas_g30.L												(10°)
pr_15.L											_ '	(50 (50 (50 (50 (50 (50)
log_yield.L									-0.976*	-0.982*		
T LR/SR ratio						-1.01		0.72	(0.021)	(0.020) 1.48	(0.019) (0.017) 1.11	1.0
P LR/SR ratio	,	,	;	;	;	0.51	;	0.5	;	0.98	1.03	က
Prices Country FE	≥ >	۷ , ۲	< ≻	× ×	< >	≻ , ≥	< >	> >	< ≥	> ×	× ×	
Grid-cell FE	N	, N	, Z	××	ζ,	λ	λ	ζ;	λ	λ		
Country trends	N 7	N 2	N 5	× 5	$Y_{00,cc}$	Y 31.065	Y	Y 21.065	Y 21 5 26	Y_{106}	Y Y 7	y
Adjusted R ²	0.686	0.667	0.690	0.670	0.882	0.883	0.877	0.878	0.521			ای ه

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.34: Yield responses in US—Irrigated Maize

		-Long differences (15v)	(15v) —							ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0002 (0.0002)	0.0003 (0.0002)			-0.0001 (0.0001)	-0.0001 (0.0001)			0.0001 (0.0001)	0.0001 (0.0001)		
GDD-gt-29	-0.001 (0.001)	-0.002 (0.001)			-0.003* (0.001)	-0.003* (0.001)			-0.003* (0.001)	-0.003*		
gs_total_P	0.0002	0.0002			0.0003*	0.0003*			0.0003*	0.0003*		
gs_total_P_sq	(0.0000) -0.00000	(0.0009) -0.000			(0.0000) -0.00000*	(0.0000) -0.00000*			(0.0000) -0.000000*	(0.0001) -0.000000*		
tas_115	(0,00,000)	(0.00000)	0.0002		(0.000)	(0,000)	-0.001	-0.0005	(0.000)	(000.0)	-0.002+	-0.002*
tas_22p5_25			(0.002) -0.006	(0.002) -0.007			(0.001) -0.001	(0.001) -0.001			0.0001	(0.001) -0.0004 (0.001)
tas_25_27p5			0.005	0.004+			(0.001) -0.003*				(0.001) -0.002+	(0.001) -0.002*
tas_27p5_30			(0.003) $0.006*$	0.005			(0.001) -0.006*				(0.001) -0.004*	(0.001) -0.004* (0.001)
tas_g30			$\begin{pmatrix} 0.001 \\ -0.005 \\ 0.005 \end{pmatrix}$	(0.001) -0.006			(0.001) -0.015*				(0.001) -0.013*	(0.001) -0.014^*
pr-15			(0.003) -0.004	(0.003) -0.003			(0.003) -0.005*				(0.003) -0.005*	(0.002) -0.004*
GDD_0_29.L			(600.0)	(00.00)			(0.001)		-0.00003	-0.0001	(0.001)	(0.001)
GDD-gt-29.L									(0.0002) -0.002	(0.0002) $-0.003+$		
gs_total_P.L									0.0003*	0.0003*		
gs_total_P_sq.L									(0.0001) -0.000000* (0.000)	(0.0001) -0.00000* (0.000)		
tas_115.L									(000:0)	(200:0)	-0.002	-0.003
tas_22p5_25.L											0.0003	(0.002) -0.001
tas_25_27p5.L											(0.003) -0.003	(0.003) -0.004
tas_27p5_30.L											(0.003) -0.004	(0.003) -0.007 ⁺
tas_g30.L											(0.003) $-0.012*$	(0.004) $-0.015*$
pr_15.L											(0.004) $-0.005*$	(0.004) -0.004^*
log-yield.L									-0.701*	-0.730*	(0.002) -0.679*	(0.002) $-0.726*$
T LR/SR ratio						0.55		0.4	(0.035)	$(0.049) \\ 0.82$	(0.030)	(0.049) 1.04
P LR/SR ratio	Z	>	≥	>	×	0.56	Z	0.65	×	$\frac{1.03}{V}$	×	$\frac{1.02}{V}$
State FE	\mathcal{K}	λ,	χ_{χ}	λ	N N	Z Z	2 2	z Z	N	N	z Z	, N
Grid-cell FE	2 2	2 2	2 2	2 2	۷ ۷	> >	۷ ۲	۷ ۷	> <	> >	> ≺	> <
N Adinsted R2	118	118	118	118	3,605	3,605	3,605	3,605	3,487	3,487	3,487	3,487
N pagenfay												

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.35: Yield responses in US—Irrigated Soybeans

		-Long differences (15y)	(15y) —			Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_gt_29 GDD_gt_29 gs_total_P gs_total_P-sq	0.0005 (0.001) -0.004 (0.003) (0.0003) -0.00000 (0.00000)	0.0005 (0.001) -0.004 (0.004) 0.0003 (0.0000) (0.00000)	С С п	С С	-0.0003+ (0.0001) -0.004 (0.002) 0.0004* (0.0001) -0.00000*	$\begin{array}{l} -0.0003 + \\ (0.0001) \\ -0.004 \\ (0.002) \\ 0.0004* \\ (0.0001)* \\ -0.00000* \end{array}$	* ¥	**************************************	-0.0003 (0.0002) -0.004 (0.002) 0.0004* (0.0001) -0.00000*	$\begin{array}{c} -0.0003\\ (0.0002)\\ -0.005\\ (0.003)\\ 0.0004*\\ (0.0000)*\\ -0.000000)\end{array}$	*9000	***************************************
tas_11.5 tas_22p5_25			$ \begin{array}{c} -0.025 \\ (0.018) \\ -0.014 \\ (0.009) \end{array} $	-0.025 (0.019) -0.014 (0.009)			$\begin{pmatrix} 0.003 \\ -0.001 \end{pmatrix}$ $\begin{pmatrix} 0.001 \\ -0.001 \end{pmatrix}$				(0.001) (0.001) (0.001)	-0.006° (0.002) -0.001 (0.001)
tas_25_27p5 tas_27p5_30			(0.011) (0.013) 0.009	$\begin{pmatrix} 0.011 \\ (0.015) \\ 0.010 \end{pmatrix}$			-0.004^{*} (0.001) -0.009^{*}	-0.004^{*} (0.001) -0.009^{*}			-0.003* (0.001) $-0.010*$	-0.003^{*} (0.001) -0.010^{*}
tas_g30			(0.013) 0.021 (0.032)	(0.014) 0.021 (0.036)			$\begin{array}{c} (0.002) \\ -0.013* \\ (0.003) \end{array}$	(0.002) $-0.013*$ (0.003)			(0.002) -0.014^* (0.003)	(0.002) $-0.014*$ (0.003)
pr-15			-0.006^{+} (0.003)	-0.006^{+} (0.003)			-0.004^{*} (0.002)	-0.004^* (0.002)			-0.004 (0.002)	-0.004 (0.002)
GDD_0_29.L							•	•	-0.001 ⁺ (0.0004)	-0.001^* (0.0004)		,
GDD-gt-29.L									(0.006)	(0.006)		
gs_total_P.L									0.001^* (0.0001)	0.001^* (0.0001)		
gs_total_P_sq.L									(0.00000)	*000000 (0.00000)		
tas_115.L									,	,	-0.014^{*} (0.004)	-0.015* (0.003)
tas_22p5_25.L											-0.004* (0.002)	_0.002 (0.002)
tas_25_27p5.L											-0.010^* (0.003)	-0.010^* (0.003)
tas_27p5_30.L											-0.022*	-0.020* (0.006)
tas_g30.L											-0.029*	-0.025^*
pr_15.L											-0.010*	-0.009*
log_yield.L									-0.451^{*}	-0.499*	-0.428*	(0.002) $-0.520*$
T LR/SR ratio						1.08		-1.64		1.46	(2-2-2)	(5.555) 1.81 2.38
Prices	N	γ	N	χ	N	V.61	N	Y	N	Y	Z	Y
State FE Grid-cell FE	≻ ≥	> ×	≻ ≥	> <	≥ >	≥ >	≥ ≻	۷ ۶	× ×	≥ >	∠ >	≥ >
State trends	N	N	Z G	Z G	Y	Y	7	Y	N	N	2	N
$\frac{N}{\text{Adjusted R}^2}$	30 0.313	30 0.275	30 0.450	30 0.416	92/ 0.717	927 0.720	927 0.727	927 0.727	89/ 0.389	89/ 0.413	89/ 0.423	897 0.454

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.36: Yield responses in US-Irrigated Rice

		-Long differences (15y)	(15y) —			Panel				ECM	I I	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.001 (0.001)	0.00001 (0.001)			0.0003* (0.0001)	0.0003* (0.0001)			0.0002 (0.0001)	0.0002 + (0.0001)		
GDD-gt-29	-0.001 (0.002)	-0.001 (0.002)			-0.002* (0.0001)	-0.002* (0.0002)			-0.001 (0.0003)	-0.001^* (0.0002)		
gs_total_P	0.0002 (0.0001)	0.0003* (0.0001)			0.0001 (0.0001)	0.0001 (0.0001)			0.0001 (0.0001)	0.0001		
gs_total_P_sq	(00000)	0.00000			-0.000	0000			-0.000	0000		
tas_115	(2000)	(00:0)	-0.054	-0.042	(200.0)	(200:0)	-0.004	-0.004	(200.0)	(2000)	0.007	0.005
tas_22p5_25			0.006				0.005	0.005			0.007	0.005*
tas_25_27p5			(0.004) $-0.025*$	- 1			0.003*	0.003*			0.003 + 0.00	0.001 $0.003+$
tas_27p5_30			(0.007) -0.013+ (0.006)				0.003*	0.003*			0.003 + 0.00	0.003*
tas_g30			(0.006) -0.015*	(0.005) $-0.013*$			(0.001) -0.00003	- 1			0.0004	0.001
pr-15			0.003	0.001			(0.001) -0.0001	(0.001) -0.0001			0.001	0.001
GDD_0_29.L			(100.0)	(0.000)			(0.001)	(0.001)	0.001*	0.001*	(0.001)	(0.001)
GDD-gt-29.L									(0.0002) 0.0002	(0.0002) -0.001		
gs_total_P.L									0.0001	0.0001		
gs_total_P_sq.L									(0.0001) -0.000 (0.000)	(0.0001) -0.000 (0.000)		
tas_115.L									(0.000)	(0.000)	0.009	0.003
tas_22p5_25.L											0.009*	(0.013) 0.009*
tas_25_27p5.L											0.009*	(0.003) 0.009*
tas_27p5_30.L											0.009*	0.009*
tas_g30.L											(0.002) $0.010*$	(0.003) 0.010*
pr-15.L											(0.004) 0.002	(0.004) 0.001
log-yield.L									-0.380*	-0.408*	(0.003) $-0.372*$	(0.002) $-0.397*$
T LR/SR ratio						0.3		218.75	(0.076)	(0.065)	(0.077)	(0.069) 18.08
P LR/SR ratio						4.63		-22.92		1.13		1.68
Prices	2 2	<i>'</i>	2 >	\ \ \	2 2	× ×	2 2	<i>ن</i>	Z >	× ×	2 2	λ ^ζ
State FE Grid-cell FE	N K	× ×	× ×	× ×	× ×	×	ζ ,	× ×	λ չ	× ×	<i>λ</i>	\mathcal{K}
State trends	N	N	N	N	λ	V	λ	Y	N	N	N	N
$N_{ m AdjustedR^2}$	22 0 742	22 0.775	22	22 0.874	671 0.714	671 0.728	671	671	649 0 272	649 0.281	649 0 <i>27</i> 3	649 0 <i>277</i>
	!											

Notes: Significance levels $\,^{\scriptscriptstyle +}\,p < 0.1,\,^{\scriptscriptstyle *}\,p < 0.05$

Table B.37: Yield responses in US-Irrigated Winter Wheat

(1) (2) -0.0002			1				ECM ECM		
29	(3) (4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
F.29 0.021* (0.002) (0.002) (0.002) (0.002) (0.0001) (0.0		-0.0001 (0.0001)	-0.0001 (0.0001)			-0.0001 (0.0001)	-0.0001 (0.0001)		
P-sq		0.001 (0.001)	0.001 (0.001)			0.002 (0.001)	0.001 (0.001)		
P-sq (0.0001) (0.0001) 5-25 (0.0000) (0.0000) 5-25 (0.0000) (0.0000) -25.25 (0.0000) -29.L P-sq.L L S-30.L L S-30.L L R ratio R ratio R ratio R ratio R ratio R ratio		0.0001^{+}	0.0001^{+}			0.0001*	0.0001^*		
(0.00000) (0.00000) 5.25 5.30		(c0000-) -0.000+	(0.0000s) -0.000*			(0.00004) $-0.00000*$	(0.00004) -0.00000*		
5-25 5-30 5-30 -29.L P.L P.L P.Sq.L C.25.L C	- 1	(0.000)	(0.000)		0.001	(0.000)	(0.000)	0.001	0.001
29.L L29.L P.L P.Sq.L S-25.L S-30.L R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			•		(0.002) -0.002			(0.002) -0.0001	(0.002) -0.001
5-30 -29.L 1-29.L P.L P.Sq.L S.25.L S.30.L R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y	. '				(0.001) 0.003			(0.002) 0.004^*	(0.002) $0.003+$
29.L L-29.L P.Sq.L P.Sq.L L S.25.L L A.L L R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	.'				(0.002) -0.008			(0.001) -0.007	(0.001) -0.007
29.L L29.L P.L P.L S-24.L S-25.L S-25.L AL AL R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	(0.004) (0.003) $0.068*$ $0.070*$			0.002	0.002			0.003	(0.004) 0.002
29.L 1.29.L P.sq.L L S.25.L 5.25.L S.30.L A R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y					(0.003) -0.001			(0.003) -0.002	(0.004) -0.001
P.E. P.Sq.L. S.25.L. 77p5.L. A.L. R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y				n) (100.0)	7.001)	-0.00002	-0.0001	(0.001)	(0.001)
P.L. P.sq.L. L. 27p5.L. S.30.LLLR. R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y						(0.0001) 0.005*	0.004*		
P-sq.L L 5.25.L S-30.L L A.L R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y						0.0001*	0.0001*		
L 2-25.L 2-25.L 2-30.L 2-30.L 2-30.L 3-30.L						(0.0000) -0.00000*	*000000 -0.000000		
5-25.L 27p5.L 5-30.L .L .L .A A.L .R ratio .N .Y						(000:0)	(000.0)	0.001	0.002
5-30.L L AL AL R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y								0.002	(0.001) 0.001
5-30.L L d.L R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y								0.004)	0.003
d.L. R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y								(0.004) -0.002	(0.004) -0.003
d.L. R ratio R ratio N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y								(0.004) $0.015*$	$(0.003) \\ 0.011^* \\ (6.994)$
R ratio R ratio N Y E Y Y Y								(0.006) -0.002	(0.004) -0.002
R ratio R ratio N Y E Y Y						-0.837*	-0.929*	(0.002) -0.843^*	(0.002) -0.931*
R ratio N Y E Y Y			14.42	45	42.08	(0.103)	(0.038) 3.99	(0.112)	(0.053) 7.23
E Y Y		ž	-0.91	1	-3.29		1.11	į	1.12
3,7	\ \ \ \ \	<	> ≥	× × × ×		< ≥	> ×	≥ ≥	> ≥
N ·		X	` \			, Y	λ;	, X	, _X
7V 34	34 34 34	$\frac{Y}{1,019}$	r 1,019	$\frac{Y}{1,019}$ 1,0	$\frac{Y}{1,019}$	N 985	N 985	N 985	N 985
Adjusted R ² 0.322 0.293 0.322	0.323 0.299	998.0	0.866		0.862	0.414	0.515	0.395	0.497

