Global Vulnerability of Crop Yields to Climate Change

Abstract

Using a newly-available panel dataset of gridded annual crop yields in conjunction with a
dynamic econometric model that distinguishes between farmers’ short-run and long-run re-
sponses to weather shocks and accounts for adaptation, we investigate the risk to global crop
yields from climate warming. Over broad spatial domains we observe only slight moderation
of short-run impacts by farmers’ long-run adjustments. In the absence of additional margins
of adaptation beyond those pursued historically, projections constructed using an ensemble of
21 climate model simulations suggest that the climate change could reduce global crop yields
by 3-12% by mid-century and 11-25% by century’s end, under a vigorous warming scenario.
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1 Introduction

There has long been concern about the potential risks to crop production posed by projected shifts
in the Earth’s climate, and the extent to which agricultural systems will be able to adapt to these
changes to sustain food supplies. While recent research has sought to address this question by
elucidating how farmers have historically been able to adapt to temperature and precipitation shifts
(Blanc and Reilly, 2017), the issue is far from settled. Meta-analyses suggest that adaptation could
prevent most yield losses for wheat and rice (Challinor et al, 2014), and cross-sectional studies of
the response of land values or farm revenue to different locations to variations in climate caution
that estimates of the negative effects of climate change that omit adaptation are likely overstated
(Mendelsohn and Massetti, 2017). By contrast, the bulk of the empirical climate change eco-
nomics literature uses cross-section/time-series econometric modeling to estimate the responses of
crop yields to weather shocks, which addresses the potential for adaptation only implicitly (Dell
et al, 2014). A key exception is Burke and Emerick (2016), who employ a long-differences ap-
proach to highlight that adjustments of maize and soybean cultivation in the United States (US)
over time-frames of decades or more have resulted in only modest attenuation of the adverse ef-
fects of extreme heat exposures on yield losses. Burke and Emerick show that if such limits to
adaptation persist, projected increases in growing season temperatures due to climate change por-
tend substantial yield declines. These findings raise the possibility that the challenge of adapting to
climate warming may be pervasive. The fact that US lies at the world technological frontier bodes
ominously for future yields and production in technologically less advanced agricultural systems,
particularly in the tropics where 40% of the world’s population live and extreme high temperature
increases are projected to exceed those in the US. Moreover, the fact that maize and soybeans ac-
count for nearly half of the world’s supply of dietary energy suggests that resulting risks to world
food supplies could be severe—even in the presence of farmers’ adjustments.

In this paper we investigate the impacts of climate change on crop yields across the globe
in the presence of agricultural adaptation, focusing on maize, rice, wheat and soybeans, which
together account for 75% of global dietary energy intake (Cassman, 1999). Using a newly-available
panel dataset of gridded annual crop yields, we statistically distinguish between farmers’ responses

to weather shocks in the short run and the long run in different agroclimatic zones across the globe.



We infer adaptation as the difference between long-run and short-run yield responses to weather
in a dynamic empirical model, an approach that differs from Burke and Emerick’s comparison
between static panel and long difference responses.

Our long-run semi-elasticities of yield to temperature and precipitation exposure are consis-
tent with Burke and Emerick’s findings, and, critically, show that they generalize to additional
crops as well as to agricultural systems across the world. We assess the consequences for climate
change impacts on crop yields in different locations by combining these estimates with changes
in exposure to different intervals of temperature and precipitation at the middle and the end of the
century calculated from an ensemble of simulations of 21 earth system models (ESMs). As early
as mid-century, under vigorous warming most crops experience declining yields across more than
75% of the places where they are cultivated, with distributions of yield shocks that in the long run
show only slightly attenuation—and in a few cases amplification—relative to those in the short run.
The variance of the distributions of yield shocks arises predominantly out of variation in temper-
ature and precipitation exposures across locations as opposed to among ESM simulations, which
across crops substantially agree on yield reductions in response to vigorous warming of <10%
circa 2050 and <25% circa 2090.

The rest of the paper is organized as follows. Section 2 presents and discusses our dynamic
empirical model of yield responses to weather in the short- and the long-run. Section 3 describes
the data used, and the econometric issues that arise in operationalizing this model. Section 4
describes the empirical results, with a detailed discussion of regional vulnerabilities to the adverse
effects of weather extremes and the role of irrigation in moderating them. Section 5 uses the
estimated semi-elasticities to temperature and precipitation exposure to calculate climate-induced
changes in crop yields under future climate. Section 6 concludes with a brief summary of our

findings, major caveats, and potential directions for future research.

"We also use Burke and Emerick (2016) adaptation metric for comparison and robustness checks. See Section 4.



2 Empirical Approach: A Dynamic Model of Agricultural Pro-
duction and Yield Adjustment

Our empirical model of yields is derived from crop producers’ maximization of expected profit.
Adapting the static production framework of Pope and Just (1996) and Moschini (2001), a repre-
sentative price-taking farmer’s profit function is denominated over yield (Y) and vectors of input
prices (deflated by the price of output, W), uncertain weather exposures (£), and exogenous fac-
tors (X): II(Y, W, £, X). When actual weather exposures align with expectations (indicated using
a star), ex-post profit is in equilibrium with its ex-ante target level: IT*(Y™*, W, &E* X). Static
profit maximization describes farmers’ within-growing-season behavior for field crops that follow
regular planting and harvesting cycles. We assume that from one crop cycle to the next the pro-
ducer determines the adjustment of profit to its equilibrium level within a dynamic adjustment cost
framework (Nickell, 1985; Hallam and Zanoli, 1993; Fanelli, 2006). Conditional on the informa-
tion available at each time period (), the farmer minimizes expected discounted adjustment costs
made up of two components: the divergence of profit from its target equilibrium level and the
inter-period variance of profit. We show in Appendix A that the solution to this problem is a partial
adjustment process for profit, which, when the profit function takes a loglinear form, implies the

follow error correcting process for yield:
Ayt =+ Y + B,Agt + 5'Axt — Q[yt—l — "7,5t—1 — €/Xt_1 — ’}/t] + V¢ (1)

in which A indicates inter-period differences, and y and x denote the logarithms of yield and other
observables.