Notes: Significance levels " p < 0.1 , $^{\ast} \ p < 0.05$

Table B.38: Yield responses in Americas—Irrigated Maize

		-Long differences (15y)	s (15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD-0-29	0.0002*	0.0002*			-0.00001 (0.0002)	-0.00000 (0.0002)			-0.00000 (0.0002)	0.00000 (0.0002)		
GDD _{-gt-29}	-0.001+	-0.002*			-0.003*	-0.003*			-0.003*	-0.003*		
gs_total_P	$(0.0003) \\ 0.0001*$	$(0.0002) \\ 0.0001$			$(0.0004) \\ 0.0002*$	$(0.0004) \\ 0.0002*$			$(0.0003) \\ 0.0002*$	$(0.0003) \\ 0.0002*$		
os fofal P so	(0.00003)	(0.0001)			(0.00003)	(0.00003)			(0.00003)	(0.00004)		
tas 11.5	(0.000)	(0.000)	0000	0.0004	(0.000)	(0.000)	-0 001	-0 001	(0.000)	(0.000)	-0.001	-0.001
tas_22p5_25			(0.001) -0.001	(0.001) 0.001			(0.001) -0.001	(0.001)			(0.001) -0.001	(0.001) -0.001
tas_25_27p5			(0.0005) $0.004*$	(0.002)			(0.0005) -0.003*	(0.0005) $-0.003*$			(0.0005) $-0.003*$	(0.001) $-0.003*$
tas_27p5_30			(0.001) $0.005*$	(0.001) $0.005*$			(0.001) -0.004 ⁺	(0.001) -0.004^{+}			(0.001) -0.004 ⁺	(0.001) -0.004^{+}
tas_g30			(0.001) -0.001	(0.001) -0.003			(0.002) $-0.013*$	(0.002) $-0.013*$			$(0.002) \\ -0.013* \\ (0.003)$	(0.001) $-0.013*$
pr.15			(0.003) $-0.004*$	(0.002) $-0.003*$			(0.003) $-0.005*$	(0.003) -0.005*			(0.002) $-0.006*$	(0.002) -0.006*
GDD_0_29.L			(0.002)	(0.0004)			(0.001)	(0.001)	-0.0002	-0.0002	(0.001)	(0.001)
GDD-gt-29.L									$(0.0004) \\ -0.002*$	(0.0004) $-0.002*$		
gs_total_P.L									$(0.00004) \\ 0.0002* \\ (0.0004)$	(0.0004) $0.0002*$		
gs_total_P_sq.L									$(0.0001) \\ -0.00000*$	(0.0001)		
tas_115.L									(0.000)	(0.000)	-0.001	-0.001
tas_22p5_25.L											(0.003) $-0.002*$	(0.002) $-0.002*$
tas_25_27p5.L											(0.0002) -0.004*	(0.0002) -0.004*
tas_27p5_30.L											(0.002) -0.005	(0.002) -0.005
tas_g30.L											(0.003) $-0.013*$	(0.003) -0.013*
pr.15.L											(0.002) -0.007*	$(0.002) \\ -0.007*$
log_yield.L									-0.987*	-0.982*	(0.002) -0.984^*	(0.002) $-0.979*$
T LR/SR ratio						0.59		0.2	(0.068)	(0.068) 0.77	(0.061)	(0.061) 1
P LR/SR ratio	;	;	;	;	;	0.23	;	0.5	;	1.01	;	1.21
Prices Country FF	< >	>	< >	> >	< >	≻ , ≥	< >	> >	≥ ≥	> >	< >	> >
Grid-cell FE	, ×	N	N	N	λ	χ_{X}	χ	X	λ	λ	ζ λ	χ
Country trends	N	N	Z,	N.	Υ	Y	Y	Υ.	7	, X	, _Z	X
$\frac{N}{\text{Adjusted R}^2}$	178 0.241	178 0.280	178 0.239	178 0.276	5,420 0.869	5,420 0.869	5,420 0.869	5,420 0.869	5,242 0.510	5,242 0.511	5,242 0.509	5,242 0.511

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table B.39: Yield responses in Americas—Irrigated Rice

		-Long differences (15v)	(15v) —							ECM	V	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	-0.0001 (0.0003) $-0.002*$	-0.0001 (0.0003) $-0.002*$			-0.00004 (0.0001) $-0.001*$	-0.00005 (0.0001) $-0.001*$			-0.00002 (0.0001) $-0.001*$	$\begin{array}{c} -0.00003\\ (0.0001)\\ -0.001* \end{array}$		
gs_total_P	(0.001) 0.000000 (0.00003)	(0.001) 0.00000			(0.0004) -0.00001	(0.0004) -0.00001			(0.0003) -0.00001	(0.0003) -0.00001		
gs_total_P_sq	(0.0000) -0.000 (0.000)	(0.000) -0.000 -0.000			0.000	0.000			0.000	0.000		
tas_115	(0.000)	(0,000)	-0.0002	-0.0002 -0.0003	(0.000)	(0.000)	-0.00004	-0.00003	(0.000)	(0.000)	-0.0002	-0.0002
tas_22p5_25			(0.001)	- 1			(0.001) 0.00005	0.00003			(0.001) -0.00004	(0.001) -0.0001
tas_25_27p5			(0.001) $-0.002*$				$\begin{pmatrix} 0.0004 \\ -0.0002 \\ 0.001 \end{pmatrix}$	(0.0004) -0.0002			(0.0003) -0.0002	(0.0003) -0.0002
tas_27p5_30			(0.001)	(0.001) -0.001			(0.001) -0.0005	$\begin{pmatrix} 0.001 \\ -0.001 \end{pmatrix}$			(0.001) -0.0005	(0.001) -0.0005
tas_g30			(0.001) -0.008* (0.003)	(0.001) -0.008*			(0.001) $-0.003*$	(0.001) $-0.003*$			(0.001) $-0.003*$	(0.001) -0.003* (0.001)
pr.15			0.001	0.001			0.0001	0.0001			0.0001	0.0001
GDD_0_29.L			(0.002)	(0.007)			(0.001)	(0.001)	-0.0001	-0.0001	(0.001)	(0.001)
GDD-gt-29.L									(0.0001) -0.0001	(0.0001) -0.0001		
gs_total_P.L									0.00001	0.00001		
gs_total_P_sq.L									(0.0001) -0.000 (0.000)	(0.0001) -0.000		
tas_115.L									(0.000)	(0.000)	0.001	0.001
tas_22p5_25.L											0.001 0.0002	0.0002
tas_25_27p5.L											0.0001	0.00005
tas_27p5_30.L											0.0001	(0.001) -0.00004
tas-g30.L											(0.001) $-0.001+$	(0.001) $-0.001*$
pr.15.L											(0.001) -0.001	(0.0003) -0.001
log_yield.L									-0.829*	-0.830*	(0.001) $-0.830*$	(0.001) $-0.830*$
						1		1	(0.088)	(0.089)	(0.092)	(0.092)
I LK/SK ratio P LR/SR ratio						1.55 -0.4		2.27 8.62		0.07 -1.98		0.36 -8.35
Prices	N	X	Z	7	N	X	N	X	N	λ	N	λ
Country FE Grid-cell FE	> >	≻ ≥	> >	> >	≥ ≻	< >	≥ ≻	< >	< ≻	< ≻	≥ ≻	< ≻
Country trends	N	N	Z	Z	λ	λ	λ	λ	X	λ	λ.	Λ.
$\frac{N}{\text{Adjusted R}^2}$	161	161	161	161 0.806	4,863 0.936	4,860	4,863 0.936	4,860 0.936	4,701 0.399	4,699	4,701 0.396	4,699 0.397
f	1	1				1			i.	i. i. j.		

Notes: Significance levels " p < 0.1 , $^{\ast} \, p < 0.05$

Table B.40: Yield responses in Americas—Irrigated Winter Wheat

		Tong differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	0.0001 (0.0002) 0.011 (0.006)	0.0001 (0.0002) 0.011 (0.006)			$\begin{array}{c} -0.0001\\ (0.0001)\\ -0.002\\ (0.004)\\ 0.0001*\\ \end{array}$	$\begin{array}{c} -0.0001 \\ (0.0001) \\ -0.002 \\ (0.004) \\ \end{array}$			$\begin{array}{c} -0.0001\\ (0.0001)\\ -0.002\\ (0.004)\\ 0.0001* \end{array}$	$\begin{array}{c} -0.0001 \\ (0.0001) \\ -0.002 \\ (0.004) \\ \end{array}$		
gs_total_P_sq	(0.00000* (0.00000* (0.000)	(0.00005) -0.00000*			(0.0002) -0.000*	(0.0002) -0.000*			(0.00002) -0.000*	(0.0002) -0.000* (0.000)		
tas_115	(000:0)	(00:0)	0.005^{+}	0.005+	(202.2)	(000:0)	0.0003	0.0002	(000:0)	(000:0)	0.0002	0.0001
tas_22p5_25			0.007	0.007			-0.002	$\begin{array}{c} (0.002) \\ -0.002 \\ (0.002) \end{array}$			(0.001)	-0.002 (0.002)
tas_25_27p5			0.007	0.009			(0.003) (0.005)	(0.003) (0.003)			-0.003 (0.004)	-0.003 -0.004
tas_27p5_30			0.007	0.008			-0.012	$\begin{pmatrix} 0.003 \\ -0.012 \\ 0.005 \end{pmatrix}$			(0.00±) -0.016 (0.007)	$\begin{pmatrix} 0.004 \\ -0.015 \\ 0.007 \end{pmatrix}$
tas_g30			0.037 0.037	0.036			-0.008	(0.008) (0.011)			-0.011 (0.011)	-0.010
pr.15			0.0002	0.0002			-0.002^{+}	$\begin{array}{c} (0.011) \\ -0.002 \\ (0.001) \end{array}$			-0.001^*	-0.001+
GDD_0_29.L			(0.001)	(100:0)			(0.001)	(100.0)	-0.0001	-0.0001	(1000.0)	(2000-0)
GDD-gt-29.L									0.002	(0.002) 0.002 (0.003)		
gs_total_P.L									0.0001*	0.0001*		
gs_total_P_sq.L									(0.0000) -0.00000* (0.000)	(0.00002) -0.000000*		
tas_115.L									(000:0)	(000:0)	-0.001	-0.001
tas_22p5_25.L											(0.003) -0.004	(0.003) -0.003
tas_25_27p5.L											(0.004) -0.007	(0.004) -0.006
tas_27p5_30.L											(0.007) -0.013*	(0.007) $-0.012*$
tas_g30.L											(0.000) -0.001	-0.001
pr-15.L											(0.003) -0.002	-0.002
log_yield.L									-0.935*	-0.939*	(0.002) $-0.917*$	(0.002) -0.921*
T LR/SR ratio						-7.09		-4.24	(0.000)	(0.004) -0.76	(0.0.0)	0.09
P LK/SK rano Prices	Z	λ	Z	X	Z	0.87 Y	×	Y	N	1.09 Y	Z	Y
Country FE	X	7 5	X	<i>ξ ζ</i>	2 2	2 >	2 >	2 >	2 >	2 >	2 2	2 2
Country trends	× ×	2 2	< ×	< ×	λ,	λ		λ,	λ	λ,	λ,	λ,
$\frac{N}{\text{Adjusted R}^2}$	57 0.513	57 0.508	57 0.489	57 0.485	1,718	1,718	1,718	1,718	1,661	1,661	1,661	1,661

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table B.41: Yield responses in Americas—Irrigated Spring Wheat

		-Long differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0001 (0.0002)	0.0001 (0.0002)			-0.0001 (0.0001)	-0.0001 (0.0001)			-0.0001 (0.0001)	-0.0001 (0.0001)		
GDD-gt-29	0.011 (0.006)	0.011			-0.002	-0.002			(0.004)	-0.002		
gs_total_P	0.0001+	0.0001 + 0			0.0001*	0.0001*			0.0001*	0.0001*		
gs_total_P_sq	(0.0000) -0.00000*	(0.0000) -0.00000*			(0.0002) -0.000*	(0.0002) -0.000*			(0.0002) -0.000*	(0.0002) -0.000*		
tas_115	(0.000)	(0.000)	0.005+	0.005^{+}	(0.000)	(0.000)	0.0003	0.0002	(0.000)	(0.000)	0.0002	0.0001
tas_22p5_25			$(0.002) \\ 0.007 \\ 0.007$	$(0.002) \\ 0.007 \\ (0.007)$			(0.001) -0.002	(0.001) -0.002			(0.001) -0.001	(0.001) -0.002
tas_25_27p5			0.006)	(0.006) 0.009			(0.002) -0.003	(0.002) -0.003			(0.002) -0.003	(0.002) -0.003
tas_27p5_30			(0.014) 0.007	0.008			(0.005) -0.012	(0.005) -0.012			(0.004) -0.016	(0.004) -0.015
tas_g30			0.037	0.036			(0.003) -0.008	(0.003) -0.008			(0.007) -0.011	(0.007) -0.010
pr-15			(0.024) 0.0002	(0.023) 0.0002			(0.011) -0.002	(0.011) -0.002			-0.001^{*}	(0.011) $-0.001+$
GDD_0_29.L			(0.001)	(0.001)			(0.001)	(0.001)	-0.0001	-0.0001	(0.0004)	(0.000.0)
GDD-gt-29.L									$(0.0002) \\ 0.002 \\ (0.002)$	(0.002) 0.002		
gs_total_P.L									$(0.003) \\ 0.0001* \\ (0.0003)$	$(0.003) \\ 0.0001* \\ (0.0003)$		
gs_total_P_sq.L									(0.00003) -0.000000*	(0.00002)		
tas_115.L									(0.000)	(0.000)	-0.001	-0.001
tas_22p5_25.L											(0.003)	(0.003) -0.003
tas_25_27p5.L											(0.004) -0.007	(0.004) -0.006
tas_27p5_30.L											(0.007) $-0.013*$	(0.007) $-0.012*$
tas_g30.L											(0.000) -0.001	-0.001
pr.15.L											(0.009) -0.002	(0.003) -0.002
log-yield.L									-0.935*	-0.939*	(0.002) $-0.917*$	(0.002) $-0.921*$
T LR/SR ratio						-7.09		-4.24	(0.008)	(0.064) -0.76	(0.0.0)	0.09
P LR/SR ratio Prices	Z	7	Z	7	×	0.87 Y	>	-0.11 7	Z	1.09 Y	Z	γ
Country FE	λ	Λ.	ζ,	λ,	Z Z	. ~	. ×	. N	N	N	,	z Z
Grid-cell FE Country trends	≿ ≿	≿ ≥	≥ ≥	≥ ≥	\ \ \	> >	۷ ,۷	× ×	> >	> >	۷ ۲	× ×
N Adingted B2	57	57	57	57	1,718	1,718	1,718	1,718	1,661	1,661	1,661	1,661
N paisning	CIC:O	0.5.0	0.409	0.40	0.010	C/0.U	0.07	C/0.0	0.410	0.421	0.417	0.427

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.42: Yield responses in Europe—Irrigated Maize

		-Long differences (15y)	(15y) —			Panel	lel			ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.002*	0.002*			-0.00001 (0.0001)	-0.00001 (0.0001)			-0.0001 (0.0001)	-0.0001 (0.0001)		
GDD-gt_29	-0.010^{+} (0.005)	-0.010^{+} (0.005)			-0.001 (0.001)	-0.0005 (0.001)			0.0001	(0.001)		
gs_total_P	0.0001 (0.0001)	0.0001 (0.0001)			0.0002* (0.0001)	0.0002* (0.0001)			0.0002* (0.0001)	0.0002* (0.0001)		
gs_total_P_sq	_0.000 (0.00000)	(0.0000)			0.00000	0.00000			_0.00000 (0.000)	_0.00000 (0.000)		
tas_115			-0.017*	-0.017^{+}	(22.22)		0.001*	0.001*	(2)	(2)	0.002*	0.002*
tas_22p5_25			0.002	0.007			0.001	0.001			0.0004	0.001
tas_25_27p5			(0.002) $0.013*$	$(0.002) \\ 0.013* \\ (0.003)$			(0.002) -0.001	(0.002) -0.001			(0.002) -0.002	$\begin{pmatrix} 0.002 \\ -0.002 \end{pmatrix}$
tas_27p5_30			(0.002) $-0.010*$	(0.002) $-0.010*$			0.002+	0.002			0.003+	0.003
tas_g30			0.027	0.027			(0.001) $-0.004*$	(0.001) $-0.002*$			(0.001) -0.003* (0.0003)	(0.001) (0.0005)
pr.15			(0.018) -0.003	(0.018) $-0.003+$			(0.001) $-0.003*$	(0.0004) $-0.003*$			(0.0003) -0.002*	(0.0003) $-0.002*$
GDD_0_29.L			(100.0)	(0.002)			(0,000,0)	(60000)	0.0001	0.0002	(0.0004)	(0.0004)
GDD-gt-29.L									(0.0002) -0.002*	(0.0002) -0.001		
gs_total_P.L									0.0002*	0.0002*		
gs-total-P-sq.L									(0.0000) -0.00000 (0.00000)	(0.0000)		
tas_115.L									(2000)	(00000:0)	0.002*	0.002*
tas_22p5_25.L											0.002	0.003
tas_25_27p5.L											0.0003	0.003
tas_27p5_30.L											0.001	0.001
tas_g30.L											(0.003) -0.002	0.002
pr_15.L											(0.002) $-0.002*$	(0.002) $-0.002*$
log_yield.L									-0.776*	-0.799*	(0.001) $-0.773*$	(0.001) $-0.796*$
T LR/SR ratio						$\frac{19.99}{2}$	'	-13.43	(0.019)	(0.024) -0.74	(0.011)	(0.020) -3.44
P LK/SR ratio Prices	×	>	Z	7	Z	0.72 V	>	1.19 V	Z	7 I.I8	>	0.87 Y
Country FE	: X	. X	;		. Z	. X	. Z	. X	Z Z	. X	. Z	. X
Grid-cell FE Country trends	< >	< ≿	< >	< >	<i>ک</i> ہ	× ×	× ×	>- >-	>- >-	>- >-	× ×	>- >-
N Adinsted R ²	46	46	46	46	1,353	1,353	1,353	1,353	1,307	1,307	1,307	1,307
N pageint				66.6	2000	(00.0		1000	001.0			