For the purposes of empirical analysis we model each location in our dataset (which we index
using ¢) as a representative producer. In this setup, the trending levels and constant average rates
of growth of prices, technology and (perhaps to a lesser extent) profit expectations are likely be
similar for multiple grid cells. Given the likelihood of different locations within the same country
sharing institutional and economic fundamentals, we assume that « is a grid-cell level fixed ef-
fect capturing unobserved heterogeneous location-specific time-invariant influences, while v varies

over countries, j (7). We further allow the profit function to vary geographically, particularly in re-



sponse to weather exposures, which influence yield expectations and farmers’ static and dynamic
calculus. We therefore group grid cells into agroclimatic zones or irrigation regimes, z(7), and
stratify the parameters 3, §, ) and &€ and €2 accordingly. Expressing weather exposures as vectors
of growing season days associated with different intervals of temperature (£7) and precipitation

(& P ), we arrive at our final panel error-correction model (ECM) specification:
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This specification decomposes observed yield adjustments into short- and long-run components.
The first component is identified by the interannual covariation between yields and meteorology,
captured by the first-difference terms in curly braces. We attribute the corresponding parameters,
3, to farmers’ responses to weather shocks over the short run, over which no adaptation occurs.
The second component is identified by the average covariation between yield changes and past
meteorology, captured by the lagged terms in square braces. We attribute the corresponding pa-
rameters, 7], to farmers’ long-run responses to climate. Given the long time-frame of these adjust-
ments, we assume that they represent farmers’ adaptation. It is useful to understand how our ECM
specification relates to existing empirical models. Eq. (2) is a representation of the equivalent

Autoregressive Distributed Lag (ADL) Model (1,1) model:
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which encompasses two limiting cases: permanent shocks (€2, — 0) which give rise to the first-

difference specification with no adjustment:
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and instantaneous adjustment ({2, — 1) which gives rise to the static specification with lagged

covariates:
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The latter specification differs from the traditional static model (e.g., Schlenker and Roberts, 2009;
Fisher et al, 2012; Blanc and Schlenker, 2017):

Yie =" +7 756 t+Z{ el vl ¢ xzt} g tatie (6)

In particular, (5) and (6) converge to the long-run effect (n =" and & =€) only in expectation,
a fact that we can use to derive Burke and Emerick’s long difference estimator. Averaging the
dependent and independent variables over n time periods, we define y;, = 1 Z’l 2_n /2 Yittrs

Ei=1 Z:/ 2n sg Eipr and Xy = 1 ZT /2 Xi,+r- Taking similar averages of (3) for sufficiently
large n, the fact that 4, , | — ¥, Si,t,l — SM and x;,_1 — X;, suggests that differencing
the resulting expression for two points in time > n periods apart gives rise to the cross-sectional

regression:
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whose parameters are identical to our long-run effect. The key implication is that our estimates of
long-run responses of yields to temperature and precipitation are directly comparable to Burke and
Emerick, with the principal difference between their approach and ours being the “no adaptation”
counterfactual to which the long run is compared to. Their measure of adaptation is 1 — 1/™n

whereas ours is 1 — n/3. If substantial historical adaptation occurred, we would expect to see
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3 Data and Econometric Issues

3.1 Data

There are two principal data inputs to our econometric model. For our dependent variable we used
an unbalanced panel of annual yields of four major crops (maize, soybean, rice and spring and
winter wheat) recorded across the world on a 1.125° grid for the period 1981-2011 (Ilizumi et al,
2014; lizumi and Ramankutty, 2016). The dataset downscales time series of annual production and
harvested area at the country level maintained by the U.N. Food & Agriculture Organization (FAO),
using gridded data on historical remotely sensed net primary productivity (NPP) from the U.S.
National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer
(NOAA/AVHRR).? Our meteorological covariates were derived from historical 3-hourly global
surface temperature and precipitation fields on a 0.25° grid from the Global Land Data Assimilation
System (GLDAS) (Rodell et al, 2004), matched to the years above.

Several modifications to these data were necessary to get them into a form suitable for esti-
mation of eq. (2). Fine scale meteorological fields were aggregated to match the coarser spatial
resolution of the yield dataset and truncated within each year to a fixed crop- and cell-specific
growing season defined by a global crop calendar dataset of planting and harvesting dates circa
year 2000 (Sacks et al, 2010). We considered the main cropping season only, which reduced the
spatial extent of some crops (e.g., rice in China—see Fig. 1).> We then temporally aggregated
the resulting array of growing season weather to construct fields of daily mean temperature and
total precipitation, which we subsequently binned into counts of daily exposure in 14 temperature
intervals and 12 precipitation intervals. These are our exposure covariates, £ and £7.

With respect to crop prices, we use country-level prices from the FAOSTAT database*. To
use these data would require us to forgo a significant share of our observations, and therefore we

always show results with and without prices.

2Given our empirical approach, obvious concerns are that these yield estimates rely on meteorological information
for their construction, and yield measurements may be contaminated by accounting for greenness not associated to
crop yields. While we have verified that this is not the case through extensive personal communications with the
dataset’s author, we discuss the potential limitations of employing downscaled crop yields in Section 6. More details
of the dataset are provided in the Appendix.

%Yield in the main cropping season is highly correlated with FAO reported yields.

4FAO data accessed from www.fao.org on January 2020.



At the global scale of our study, we need to consider the possibility that the manner in which
yields respond to weather will vary across the different management regimes and climates in which
a given crop is grown. The likely effect is heterogeneity in the estimated parameters of eq. (2).
We therefore allow them to vary geographically in two different ways. We first consider variation
according to management regime. To operationalize this, we classify grid cells as irrigated or
rainfed using the MIRCA2000 dataset of irrigated areas (Portmann et al, 2010), in conjunction
with the M3-Cropland dataset of harvested area by crop (Monfreda et al, 2008). As both of these
datasets are static, circa year 2000, we have no choice but to apply the same classification to every
year in our sample period. For each crop, irrigated grid cells were defined as those for which the
crop in question constituted at least 10% of the cell’s total harvested area, and the irrigated fraction
of the cell exceeded the rainfed fraction.

The second possibility we consider follows from eq. (A.l), namely, that across dissimilar
climates, differences in producers’ target yields in response to weather expectations generate dy-
namics of adjustment to weather shocks that vary systematically over space. Exploiting the high
spatial resolution of the crop yield data, we apply k-means clustering (Hartigan and Wong, 1979)
to identify swaths of contiguous grid cells that share similar long-term average values of yields,
growing season temperature and precipitation. The number of clusters was not pre-defined, but
was determined by the algorithm based on the data. For each crop, three broad groupings were
identified, which we attribute to agroclimatic zones.

The two stratifications are mapped in Figure 1, which the world’s major areas of high yields
and intensive cultivation of calorie crops—the so-called “calorie sheds” of the US midwest, north-
eastern China, northern India, and the southeastern portions of Europe and S. America—are clearly
visible. Summaries of harvested area, yields and weather exposures for the full slate of calorie
crops are given in the Appendix (Table A.1, Fig. A.2). The majority of grid-cells are rainfed. In
irrigated cultivation, the largest fraction of harvested area is accounted for by rice (37%), followed
by maize (24%), winter wheat (20%), soybeans (12%), and spring wheat (9%). Rice, soybeans, and
maize are grown in cells with higher average growing season temperatures (21-24°C) compared to

wheat (7-17°C). Soybeans and rice cultivation is concentrated in areas with moderate total grow-

3Since the agroclimatic zones are identified also on the basis of average yield conditions, they also reflect differ-
ences in long-term average technology, land quality, and input availability, see (Ramankutti et al, 2018).