Notes: Significance levels + $p<0.1,\,^{\ast}$ p<0.05

Table B.43: Yield responses in Europe—Irrigated Rice

		-Long differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.002* (0.0003) $0.187*$	-0.002* (0.0003)			0.0001 (0.0001) -0.001	0.0001 (0.0001)			0.0001 (0.0001)	0.0001 (0.0001)		
gs_total_P	(0.019) $-0.0001+$	$(0.029) \\ -0.0001*$			(0.003)	(0.002)			(0.003)	(0.003)		
gs_total_P_sq	(0.00003) 0.00000* (0.000)	$(0.00002) \ 0.00000* \ (0.000)$			(0.00002) -0.000	(0.00002) -0.000			(0.00002) -0.000	(0.00002) -0.000		
tas_115	(000:0)	(000:0)	0.008+	0.008+	(0.00.0)	(000:0)	-0.001	-0.001	(000:0)	(000:0)	-0.001	-0.001
tas_22p5_25			(0.004) -0.014^*	$\begin{pmatrix} 0.004 \\ -0.015^* \\ 0.001 \end{pmatrix}$			(0.0003) -0.0003	$\begin{pmatrix} 0.0004 \\ -0.0003 \\ 0.001 \end{pmatrix}$			$\begin{pmatrix} 0.0004 \\ -0.0004 \\ 0.001 \end{pmatrix}$	(0.0003) -0.0004
tas_25_27p5			0.023*	$0.026* \\ 0.026* \\ 0.002)$			$\begin{pmatrix} 0.001 \\ -0.001 \end{pmatrix}$	-0.001			(0.001) -0.001	-0.001
tas_27p5_30			0.008	(0.002) -0.077^{+}			(0.001) -0.003	-0.003			$\begin{pmatrix} 0.001 \\ -0.005 \\ 0.005 \end{pmatrix}$	(0.001) -0.004
tas_g30			(0.013) -0.043	(0.036) -0.014 (0.066)			0.004 $0.012*$	0.012*			$0.018* \\ 0.018* \\ 0.003)$	0.017*
pr-15			-0.004^*	-0.003^{*}			0.0001	0.00003			0.001	(0.00) (0.001) (0.0005)
GDD_0_29.L			(0.001)	(0.001)			(\$000.0)	(*000:0)	0.0001	0.0001	(0.000#)	(6000.0)
GDD-gt_29.L									(0.0001) -0.007*	(0.0001) -0.007*		
gs_total_P.L									-0.0001+	(0.000) -0.00005*		
gs_total_P_sq.L									0.000	0.000(0)		
tas_115.L									(000:0)	(000:0)	-0.00000	0.00004
tas_22p5_25.L											0.002	0.002
tas_25_27p5.L											(0.001) -0.0003	-0.0004
tas_27p5_30.L											0.003	0.003
tas-g30.L											-0.006	(0.00s) -0.007
pr-15.L											0.002*	0.002*
log_yield.L									-0.918*	-0.912*	(0.001) $-0.906*$	(0.001) -0.901*
T LR/SR ratio					ı	-107.93		-1.21	(0.050)	(0.051) 115.78	(0.051)	(0.053) -0.38
P LR/SR ratio	Þ	>	>	>	N	-35.88 V	>	$\frac{114.71}{V}$	×	-17.48	Z	3.26 V
Country FE	λ λ	λ,	ζ ,	λ,	2 2	N N	2 2	N N	× ×	N	× ×	N N
Grid-cell FE	Z >	Z ×	2 2	2 2	د	۲ ۲	د	\ \ \ \	× ×	> >	> >	× ×
N	21	21	21	21	602	602	602	602	581	581	581	581
Adjusted R ²	0.956	0.958	0.958	0.965	0.693	0.693	0.692	0.692	0.446	0.447	0.454	0.455

Notes: Significance levels $\, ^{+}\, p < 0.1, ^{*}\, p < 0.05$

Table B.44: Yield responses in Asia—Irrigated Maize

		——Long differences (15y)	ces (15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.001	0.001			-0.0001	-0.0002+			-0.0001	-0.0003*		
GDD-gt_29	0.001	0.001			-0.0002	(50003) -0.0003			-0.0002	-0.0004		
gs_total_P	(0.001) -0.0001	(0.001) -0.0001			0.0001*	$(0.0003) \\ 0.0001*$			$0.0004) \\ 0.0001*$	(0.0004) $0.0001*$		
os fotal P so	(0.0001)	(0.0001)			(0.00004) -0.000*	(0.00004)			(0.00003)	(0.00004)		
he- 1-mioi-eg	(0.000)	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)		
tas_115			0.006	0.006			0.004*	0.007*			0.005*	0.007*
tas_22p5_25			0.010*	0.010*			0.002*	0.002			0.001	0.0005
tas_25_27p5			0.0002	(0.001) -0.00002			(0.001) -0.001	(0.001) -0.001			(0.0005) -0.001	(0.001) $-0.002*$
tas_27p5_30			(0.003) 0.003	0.002			0.001	0.0004			0.001	0.00005
tas_g30			(0.004) 0.0005	(0.004) -0.0001			(0.001) -0.001	(0.001) -0.002			(0.001) -0.002	(0.001) -0.004*
pr.15			(0.006) -0.00004	(0.006) -0.0001				(0.002) -0.003			(0.002) -0.004*	(0.002) -0.003
GDD_0_29.L			(0.004)	(0.004)			(0.001)	(0.002)	-0.0001	-0.0003*	(0.001)	(0.002)
GDD-gt-29.L									$(0.0001) \\ 0.0004 \\ (0.0004)$	(0.0001) 0.0002		
gs_total_P.L									(0.0004) $0.0002*$	(0.0004) $0.0002*$		
gs_total_P_sq.L									(0.0001) -0.000*	(0.0001) -0.000000*		
tas_115.L									(0.000)	(0.000)	*800.0	0.014*
tas_22p5_25.L											0.003*	(0.002) 0.002
tas_25_27p5.L											0.001	0.001
tas_27p5_30.L											0.001	$0.002 \\ 0.0002 \\ 0.001$
tas_g30.L											0.002	(0.001) 0.002
pr-15.L											(0.002) -0.005*	(0.002) -0.004
log_yield.L									-0.724*	*289.0	(0.002) $-0.724*$	(0.003)
T LR/SR ratio						-1.65		0.04	(0.082)	(0.085) -0.69	(0.083)	(0.084) -0.45
P LR/SR ratio Prices	Z	>	>	>	Z	-0.47	>	0.03 Y	Z	1.33 V	>	$\frac{1.21}{V}$
Country FE	; ~;		; 🗸 ;	· 🗸 :	;	· Z ;	;	. 2 ;	: 2 ;	· Z ;	;	· Z ;
Grad-cell FE Country trends	2	× ×	۷ ک	< <	~ <i>~</i>	~ <i>~</i>	~	×	×	×	×	~
N Adjusted D2	230	230	230	230	7,051	5,695	7,051	5,695	6,806	5,400	6,806	5,400
N pasenface	(c)	0.4.00	0.440	Ì	0.007	0.013		0.010	797.0	0.00	0.515	0.00

Notes: Significance levels $\,^{+}$ $p<0.1,\,^{*}$ p<0.05

Table B.45: Yield responses in Asia—Irrigated Soybeans

(0.0000) (0.			Tong differences (1)	ces (15v)			Panel	[e]			ECM		
0.00001 0.00002 0.000003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.000003		(E)	. (2)	(3)	(4)	(5)			(8)	(6)			(12)
Company Comp	GDDgt_29 GDDgt_29 gs_total_P gs_total_P_sq tas_115 tas_22p5_25 tas_22p5_25 tas_27p5_30	0.001* (0.0000) 0.005* (0.00002) 0.00001* (0.0000) (0.000)	0.001* (0.0000) 0.005* (0.00002) (0.00001) (0.0000) (0.000)	-0.005* (0.0001) 0.004+ (0.0004) 0.003 (0.001) 0.002* (0.0000000)	-0.005* (0.0001) 0.004+ (0.0004) 0.003 (0.001) 0.003* (0.00000)	0.0004* (0.0001) 0.001* (0.0001) 0.00004 (0.00001) -0.000 (0.000)	0.0002* (0.0000) 0.001+ (0.0001) 0.00002 (0.00001) -0.000 (0.000)	-0.002* (0.00002) 0.001 (0.0002) (0.0004) 0.004+ (0.0004)	-0.003* (0.00003) -0.001 (0.0002) (0.0004) (0.0004)	0.0004* (0.0000) 0.001* (0.0001) 0.00003 (0.00001) -0.000 (0.000)	0.0002* (0.0000) 0.002* (0.0001) 0.00002 (0.00001) -0.000 (0.000)	$\begin{array}{c} -0.001+\\ -0.001+\\ (0.0001)\\ 0.001+\\ (0.0002)\\ 0.002*\\ (0.00002)\\ 0.004*\\ (0.0003)\\ 0.006*\\ \end{array}$	-0.001* (0.0001) -0.001 (0.0002) -0.0001) (0.0001) (0.0002)
1.1. 1.1.	ras-850 pr.15			$\begin{pmatrix} 0.000 \\ 0.0001 \end{pmatrix} \\ 0.003^* \\ \begin{pmatrix} 0.00004 \end{pmatrix}$	(0.0001) $(0.003*$			(0.0004) (0.0002 (0.0001)	(0.002) (0.002) (0.0001)			$\begin{pmatrix} 0.000 \\ 0.0001 \end{pmatrix}$ $\begin{pmatrix} 0.001 \\ 0.0001 \end{pmatrix}$	$\begin{pmatrix} 0.003 \\ 0.0002 \end{pmatrix}$ $\begin{pmatrix} 0.002 * \\ 0.0001 \end{pmatrix}$
9.1.	GDD_0_29.L			(100000)	(+00000)			(100000)	(10000)	0.0001*	-0.00002	(100000)	
L C C C C C C C C C C C C C C C C C C C	GDD-gt-29.L									(0.0003) -0.003* (0.0001)	-0.0005*		
sq.L. 55.L. 55.L. 55.L. 56.L. 57.L. 57.L. 58.L. 58.L. 59.L. 59	gs_total_P.L									0.0001*	0.00003		
5.L. 5.L. 5.L. 5.L. 5.L. 5.L. 5.L. 5.L.	gs_total_P_sq.L									(0.000) (0.000)	(2000.) -0.000* (0.000)		
5.L 5.L 6.L 6.L 6.L 6.L 6.L 6.L	tas_115.L											-0.0004^{*}	-0.001*
5.L 60.L 60.L 61.L 62.L 63.L 64.2 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 60.015) 7.71 60.015) 60.015) 7.71 60.015) 7.71	tas_22p5_25.L											0.002*	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tas_25_27p5.L											0.002*	(0.0003) $-0.0003*$
atio N Y N Y N Y N Y N	tas_27p5_30.L											-0.0001	(0.001) -0.001*
A.2	tas_g30.L											(20002) -0.003*	(0.001) -0.001*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pr.15.L											0.002*	0.003*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	log_yield.L									-0.753*	-0.903*	(0.0004) -0.743* (0.019)	(0.001) $-0.897*$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T LR/SR ratio						4.2		7.71	(0100)	-0.29	(212:0)	-0.53
$egin{array}{cccccccccccccccccccccccccccccccccccc$	Prices	N	Υ	N	λ	N	Ϋ́	N	Y	N	Y	N	Y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Country FE Grid-cell FE	> <	> <	> ×	> <	× ×	× ×	× ×	≿ ≽	× ×	≿ ≽	× ×	≥ >-
0.256 0.256 0.287 0.799 0.824 0.795 0.822 0.476 0.489	Country trends	N	N 1	N 101	N 101	Y 2 065	Y 121	Y 2 065	Y 121	Y 2064	Y 0100	Y 2064	Y 610
	$^{\prime\prime}$ Adjusted $ m R^2$	0.256	0.256	101 0.287	0.287	3,063 0.799	2,121 0.824	3,063 0.795	2,121 0.822	2,964 0.476	2,018 0.489	2,964 0.477	2,018 0.492

Notes: Significance levels + $p<0.1,\ ^{\ast }$ p<0.05

Table B.46: Yield responses in Asia—Irrigated Rice

		—Long differences (15v)	es (15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29 GDD_gt_29	0.001* (0.0003) $0.005+$ (0.002)	0.001* (0.0003) 0.005 (0.003)			$\begin{array}{c} -0.0001\\ (0.0001)\\ -0.001\\ (0.001)\\ \end{array}$	-0.0002* (0.0001) -0.001 (0.001)			-0.0001 ⁺ (0.00005) -0.001 (0.001)	-0.0002* (0.0001) -0.001 (0.001)		
gs_total_P_sq	(0.0001) (0.000 (0.000)	(0.0001) (0.000 (0.000)			(0.0004) -0.000 (0.000)	(0.0003) -0.000 (0.000)			(0.0003) -0.000 (0.000)	(0.0003) -0.000 (0.000)		
tas_115			-0.004 (0.009)	-0.005 (0.007)			0.001+ (0.001)	0.005* (0.001)			0.003* (0.0004)	$0.005* \\ (0.001)$
tas_25_275_ tas_25_27p5			(0.001) (0.001) $0.006*$				(0.0003) (0.0003)	(0.0005) (0.0005) -0.0004			(0.0004) (0.0005) -0.00002	(0.001) (0.001) -0.0005
tas_27p5_30			(0.001) $0.007*$	(0.001) 0.007			(0.0003) $-0.001*$	(0.0004) -0.0004			(0.0004) 0.00003	(0.0004) -0.0004
tas_g30			$\begin{pmatrix} 0.003 \\ 0.009 \\ 0.007 \end{pmatrix}$	0.004)			(0.0003) $-0.005*$	(0.001) $-0.005*$			(0.001) $-0.004*$	(0.001) $-0.005*$
pr.15			0.002 0.002	0.003			0.002	0.002			0.002	0.001
GDD_0_29.L			(100:0)	(100:0)			(100.0)	(100:0)	-0.0004^{*}	-0.0005^*	(100.0)	(100:0)
GDD_gt_29.L									(0.0001) 0.001* (0.0004)	(0.0001) 0.001* (0.0004)		
gs_total_P.L									0.00003	0.00005*		
gs-total-P-sq.L									(0.0003) -0.000 (0.000)	(0.0002) -0.000+ (0.000)		
tas_115.L									(000:0)	(000.0)	0.009*	0.010*
tas_22p5_25.L											(0.001) -0.001*	(0.002) $-0.001*$
tas_25_27p5.L											$\begin{pmatrix} 0.0004 \\ -0.0002 \\ 0.001 \end{pmatrix}$	$\begin{pmatrix} 0.001 \\ -0.001^* \end{pmatrix}$
tas_27p5_30.L											(0.001) -0.0002	$\begin{pmatrix} 0.0004 \\ -0.001* \\ 0.0004 \end{pmatrix}$
tas_g30.L											0.001	0.001
pr_15.L											0.001	0.001
log-yield.L									-0.844*	-0.828*	(0.001) $-0.840*$	(0.001) $-0.836*$
T LR/SR ratio						-5.62		-1.86	(0.022)	-1.89	(0.020)	(0.034) -0.15
P LR/SR ratio	>	7	>	>	Z	$\frac{3.25}{V}$	×	$\frac{1.6}{V}$	Z	$\frac{1.47}{V}$	Z	0.93
Country FE	λ	λ,	λ ,	X	N	N	N	N	N	N	N N	N
Grid-cell FE Country trends	< >	≥ ≥	≥ ≥	≥ ≥	> >	> >	\ \ \	\ \	> >	> >	<i>ک</i> ہے	~ <i>~</i>
N Adjusted D2	175	175	175	175	5,262	4,246	5,262	4,246	5,084	4,067	5,084	4,067
N posenfav	t t t t	7000	0.27	CICO	6.0	1.624	C+0.0	0.02	C1C.U	0.417	0.710	0.412

Notes: Significance levels " $p < 0.1,\ ^{\ast} \ p < 0.05$

Table B.47: Yield responses in Asia—Irrigated Winter Wheat

(0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0003) (0.0003) (0.0001) (0.			-Long differences (15y)	(15y) —							ECM		
0.0003			(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
9 (0.003*) (0.0003*) (0.0003*) (0.0003*) (0.0003*) (0.0003*) (0.0003*) (0.0	GDD-0-29	0.0003 (0.0003)	0.0003			0.0001 (0.0001)	0.0001 (0.0001)			0.0001 (0.0001)	0.00002 (0.0001)		
Common C	GDD-gt-29	0.004^{*} (0.002)	0.003 + (0.002)			0.001* (0.0003)	0.001^* (0.0003)			0.001^* (0.0003)	0.001* (0.0003)		
sq (0.0000)	gs_total_P	-0.0001	-0.0001			0.0001^*	0.0001*			0.0001*	0.0001*		
Control Cont	gs_total_P_sq	0.000	0.000			-0.000*	-0.000*			-0.000*	-0.000*		
10040 0.0003 0.0004 0.0002 0.0004 0.0003 0.0004 0.0002 0.0003 0.0004 0.0003 0.00003 0.0003 0.0003 0.00003	tas_115	(0.0000)	(0.0000)	-0.010^{*}	*60000-	(0.000)	(0.000)	-0.002*	-0.001+	(0.000)	(0.000)	-0.001	-0.0005
Company Comp	tas_22p5_25			(0.004) -0.012	(0.003) -0.011			(0.001) -0.003	(0.001) -0.004			(0.001) -0.004	(0.001) -0.004^*
00	tas_25_27p5			(0.010) -0.016	(0.011) -0.014			(0.003) -0.002	(0.002) -0.002			(0.002) -0.002	(0.002) -0.002
5.1. (a. 0.02) (a. 0.03) (tas_27p5_30			(0.019) -0.018	(0.019) -0.014			(0.003) -0.003	(0.003) $-0.003+$			(0.002) -0.002	(0.002) $-0.003*$
Set 1. Se	tas_g30			0.003	0.002			(0.002) -0.0005	(0.002) -0.0004			(0.001) -0.001	(0.001) -0.001
5.L 5.L 5.L 5.L 5.L 5.L 5.L 5.L	pr.15			(0.014) $0.006*$	•			(0.003) -0.003	(0.003) $-0.003+$			(0.003) -0.003	(0.003) $-0.003*$
9.L L (0.0001) sq.L (0.0002) sq.L (0.0003) sq.L (0.0001) -0.0000(* (0.0001) -0.000	GDD_0_29.L			(0.002)	(0.002)			(0.002)	(0.001)	0.0002	0.0001	(0.007)	(0.001)
Sq.L	GDD-gt_29.L									(0.0001) 0.002*	(0.0001) 0.002*		
Seq.L. 5.1. 5.1. 6.0000)* 6.0000	gs_total_P.L									0.0002*	0.0002*		
5.L.	gs_total_P_sq.L									(0.0001) -0.000000*	(0.0000) -0.00000*		
5.L 6.L 6.L 6.L 6.L 6.L 6.L 6.L 6	tas_115.L									(000:0)	(20:0)	-0.002^{+}	
5.L 60.L 6	tas_22p5_25.L											(0.001) -0.002	(0.001) $-0.002*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tas_25_27p5.L											(0.001) -0.001	(0.001) -0.001
atio $N \qquad Y \qquad N \qquad N$	tas_27p5_30.L											(0.003) -0.003*	(0.003) -0.004*
A.L. R ratio R ratio N Y N Y N N N N N N N N N	tas_g30.L											0.002)	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pr.15.L											(0.003) -0.004	(0.003) -0.004+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	log-yield.L									-0.739*	-0.778*	(0.002) $-0.735*$	(0.002) -0.774^*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T LR/SR ratio						3.79		-5.97	(0.029)	(0.023) 2.77	(0.024)	(0.030) -5.08
$egin{array}{cccccccccccccccccccccccccccccccccccc$	P LK/SK rano Prices	N	Y	N	λ	N	-0.99 Y	N	Y	N	I.44 Y	N	1.3 Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Country FE	X X	7 5	×	×	2 2	2 2	2 2	2 2	2 >	2 >	2 >	2 2
224 220 224 220 6,813 6,152 6,813 6,152 6,555	Country trends	2 ×	Z Z	2 2	2 2	λ,	Λ,	ζ,	. X	Λ,	Λ,	Λ,	ζ,
0.129 0.129 0.129 0.124 0.010 0.014 0.015	$\frac{N}{\text{Adjusted R}^2}$	224 0.129	220 0.125	224 0.129	220 0.124	6,813 0.810	6,152 0.814	6,813 0.810	6,152 0.814	6,555 0.325	5,904 0.336	6,555 0,326	5,904 0.339