ing season precipitation, while irrigated maize and winter wheat are grown in dry conditions (mean
precipitation of only 13 and 6 mm). Interestingly, only for maize, rice, and winter wheat do cells
with rainfed and irrigated production differ substantially in the amount of total precipitation.
Crop yields are consistently higher in irrigated areas. Looking at characteristics of crops
grown across the different agroclimatic zones, crops grown under drier climate include maize in
zone 3, winter wheat in zone 2 and 3, and spring wheat across all zones. Spring wheat, however,
is also grown at average low temperatures. Rice and soybeans in zone 1 and maize in zone 3 are
grown also under relatively low precipitation levels, if compared to the other zones with the same
crop, or even to irrigated rice and soybeans, which have on average higher precipitation levels. The
highest temperature conditions are found in rice zone 2 and 3, soybeans zone 2 and 3, maize zone
1 and 3. Note that maize grown in zone 3 accounts for the 15% of harvested grid cells. Maize in
zone 3 has also the highest productivity (1.5 tons/ha in log), a value that is only slightly lower to the
productivity of irrigated maize (1.5 tons/ha) and rice (1.4 tons/ha). We expect the most vulnerable

crops to be maize in zone 3, rice in zone 1, soybeans and winter wheat in zone 2 and 3.
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Figure 1: Geographic stratification of 1981-2011 maize and soybean yields by irrigation regime
and agroclimatic zone. Darker colors indicate grid cells with higher yields. Additional crops in
Appendix (Fig. A.2)



.. . . =T ZP
Our projections of yield impacts are constructed from average weather exposures £, £,

gtT and € fi derived from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-
GDDP) dataset. NEX-GDDP is a large ensemble of downscaled and biased-corrected 0.25° grid-
ded daily meteorological fields from 21 ESMs that simulate vigorous (RCP 8.5) and moderate
(RCP 4.5) warming under the Coupled Model Intercomparison, Phase V (CMIP5) climate model
exercise. Daily mean temperature and precipitation over the 1986-2005 historical period (t = 0),
and for the 2041-2060 mid-century and 2080-2099 late-century periods (f = t*), were truncated
to the growing seasons of our five crops, binned to generate counts of daily exposure in the same
temperature and precipitation intervals as our historical dataset, and stratified geographically ac-
cording to our irrigation and agroclimatic zones in Fig. 1. The resulting exposure projections were
combined with our fitted temperature and precipitation semi-elasticities to calculate the fractional

changes in the yields of individual crops (see Section 5).

3.2 Econometric issues

We run separate panel regressions for each crop. Even with our large sample, multicollinearity
precluded identification of the coefficients of eq. (2) jointly stratified by agroclimatic zone and
irrigation regime. We therefore stratify the parameters along each of these dimensions separately.
Additionally, while eq. (2) incorporates both grid-cell and country fixed effects, the latter are not
identified when country-level time trends are included. Our final empirical specificaton therefore
includes grid-cell fixed effects and country-level time trends. We assume that representative pro-
ducers within the same agroclimatic zones and irrigation regime have a similar decision making
process, and employ multiway clustered standard errors (Cameron et al, 2011), clustering by coun-

try and year®

®Results are similar when using Conley standard errors (Conley, 1999).
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4 Empirical results

4.1 Weather Sensitivity of US Rainfed Yields: Replicating and Extending
Burke and Emerick (2016)

We begin by using our gridded data on yields and weather to replicate Burke and Emerick (2016)’s
analysis for rainfed maize and soybeans in the US. Tables 1 and 2 show long-difference, static
fixed-effects and ECM estimates of the yield effects of weather exposures specified in two ways.
The first, following Burke and Emerick, is growing degree days (GDDs) stratified by days with av-
erage temperature (1) above and below 29°C, and total growing season precipitation and its square.
The second is the annual count of days over the growing season that fall into six temperature (°C)
and precipitation (mm/day) intervals (bins).

In Table 1 (maize), coefficients on GDDs > 29°C (hereafter GDD29) in the long difference
and the panel specifications (columns 1-2 and 5-6, respectively) are negative and significant. The
ratio of the former to the latter is 0.5, indicating a 50% reduction in the yield impacts of accu-
mulated extreme heat over the long run. This figure mirrors the ratio of the long- and short-run
coefficients in the ECM (columns 9-10), which suggests that farmers adjustments amount to a 50%
attenuation in yield sensitivity to accumulated extreme heat over the long run. Our preferred speci-
fication using binned weather exposures (columns 3-4, 7-8 and 11-12) highlights the nonlinearity in
crop yields response to temperature, with semi-elasticities of yield that become increasingly nega-
tive with exposure to hotter temperatures, corroborating (Schlenker and Roberts, 2009). Compared
to GDD?29, the effect of T > 30°C days is much larger for the ratio of the long difference and the
panel coefficients (90% attenuation in yield impact over the long run, columns 3 and 7), but the
lack of significance of the former estimates prevents us from drawing firm conclusions. In our pre-
ferred ECM estimates (columns 11-12) the ratio of the short- and long-run coefficients indicates
that adjustment attenuates yield sensitivity by 30-33%.

Similarly in Table 2 (soybeans), the ratio of the GDD29 long difference and panel coefficients
is 0.5, indicating a 50% reduction in the impact of accumulated extreme heat. However, the ratio of
the ECM long- and short-run GDD29 coefficients exceeds unity, suggesting that adjustments may

have had the opposite effect, making production 25% more sensitive to accumulated extreme heat.
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For our preferred bin specification, estimated semi-elasticities of exposure to T > 30°C days are
positive for the ratio of the long-difference and panel coefficients (impact attenuation of 42% over
the long-run), but are negative and larger for the ratio of the ECM coefficients (impact amplification
of 64% over the long run -columns 11-12, compared to 25% -columns 9-10 for GDD29).

Re-running our suite of regressions for the same panels of grid cells with covariates con-
structed from the PRISM climate dataset 7 (Appendix Tables A.6 and A.7) produced noisy esti-
mates that precluded precise estimates of adaptation using Burke and Emerick’s method. Looking
first at maize, in the long difference specification, effects of GDD29 are insignificant, small in
magnitude, and of counterintuitive sign, while in the panel specification, their effect is similar in
sign but slightly larger in absolute terms to the corresponding estimates in Table 1. By contrast,
in the ECM specification, the short- and long-run impacts of GDD29 (columns 9-10) are both
negative and significant, and the latter exceeds the former (column 10), indicating that long-run
adjustment increases yield sensitivity to accumulated extreme heat by 33%. The results are sim-
ilar in our preferred specification, in which exposure to 7' > 30°C days has an adverse effect on
yields that increases by 9% over the long run (column 12). Soybeans exhibit a similar pattern, with
long-difference estimates that are of the expected sign but not significant, panel estimates that are
negative and two-thirds as large as those in Table 1, and ECM estimates that show near identical
short- and long-run impacts for GDD29 (moderate to no attenuation in yield impacts, columns
9-10 in Table A.7). The panel and ECM estimates of the short-run impact of T > 30°C days are
similar, while the long-run impacts are 50-70% larger (columns 11-12).

Tables A.8 and A.9 summarize the results of extending the foregoing analysis to other rainfed
crops in the US.® Winter wheats yield sensitivity follows a pattern similar to maize and soybeans,
with short- and long-run ECM estimates that suggest that adjustment moderates impacts from
GDD29 by 49% and from T > 30°C days by 19%. Spring wheat yields sensitivity to extreme heat
is less clear cut, with impacts of GDD29 and T > 30°C that are counterintuitive in sign, most of
which are not significant. Exposure to 27.5 < T < 30°C days exhibits impacts of the expected
sign in the long-difference, panel and ECM specifications, but are insignificant save for the ECM

long run.

"Parameter-elevation Regressions on Independent Slopes Model (PRISM), Climate Group, Oregon State Univer-
sity, http://prism.oregonstate.edu, accessed on 10 October 2019
8The sample of cells with rainfed rice was too small to permit estimation.
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Taken together, these results confirm that that the long-run equilibrium to which US producers
of rainfed maize, soybeans and winter wheat adjust is one in which exposure to daily temperatures
in excess of 29°C continues to substantially reduce yields. Our novels findings are that farmers’
adjustment, despite being rapid (our estimated error-correction coefficients indicate adjustment
to equilibrium in 1.8-3.5 years), does not necessarily translate into adaptation as conventionally
understood in the climate change policy literature. Crucially, impacts of high temperature ex-
tremes over the long run do not decline in magnitude relative to those in the short run—quite the
opposite, in many cases they increase. One could hypothesize that this result might be due to
farmers pursuing run-of-the-mill adaptation that lowers the long-run sensitivity of crop yields to
non-extreme temperatures. Yet, our ECM bin specification estimates in columns 11-12 find no evi-
dence for such behavior. The ratios of long-run to short-run impacts for daily temperature intervals
of 27.5 < T < 30°C, 25 < T < 27.5°C and even 22.5 < T < 25°C are all larger in magnitude
and significant for maize, soybeans and winter wheat.

A second key finding is adverse long-run impacts of extreme low precipitation, an effect
that has long been identified by agronomic simulations, but has received limited attention in the
empirical impacts literature (Lobell et al, 2011). The panel and ECM bin specifications show
impacts of days with total precipitation P < 5mm that are negative and in the short run one
quarter as large as those with T > 30°C in the case of maize and winter wheat. Compared to the
effects of extreme high temperatures, the corresponding long-run ECM impacts are two thirds as
large for maize, 14% as large for soybeans, and one-third as large for winter wheat. For spring
wheat, the negative impact of P < 5mm days slightly exceeds that for T > 30°C days in the
panel specification (though the latter is not significant) and for 27.5 < T < 30°C in the long-run
component of the ECM. Moreover, the long-run sensitivity to P < bmm days exceeds its short-run
counterpart for all crops, and the ratio of the former to the latter is generally larger than that for
T > 30°C days.

The key implication of these results is that farmers adjustment may increase the vulnerability

of crop yields to adverse weather shocks.

15



4.2 Weather Sensitivity of Global Rainfed Crop Yields

This section addresses the extent to which our US results are representative of broader patterns of
yield sensitivity to weather extremes in the rest of the world. Tables 3 and 4 summarize the re-
sults for maize and soybeans, results for other calorie crops are relegated to the Appendix (Tables
A.10-A.12). Long-difference estimates are for the most part not significant, but indicate modest
negative impacts of GDD?29 for every crop except soybeans. Panel and short-run ECM estimates
of GDD>29 impact are similarly significant, negative and modest in magnitude for maize, soy-
beans and rice. Long-run ECM estimates are significant only for soybeans, which exhibits a 66%
reduction in sensitivity to accumulated extreme heat over the long run.

In our preferred bin specification, the yield impacts of days with T > 30°C and P < 5mm are
generally negative. Long-difference estimates are rarely significant. Panel and short-run ECM esti-
mates of temperature impacts are significant and modestly sized for maize, soybeans and rice, and
precipitation impacts are significant for maize and wheat, with the two specifications exhibiting
nearly identical results. The patterns of sign and significance are similar for long-run ECM esti-
mates, with significant negative effects of extreme high temperatures on maize, soybeans and rice,
and of extreme low precipitation on all crops—with particularly large impacts on spring wheat.
Compared to our US results, long-run temperature impacts were one-half to one-sixth as large for
maize, soybeans and rice, and long-run precipitation impacts were of similar magnitude for maize
and soybeans, and half as large for wheat.

Despite their qualitative similarity to our results for the US, the smaller magnitude of impacts
raises questions of potential for aggregation bias. As well, estimated rate of adjustment toward
equilibrium is nearly instantaneous, with the error-correction coefficients indicating that farmers
adjust fully in a little over a year. But perhaps the biggest substantive difference is that the magni-
tudes of the long-run and short-run ECM parameter estimates indicate that the effects of 7 > 30°C
days are attenuated by 19%, 29%, 74% for maize, soybeans and winter wheat, respectively, while
only the impact on rice is amplified—by a slight 9%. This result indicates that, on average, pro-
ducer adjustment is associated with increased resilience to the effects of extreme high temperatures
outside the US. However, this result does not hold for extreme low precipitation. Similar to in the

US, impacts of P < 5mm days are between 5% and 52% larger in the long-run for most crops
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(spring wheat is the exception).

An important question raised by these results is whether the benefits of vulnerability reduction
accrue to rich nations with advanced agricultural systems, or to developing countries. Precisely
where in the world these impacts arise, and whether the apparently maladaptive consequences of
adjustment are concentrated in a few regions, will be apparent from more fine-grained regional

stratification of estimates. It is to this we now turn.

4.3 Regional Crop Yield Sensitivity in the Long-Run: The Role of Irrigation

In this section we address two questions: which regions are especially vulnerable to the adverse
effects of weather extremes on rainfed yields, and to what extent are these impacts moderated by
irrigation, which is the principal adaptation to extreme heat. With warming temperatures, it is an-
ticipated that farmers will increase both irrigated area under cultivation and crop water application
over the course of the growing season. However, adjustment along this adaptation margin will
only be effective if there is sufficient water available for irrigation: in particular, declines in grow-
ing season precipitation—and more extreme low precipitation days, will likely constrain irrigation
that is reliant on surface water, hindering the moderating effect on the yield impacts of heat. To
conserve space, we focus on the results of our preferred binned weather specification, estimated
via ECM. Detailed results are consigned to an online appendix (rainfed crops are summarized in
Tables B.1-B.33 and irrigated crops in Tables B.34-B.65).

Table 5 summarizes the regional breakdown in the long-run responses of calorie crop yields
to 7 > 30°C and P < 5mm days. Yields exhibit negative long-run responses to high temperature
extremes in more than half, and to low precipitation extremes in nearly 70%, of rainfed crop x
region combinations. Adverse effects are concentrated in the Americas, including the US, and to
a lesser extent, Africa. Asia, and especially Europe experience comparatively few significant im-
pacts. Compared to irrigated cultivation, significant adverse effects of extremes on rainfed crops
tend to be more widespread and larger in magnitude. High temperature exposure exerts the dom-
inant effect, with the fractional reduction in annual yields from an additional 7 > 30°C day, an
order of two to three times as large as those from an addition P < 5mm day. Extreme heat ex-

posure exerts large reductions on yields of maize and rice in Africa, soybeans and wheat in US
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and the Americas, and spring wheat in Europe. Dry days have their largest negative effects on
yields of maize and winter wheat worldwide-especially in Africa, soybeans in the US and rest of
the Americas, and particularly spring wheat in the US, rest of Americas, and Asia.