Notes: Significance levels + $p<0.1,\,^{\ast}\,p<0.05$

Table B.48: Yield responses in Asia—Irrigated Spring Wheat

		(far) some sum such	(123)									
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0003	0.0003			0.0001	0.0001			0.0001	0.00002		
GDD-gt-29	0.004*	0.003+			0.001*	0.001^{*}			0.001^*	0.001*		
ge total D	(0.002)	(0.002)			(0.0003)	(0.0003)			(0.0003)	(0.0003)		
ss-total_r	(0.0001)	(0.0001)			(0.00005)	(0.00004)			(0.00001)	(0.00004)		
gs_total_P_sq	0.000	0.000			-0.000*	-0.000*			*00000	*00000		
tas_115	(2000:0)	(0000000)	-0.010^{*}	*600.0	(200:0)	(000:0)	-0.002*	-0.001^{+}	(200:0)	(2000)	-0.001	-0.0005
tas_22p5_25			(0.004) -0.012	(0.003) -0.011			(0.001) -0.003	(0.001) -0.004			(0.001) -0.004	(0.001) -0.004^*
tas_25_27p5			(0.010) -0.016	(0.011) -0.014			(0.003) -0.002	(0.002) -0.002			(0.002) -0.002	(0.002) -0.002
tas_27p5_30			(0.019) -0.018	- 1			(0.003) -0.003	(0.003) $-0.003+$			(0.002) -0.002	(0.002) $-0.003*$
tas_g30			0.003	0.002			$\begin{pmatrix} 0.002 \\ -0.0005 \\ 0.003 \end{pmatrix}$	$\begin{pmatrix} 0.002 \\ -0.0004 \\ 0.003 \end{pmatrix}$			(0.001) -0.001	(0.001) -0.001
pr.15			0.014 0.006	$0.006* \\ 0.006*$			(0.003) -0.003	(0.003) $-0.003+$			(0.003) -0.003	(0.003) $-0.003*$
GDD_0_29.L			(0.002)	(0.002)			(0.002)	(0.001)	0.0002	0.0001	(0.002)	(0.001)
GDD-gt-29.L									$(0.0001) \\ 0.002* \\ (0.0024)$	(0.0001) $0.002*$		
gs_total_P.L									$(0.0004) \\ 0.0002* \\ (0.0001)$	(0.0005) 0.0002*		
gs_total_P_sq.L									(0.0000) -0.000000*	(0.0001) -0.000000*		
tas_115.L									(0.000)	(0.000)	-0.002^{+}	-0.001
tas_22p5_25.L											(0.001) -0.002	(0.001) $-0.002*$
tas_25_27p5.L											(0.001) -0.001	(0.001) -0.001
tas_27p5_30.L											(0.003) $-0.003*$	(0.003) $-0.004*$
tas_g30.L											0.002 0.004	0.004
pr.15.L											(0.003) -0.004	(0.003) -0.004
log-yield.L									-0.739*	-0.778*	(0.002) $-0.735*$	(0.002) -0.774^*
T LR/SR ratio						3.79		-5.97	(0.025)	(0.029)	(0.024)	(0.030) -5.08
P LR/SR ratio Prices	N	λ	Z	λ	N	Y = 0.99	×	-2.4	N	Y	Z	V
Country FE Grid-cell FE	\sim κ	\sim \prec	> <	\sim \prec	∠ >	<i>≿</i>	2 2	2 2	<i>≿</i>	2 >	2 >	2 2
Country trends	Z	N	2	Z	Y	K	λ	K	Y	Y	λ	λ
$_{ m N}$ Adinsted R 2	224	220	224	220	6,813	6,152	6,813	6,152	6,555	5,904	6,555	5,904

Notes: Significance levels $\,^{+}\,p < 0.1\,,\,^{*}\,p < 0.05$

Table B.49: Yield responses in Africa—Irrigated Maize

		-Long differences (15v)	(15v)			- Panel	el			ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_029 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25	0.002 (0.001) -0.013+ (0.005) 0.001* (0.00004) -0.00000*	0.002 (0.001) -0.012 (0.006) 0.001* (0.00004) -0.00000*	-0.059* (0.017) -0.031* (0.001)	-0.059* (0.016) -0.032* (0.0001)	-0.001+ (0.0004) 0.013 (0.007) 0.0003* (0.000)	-0.001+ (0.0004) 0.013 (0.007) 0.0003* (0.0001) -0.00000 (0.000)	0.006 (0.004) -0.010+ (0.003)	0.006 (0.004) -0.009+ (0.004)	-0.001+ (0.0004) 0.013 (0.009) 0.0003* (0.0001) -0.00000 (0.000)	-0.001+ (0.0004) 0.013 (0.009) 0.0003* (0.0001) -0.00000 (0.000)	0.006 (0.004) -0.009 (0.004)	0.006 (0.003) (0.009)
tas_27p5_30 tas_27p5_30 tas_g30 pr_15 GDD_0_29.L GDD_et_29.L			0.026 (0.019) (0.013) (0.013) (0.063) (0.003) (0.003)	(0.002) (0.020) (0.012) (0.012) (0.002) (0.002)			$\begin{array}{c} -0.009 + \\ (0.004) \\ -0.016 * \\ (0.005) \\ 0.038 \\ (0.021) \\ (0.002) \\ \end{array}$	-0.009 (0.004) -0.017* (0.005) (0.001) (0.001) (0.001)	-0.0001 (0.0001) -0.013* (0.003) 0.001*	-0.0002* (0.0001) -0.013* (0.003) (0.0001)	$\begin{array}{c} -0.009 + \\ (0.004) \\ -0.017* \\ (0.005) \\ 0.041 \\ (0.002) \\ (0.002) \end{array}$	$^{+}$ 0.009+ $^{+}$ 0.003) $^{+}$ 0.005) $^{0.042}$ 0.042 $^{0.025}$ 0.002)
gs-total_r-sq.r									(0.00000)	(0.00000)		-
tas_115.L tas_22p5_25.L tas_25_27p5.L											$\begin{array}{c} 0.002 + \\ (0.001) \\ -0.007 * \\ (0.002) \\ -0.005 * \\ (0.002) \end{array}$	0.003+ (0.002) $-0.007*$ (0.002) $-0.005*$ (0.002)
tas-27p5-30.L tas-g30.L											$\begin{array}{c} -0.015 \\ (0.010) \\ 0.001 \\ (0.012) \end{array}$	$\begin{array}{c} -0.016^{+} \\ (0.009) \\ 0.002 \\ (0.011) \end{array}$
pr.15.L log_vield.L									*896.0-	-0.972*	$\begin{pmatrix} 0.004 \\ 0.004 \end{pmatrix}$ $\begin{pmatrix} 0.004 \\ -0.966 \end{pmatrix}$	$\begin{array}{c} -0.014^{*} \\ -0.003 \\ -0.975^{*} \end{array}$
T LR/SR ratio						-0.93 2.41		-3.76 2.08	(0.038)	(0.041) -0.99 1.6	(0.033)	(0.035) 0.04 1.27
Prices Country FE Grid-cell FE	$S \not \prec S$	<i>≯ </i>	2 4 8	S	$\zeta \lesssim \zeta$	\ \ \ \ \ \ \ \	2 2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 2 2		222	
Country trends N Adjusted R ²	N 24 0.680	N 24 0.659	N 24 0.738	N 24 0 771	Y 709 0.570	Y 703 0.569	Y 709 0.567	Y 703 0.567	Y 685 0.551	Y 677 0.552	Y 685 0 533	Y 677 0 534
N pagefox	0000	60.0				10000			1000			

Notes: Significance levels " $p<0.1,\ ^{\ast }p<0.05$

Table B.50: Yield responses in Africa—Irrigated Rice

		-Long differences (15y)	(15y) —				 			ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.00004 (0.001)	0.0001 (0.001)			-0.001* (0.0001)	-0.0004^{*} (0.0001)			-0.001* (0.0002) $-0.001*$	-0.0003^{+} (0.0002)		
gs_total_P	(0.002) (0.0002) (0.0002	$(0.002) \\ -0.0004^*$			(0.0002) 0.0001	$(0.0002) \\ 0.0001 +$			(0.00004) 0.0001	$(0.00004) \\ 0.0001+$		
gs_total_P_sq	(0.0003) 0.00000	$(0.0001) \\ 0.00000*$			(0.0001) -0.000	(0.0001) -0.000			(0.0001) -0.000	(0.0001) -0.000		
tas_115	(0.00000)	(0.0000)	1.919*	0.719	(0000)	(0.000)	0.084^{+}	0.068	(0.000)	(0.000)	0.067	0.048
tas_22p5_25			(0.432) $0.015*$	(0.536) -0.014			(0.043) $-0.001*$	(0.049) -0.001 ⁺			(0.034) $-0.002*$	(0.041) -0.002
tas_25_27p5			(0.003) 0.027	(0.009) $-0.045+$			(0.0004) -0.004^*	(0.001) $-0.003*$			(0.001) $-0.003*$	(0.001) $-0.002*$
tas_27p5_30			0.023	(0.022) -0.037			(0.001) $-0.005*$	(0.001) $-0.004*$			(0.001) -0.004^*	(0.001) $-0.003*$
tas_g30			(0.015) $0.035+$	(0.016) -0.019			(0.001) -0.012*	(0.002) -0.011*			(0.001) $-0.011*$	(0.001) $-0.010*$
pr.15			(0.018) -0.002	(0.011) -0.009			(0.001) -0.001	(0.001) -0.001			(0.001) -0.001	(0.002) -0.001
GDD-0-29.L			(0.010)	(0.00.0)			(0.001)	(00:00)	-0.0004	-0.0003	(0.001)	(0.007)
GDD-gt-29.L									(0.0003) $-0.002*$	(0.0003) -0.002*		
gs_total_P.L									0.0001	0.0002		
gs_total_P_sq.L									(0.0001) -0.000	(0.0001) -0.000		
tas_115.L									(000:0)	(000:0)	0.175*	0.134
tas_22p5_25.L											0.001	0.003
tas_25_27p5.L											0.002	0.002
tas_27p5_30.L											(0.002) -0.0005	(0.004) -0.0004
tas_g30.L											(0.002) $-0.012*$	(0.003) $-0.011*$
pr_15.L											0.003)	0.0001
log_yield.L									-0.722*	-0.721*	(0.003) $-0.726*$	(0.003) $-0.728*$
T LR/SR ratio						-2.36		1.74	(0.030)	(0.116) 1.58	(0.095)	$\frac{(0.119)}{1.15}$
P LR/SR ratio Prices	×	>	Z	7	×	-3.14	Z	$\frac{5.98}{7}$	Z	1.4 Y	Z	_0.1 Y
Country FE	;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \	× ×	\ \ \	22	2 >	2 >	2	2 >	2 >	2 >
Country trends	2 2	Z Z	2 2	2 2	ζ,	Λ,	ζ,	Λ,	λ,	ζ,	ζ,	ζ,
N Adjusted \mathbb{R}^2	26 0.767	21 0.835	26 0.835	21 0.895	663 0.836	561 0.852	663 0.835	561 0.850	636	536 0.372	636 0.363	536 0.361
6							;		i			

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.51: Yield responses in Africa—Irrigated Winter Wheat

		-Long differences (15y)	(15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	()	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0003 (0.001) -0.000*	0.0003 (0.001)			$\begin{array}{c} -0.0004 \\ (0.0003) \\ -0.002 + \end{array}$	-0.0003+ (0.0002) $-0.002*$			-0.001^{+} (0.0002) $-0.003*$	-0.0004^{+} (0.0002) $-0.003*$		
gs_total_P	$(0.001) \\ 0.001+$	$(0.001) \\ 0.001*$			$(0.001) \\ 0.0002*$	$(0.001) \\ 0.0002*$			$(0.0005) \\ 0.0002*$	$(0.001) \\ 0.0002*$		
gs_total_P_sq	(0.0003)	(0.0001)			(0.0001) $-0.000+$	(0.0001)			(0.0001)	(0.0001)		
tas_115	(00000:0)	(00000:0)	0.008*	0.009	(000.0)	(000.0)	0.001	0.001	(000.0)	(000.0)	0.002+	0.002
tas_22p5_25			0.023	0.024			(0.001) -0.003*	(0.001) $-0.004*$			-0.003*	(0.001) -0.004 + (0.001)
tas_25_27p5			0.010	0.007			(0.001) -0.008*	(0.001) $-0.007*$			(0.001) -0.006*	(0.001) -0.006* (0.003)
tas_27p5_30			0.011*				(0.001) -0.007*	(0.001) -0.006*			(0.001) -0.008*	(0.002) -0.007* (0.003)
tas_g30			$\begin{pmatrix} 0.002 \\ -0.001 \end{pmatrix}$	$\begin{pmatrix} 0.002 \\ -0.002 \\ 0.014 \end{pmatrix}$			(0.001) $-0.010*$	(0.001) $-0.011*$			(0.001) -0.009*	(0.005) -0.009* (0.002)
pr.15			0.026				(0.001) -0.007*	(0.001) -0.007 +			(0.005) -0.006*	(0.002) -0.007
GDD_0_29.L			(600.0)				(600.0)	(600.0)	-0.0002	-0.0001	(0.007)	(600.0)
GDD-gt-29.L									0.001	0.00000		
gs_total_P.L									0.001 0.0002*	0.0002*		
gs_total_P_sq.L									(0.000) -0.000 (0.000)	-0.00000* (0.000)		
tas_115.L										(22.2)	0.001	0.0005
tas_22p5_25.L											(0.001) -0.003	(0.002) -0.005+
tas_25_27p5.L											(0.003) -0.009*	(0.003) -0.008*
tas_27p5_30.L											(0.001) -0.003	(0.001) -0.001
tas_g30.L											0.003*	0.001
pr-15.L											(0.001) -0.004*	(0.001) -0.005* (0.003)
log_yield.L									-0.847*	-0.925*	(0.002) $-0.871*$	(0.002) $-0.929*$ (0.042)
T LR/SR ratio						3.74		0.14	(4.00.4)	0 1 14	(0.030)	(0.0 1 2) -0.12
F LN/SN rand Prices	N	λ	N	Y	N	9.10 Y	N	-0.52 Y	N	Y	N	V. 12
Country FE	> <	× ×	> <	> <	2 2	≥ >	2 >	× ×	2 2	2 >	≥ >	2 2
Country trends	,	,	. >	Z Z	Α,	X	ζ,	χ	Λ,	ζ,	χ	X
$\frac{N}{\text{Adjusted R}^2}$	39 0.945	37 0.938	39 0.944	37 0.939	1,155	1,080	1,155 0.846	1,080	1,115	1,041	1,115	1,041
اد												

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.52: Yield responses in Zone 1—Irrigated Maize

		Long differences (15v)	(15v) —			Panel				ECM	1	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.001* (0.0001)	0.001* (0.0001)			0.0001 (0.0001)	0.00000 (0.0001)			0.00004 (0.00005)	0.00001 (0.00004)		
GDD-gt-29	-0.003 (0.002)	-0.003 (0.002)			-0.003 ⁺ (0.002)	-0.004* (0.001)			-0.003 ⁺ (0.002)	-0.004^* (0.001)		
gs_total_P	-0.00004 (0.00004)	-0.00004 (0.00004)			0.0001^* (0.00002)	0.0001^* (0.00001)			0.0001^* (0.00002)	0.0001^* (0.00001)		
gs_total_P_sq	0.000	0.000			-0.000*	-0.000*			-0.000*	-0.000*		
tas_115		(0000)	-0.001	-0.001			-0.002	-0.001	(20010)	(2001)	-0.001	-0.001
tas_22p5_25			0.004	0.004			0.0002	0.00000			0.0002	(0.003) -0.0001
tas_25_27p5			(0.002) $0.003*$				(0.001) -0.001	(0.001) -0.001			(0.001) -0.001	(0.001) -0.001
tas_27p5_30			0.001	0.005			0.001	(0.001) -0.00001			0.0004	(0.001) -0.0003
tas_g30			(0.004) -0.005	(0.004) -0.005			(0.001) $-0.010*$	$\begin{array}{c} (0.001) \\ -0.011* \\ (0.002) \end{array}$			(0.002) $-0.010*$	(0.001) $-0.011*$
pr.15			-0.001 -0.001	(0.007) -0.001			(0.003) -0.002*	-0.002^*			-0.002*	(0.003) $-0.002*$
GDD-0-29.L			(0.001)	(0.001)			(c000.0)	(0.0003)	0.00000	-0.00004	(0.0004)	(6,000.0)
GDD-gt-29.L									(0.0001) -0.002	(0.0001) -0.003*		
gs_total_P.L									0.0001*	0.0001*		
gs_total_P_sq.L									(0.000) -0.000*	(0.0002) -0.000*		
tas_115.L									(000:0)	(000:0)	-0.0001	0.001
tas_22p5_25.L											0.001	(0.004) -0.00001 (0.0003)
tas_25_27p5.L											$\begin{pmatrix} 0.001 \\ -0.001 \end{pmatrix}$	(0.0003) -0.001
tas_27p5_30.L											(0.001) -0.0001	(0.001) -0.001
tas_g30.L											(0.001) -0.009*	(0.001) $-0.010*$
pr-15.L											(0.002) $-0.003*$	(0.001) $-0.002*$
log-yield.L									-0.851*	-0.936*	(0.0005) $-0.853*$	(0.001) -0.926*
T LR/SR ratio						0.88		0.43	(0.036)	(0.032) 0.86	(0.029)	(0.040) 0.88
P LR/SR ratio	×	>	Z	>	Z	-0.39 V	×	0.74 V	Z	0.96	Z	1.04
Country FE	X	X	ζ λ	λ	N N	N	2 2	N	× ×	N N	N N	N N
Grid-cell FE	2 2	2 2	2 2	≥ ≥	~ <i>~</i>	۷ ۸	۷ ۲	۷ ۸	۷ ۲	~ <i>~</i>	~ <i>~</i>	۷ ۸
N Adingted B2	118	118	118	118	3,611	2,953	3,611	2,953	3,493	2,835	3,493	2,835
W paignfaw	0.091	0.000	0.002	0.079	0.912	0.931	0.912	0.720	0.407	0.493	0.40	+/+

Notes: Significance levels " $p < 0.1, \ ^{\ast} \, p < 0.05$

Table B.53: Yield responses in Zone 1—Irrigated Soybeans

		——Long differences (15v)	es (15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_22p5_25 tas_27p5_30 tas_27p5_30 pr_15	0.001* (0.000) 0.005* (0.000) 0.0001* (0.000) (0.000)	0.001* (0.000) 0.005* (0.000) (0.000) -0.000* (0.000)	-0.005* (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)	-0.005* (0.000) 0.014* (0.000) 0.0002* (0.000) 0.013* (0.000) 0.011*	0.001* (0.0001) 0.001* (0.0001) 0.00000) (0.0000+ (0.000)	0.0003* (0.0001) 0.0001 (0.0001) -0.000 (0.000)	0.005* (0.0002) 0.002+ (0.0001) 0.004* (0.0003) 0.005* (0.0003) 0.000* (0.0003)	-0.009* (0.0001) -0.0004 (0.0005) -0.001 (0.0003) (0.0003) (0.0003) (0.0003)	0.001* (0.00001) 0.001* (0.00002) -0.00000) -0.0000+ (0.000)	0.0003* (0.0001) 0.001* (0.0001) -0.00001 (0.000)	0.0003 0.0003 0.0003 0.0004 0.0003 0.0054 0.0007 0.0007 0.0003 0.007 0.0003	0.0003 0.0003 0.0001 0.0004 0.0002 0.002* 0.003* 0.003* 0.003*
GDD_0_29.L GDD_gt_29.L gs_total_P.L gs_total_P_sq.L									0.0002* (0.00001) -0.003* (0.0001) 0.0001* (0.00002) -0.000*	0.0001* (0.00001) -0.002* (0.0001) 0.00002 (0.00002) -0.000*		
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L											-0.003* (0.0002) 0.006* (0.001) 0.004* (0.0005) 0.001*	0.007* (0.0003) (0.001) (0.001) (0.0005) (0.0005)
tas_g30.L pr_15.L log_yield.L									-0.688*	*962.0-	$\begin{array}{c} -0.001 \\ -0.001 \\ 0.0005 \\ 0.004 \\ -0.687 \\ \end{array}$	(0.001) (0.001) (0.005* (0.0004) (0.822*
T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE Country trends N	× × × × × × × × × × × × × × × × × × ×	$\gamma \gamma \leq \zeta \leq \frac{1}{4}$	S > S > S > S > S > S > S > S > S > S >	7 > 5	N N Y Y Y 1,630	31.19 -8.28 Y Y Y Y Y 1,143	N N Y Y Y 1,630	16.02 4.27 Y N Y Y Y Y Y Y	N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	(0.014) -2.96 -1.11 Y Y Y Y Y Y 1,088	(0.025) N Y Y Y 1,576	(0.015) -0.61 1.92 Y Y Y Y Y Y
Adjusted K ²	0.187	0.187	0.386	0.386	0.781	0.820	0.772	0.819	0.5/4	0.531	0.584	0.560

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.54: Yield responses in Zone 1—Irrigated Rice

		-Long differences (15v)	(15v) —			Panel				ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0.29 GDD_gt.29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_27p5_30 tas_27p5_30 tas_27p5_30	0.001 (0.001) 0.005 (0.003) -0.0001 (0.0002) (0.00000)	0.001 (0.0005) 0.005 (0.003) -0.0001 (0.0002) (0.00000)	-0.0001 (0.005 * (0.002) (0.004) (0.004) (0.002) (0.003) (0.003) (0.007) (0.007)	0.004 (0.006) 0.010* (0.003) 0.010* (0.003) 0.001 (0.002) 0.0002	0.00003 (0.0001)* (0.0003) 0.0001* (0.00004) -0.000* (0.000)	0.00000 (0.0001)* (0.0003) 0.0001* (0.00004) (0.000)	0.0003 (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)	0.00002 (0.0001)* (0.0003) 0.0001)* (0.0004) -0.000* (0.000)	0.00002 (0.0001)* (0.0003) 0.0001* (0.00004) -0.000* (0.000)	0.001 (0.001) (0.004) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)	0.001 (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
GDD_0_29.L GDD_gt_29.L gs_total_PL gs_total_P_sq.L									-0.0002* (0.001) -0.003 (0.01) 0.0001* (0.0004) -0.000*	-0.0002* (0.001) -0.0003 (0.001) 0.0001* (0.00005) -0.000*		
tas_115.L tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L											0.003* (0.001) -0.0001 (0.001) 0.0004 (0.001) -0.001	0.003* (0.001) -0.001 (0.001) -0.0002 (0.001) (0.001)
tas_g30.L pr_15.L log_yield.L									-0.850*	-0.864*	$\begin{array}{c} -0.003 \\ -0.003 \\ -0.002* \\ -0.853* \\ 0.035 \end{array}$	$\begin{array}{c} -0.003 \\ -0.003 \\ -0.002* \\ -0.869* \\ -0.869* \\ \end{array}$
T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE Country trends N Adjusted R ²	N X X X X X X X X X X X X X X X X X X X	× × × × × × × × × × × × × × × × × × ×	$\begin{array}{c} X \\ Y \\ N \\ N \\ 203 \\ 0.626 \end{array}$	$Y \\ X \\ N \\ N \\ 198 \\ 0.622$	N N Y Y 6,029 0.891	$\begin{array}{c} -4.02 \\ -0.97 \\ X \\ N \\ Y \\ Y \\ Y \\ Y \\ S.296 \\ 0.908 \end{array}$	$N \\ N \\ Y \\ Y \\ Y \\ 6,029 \\ 0.890$	$0.29 \\ V \\ S,296 \\ 0.908$	N N Y Y 5.824 0.461	0.26 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1	N N Y Y 5,824 0.459	0.77 0.77 1.72 N Y Y 5,093 0.426
	-	2	34000		• ``				•	2	<u> </u>	3

Notes: Significance levels $\,^{+}\,p < 0.1,^{\,*}\,p < 0.05$

Table B.55: Yield responses in Zone 1—Irrigated Winter Wheat

(1) (2) (3) (4) (5) (6) (7) (1) (1) (1) (2) (3) (4) (5) (6) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			-Long differences (15y)	; (15y) —							ECM		
29 (0.002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.00003) (0.00			(2)	(3)	(4)	(5)		(7)	(8)	(6)	(10)	(11)	(12)
Page 100003 (0.002) (0.003) (0.003) (0.003) (0.003) (0.0003) (0.0003) (0.0003) (0.00002) (0.0003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.0003	GDD_0_29	0.002 (0.001)	0.002 (0.001)			0.0003+	0.0003*			0.0003 + (0.0001)	0.0002 + (0.0001)		
P-8q (0.0003) (0.00003) (0.00003) (0.00004) (0.00004) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.0001)	67-18-COD	(0.062)	(0.062)			(0.063)	(0.052)			(0.064)	(0.054)		
P-sq	gs_total_P	0.0003 (0.0003)	0.0003 (0.0003)			0.00003)	0.00004 (0.00002)			0.00004 (0.00003)	0.00004 (0.00003)		
5.25 (0.007) (0.007) (0.007) (0.007) (0.001) (0.003) (0.004) (0.004) (0.004) (0.003) (0.001) (0.002) (0.003) (0.004) (0.001) (0.001) (0.001) (0.002) (0.003)	gs_total_P_sq	0.00000	-0.00000			+00000	*000.00			-0.000+	+00000		
5.25	tas_115		(2001)	-0.011	-0.011			-0.003*	-0.003^{+}			-0.003*	-0.002
77p5	tas_22p5_25			0.003	0.003			0.006*	0.004+			0.001	(0.001) 0.004^{+}
5.30	tas_25_27p5			(0.004) 0.118^*				0.008*	0.002 $0.003*$			0.007*	(0.002) $(0.005+$
29.L 20.003	tas_27p5_30			(0.013) -0.014	(0.013) -0.014			0.008	0.002			0.008	0.002)
29.L 29.L 29.L 1.22.L 1.22.L 1.23.L 2.24.L 2.25.L 2.25	tas_g30			0.030 0.173	0.173			(0.011) $-0.152*$	(0.009) $-0.059+$			(0.014) -0.084	(0.010) -0.049
29.L L.29.L P.sq.L L P.sq.L L L L L L L L L L L L L L L L L L L	pr.15			0.03	0.003			(0.036) -0.001	$\begin{pmatrix} 0.026 \\ -0.001 \end{pmatrix}$			(0.030) -0.0003	(0.078) -0.001
P.Sq.L. P.Sq.L. L. 5.25.L. 5.30.L. A.L. R. ratio N. Y. N. Y. N. Y. N.	GDD_0_29.L			(0.00)	(00.00)			(0.001)	(0.001)	0.0003	0.0003	(0.001)	(0.001)
P-sq.L L 5.25.L L 2.25.L L L L A.L L Rratio N Y Y N Y N N N N N N N N N N N N N N	GDD-gt_29.L									(0.0003) -0.017	(0.0002) 0.017		
P. sq. L L L S. 25.L S. 25.L L L L L A.L L A.L L A.L L A.L Ratio R rat	gs_total_P.L									0.0001	0.00005		
5-25.L 5-25.L L L L L L A.L A.	gs-total_P-sq.L									(0.0001) -0.000 (0.000)	(0.000) (0.000)		
5.25.L 27p5.L 5.30.L L L A.L Rratio R ratio N Y N Y N Y N N Y N N N N	tas_115.L									(000.0)	(200:0)	-0.004	-0.003
27p5.L 5_30.L L L d.L R ratio R ratio N Y Y N Y N Y N N N N N N	tas_22p5_25.L											0.009*	0.004)
5.30.L L d.L Rratio N Y N Y N Y N Y N N Y N N	tas_25_27p5.L											0.008*	0.004)
L. A. C.	tas_27p5_30.L											0.002 0.014	0.008
ALE Reatio Retatio N Y N Y N Y N Y N N N N N N N N N N N	tas-g30.L											(0.049) -0.213^{+}	(0.040) -0.050
N Y N Y N Y N Y N Y N X N X N X N X N X	pr.15.L											(0.123) -0.001	(0.123) -0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	log_yield.L									-0.790*	-0.922*	(0.002) $-0.811*$	(0.002) -0.927*
N Y N Y N Y N Y Y Y N N N N N N N N N N Y Y Y Y Y 31 31 31 31 31 927 837 927	T LR/SR ratio						6.83		-2.93	(0.034)	(0.118) 0.54	(0.041)	(0.114) 1.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F LK/SK rano Prices	N	Y	N	X	N	vc., Y	N	-5.16 Y	N	1.1 Y	N	Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Country FE	× ×	× ≺	> ≥	× ×	2 2	2 2	× ×	2 2	2 2	2 2	2 >	2 2
31 31 31 927 837 927	Country trends	Z Z	Z Z	ξ Ζ	ζ Ζ,	λ	λ,	λ,	λ,	Λ.	λ,	λ.	λ
Adiusted R ² 0.635 0.635 0.673 0.673 0.837 0.837 0.833	N Adiusted $ m R^2$	31 0.635	31	31	31 0.673	927	837	927	837	896	806	896 0.286	806 0.349

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p < 0.1,\,^{\scriptscriptstyle *}$ p < 0.05

Table B.56: Yield responses in Zone 1—Irrigated Spring Wheat

(1) (2) (3) (4) (5) (6) (7) (1) (1) (1) (2) (3) (4) (5) (6) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			-Long differences (15y)	; (15y) —							ECM		
29 (0.002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.00003) (0.00			(2)	(3)	(4)	(5)		(7)	(8)	(6)	(10)	(11)	(12)
Page 100003 (0.002) (0.003) (0.003) (0.003) (0.003) (0.0003) (0.0003) (0.0003) (0.00002) (0.0003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.0003	GDD_0_29	0.002 (0.001)	0.002 (0.001)			0.0003+	0.0003*			0.0003 + (0.0001)	0.0002 + (0.0001)		
P-8q (0.0003) (0.00003) (0.00003) (0.00004) (0.00004) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.0001)	67-18-COD	(0.062)	(0.062)			(0.063)	(0.052)			(0.064)	(0.054)		
P-sq	gs_total_P	0.0003 (0.0003)	0.0003 (0.0003)			0.00003)	0.00004 (0.00002)			0.00004 (0.00003)	0.00004 (0.00003)		
5.25 (0.007) (0.007) (0.007) (0.007) (0.001) (0.003) (0.004) (0.004) (0.004) (0.003) (0.001) (0.002) (0.003) (0.004) (0.001) (0.001) (0.001) (0.002) (0.003)	gs_total_P_sq	0.00000	-0.00000			+00000	*000.00			-0.000+	+00000		
5.25	tas_115		(2001)	-0.011	-0.011			-0.003*	-0.003^{+}			-0.003*	-0.002
77p5	tas_22p5_25			0.003	0.003			0.006*	0.004+			0.001	(0.001) 0.004^{+}
5.30	tas_25_27p5			(0.004) 0.118^*				0.008*	0.002 $0.003*$			0.007*	(0.002) $(0.005+$
29.L 20.003	tas_27p5_30			(0.013) -0.014	(0.013) -0.014			0.008	0.002			0.008	0.002)
29.L 29.L 29.L 1.22.L 1.22.L 1.23.L 2.24.L 2.25.L 2.25	tas_g30			0.030 0.173	0.173			(0.011) $-0.152*$	(0.009) $-0.059+$			(0.014) -0.084	(0.010) -0.049
29.L L.29.L P.sq.L L P.sq.L L L L L L L L L L L L L L L L L L L	pr.15			0.03	0.003			(0.036) -0.001	$\begin{pmatrix} 0.026 \\ -0.001 \end{pmatrix}$			(0.030) -0.0003	(0.078) -0.001
P.Sq.L. P.Sq.L. L. 5.25.L. 5.30.L. A.L. R. ratio N. Y. N. Y. N. Y. N.	GDD_0_29.L			(0.00)	(00.00)			(0.001)	(0.001)	0.0003	0.0003	(0.001)	(0.001)
P-sq.L L 5.25.L L 2.25.L L L L A.L L Rratio N Y Y N Y N N N N N N N N N N N N N N	GDD-gt_29.L									(0.0003) -0.017	(0.0002) 0.017		
P. sq. L L L S. 25.L S. 25.L L L L L A.L L A.L L A.L L A.L Ratio R rat	gs_total_P.L									0.0001	0.00005		
5-25.L 5-25.L L L L L L A.L A.	gs-total_P-sq.L									(0.0001) -0.000 (0.000)	(0.000) (0.000)		
5.25.L 27p5.L 5.30.L L L A.L Rratio R ratio N Y N Y N Y N N Y N N N N	tas_115.L									(000.0)	(200:0)	-0.004	-0.003
27p5.L 5_30.L L L d.L R ratio R ratio N Y Y N Y N Y N N N N N N	tas_22p5_25.L											0.009*	0.004)
5.30.L L d.L Rratio N Y N Y N Y N Y N N Y N N	tas_25_27p5.L											0.008*	0.004)
L. A. C.	tas_27p5_30.L											0.002 0.014	0.008
ALE Reatio Retatio N Y N Y N Y N Y N N N N N N N N N N N	tas-g30.L											(0.049) -0.213^{+}	(0.040) -0.050
N Y N Y N Y N Y N Y N X N X N X N X N X	pr.15.L											(0.123) -0.001	(0.123) -0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	log_yield.L									-0.790*	-0.922*	(0.002) $-0.811*$	(0.002) -0.927*
N Y N Y N Y N Y Y Y N N N N N N N N N N Y Y Y Y Y 31 31 31 31 31 927 837 927	T LR/SR ratio						6.83		-2.93	(0.034)	(0.118) 0.54	(0.041)	(0.114) 1.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F LK/SK rano Prices	N	Y	N	X	N	vc., Y	N	-5.16 Y	N	1.1 Y	N	Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Country FE	× ×	× ≺	> ≥	× ×	2 2	2 2	× ×	2 2	2 2	2 2	2 >	2 2
31 31 31 927 837 927	Country trends	Z Z	Z Z	ξ Ζ	ζ Ζ,	λ	λ,	λ,	λ,	Λ.	λ,	λ.	λ
Adiusted R ² 0.635 0.635 0.673 0.673 0.837 0.837 0.833	N Adiusted $ m R^2$	31 0.635	31	31	31 0.673	927	837	927	837	896	806	896 0.286	806 0.349