The results illustrate the effectiveness of irrigation for adaptation to temperature extremes.
Irrigated yields respond negatively in the long run to high temperature extremes in 15% of irrigated
crop X region combinations, and exhibit positive long-run responses in the case of US rice and
winter wheat in the US and Asia. Notwithstanding this, irrigation may not be a panacea, for two
reasons. First, across many regions, crop water application has not completely shielded production
from the effects of high temperature exposures. Residual adverse yield impacts persist over the
long run for maize in US and the Americas, rice in Africa, and soybeans in the US. Second and
more worrisome is the broader extent across crops and regions of adverse impacts of dry days over
the long run. Irrigated yields respond negatively in the long run to high temperature extremes in
more than 35% of irrigated crop X region combinations: maize worldwide, winter wheat in the US
and Asia, and particularly soybeans in the US. Although irrigation attenuates both the magnitude
and geographic breadth of negative low-precipitation responses, this result suggests that there may
be a tradeoff between adaptation to heat versus to drought, with farmers reliance on irrigation
making cultivation more vulnerable to water availability constraints caused by dry growing season
days.

Table 5 also sheds light on the extent to which Burke and Emerick’s findings apply more
broadly. In 36% (42%) of rainfed crop X region combinations where high temperature (low pre-
cipitation) has significant adverse long run impacts, the latter responses are larger in magnitude
than their short-run counterparts. For irrigated cultivation, the corresponding prevalence of sig-
nificant and greater than unitary adaptation ratios is 42% and 55%. Thus, even though we cannot
observe the individual margins along which farmers adjust within our grid-cell samples, our re-
sults demonstrate that, in aggregate across different crops and regions, one-third to one-half of
adjustments to a long-run equilibrium in which yields exhibit increased sensitivity to extremes.

An alternative stratification of our data according to Fig. 1’s agroclimatic zones tells a con-
sistent story. Yields are significantly adversely affected by high temperature and low precipitation
extremes in 60-70% of rainfed crop x AEZ combinations. High temperatures especially reduce

maize and soybean yields worldwide; precipitation strongly reduces maize yields in zones 1 and
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Table 5: Yield response to extreme high temperature and low precipitation exposures, by region

and irrigation regime

USA Americas Europe Asia Africa Zonel Zone2 Zone3
Rainfed: 7 > 30°C
Maize -0.006  -0.008 b -0.002  -0.015¢ -0.008 -0.007 -0.01
Rice c 0.005 c b -0.011¢ -0.014 0006 °
Soybeans -0.022¢  -0.012 c -0.008 ° -0.005  -0.035¢ -0.013
Spring Wheat® -0.015  -0.01¢ -0.0162  0.01 b b b -0.009¢
Winter Wheat  -0.009  -0.014¢ b b 0012 ° -0.01¢
Rainfed: P < 5 mm
Maize -0.004¢  -0.004¢  -0.003 -0.0017 -0.009 -0.003¢ ° -0.008¢
Rice ¢ -0.001 c b b b 0.002  -0.001
Soybeans -0.003  -0.003¢ b b -0.01¢ b b -0.0044
Spring Wheat ~ -0.016¢2 -0.011¢  0.002  -0.012 ° 0.004  -0.015¢ -0.007
Winter Wheat  -0.003  -0.002 -0.002  -0.003 -0.013 0 -0.005  -0.004
Irrigated: T' > 30°C
Maize -0.015¢ -0.013 b b b -0.01 b -0.006
Rice 0.01 b b b -0.011¢ -0.003 ° b
Soybeans -0.025% ¢ € b ¢ b ¢ -0.018¢
Spring Wheat® ¢ ¢ c b ¢ 0.008 ¢ b
Winter Wheat  0.011  ° c 0.004 ° b 0.003 °
Irrigated: P < 5 mm
Maize -0.004  -0.007%  -0.002 -0.0047 -0.014% -0.002 ° -0.01¢
Rice b -0.001 0.002 0001 ° -0.002¢ b 0.002
Soybeans -0.009¢ ¢ c b ¢ 0.005 ¢ b
Spring Wheat  © ¢ ¢ b ¢ b ¢ b
Winter Wheat  -0.002¢ ° c -0.004¢ b -0.006% -0.003

¢ Coefficient on 27.5°C < T' < 30°C bin (while all coefficients refer to the 7' > 30°C bin, for spring wheat the
more significant 27.5°C < T' < 30°C bin is shown); b Not significant at the 10% level; ¢ Insufficient observations; d
Adaptation ratio > 1.

3, and spring wheat yields in zones 2 and 3. Irrigation moderates but does not completely elimi-
natethe geographic scope and magnitude of impacts, reducing negative and significant temperature
and precipitation responses to 27% and 40%, respectively, of crop X AEZ combinations. About
one third of negative long-run impacts are of larger magnitude than their short-run counterparts,
corroborating our finding of adjustment leading to worse impacts of weather extremes over the
long run.

Finally, we note that the fixed-effects estimates of the yield impacts of extremes are in broad
agreement with the patterns reported here, though of course they do not distinguish between short-

and long-run impacts. (See Appendix Table A.13 for details.)
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4.4 Vulnerability of Yields to Climate Change

We now consider the implications of our findings for the impacts of future warming. Table 6
summarizes the crop x region X irrigation regime combinations for which vigorous warming
simulated by 21 ESMs is predicted to cause substantially more extreme high temperature and low
precipitation growing-season days by the end of the century. Increases in the frequency of hot days
are ubiquitous, and across ESMs and grid cells their distributions tend to be strongly positively
skewed. Median increases are largest in locations in the US, rest of the Americas, and Africa
where maize, soybeans and rice are currently cultivated, in US and Europe where spring wheat is
grown, and in the US where winter wheat is grown. Comparing the median increases in hot days
in areas of rainfed and irrigated cultivation, the exhibit that tend to be larger for in the US, Asia

and Africa (an exception is African maize) but smaller throughout the Americas.
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By contrast, trends in dry extremes are much less pronounced, reflecting the greater uncer-
tainty in ESM projections of climate change impacts on precipitation. The support of the distri-
bution of changes in P < 5mm days across ESMs and grid cells includes zero for every crop X
region X irrigation regime combination, with medians that are negative for 30% of combinations
and small in magnitude (fewer than 10 days), and—as with temperature—longer upper tails. The
largest median shifts are concentrated in Europe, particularly areas of current rainfed and irrigated
maize, and irrigated rice and soybean cultivation.

The table also highlights crop x region X irrigation regime combinations that appear to be
especially vulnerable to climate change, i.e., ones for which increases in hot and dry days coin-
cide with significant long-run yield declines associated with those extremes. Corroborating prior
studies, we find that the largest vulnerability is associated with shifting temperature extremes, es-
pecially for rainfed cultivation. The main hotspots are the US (maize, soybeans and winter wheat)
and Africa (maize and rice), as well as soybeans in Asia and the Americas, and spring wheat in
Europe. Vulnerability to low precipitation extremes is confined to European maize. The pattern of
impacts suggests that while increasing cultivation in currently irrigated areas might reduce these
vulnerabilities, there are still likely to be residual risks to US maize and soybeans, African rice,
and—for precipitation—European maize.