Notes: Significance levels $\,^{\scriptscriptstyle +}$ $p < 0.1,\,^{\scriptscriptstyle *}$ p < 0.05

Table B.57: Yield responses in Zone 2—Irrigated Maize

(1) (2) (3) (1) (2,0003** (0.0003** (0.0000) (0.	(4) (5) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(5) (6)	6	8	ć	(01)		
0.003* (0.000) 0.006* (0.000) -0.00004* (0.000) 0.000* (0.000) -0.017* -0.017* -0.033* (0.000) 0.0038* (0.000) 0.019* (0.000) 0.019* (0.000) 0.010*				(a)	(6)	(10)	(11)	(12)
-0.017* -0.017* -0.010) 0.033* 0.008* 0.008* 0.019* 0.019* 0.010* 0.012* 0.000)	× _	0.0003 0.00001 0.002+ 0.003* (0.001) (0.001) -0.0002 -0.0002 (0.001) (0.001) -0.00003 (0.00003) (0.00003) (0.00003) (0.0000)	0001 001) 11) 002 003)		0.0003 (0.0002) 0.002 (0.001) -0.00003 (0.00003) (0.00003)	0.0001 (0.0002) 0.004+ (0.001) -0.00002 (0.00004) (0.00004)		
	0.033*		ı	1 1	,	,	-0.002 (0.007) 0.00000	-0.001 (0.009) $-0.003*$
	(0.000) 0.008*		$\begin{pmatrix} 0.001 \\ 0.001^* \\ 0.0001 \end{pmatrix}$	$ \begin{array}{cccc} 1) & (0.001) \\ 1* & -0.002* \\ 0.0001) & (0.0001) \end{array} $			(0.001) 0.0002	(0.001) $-0.002*$
	(0.000) 0.019* (0.000)		$\begin{pmatrix} 0.0001 \\ 0.004^* \\ 0.002 \end{pmatrix}$				0.004*	0.002* 0.002* 0.0001)
	0.034* (0.000)		(0.0003) 0.006* (0.0001)				$\begin{pmatrix} 0.002\\ 0.004*\\ 0.0002 \end{pmatrix}$	$0.004* \\ (0.0001)$
	0.012* (0.000)		0.001 (0.001)	$ \begin{array}{ccc} 1 & 0.003 \\ 1) & (0.001) \end{array} $		-	0.002 (0.001)	0.002 (0.001)
					0.0004* (0.0002)	0.0002 + (0.0001)		
					-0.002* (0.001)	-0.0004 (0.001)		
					0.00003 (0.0001)	0.00002 (0.0001)		
					(0.000)	(0.000)		
							-0.014^* (0.007)	-0.010 (0.008)
							0.001	0.001
							0.001	0.0002
							$0.003* \\ 0.003* \\ 0.0003$	0.002*
							0.0003*	0.002*
							0.002	0.003
					-0.740*	-0.746*	(0.002) -0.761*	(0.002) $-0.731*$
		1.93		12.79	(0.017)	(0.023) -0.1	(0.021)	(0.018) 0.45
N		1.78 Y		$\frac{4.65}{Y}$	N	-1.16 Y	N	1.08 Y
	Y N	≥ >	2 >	2 >	2 >	2 >	2 >	2 >
2 2			λ,	Λ,	ν ,	Λ,	, , ,	λ,
19	19 579	579 414 0 946 0 951	579	414	560	394 0 526	560	394

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table B.58: Yield responses in Zone 2—Irrigated Rice

		—Long differences (15v)	(15y) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	-0.0004 (0.0004)	-0.00005 (0.0005)			0.0003* (0.0001)	0.0002* (0.0001)			0.0002* (0.0001)	0.0002 (0.0001)		
GDD_gt_29	-0.048* (0.007)	-0.040* (0.010)			-0.0001 (0.001)	-0.0001 (0.001)			0.00005 (0.001)	0.0001		
gs_total_P	-0.0001^*	-0.00004			-0.00001	-0.00001			-0.00001	-0.00001		
gs_total_P_sq	0.000*	0.000			0.000	0.000)			0.000	0.000		
tas_115			-0.020^{+}	-0.039*	(2001)		-0.018^*	-0.018*	(2001)		-0.022*	-0.022*
tas_22p5_25			0.0004	0.002			0.001	0.003 $0.001+$			0.0003	(0.006) 0.0003
tas_25_27p5			0.0001	0.003			(0.0003) $0.001*$	0.001*			0.001+	(0.0003) 0.001
tas_27p5_30			(0.002) 0.005	0.003			0.003*	(0.0003) $0.002*$			0.002*	(0.0003) 0.002*
tas_g30			(0.003) -0.067	(0.003) $-0.063+$			0.001	0.001			0.0001	0.0001
pr_15			(0.050) 0.002	(0.034) -0.005			0.001	0.001			0.001	0.001
GDD_0_29.L			(enn:n)	(0.004)			(0.001)	(0.001)	0.0002*	0.0001	(0.001)	(0.001)
GDD-gt-29.L									(0.0001) 0.001	0.001		
gs_total_P.L									0.00000	0.00000		
gs_total_P_sq.L									(0.0002) -0.000 (0.000)	(0.0007) -0.000		
tas_115.L									(0.000)	(0.000)	-0.016*	-0.016*
tas_22p5_25.L											0.007	(0.008) 0.001
tas_25_27p5.L											0.001	0.001
tas_27p5_30.L											0.002*	(0.001) 0.002*
tas_g30.L											(0.001) -0.001	(0.001) -0.001
pr_15.L											(0.003) (0.0001)	0.0002
log-yield.L									-0.658*	-0.658*	(0.001) $-0.659*$	(0.001) $-0.658*$
T LR/SR ratio						614.09	1	-72.88	(0.111)	(0.116) 11.29	(0.116)	(0.120) -5.24
P LR/SR ratio	Z	>	×	>	Z	$\frac{3.39}{V}$	>	-7.09 V	Z	-0.29	×	0.38 V
Country FE	X	λ,	χ	χ	z N	N	N N	Z Z	N N	N	N	N
Grid-cell FE	2 2	2 2	2 2	2 2	× ×	۷ ۸	۷ ۸	\ \ \	۷ ۸	۷ ۸	۷ ۲	\ \ \
ay action	27	27	27	27	825	821	825	821	795	791	795	791
Adjusted R ²	0.864	0.890	0.846	0.870	0.934	0.934	0.934	0.934	0.308	0.309	0.305	0.305

Notes: Significance levels " $p < 0.1, \ ^{\ast} \ p < 0.05$

Table B.59: Yield responses in Zone 2—Irrigated Winter Wheat

		-Long differences (15v)	(15v) —			Panel				ECM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0001 (0.0002)	0.0001 (0.0002)			-0.0001 (0.0002)	-0.0001 (0.0002)			-0.0002 (0.0002)	-0.0001 (0.0002)		
GDD-80-29	(0.001)	(0.001)			(0.0004)	(0.0004)			(0.001)	(0.001)		
go-total-r	(0.001)	(0.001)			(0.00005)	(0.0001)			(0.00003)	(0.00003)		
gs-t0tat_r-sq	(0.00000)	(0.00000)			(0.000)	(0.000)			(0.000)	(0.000)		
tas_115			-0.003 (0.005)	-0.002 (0.005)			-0.0004 (0.001)	-0.0005 (0.001)			0.0002 (0.001)	(0.001)
tas_22p5_25			-0.012 (0.012)	-0.010 (0.012)			-0.004 ⁺ (0.002)	-0.004^{+} (0.002)			-0.004^{*} (0.002)	-0.005* (0.002)
tas_25_27p5			-0.025	- 1			-0.004*	-0.004*			-0.004* (0.001)	-0.004^{*}
tas_27p5_30			(0.019) $-0.021+$			•	(0.002) -0.006*	(0.002) -0.006* (0.003)			(0.001) -0.006*	(0.005) -0.006*
tas_g30			(0.011) -0.005				(0.002) -0.003	(0.002) -0.003			(0.002) -0.003	$\begin{pmatrix} 0.002 \\ -0.003 \\ 0.003 \end{pmatrix}$
pr.15			(0.015) -0.002	(0.014) -0.002		•	(0.003) $-0.004*$	(0.003) $-0.003*$			(0.003) $-0.004*$	(0.003) -0.004^*
GDD_0_29.L			(600.0)				(0.001)	(0.001)	-0.00003	-0.00001	(0.001)	(0.001)
GDD-gt-29.L									(0.0002) 0.002*	(0.0002) $0.002*$		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.00004) -0.00000	(0.00000) -0.00000 (0.00000)		
tas_115.L									(00000)	(00000.0)	0.00003	-0.0001
tas_22p5_25.L											(0.001) $-0.003*$	$\begin{pmatrix} 0.001 \\ -0.004^* \end{pmatrix}$
tas_25_27p5.L											(0.001) -0.005*	$\begin{pmatrix} 0.001 \\ -0.004 \\ 0.003 \end{pmatrix}$
tas_27p5_30.L											(0.002) -0.003*	(0.002) $-0.003+$
tas_g30.L											0.004	0.003
pr_15.L											(0.003) -0.006*	(0.003) -0.006*
log-yield.L									-0.778*	-0.798*	(0.001) $-0.775*$	(0.002) -0.793*
T LR/SR ratio						4.66		1.78	(0.033)	(0.038) 3.49	(0.033)	(0.038) -1.03
P LR/SR ratio	×	>	×	>	×	$\frac{5.22}{V}$	Z	0.6 V	×	$\frac{1.84}{V}$	×	$\frac{1.51}{V}$
Country FE	λ	Λ,	λ	λ,	N	N	Z Z	N	N	N	N N	N
Grid-cell FE Country frends	≿ ≿	≥ ≥	≥ ≥	≥ ≥	> >	<i>ک</i> ہے	<i>د</i>	~ <i>~</i>	۷ ۲	<i>ک</i> ک	\ \ \	<i>ک</i> ہے
N Adiusted R ²	206	202	206	202	6,238 0.842	67 44	6,238	5,979	6,006	5,758	6,006	5,758
- The second sec											70000	

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.60: Yield responses in Zone 2—Irrigated Spring Wheat

DD.0.29	'	T	-Long differences (15y)	15y) —			Panel				——ECM		
29			(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
P (0.001) (0.001) P (0.001) (0.001) P (0.001) (0.001) P (0.0001) (0.0001) P-sq (0.0000) (0.0000) C-sq.L R ratio	DD_0_29	0.0001 (0.0002)	0.0001 (0.0002)			-0.0001 (0.0002)	-0.0001 (0.0002)			-0.0002 (0.0002)	-0.0001 (0.0002)		
P. 0.0001* 0.0001* 0.0001* 0.00005) (2.00005) (2.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0015) (0.0	67-18-70 - 18-70	(0.001)	(0.001)			(0.0004)	(0.0004)			(0.001)	(0.001)		
P-sq -0.00000* 0.00000* 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00		0.001^* (0.0001)	0.001* (0.0001)			0.0001 + (0.00005)	0.0001 + (0.0001)			0.0001^* (0.00003)	$0.0001* \\ (0.00003)$		
5.25 (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.012) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013) (0.013) (0.014) (0.012) (0.003) (0.003) (0.003) (0.003) 2.9.L P.L P.L P.L P.L P.L P.L P.L		-0.00000*	-0.00000*			0.000	0.000			0.000	0.000		
5.25 - (0.012) (0.002) 5.30 - (0.012) (0.012) - (0.025) (0.012) - (0.025) (0.013) 5.30 - (0.019) (0.019) - (0.019) (0.019) - (0.019) (0.019) - (0.015) (0.014) - (0.015) (0.014) - (0.015) (0.014) - (0.003) (0.003) - (0.003) (0.0	115	(000000)	(2222)	-0.003	-0.002	(2000)		-0.0004	-0.0005		(2000)	0.0002	0.0001
775 - 0.021 - 0.023 - 0.023 - 0.023 - 0.023 - 0.021 - 0.021 - 0.023 - 0.023 - 0.023 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.005 - 0.003	_22p5_25			(0.003) -0.012	(0.003) -0.010			(0.001) -0.004 ⁺	(0.001) -0.004 ⁺			(0.001) -0.004^*	(0.001) $-0.005*$
5.30	25_27p5			(0.012) -0.025	(0.012) -0.023			(0.002) $-0.004*$	$(0.002) -0.004^*$			(0.002) $-0.004*$	(0.002) -0.004*
29.L 1.29.L 1.29.L 1.29.L 1.29.L 1.29.L 1.20.L	_27p5_30			(0.019) -0.021				(0.002) $-0.006*$	(0.002) -0.006*			(0.001) -0.006*	(0.002) -0.006*
29.L 1.29.L P. Sq.L P. Sq.L L. S. S. S. L. S. S. S. L. R. ratio R. ra	-g30			(0.011) -0.005	(0.012) -0.006			(0.002) -0.003	(0.002) -0.003			(0.002) -0.003	(0.002) -0.003
29.L 1.29.L P. Sq.L L 5.25.L S.25.L L A.L R ratio R ra	15				(0.014) -0.002			(0.003) $-0.004*$	(0.003) $-0.003*$			(0.003) $-0.004*$	(0.003) -0.004^*
29.L P.sq.L L L L L L A.1 A.1 B. ratio R ratio R ratio R ratio N P P P P P P P P P P P P P P P P P P	D-0-29.L			(0.00.0)	(enn.u)			(0.001)	(0.001)	-0.00003	-0.00001	(0.001)	(0.001)
P.L. P. sq. L. L. 5.25.L. L. L. L. L. A.L. R ratio R ratio R ratio R ratio N Y N Y N P. FE Y Y Y N P. FE Y Y N P. FE Y N P. FE N N N N P. FE N N P. FE N N P. FE N N P. FE N P. FE N N P. FE N	D-gt-29.L									(0.0002) 0.002*	$\begin{pmatrix} 0.0002 \\ 0.002 * \\ 0.002 \end{pmatrix}$		
L 5.25.L L L L L L L L L L L L L L L L L L L	total_P.L									0.0002*	0.0002*		
L 5.25.L 5.30.L L L A.L R ratio R ratio R ratio R ratio N Y Y N Y N Y N N N N N N N N N N N N	total_P-sq.L									(0.00004) -0.00000 (0.00000)	(0.00000) -0.00000		
5.25.L 77p5.L L L L A.L A.L A.L Bratio R ratio R ratio R ratio R ratio N FE Y Y Y N Y N N N N N N N N N N N N N N	115.L									(0.00000)	(0.0000)	0.00003	
7p5.L L L d.L R ratio	_22p5_25.L											(0.001) $-0.003*$	(0.001) -0.004^*
5.30.L L d.L R ratio R ratio N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N N	-25-27p5.L											(0.001) $-0.005*$	(0.001) -0.004 ⁺
L d.L d.L R ratio R ratio R ratio N Y N Y N FE Y Y Y N II FE N N N N N Y trends N N N N Y N N N N N N N N N N N N N N	-27p5_30.L											(0.002) $-0.003*$	(0.002) -0.003
A.L. R ratio R ratio N Y N Y N Y N N N N N N N	-g30.L											0.001	0.003
N Y N Y Y Y N N N	15.L											(0.003) -0.006*	(0.009) -0.006*
	.yield.L									-0.778*	-0.798*	(0.001) $-0.775*$	(0.002) $-0.793*$
	R/SR ratio						4.66		1.78	(0.039)	(0.036) 3.49	(660.0)	(0.030) -1.03
$egin{array}{cccccccccccccccccccccccccccccccccccc$	K ratio	N	Y	Z	λ	N	$_{Y}^{5.22}$	Z	0.6 Y	Z	1.84 Y	Z	Y
		×	X	<i>λ λ</i>	× ×	2 >	2 >	2 2	2 >	2 >	2 2	2 2	2 2
		N N	2 ×	< 2	< Z	Λ,	λ	λ	λ,	λ	λ	λ,	λ,
202 206 202 6,238 0,533 0,532 0,524 0,842		206 0.541	202	206	202 0.524	6,238	5,979	6,238	5,979	6,006	5,758	6,006	5,758