The foregoing results shed light on yield vulnerability over the very long run. Nearer-term
exposures at mid-century time-frames, summarized in Table A.14, exhibit shifts in extreme days
that follow a qualitatively similar patterns but are less than half as large, with a substantial fraction
being an order of magnitude smaller. Fig. A.3 illustrates that, by comparison, the smaller average
temperature rise projected to occur by the 2050s primarily increases the number of non-extreme
days (25 < T < 30 for maize, soybeans and rice, and 22.5 < T < 27.5 for wheat). Our preferred
specification estimates that negative and significant long-run impacts of days with the latter aver-
age temperatures are widespread.” Even though the magnitudes of these coefficients are generally
smaller than in Table 5, the relatively larger numbers of additional days in the corresponding tem-
perature bins at mid-century suggests that climate change will have discernable impacts on calorie

crop yields by 2050. Acceleration of warming toward centurys end is accompanied by increases in

9For rainfed crops: maize everywhere except Europe, rice in the Americas, wheat in the US, Americas and Europe,
and soybeans in Asia and Africa; for irrigated crops: maize in the US, the Americas and Africa, rice in Asia, soybeans
in the US, Americas and Asia, and wheat in the Americas and Asia. See Tables 6 and A.14.
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the number of days in the 27.5 < T < 30 interval for all crops, and in the 25 < T < 27.5 interval

for maize and wheat (Fig. A.3), increasing downward pressure on yields.

S Projecting the impacts of climate change

We use our fitted econometric model to project the long-run changes in crop yields associated with
climatically-driven shifts in meteorological exposure. Let ¢ = 0 and ¢ = t* denote current and
future periods, in which the average values of weather exposures are given by £ OT and € (])3 ,and € tT
and £ ,i.

In a changing climate, the weather-sensitive component of log yield with and without adapta-

tion is given by:

Adaptati AT 2
~Adaptation _ T )81 s+ 772 )gl o1 ’VJ(Qt ®
. AP, NP
TSS Adaptation __ ﬁz(i 1,0 + ﬁ ot Vit ®

The time trends ;(;)t* take into account future exogenous changes in crop productivity. The
impacts of climate change on future yields in the presence and absence of adaptation are computed

by taking the antilog of the difference between (9) and (8):

: . .~ /(<P <P
Qoic,ll:nate’ Adaptation _ exp {ﬁZT(i) (8 > + ﬁf(z) (gm* — £i70>} (10)

; ; ~P [~ ~P
gl strei — exp {BLiy (Eire — Eio) + B (Eiv — €0 } (an

Fig. A.3 illustrates the changes in the distribution of average daily temperature over the
growing season to which these baseline quantities of crop yields are likely to be exposed, under
a high warming (RCP 8.5) scenario. The box plots show the median of our ensemble of ESM
projections ngt — EZO. Over the annual growing season of our empirical dataset, the temperature
shift associated with climate warming induces a decline in cool days and an increase in hot days. At

the medians of their respective cultivated grid cells, maize, soybeans and rice experience only slight
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changes in the number of cool (< 10°C) days, fewer warm (15 — 27.5°C) days and more frequent
hot (> 27.5°C) days. From mid- to late-century the amplitude of declines in the number of warm
days and increases in the number hot days becomes more accentuated, with a marked increase
in the frequency of extreme high temperature (> 30°C) days. Spring wheat’s exposure pattern
is qualitatively similar, but shifted toward lower temperatures and slightly more pronounced in
amplitude, with declines in both cool and moderate temperature days, increases in warm days and
little change in the frequency of hot days. Winter wheat exhibits a qualitatively different pattern,
made up of modest declines in < 5° days that are offset by small increases in the frequency of
a broad range of temperatures. As before, these patterns are accentuated with the acceleration of
warming toward century’s end.

Among the different ESMs there is much less consensus regarding patterns of precipitation
exposure (Fig. A.4). Consequently, for all crops the changes in the frequency of growing season
days in different intervals of precipitation at the multi-model median (gft* — E'ZP o) are uniformly
much smaller, and, for the majority of intervals, less than one day. Exceptions are extreme low
(<5 mm) precipitation, which increase by approximately one day for winter wheat circa 2090
and maize at both mid- and late-century, and decline by 1-2 days for rice and soybeans. These
two crops also see a slight (1-day) increase in late-century exposure to extreme high (>55 mm)
precipitation.

Given the range of climatic conditions in the grid cells where each crop is grown, there is
considerable variation in the aforementioned patterns of climate change exposure!®. Even so,
by mid-century more than three-quarters of the grid cells where each crop is grown experience
increases in > 30°C days, and a similar fraction of grid cells where spring wheat are grown ex-
perience increases in days with < 5 mm of precipitation. Given our yield responses in Tables 5
and A.13,these shifts raise the possibility that farmers will sustain losses even in the presence of
adaptation, and indeed this is exactly what we see.

We estimate the yield impacts of the changes in temperature and precipitation in a high warm-
ing scenario (RCP 8.5), at the grid-cell level in the short and the long run, using eqgs. (11) and (10).

The results of these calculations are summarized graphically in the Appendix (Figs. A.5 and A.6).

10The distribution of temperature and precipitation bins in the historical and future periods assembled over the
crop-specific regions and growing seasons are shown in appendix Figs. A.11 - A.14.
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The crucial implication is that the historical patterns of intra-zonal adjustment inferred by our em-
pirical model suggest that adaptation is unlikely to be a panacea. Not only do our long-run model
parameters suggest that changes in yields in response to future climate change will be negative for
greater than 75% of grid cell x ESM realizations, but in a few cases in the long run they are worse
than in the short run. This phenomenon is of particular concern for irrigated rice, soybeans in zone
1, and winter wheat in zones 1 and 2!'. The magnitude of impacts is substantial, with interquartile
range yield reductions circa 2050 from 3% to 12% , and from 11% to 25% circa 2090.

Impacts are heterogeneous among agroclimatic zones, with some experiencing much larger
yield declines than others and no consistent pattern of zonal impacts across crops. With the ex-
ception of rice cultivation, irrigation generally moderates the adverse effects of temperature and
precipitation change, and for spring wheat may even result in yield improvements (though this ef-
fect is more pronounced in the short run). We speculate that residual negative impacts in grid cells
that we identify as irrigated may reflect underlying unmeasured irrigation intensity and efficacy,
which in turn is a function of water resource scarcity—which we note will also affected by climate
change. Regarding the heterogeneity in impacts, the interqartile ranges of yield shocks do not
differ dramatically across ESMs. Consequently, the boxplots largely capture the effect of spatial
variation in future meteorology.