Notes: Significance levels " p < 0.1 , * p < 0.05

Table B.61: Yield responses in Zone 3—Irrigated Maize

		-Long differences (15v)	(15v) —							ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	6	(8)	(6)	(10)	(11)	(12)
GDD-0-29 GDD-gt-29	0.0001 (0.0003) 0.00004	0.0001 (0.0003) 0.00003			$ \begin{array}{c} -0.0002 \\ (0.0001) \\ -0.001 \end{array} $	$\begin{array}{c} -0.0002 \\ (0.0001) \\ -0.001 + \\ \end{array}$			$ \begin{array}{c} -0.0002 \\ (0.0001) \\ -0.001 \\ 0.0004 \end{array} $	$ \begin{array}{c} -0.0002 \\ (0.0001) \\ -0.001 \end{array} $		
gs_total_P	(0.0001) (0.0001)	(0.0001) (0.0001)			(0.00004) (0.00004)	(0.0004)			0.0003* (0.00004)	(0.00004) (0.00004)		
gs_total_r_sg	(0.00000)	(0.00000)	0	0	(0.000)	(0.000)	6	0	(0.000)	(0.000)		50
tas_22p5_25			(0.003) (0.005) (0.005)	(0.003) $0.005+$			(0.001) (0.001) -0.001					(0.001) (0.001) -0.001
tas_25_27p5			(0.003) -0.001	(0.003) -0.001			(0.001) $-0.003*$					(0.001) $-0.003*$
tas_27p5_30			0.003	0.003)			(0.001) $-0.005*$	(0.001) $-0.005*$			(0.001) (0.001) (0.004* -0.004 * -0.004	(0.001) $-0.005*$
tas_g30			$\begin{array}{c} (0.003) \\ -0.002 \\ (0.003) \end{array}$	(0.003) -0.002 (0.003)			(0.002) $-0.008*$	1				(0.002) $-0.009*$
pr-15			-0.003 -0.003	(0.002) (0.002)			-0.007* (0.001)					(0.002) $-0.007*$
GDD_0_29.L			(200.0)	(200:0)			(100.0)		-0.0002	-0.0002		(100.1
GDD-gt-29.L									(0.0002) -0.0001	(0.0002) -0.0002		
gs_total_P.L									0.0004*	0.0004*		
gs-total_P-sq.L									(0.0001) -0.000000* (0.000)	(0.0001) -0.00000* (0.000)		
tas_115.L										(2222)	0.001	0.001
tas_22p5_25.L											- 1	(0.002) -0.001
tas_25_27p5.L												(0.002) -0.003 (0.003)
tas_27p5_30.L											- 1	(0.002) -0.005 (0.003)
tas_g30.L												(0.003) -0.006
pr_15.L												(0.004) $-0.010*$
log_yield.L									-0.842*	-0.828*		(0.002) $-0.818*$
T LR/SR ratio						-0.05		0.21	(0.078)	(0.080) 0.37	(0.074)	(0.075) 0.67
P LR/SR ratio Prices	Z	>	Z	7	>	0.44	>	0.36	>	$\frac{1.29}{V}$	N	$\frac{1.32}{V}$
Country FE	λ	λ,	ζ,	λ,	N	N N	ς Ζ	. ×	Z Z	. 2		_
Grid-cell FE Country trends	2 2	≥ ≥	2 2	2 2	λ λ	λ <i>λ</i>	۷ ۸	<i>د</i>	۷ ۲	<i>د</i> د	۸	
N Adinsted R ²	364	364	364	364	11,032	10,493	11,032	10,493	10,653	10,063	10,653 10,	10,063

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.62: Yield responses in Zone 3—Irrigated Soybeans

		Tong differences (15v)	(15v)			Panel				FCM		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_0_29	0.0004 (0.0002)	0.0004 (0.0002)			0.00003 (0.0002)	-0.0001 (0.0002)			-0.00000 (0.0003)	$\begin{array}{c} -0.0001 \\ (0.0002) \\ 0.003* \end{array}$		
GDD-gl-29 gs-total-P	-0.002 (0.003) $0.0002*$	-0.002 (0.003) $0.0002*$			(0.001) (0.001) $0.0002*$	(0.001) (0.001) $0.0002*$			(0.001) (0.001) $0.0002*$	-0.003 (0.001) $0.0002*$		
gs_total_P_sq	(0.00003)	(0.00002) -0.00000*			(0.00002)	(0.00003)			(0.00001) $-0.00000*$	(0.00001) $-0.00000*$		
tas_115	(0.000)	(0.000)	-0.011*	-0.011^*	(0.000)	(0.000)	-0.002	-0.002	(0.000)	(0.000)	-0.001	-0.001
tas_22p5_25			(0.001) -0.0002	(0.001) -0.0001			(0.002) -0.002*	(0.002) $-0.002*$			(0.002) $-0.002*$	(0.001) $-0.002*$
tas_25_27p5			(0.003) -0.0001	(0.003) -0.0002			(0.0003) -0.002	(0.0003) -0.003			(0.001) -0.002	$\begin{pmatrix} 0.0002 \\ -0.003 \\ 0.001 \end{pmatrix}$
tas_27p5_30			(0.001) $0.006+$	(0.001) $0.006+$			(0.002) -0.002	(0.002) -0.004			(0.002) -0.003	$\begin{pmatrix} 0.001 \\ -0.004 \\ 0.005 \end{pmatrix}$
tas_g30			(0.002) -0.004	(0.002) -0.004 (0.009)			(0.000) -0.009	(0.003) $-0.010*$			-0.010^{+}	(0.003) $-0.011*$
pr.15			-0.002^{*}	(0.003) $-0.002*$			(0.002) (0.001)	(0.004) -0.001			(0.003) -0.001	$\begin{pmatrix} 0.004 \\ -0.001 \end{pmatrix}$
GDD_0_29.L			(0.0001)	(2000-0)			(0.001)	(200.0)	-0.0003	-0.0004	(0.001)	(0.001)
GDD-gt-29.L									$(0.0003) \\ -0.004^{*}$	(0.0003) -0.004*		
gs_total_P.L									0.0003*	0.0003*		
gs-total_P-sq.L									(0.0001) $-0.00000*$ (0.000)	(0.0001) -0.00000* (0.000)		
tas_115.L									(200.0)	(200:0)	-0.003	-0.002
tas_22p5_25.L											$\begin{pmatrix} 0.002 \\ -0.004^* \end{pmatrix}$	$\begin{pmatrix} 0.002 \\ -0.004^* \end{pmatrix}$
tas_25_27p5.L											(0.001) $-0.007*$	(0.001) -0.007* (0.003)
tas_27p5_30.L											(0.003) -0.007	(0.003) -0.009+
tas_g30.L											-0.018*	(0.003) $-0.018*$
pr.15.L											(0.003) -0.002	(0.004) -0.001
log-yield.L									-0.781^*	-0.865*	(0.002) -0.783^*	(0.003) $-0.876*$
T LR/SR ratio						1.02		0.41	(0.021)	$\frac{(0.039)}{1.31}$	(0.000)	1.64
P LK/SK ratio Prices	Z	7	>	>	×	0.77 V	>	7.2.4 Y	×	$\frac{1.32}{V}$	>	1.83 7
Country FE	λ;	λ,	λ;	λ,	,	N	, ×,	, Z	N N	, X	;	N
Grid-cell FE Country trends	2 2	2 2	≥ ≥	≥ ≥	~ <i>~</i>	~ <i>~</i>	<i>د</i> د	~ <i>~</i>	<i>ک</i> کر	\ \ \	~ <i>~</i>	~ <i>~</i>
N Adiusted R ²	81	81	81	81	2,482	2,017	2,482	2,017	2,401	1,935	2,401	1,935
N parentary		1777			2000			10/10				

Notes: Significance levels $\,^{+}$ $p<0.1,\,^{*}$ p<0.05

Table B.63: Yield responses in Zone 3—Irrigated Rice

		—Long differences (15v)	es (15v) —			Panel				ECM	M	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD_029 GDD_gt_29 gs_total_P gs_total_P-sq tas_115 tas_22p5_25 tas_27p5_30 tas_27p5_30 tas_230 pr_15	-0.0001 (0.002) -0.001 (0.002) 0.00002 (0.000) (0.000)	-0.0001 (0.0002) -0.001 (0.002) 0.00003 (0.0001) -0.000 (0.000)	-0.001 (0.001) -0.0002 (0.003) -0.003 (0.003) (0.003) (0.003) (0.005) (0.005)	-0.001* (0.0005) -0.0002 (0.003) (0.003) (0.003) (0.005) (0.005)	-0.0001+ (0.0001) -0.001 (0.0005) -0.00002 (0.00002) (0.000)	-0.0001+ (0.0001) -0.001 (0.0001) -0.00001 (0.0000) (0.000)	-0.0004 (0.0004) (0.0002) (0.0001) (0.0001) (0.001) (0.001) (0.001) (0.001)	-0.0003 (0.0004) -0.0003 (0.0005) (0.0005) (0.001) (0.001) (0.001) (0.001)	-0.0001 (0.0001) -0.001 (0.0004) -0.00001 (0.0000) (0.000)	-0.0001 (0.0001) -0.0004 (0.0005) -0.00001 (0.0000) (0.000)	-0.0003 (0.0004) -0.0003* (0.0001) -0.0005 (0.001) -0.003* (0.001) (0.001) (0.001)	$\begin{array}{c} -0.0004 \\ (0.0004) \\ -0.0005 \\ (0.0002) \\ -0.001 \\ (0.001) \\ -0.003 \\ (0.001) \\ 0.002 \\ \end{array}$
GDD_0_29.L GDD_gt_29.L gs_total_P.L gs_total_P_sq.L									-0.0001+ (0.0001) 0.001* (0.0003) -0.00001 (0.00002) -0.000 (0.0000)	-0.0001* (0.00005) 0.001* (0.0003) 0.00000 (0.00001) -0.000		
tas_22p5_25.L tas_25_27p5.L tas_27p5_30.L tas_g30.L											0.0002 (0.0004) 0.00002 (0.0004) 0.00004 (0.001) -0.00001 (0.001) (0.001)	-0.00001 (0.0005) (0.0005) (0.0001) (0.001) (0.001) (0.001) (0.001)
pr.15.L logyield.L									-0.862* (0.064)	-0.808* (0.069)	0.002* (0.001) $-0.861*$ (0.064)	0.002* (0.001) $-0.807*$ (0.072)
T LR/SR ratio P LR/SR ratio Prices Country FE Grid-cell FE		S K K	Z	$\nearrow \swarrow \swarrow$	$A \otimes A$	$ \begin{array}{c} 1.04 \\ -3.16 \\ Y \\ Y \\ Y \end{array} $	$A \otimes A$	1.26 2.08 Y N Y	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$-2.1 \ V \ N \ Y \ Y \ Y \ Y \ Y \ Y \ Y \ Y \ Y$	× × ×	-0.11 X X X X X
Country trends N Adjusted \mathbb{R}^2	N 165 0.788	N 165 0.787	N 165 0.803	N 165 0.803	<i>Y</i> 4,896 0.915	Y 4,512 0.936	Y 4,896 0.916	y 4,512 0.937	Y 4,731 0.504	Y 4,347 0.389	<i>Y</i> 4,731 0.510	Y 4,347 0.395

Notes: Significance levels " $p<0.1,\ ^{\ast }$ p<0.05

Table B.64: Yield responses in Zone 3—Irrigated Winter Wheat

		-Long differences (15y)	(15y) —							ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD-0-29 GDD-gt 29 gs-total-P	0.001* (0.0002) -0.051 (0.099) -0.001*	$\begin{array}{c} 0.001*\\ (0.0002)\\ -0.052\\ (0.099)\\ -0.001*\\ (0.0002) \end{array}$			$\begin{array}{c} 0.0002 + \\ (0.0001) \\ -0.017 \\ (0.011) \\ 0.0002 * \\ (0.0001) \end{array}$	$\begin{array}{c} 0.0001 \\ (0.0001) \\ -0.010 \\ (0.008) \\ 0.0002* \\ (0.0001) \end{array}$			$\begin{array}{c} 0.0001 + \\ (0.0001) \\ -0.013 \\ (0.010) \\ 0.0002 * \\ (0.0001) \end{array}$	$\begin{array}{c} 0.0001\\ (0.0001)\\ -0.012\\ (0.008)\\ 0.0002*\\ (0.0001) \end{array}$		
gs_total_P_sq tas_115	0.00000+	(0.00000)	-0.002	-0.003	-0.00000* (0.000)	-0.00000* (0.000)		-0.0003	-0.00000* (0.000)	-0.00000+	-0.001	-0.0005
tas_22p5_25			(0.004) -0.007	(0.003) -0.005			(0.002) -0.002	(0.002) -0.001			(0.001) -0.001	(0.002) -0.002
tas_25_27p5			$(0.009) \\ 0.019 \\ (0.016)$	(0.009) 0.014			0.003	0.003 0.003			0.003	0.001
tas_27p5_30			$\begin{pmatrix} 0.010 \\ 0.148 + \\ 0.075 \end{pmatrix}$	$\begin{pmatrix} 0.010 \\ 0.152 + \\ 0.075 \end{pmatrix}$			0.004	0.007			0.009	$\begin{pmatrix} 0.004 \\ 0.005 \\ 0.011 \end{pmatrix}$
tas_g30			(0.356)	-0.680^{+}			$\begin{pmatrix} 0.009 \\ -0.025 \\ (0.034) \end{pmatrix}$	-0.013 (0.029)			(0.013)	$\begin{pmatrix} 0.011 \\ -0.016 \\ 0.027 \end{pmatrix}$
pr_15			0.015*	0.014*			-0.004*	-0.004* (0.001)			-0.004*	-0.004*
GDD_0_29.L			(*00.0)	(100.0)			(100.0)	(100.0)	0.0002+	0.0001	(0000)	(0.001)
GDD-gt_29.L									(0.0001) -0.047* (0.013)	(0.0001) -0.035* (0.011)		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) -0.00000* (0.000)	(0.0000) -0.000000*		
tas_115.L									(000:0)	(0000)	-0.004+	-0.003
tas_22p5_25.L											(0.003) -0.005	(0.003) -0.007
tas_25_27p5.L											0.009	0.006
tas_27p5_30.L											-0.001 -0.001	(0.005) (0.010)
tas_g30.L											-0.083^{+}	(0.019) -0.054 (0.036)
pr_15.L											(0.043) -0.003*	(0.030) -0.003*
log_yield.L									-0.861*	-0.926*	(0.002) -0.852* (0.06E)	(0.001) $-0.912*$
T LR/SR ratio						5.05		53.64	(0.079)	3.06	(0.000)	(0.00s) 3.31
P LK/SK ratio Prices	×	7	×	λ	N	-2.57 Y	Z	-3.49	×	$\frac{1.02}{Y}$	×	0.77 Y
Country FE	; X ;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, X	· X	N	N.	2 2	N S	N	N	2 2	N
Country trends	~ ×	× ×	< Z	<	λ,	ν Α	χ_{κ}	χ_{F}	X	ν Α	χ_{L}	X_{I}
N Admsted \mathbb{R}^2	83 0.342	81	83 0.457	81 0.470	2,521	2,134	2,521	2,134	2,429	2,042	2,429	2,042

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.65: Yield responses in Zone 3—Irrigated Spring Wheat

		-Long differences (15y)	(15y) —							ECM -		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
GDD-0-29 GDD-gt 29 gs-total-P	0.001* (0.0002) -0.051 (0.099) -0.001*	$\begin{array}{c} 0.001*\\ (0.0002)\\ -0.052\\ (0.099)\\ -0.001*\\ (0.0002) \end{array}$			$\begin{array}{c} 0.0002 + \\ (0.0001) \\ -0.017 \\ (0.011) \\ 0.0002 * \\ (0.0001) \end{array}$	$\begin{array}{c} 0.0001 \\ (0.0001) \\ -0.010 \\ (0.008) \\ 0.0002* \\ (0.0001) \end{array}$			$\begin{array}{c} 0.0001 + \\ (0.0001) \\ -0.013 \\ (0.010) \\ 0.0002 * \\ (0.0001) \end{array}$	$\begin{array}{c} 0.0001\\ (0.0001)\\ -0.012\\ (0.008)\\ 0.0002*\\ (0.0001) \end{array}$		
gs_total_P_sq tas_115	0.00000+	(0.00000)	-0.002	-0.003	-0.00000* (0.000)	-0.00000* (0.000)		-0.0003	-0.00000* (0.000)	-0.00000+	-0.001	-0.0005
tas_22p5_25			(0.004) -0.007	(0.003) -0.005			(0.002) -0.002	(0.002) -0.001			(0.001) -0.001	(0.002) -0.002
tas_25_27p5			$(0.009) \\ 0.019 \\ (0.016)$	(0.009) 0.014			0.003	0.003 0.003			0.003	0.001
tas_27p5_30			$\begin{pmatrix} 0.010 \\ 0.148 + \\ 0.075 \end{pmatrix}$	$\begin{pmatrix} 0.010 \\ 0.152 + \\ 0.075 \end{pmatrix}$			0.004	0.007			0.009	$\begin{pmatrix} 0.004 \\ 0.005 \\ 0.011 \end{pmatrix}$
tas_g30			(0.356)	-0.680^{+}			$\begin{pmatrix} 0.009 \\ -0.025 \\ (0.034) \end{pmatrix}$	-0.013 (0.029)			(0.013)	$\begin{pmatrix} 0.011 \\ -0.016 \\ 0.027 \end{pmatrix}$
pr_15			0.015*	0.014*			-0.004*	-0.004* (0.001)			-0.004*	-0.004*
GDD_0_29.L			(*00.0)	(100.0)			(100.0)	(100.0)	0.0002+	0.0001	(0000)	(0.001)
GDD-gt_29.L									(0.0001) -0.047* (0.013)	(0.0001) -0.035* (0.011)		
gs_total_P.L									0.0002*	0.0002*		
gs_total_P_sq.L									(0.0001) -0.00000* (0.000)	(0.0000) -0.000000*		
tas_115.L									(000:0)	(0000)	-0.004+	-0.003
tas_22p5_25.L											(0.003) -0.005	(0.003) -0.007
tas_25_27p5.L											0.009	0.006
tas_27p5_30.L											-0.001 -0.001	(0.005) (0.010)
tas_g30.L											-0.083^{+}	(0.019) -0.054 (0.036)
pr_15.L											(0.043) -0.003*	(0.030) -0.003*
log_yield.L									-0.861*	-0.926*	(0.002) -0.852* (0.06E)	(0.001) $-0.912*$
T LR/SR ratio						5.05		53.64	(0.079)	3.06	(0.000)	(0.00s) 3.31
P LK/SK ratio Prices	×	7	×	λ	N	-2.57 Y	Z	-3.49	×	$\frac{1.02}{Y}$	×	0.77 Y
Country FE	; X ;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, X	· X	N	N.	2 2	N S	N	N	2 2	N
Country trends	~ ×	× ×	< Z	<	λ,	ν Α	χ_{κ}	χ_{F}	X	ν Α	χ_{L}	X_{I}
N Admsted \mathbb{R}^2	83 0.342	81	83 0.457	81 0.470	2,521	2,134	2,521	2,134	2,429	2,042	2,429	2,042