The manner in which impacts at the median of our ensemble projections (RCP 8.5) plays out
over space is elaborated in Fig. 2!2. Yields decline for most crops in most grid cells, with the
largest reductions concentrated in areas that overlap the major calorie sheds. Consistent with Fig.
A.5, circa 2050 median yields decline for the majority of cells in the 3%-12% range, interspersed
with isolated regions of more severe losses (16-30%). Circa 2090 the latter expand in extent and

increase in intensity to 32-57%, particularly for maize, soybeans and wheat.

"]t is important to keep in mind that our projections are static with respect to the irrigation regime and the agrocli-
matic zones, which are likely to change in the future.

12Results for mid- and end-of-century, and for the RCP 4.5 moderate warming scenario, are summarized in Figs.
A.7 and A.8. Both figures’ spatial patterns are broadly similar, but smaller in magnitude.
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Figure 2: Climate change impacts on crop yields (%), 2080-2099, median of 21 GCMs, RCP 8.5.
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Looking more holistically at the distribution of impacts across crops in our projection ensem-
ble, we investigate whether our results are due to different ESMs generating similar geographic
patterns of impacts on yields (Figure 3)!3. Strong agreement on gains in crop yields is found for
rice across different zones (Brazil, East Africa, Western India), and to a lower extent for wheat
(Brazil, India, USA, China, Europe). Models also tend to agree on moderate (0-10%) reductions
of yields of maize, soybeans, winnter wheat—Iess so for spring wheat —across all major cultivat-
ing regions. Circa 2050, very large yield losses (>25%) are found across most models in a few
grid cells in the United States, Brazil, South Europe, South Africa, South East China, and Australia
especially for maize and soybeans. Toward the end of the century, the scope of areas experienc-
ing such severe negative impacts increases substantially and emerge also for wheat especially in

United States and North Europe.

3Results for mid- and end-of-century, and for the RCP 4.5 moderate warming scenario, are summarized in Figs.
A.9and A.10.
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6 Discussion and Conclusion

We have used gridded crop yield and weather data to empirically model the temperature and pre-
cipitation responses of four crops responsible for 75% of global calorie intake. Using a dynamic
econometric framework, we distinguish yields’ responses in the short run, which we attribute to
weather fluctuations—to which we assume farmers are largely unable to adjust, from those in the
long run, which we attribute to climate—that manifests itself over long time frames on which we
assume that substantial adaptation is possible. In our theoretical set-up, optimizing farmers are
assumed to produce the same crop over a fixed amount of available land within each grid cell. In
this context, examples of short-run adaptation include changes in the quantity of fertilizers and irri-
gation, if available. Long-run adaptation could include changes in crop varieties, different planting
and harvesting dates, changes in the degree of mechanization as well as different types of nutrients
and fertilizers.

Our econometric estimates corroborate Burke and Emerick’s (2016) finding of limited his-
torical adaptation in yield responses to weather shocks. Moreover, exploiting the high spatial
resolution of the global crop yield dataset, we are able to further extend their results - limited
to the United States - to the globe, showing that the inability of historical adaptation to mitigate
climate-driven shocks varies significantly across crops, irrigation regime, as well as geographic
zones.

Projecting climatically-driven changes in crop yields, by combining our estimated responses
over the period 1981-2011 with temperature and precipitation fields from an ensemble of climate
model simulations, we find substantial agreement among ESMs on crop yield declines of <10%
by mid-century and < 25% by century’s end especially for soybeans, maize, and winter wheat.

Our key finding is that the brunt of yield losses falls on major crop producing and exporting
countries. This raises the key question of what additional margins of adjustment beyond those
pursued historically (whose net ameliorative effect we have shown to be small) might affect our
results. There are many ways in which supply-side adaptation might take place, all of which re-
quire additional, deliberate investment. At the intensive margin there is development and diffusion
of heat-resistant cultivars, increases in the quantity and/or quality of inputs, or improving man-

agement practices for more effective input utilization, and shifting planting and harvesting dates
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to reduce exposures to high temperatures during particularly vulnerable crop growth phases (e.g.,
anthesis), or increase the number of annual planting/harvesting cycles. At the extensive margin,
farmers in a particular location can switch to crops that are more suitable to changing climatic
conditions, or, over broad geographic domains there can be shifts in the locations where crops
are grown, non-agricultural land may be brought into cultivation to increase output, or additional
land may be irrigated (Sloat et al, 2020), with concomitant increases in surface water diversion or
groundwater mining.

Supply-side adjustments, residual supply losses, and increasing world prices of crops and
food commodities are likely to be an imperfect form of adjustment. This possibility raises further
questions with regards to the potential contribution of demand-side adaptations, such as changes
in dietary composition and shifting patterns of international trade. Warming’s heterogeneous in-
fluences on different crops across locations should not obscure the fact that its fundamental impact
is to substantially reduce the supply of crops from all major sources. Improving our understanding
of the efficacy of adaptation strategies that might forestalling, or merely lower the cost of coping
with, this adverse outcome requires a sustained program of future research.

Our study is not without caveats associated primarily with the high-resolution global gridded
crop yield dataset derived using statistical downscaling approaches (see Appendix A for details on
how the gridded crop yields are assembled in the lizumi dataset). As noted by a recent study Yu et
al (2020), more readily available data pertaining to statistics at coarser administrative units, or ag-
gregated data at national scales, do not reveal diversity and spatial patterns, thus making them less
informative for subsequent spatially explicit agricultural and environmental analyses. Moreover,
downscaling of yield and area harvested statistics onto grids has increasingly provided a basis for
recent economic modeling and analysis (see Hertel et al (2019) for review). For instance, global
gridded agricultural datasets have expanded the inclusion of agronomic variables, as examplefied
by the recent gridded "pesticide use’ dataset (Maggi et al, 2019) made available by NASA Socioe-
conomic Data and Applications Center (SEDAC), and another on ’harvested and yield by farming
system type’ (Yu et al, 2020) provided by the International Food Policy Research Institute (IFPRI).

While the downscaled country-level agricultural production datasets do facilitate a detailed
spatiotemporal analysis, their usage under a panel data setting could lead to potential artificial pre-

cision in the estimates. For instance, given that the primary input source of data is the country-level
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data (Fig. A.1), observations within a country could be mechanically correlated'*. Nevertheless,
we believe that this limitation is a trade-off, as the advantage of employing downscaled data out-
weights the potential marginal bias in our otherwise precise estimates, as shown by the precision
of our estimated coefficients (Readers are guided to Appendix A and B for a full set of regression
results). A systematic comparison or meta-analysis of agricultural impacts assessment employing

different data sources of climate and agricultural production is left for future research.

“The amount of independent variation within a country then depends on the relative variances of the country-level
FAO data and the NPP data from year-to-year. See Secton A.l in Appendix for a description of the downscaling
methodology in the lizumi dataset
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Appendix A

A.1 Data

Here we briefly summarize the methodology used in lizumi et al (2014) to derive the gridded
yield data used in our study (referred here as the lizumi dataset).

The Izumi dataset is a hybrid of FAO country yield data, satellite-derived crop-specific veg-
etation index and global crop datasets on crop calendar, harvested area, and production shares
achieved by different growing season. The grid-cell yields (tonnes/hectare) are based on the es-
timations by a model that aligns National Oceanic and Atmospheric Administration - Advanced
Very High Resolution Radiometer (NOAA-AVHRR) net primary production (NPP), FAO na-
tional yield statistics, crop calendar (Sacks et al, 2010) and harvested area (Monfreda et al,
2008) in the year 2000, and share of crop production by cropping system in the 1990’s from
USDA reports (USDA, 1994, 2013). The crop-specific NPP is estimated from the normalized
differential vegetation index (NDVI) only for grid cells with harvested areas from the gridded
M3-Crops data from (Monfreda et al, 2008). Grid-cell yield estimates are validated using subna-
tional yield statistics (Iizumi et al, 2014; lizumi and Ramankutty, 2016; lizumi and Sakai, 2020).
For the steps involved in deriving crop specific NPP and estimating yields, readers are referred
to the steps in Figure A1, and the detailed description in lizumi et al (2014).

A valid concern can arise that the downscaling methodology employed in (lizumi et al,
2014) would pick up greenness not associated to crop yields. As highlighted by the authors, the
information that is derived from satellite-derived estimates and utilized in the algorithm, is re-
lated only to the spatial variations in accumulated crop-specific NPP from sowing to harvesting
season, across grid-cells, within a country. The grid-cell yield estimates are a function of agri-
cultural statistics (FAO yield, crop mask and crop calendar), and findings from field experiments
(crop-specific radiation use efficiency, RUE). Importantly, the statistical characteristics of the
grid-cell yield estimates agree with those derived from another global yield dataset solely based
on national/subnational yield statistics (Iizumi et al, 2018).

A number of application studies conducted by independent groups e.g., (Schauberger et al,

2017; Famien et al, 2018) have demonstrated that the dataset is a useful source of information in
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studying yields at subnational scale. The advantage of lizumi dataset is that it offers a consistent
spatial representativeness of yields across grid cells owing to the use of satellite data. However,
grid-cell yields in the dataset are modeled data and those in minor crop-producing regions are
considered less reliable than in major crop-producing regions due to the inherent limitations of
satellite remote sensing in capturing crop status in areas where crop is sparsely grown (lizumi et
al, 2018). The quality of grid-cell yield data varies by the extent of cropland within a grid cell.
Because we do not consider minor cropping regions in our analysis, we believe our econometric
results are not affected by the limitations of lizumi data (in minor crop-producing regions). In
addition, to ensure that any potential remaining contamination of measurements (such as green-
ness not associated with crop yields) is not included in our sample, our data filtering procedure

discussed in main text further reduces any such possibility.
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A.2 Derivation of the Empirical Model

Our starting point is the static production framework of Pope and Just (1996) and Moschini
(2001). Slightly adapting their model, we define an expected yield function denominated over
vectors of inputs to production, M, uncertain weather exposures, £, and exogenous factors, X

and parameterized by 0:

9(M, €, X;0) =E[G(M, €,X;0)] (A1)

In a given period a producer solves a static expected profit maximization problem in two steps.
Let W denote the relative prices of the vector of inputs, normalized by the price of the agri-
cultural commodity being produced. We assume that the farmer takes these prices as given, and
first chooses the optimal quantities of inputs to produce output that meets an expected level of

yield, Y*, conditional on expected weather:

hY* W, E* X;0) = arg mNiIn {W -M|Y" <g(M,&",X;0)}

This first-stage solution defines an ex-ante cost function that summarizes the farmer’s optimal

input choices:

C(Y*,W,E*,X;0) =W -h(Y* W, E"X;0) (A.2)

The producer next chooses the optimal level of expected yield to maximize expected profit.

Normalizing the output price to unity, this second sub-problem can be expressed as:

II= II}l/%X{Y* - C(Y", W, " X,;0)}

When actual weather exposures align with expectations, ex-post profit is in equilibrium with its
ex-ante target level: II*(Y*, W, E* X;0). When they diverge, ex-post yield and profit are Y’
and II(Y, W, €,X; ).

The foregoing static model appropriately describes production of the types of fields crops

we consider here, which follow a regular annual planting and harvesting cycle. We assume that
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from one crop cycle to the next the producer determines the speed of adjustment of profit to its
equilibrium level. We model this process using the dynamic adjustment cost framework intro-
duced by Nickell (1985) and elaborated by Hallam and Zanoli (1993) and Fanelli (2006). The
farmer minimizes expected discounted adjustment costs, conditional on the information avail-
able at each time period. We assume that adjustment costs are made up of two components:
the divergence of profit from its target equilibrium level and the inter-period variance of profit.
Using ¢ to index time periods, and 7* and 7 to denote the logarithms of ex-ante and ex-post in-
stantaneous profit, producers’ dynamic behaviour is captured by the quadratic loss minimization

problem:

min< ¥ = E, Z o [A(?Tt+T - WI+T)2 + (s — 7rt+7_1)2}

Tt+1 0
T=

where p is the discount factor. Using A to indicate first differences, the first-order necessary

condition to this problem is the Euler equation:

Aﬂ't = pEtAWt+1 — A(ﬂ't — W:)

which, using the fact that ;7,1 = 7} and E;m, = 7, yields the simple partial adjustment rule:

m — w1 = —(p+ A)(m — 7))

It is convenient to reformulate this expression as:!

Amy = —Q(m_q — 7)) (A.3)

in which () is the error-correcting speed of adjustment parameter. The difference in yield from
one period to the next is a fraction {2 € (0, 1) of the previous period disequilibrium error. As
2 — 1, the farmer’s speed of adjustment increases, becoming instantaneous in the limit.

Our empirical representation of the profit function follows a loglinear specification:

!'The partial adjustment rule implies 7; = 1/(1 + p + A)m—1 + (p + A)/(1 + p + A)7}. Subtracting m;_; from
both sides and rearranging yields eq. (A.3), withQ = (p+ A)/(1 + p+ A).
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T =0+ Ky + X' E + (% + VW, + vhby + @y (A4)

Here, y, w, x and b are the logarithms of yield, input prices, observable control variables and
additional relevant factors such as the state of technology which are not observed by the econo-
metrician, 9, k , X, ¢, and v are parameters, and w is a random disturbance term. Input price
data are not available, so we approximate the joint effects of w and b as a time-varying function,
['(t). Crucially, (A.3) and (A.4) together suggest that the partial adjustment of profit implicitly
defines an error correcting process for yield.” Specifying I'(¢) as a time-trend with a constant

slope, y, results in the error-correction model (2) in the text.

A.3 Stratification: Irrigation Regime and Agroclimatic Zone

2Combining (A.3) and (A.4) and rearranging, we obtain:

Ay ={=Q(r710 — ) = kTTAT ()} = 57X A& — k71 AXy
= Oy + A7 Ea + 17 R AT = )] = AT e — (1= Qi)
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Irrigated vs. Rainfed Agroclimatic Zone

Winter Wheat

Zone 1

Rainfed Zone 2
Irrigated Zone 3

Figure A.2: Geographic stratification of 1981-2011 crop yields by irrigation regime and agrocli-
matic zone. Darker colors indicate grid cells with higher yields.
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A.4 Additional results
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