Notes: Significance levels $\,^{+}\,p < 0.1,\,^{*}\,p < 0.05$

Table B.66: Regional harvested area responses

Americas

		Maize	Soyt	eans	Ri	ice	Winter	Wheat	Spring	Wheat
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
tas_l15.D	0.001	0.002^{+}	0.003	0.004*	0.002	0.001	0.0001	0.0001	-0.001	-0.001*
	(0.002)	(0.001)	(0.005)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.0001)
tas_22p5_25.D	0.002*	0.002*	0.001	0.002*	0.002	0.002	-0.003	-0.004^{+}	-0.003^{+}	-0.006*
	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)	(0.003)	(0.002)	(0.001)	(0.002)
tas_25_27p5.D	0.001	0.001	0.0003	0.002*	0.004*	0.003*	-0.0003	-0.001	-0.003*	-0.004
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.004)	(0.004)	(0.001)	(0.004)
tas_27p5_30.D	0.002	0.002	0.003	0.004*	0.004*	0.004*	-0.004*	-0.005*	-0.026*	-0.012*
-	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	(0.004)	(0.001)
tas_g30.D	0.0003	-0.001	-0.005*	-0.001	-0.001	0.001	0.005*	0.002*	-0.076*	-0.035*
	(0.006)	(0.006)	(0.002)	(0.003)	(0.006)	(0.006)	(0.001)	(0.001)	(0.007)	(0.007)
pr_15.D	-0.0004	-0.002	0.002	-0.0003	0.001^{+}	0.001^{+}	0.002*	0.002*	0.001^{+}	0.0004
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.0004)
tas_l15.L	-0.003	0.001	0.018	0.014*	0.001	-0.003	0.004*	0.003^{+}	-0.001	-0.001^{+}
	(0.004)	(0.003)	(0.039)	(0.003)	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.0004)
tas_22p5_25.L	0.006*	0.004*	0.009	0.006^{+}	0.007	0.006	-0.003	-0.004*	-0.001	-0.010
•	(0.002)	(0.001)	(0.009)	(0.004)	(0.007)	(0.007)	(0.002)	(0.002)	(0.009)	(0.009)
tas_25_27p5.L	0.004	0.002*	0.026^{+}	0.010^{+}	0.012^{+}	0.012^{+}	-0.003	0.001	0.010	0.003
-	(0.003)	(0.001)	(0.015)	(0.006)	(0.007)	(0.007)	(0.007)	(0.005)	(0.013)	(0.016)
tas_27p5_30.L	0.006	0.002	0.051^{+}	0.016*	0.015^{+}	0.016*	-0.004	-0.005	-0.043*	0.009
•	(0.004)	(0.001)	(0.029)	(0.007)	(0.009)	(0.008)	(0.014)	(0.012)	(0.009)	(0.007)
tas_g30.L	0.005	-0.002	-0.047	-0.009	-0.002	0.009	0.018*	0.008	-0.123*	-0.007
· ·	(0.015)	(0.012)	(0.035)	(0.007)	(0.020)	(0.017)	(0.009)	(0.011)	(0.012)	(0.011)
pr_15.L	0.005*	0.002	-0.034	-0.009^{+}	-0.008*	-0.008*	0.002	0.002	0.004	-0.0001
•	(0.002)	(0.002)	(0.035)	(0.005)	(0.003)	(0.002)	(0.003)	(0.002)	(0.003)	(0.001)
Grid cell FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Country trends	N	Y	N	Y	N	Y	N	Y	N	Y
N	5,453	5,453	5,170	5,170	11,869	11,869	5,820	5,820	2,374	2,374
Adjusted R ²	0.286	0.340	0.141	0.356	0.241	0.278	0.356	0.408	0.330	0.542

Notes: Significance levels $\,^{\text{+}}\,p < 0.1\,^{\text{*}}\,p < 0.05$

Europe

		Maize	Soyb	eans	R	ice	Winter	Wheat	Spring	Wheat
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
tas_115.D	-0.001	-0.001	0.016*	0.016*	-0.009	-0.003	0.001	0.001^{+}	0.005*	0.003
	(0.001)	(0.001)	(0.002)	(0.006)	(0.008)	(0.007)	(0.0005)	(0.0004)	(0.002)	(0.003)
tas_22p5_25.D	-0.001	-0.002*	0.009	0.009	0.009^{+}	0.008^{+}	-0.006*	-0.004*	-0.001	0.002
	(0.001)	(0.001)	(0.012)	(0.009)	(0.005)	(0.004)	(0.002)	(0.002)	(0.001)	(0.001)
tas_25_27p5.D	-0.001	-0.002	0.049	0.034	0.004	0.0003	0.002	0.003	0.00003	0.003
	(0.002)	(0.002)	(0.073)	(0.072)	(0.002)	(0.002)	(0.005)	(0.005)	(0.005)	(0.006)
tas_27p5_30.D	-0.005	-0.006	-0.541^{+}	-0.524	0.021*	0.027*	0.005	0.018^{+}	0.004	0.003
-	(0.005)	(0.005)	(0.317)	(0.338)	(0.002)	(0.002)	(0.009)	(0.010)	(0.005)	(0.005)
tas_g30.D	0.004	0.005			-0.005	-0.010	0.010	-0.035*	-0.012	-0.013
	(0.004)	(0.005)	(0.000)	(0.000)	(0.006)	(0.006)	(0.019)	(0.010)	(0.010)	(0.013)
pr_15.D	0.002	0.001	-0.0003	-0.001	-0.006	-0.004	0.0003	0.00004	-0.002*	-0.002*
	(0.001)	(0.001)	(0.005)	(0.002)	(0.005)	(0.004)	(0.0004)	(0.0004)	(0.001)	(0.001)
tas_115.L	0.0001	-0.0004	0.039*	0.036*	-0.010	-0.0001	-0.001	-0.0004	0.018*	0.010
	(0.001)	(0.001)	(0.003)	(0.015)	(0.009)	(0.007)	(0.001)	(0.001)	(0.009)	(0.008)
tas_22p5_25.L	-0.003	-0.005*	0.031	0.018	0.028*	0.021*	-0.015*	-0.006	-0.007	0.004
	(0.004)	(0.002)	(0.028)	(0.021)	(0.008)	(0.008)	(0.006)	(0.005)	(0.008)	(0.005)
tas_25_27p5.L	-0.001	-0.002	-0.015	-0.034	0.006	-0.005	0.004	0.002	-0.011^{+}	0.002
	(0.005)	(0.005)	(0.084)	(0.110)	(0.006)	(0.006)	(0.009)	(0.008)	(0.006)	(0.004)
tas_27p5_30.L	-0.005	-0.010	-0.627^*	-0.595	0.040*	0.050*	0.013	0.047	-0.064*	-0.053*
	(0.010)	(0.007)	(0.130)	(0.382)	(0.004)	(0.002)	(0.035)	(0.031)	(0.026)	(0.012)
tas_g30.L	-0.001	0.003			0.021^{+}	-0.002	0.105	-0.043	0.024	-0.001
	(0.010)	(0.011)			(0.012)	(0.012)	(0.139)	(0.112)	(0.021)	(0.009)
pr_15.L	0.004	0.003	-0.010	-0.008	-0.012	-0.009	0.002*	0.001	-0.002	-0.002
-	(0.004)	(0.004)	(0.011)	(0.018)	(0.008)	(0.006)	(0.001)	(0.001)	(0.002)	(0.002)
Grid cell FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Country trends	N	Y	N	Y	N	Y	N	Y	N	Y
N	3,063	3,063	248	248	264	264	7,077	7,077	3,320	3,320
Adjusted R ²	0.351	0.380	0.321	0.357	0.465	0.574	0.339	0.397	0.230	0.275

Notes: Significance levels $\,^{\scriptscriptstyle +}\,p < 0.1\,,^{\scriptscriptstyle *}\,p < 0.05$

Table B.67: Regional harvested area responses

Asia

		Maize	Soyb	eans	Ri	ce	Winter	Wheat	Spring	Wheat
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
tas_115.D	-0.003*	-0.0002	-0.007*	-0.005*	-0.001	-0.002	0.007*	0.007*	0.004*	0.004*
	(0.001)	(0.001)	(0.0004)	(0.0003)	(0.001)	(0.001)	(0.002)	(0.003)	(0.002)	(0.001)
tas_22p5_25.D	0.002	-0.0004	-0.00002	-0.0004*	-0.0003	0.0002	-0.001	-0.001	-0.002	-0.001
	(0.001)	(0.001)	(0.0003)	(0.0001)	(0.0003)	(0.0004)	(0.002)	(0.002)	(0.002)	(0.001)
tas_25_27p5.D	0.001	-0.002	0.001*	0.0001	-0.0002	0.0004	-0.004	-0.004	-0.004*	-0.004*
	(0.001)	(0.001)	(0.0003)	(0.0001)	(0.0004)	(0.0003)	(0.004)	(0.004)	(0.001)	(0.002)
tas_27p5_30.D	0.002	-0.002	0.0002	-0.0001	-0.0005	0.0002	0.004	0.002	-0.014	-0.016
	(0.001)	(0.001)	(0.001)	(0.0004)	(0.0004)	(0.001)	(0.005)	(0.004)	(0.009)	(0.012)
tas_g30.D	0.003	-0.002	-0.0002	-0.005^{+}	-0.0001	0.0001	0.001	-0.0004	-0.007*	-0.008*
	(0.003)	(0.002)	(0.002)	(0.003)	(0.002)	(0.001)	(0.010)	(0.009)	(0.003)	(0.004)
pr_15.D	0.001	0.001	-0.001*	-0.002*	-0.001^{+}	-0.0002	-0.002	-0.001	0.0002	0.00005
	(0.002)	(0.002)	(0.0004)	(0.0002)	(0.0003)	(0.0004)	(0.002)	(0.002)	(0.0003)	(0.0002)
tas_115.L	-0.009*	0.008*	-0.020*	-0.012*	0.013*	0.008*	0.006	0.005	0.003	0.003*
	(0.002)	(0.003)	(0.002)	(0.001)	(0.004)	(0.002)	(0.006)	(0.006)	(0.003)	(0.001)
tas_22p5_25.L	-0.004*	-0.010*	-0.006*	-0.005*	-0.001	0.001	-0.009	-0.007	0.009	0.013*
	(0.001)	(0.003)	(0.003)	(0.001)	(0.001)	(0.001)	(0.010)	(0.007)	(0.006)	(0.006)
tas_25_27p5.L	-0.005*	-0.014*	-0.0001	-0.004	-0.002	-0.0004	-0.011	-0.012	-0.011	-0.010
	(0.002)	(0.004)	(0.003)	(0.003)	(0.002)	(0.002)	(0.013)	(0.010)	(0.018)	(0.019)
tas_27p5_30.L	-0.005^{+}	-0.017*	-0.002	-0.008^{+}	-0.003*	-0.001	0.016	0.007	-0.026	-0.029
	(0.003)	(0.005)	(0.004)	(0.005)	(0.001)	(0.003)	(0.016)	(0.012)	(0.023)	(0.030)
tas_g30.L	-0.002	-0.020*	-0.021^{+}	-0.031*	-0.001	-0.0003	0.012	0.001	-0.008	-0.011
_	(0.006)	(0.004)	(0.012)	(0.012)	(0.003)	(0.004)	(0.025)	(0.018)	(0.012)	(0.014)
pr_15.L	0.017*	0.014*	-0.002	-0.002	0.003	0.003	-0.003	-0.002	0.002	0.001
	(0.006)	(0.006)	(0.005)	(0.002)	(0.002)	(0.002)	(0.004)	(0.004)	(0.001)	(0.002)
Grid cell FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Country trends	N	Y	N	Y	N	Y	N	Y	N	Y
N	10,111	10,111	7,265	7,265	9,107	9,107	6,174	6,174	4,864	4,864
Adjusted R ²	0.252	0.311	0.282	0.354	0.334	0.348	0.235	0.277	0.256	0.283

Notes: Significance levels $\,^{\scriptscriptstyle +}\,p < 0.1\,,^{\scriptscriptstyle +} p < 0.05$

Africa

		Maize	Soyl	peans	R	ice	Winter	Wheat	Spring	Wheat
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
tas_115.D	-0.005	-0.004^{+}	0.006*	0.005*	0.004*	0.004*	0.001	0.001	-0.001*	-0.002*
	(0.003)	(0.002)	(0.001)	(0.001)	(0.0003)	(0.0003)	(0.002)	(0.002)	(0.0005)	(0.0003)
tas_22p5_25.D	-0.0005	-0.0005	-0.001	0.0001	-0.001	-0.001	-0.004	-0.003	0.001	-0.0005
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.003)	(0.004)	(0.002)	(0.003)
tas_25_27p5.D	-0.001	-0.001	-0.003*	-0.001	0.0001	0.0002	0.002	-0.001	0.002	-0.001
	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.008)	(0.006)	(0.002)	(0.002)
tas_27p5_30.D	0.0001	-0.001	-0.002*	-0.002*	0.001	0.0003	0.006	0.002	0.029	0.052*
	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.006)	(0.007)	(0.031)	(0.025)
tas_g30.D	0.005*	0.002	0.008*	0.004	0.0001	-0.002	-0.003	-0.003	0.839*	0.775*
	(0.002)	(0.002)	(0.002)	(0.003)	(0.004)	(0.004)	(0.006)	(0.008)	(0.231)	(0.078)
pr_15.D	0.0004	0.0001	-0.001	0.003^{+}	-0.002^{+}	-0.001	-0.011*	-0.009*	-0.012*	-0.013*
	(0.001)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)	(0.003)	(0.003)	(0.004)	(0.004)
tas_115.L	-0.017	-0.012^{+}	-0.066*	-0.016	0.003	0.002	-0.0004	0.002	0.003^{+}	0.004
	(0.011)	(0.007)	(0.024)	(0.017)	(0.002)	(0.002)	(0.005)	(0.003)	(0.002)	(0.003)
tas_22p5_25.L	0.0002	-0.0005	-0.006*	-0.005*	0.007*	0.001	-0.012	-0.010	-0.002	-0.004
	(0.003)	(0.002)	(0.001)	(0.0002)	(0.002)	(0.002)	(0.009)	(0.007)	(0.006)	(0.005)
tas_25_27p5.L	0.002	0.0001	-0.012*	-0.013*	0.010*	0.003	-0.003	-0.009	0.001	-0.004
	(0.003)	(0.002)	(0.005)	(0.004)	(0.003)	(0.002)	(0.017)	(0.011)	(0.005)	(0.005)
tas_27p5_30.L	0.009*	0.001	-0.019	-0.022*	0.005	-0.003	0.017	0.012	0.087	0.131*
	(0.004)	(0.002)	(0.013)	(0.008)	(0.005)	(0.005)	(0.016)	(0.016)	(0.059)	(0.040)
tas_g30.L	0.030*	0.012*	0.032*	0.009	-0.008	-0.013^{+}	0.024	0.025	1.055*	0.886*
	(0.008)	(0.005)	(0.013)	(0.010)	(0.012)	(0.007)	(0.018)	(0.023)	(0.277)	(0.068)
pr_15.L	0.004	0.003	-0.036*	-0.003	-0.003	0.002	-0.009	-0.006^{+}	-0.021*	-0.024*
	(0.004)	(0.002)	(0.006)	(0.003)	(0.006)	(0.005)	(0.008)	(0.003)	(0.009)	(0.009)
Grid cell FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Country trends	N	Y	N	Y	N	Y	N	Y	N	Y
N	7,540	7,540	1,336	1,336	9,171	9,171	1,421	1,421	573	573
Adjusted R ²	0.167	0.246	0.332	0.493	0.242	0.305	0.406	0.518	0.384	0.419

Notes: Significance levels $\,^{\text{+}}\,p < 0.1\,,^{\,*}\,p < 0.05$