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NOTES AND COMMENTS

ASYMPTOTICALLY EFFICIENT ESTIMATION OF MODELS
DEFINED BY CONVEX MOMENT INEQUALITIES

BY HIROAKI KAIDO AND ANDRES SANTOS1

This paper examines the efficient estimation of partially identified models defined by
moment inequalities that are convex in the parameter of interest. In such a setting, the
identified set is itself convex and hence fully characterized by its support function. We
provide conditions under which, despite being an infinite dimensional parameter, the
support function admits

√
n-consistent regular estimators. A semiparametric efficiency

bound is then derived for its estimation, and it is shown that any regular estimator at-
taining it must also minimize a wide class of asymptotic loss functions. In addition, we
show that the “plug-in” estimator is efficient, and devise a consistent bootstrap pro-
cedure for estimating its limiting distribution. The setting we examine is related to an
incomplete linear model studied in Beresteanu and Molinari (2008) and Bontemps,
Magnac, and Maurin (2012), which further enables us to establish the semiparametric
efficiency of their proposed estimators for that problem.

KEYWORDS: Semiparametric efficiency, partial identification, moment inequalities.

1. INTRODUCTION

IN A LARGE NUMBER OF ESTIMATION PROBLEMS, the data available to the re-
searcher fail to point identify the parameter of interest, but are still able to
bound it in a potentially informative way (Manski (2003)). This phenomenon
has been shown to be common in economics, where partial identification arises
naturally as the result of equilibrium behavior in game theoretic contexts
(Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011)),
certain forms of censoring (Manski and Tamer (2002)), and optimal behav-
ior by agents in discrete choice problems (Pakes, Porter, Ho, and Ishii (2006),
Pakes (2010)).

A common feature of many of these settings is that the bounds on the param-
eter of interest are implicitly determined by moment inequalities. Specifically,
let Xi ∈ X ⊆ RdX be a random vector with distribution P , Θ⊂ Rdθ denote the
parameter space, andm : X ×Θ→ Rdm and F : Rdm → RdF be known functions.
In many models, the identified set is of the general form

Θ0(P)≡
{
θ ∈Θ : F

(∫
m(x�θ)dP(x)

)
≤ 0

}
�(1)

1We would like to thank Francesca Molinari, James Stock, and two anonymous referees for
valuable suggestions that helped greatly improve this paper. We are also indebted to Victor Cher-
nozhukov, Mark Machina, Ulrich Müller, and numerous seminar participants for their helpful
comments.
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A prevalent specification is one in which F is the identity mapping, in which
case (1) reduces to the moment inequalities model studied in Chernozhukov,
Hong, and Tamer (2007), Romano and Shaikh (2010), and Andrews and Soares
(2010), among others. Examples where F is not the identity include binary
choice models with misclassified or endogenous regressors (Mahajan (2003),
Chesher (2009)).

We contribute to the existing literature by developing an asymptotic effi-
ciency concept for estimating an important subset of these models. Heuristi-
cally, estimation of the identified set is tantamount to estimation of its bound-
ary. In obtaining an asymptotic efficiency result, it is therefore instrumental to
characterize the boundary of the identified set as a function of the unknown
distribution P . We obtain such a characterization in the special, yet widely ap-
plicable, setting in which the constraint functions are convex, for example lin-
ear, in θ. In such instances, the identified set is itself convex and its boundary
is determined by the hyperplanes that are tangent to it. The set of tangent, or
supporting, hyperplanes can, in turn, be identified with a unique function on
the unit sphere called the support function of the identified set. As a result, esti-
mation of the identified set may be accomplished through the estimation of its
support function—an insight previously exploited by Beresteanu and Molinari
(2008), Bontemps, Magnac, and Maurin (2012), and Kaido (2012).

We provide conditions under which, despite being an infinite dimensional
parameter, the support function of the identified set admits

√
n-consistent reg-

ular estimators. By way of the convolution theorem, we further establish that
any regular estimator of the support function must converge in distribution to
the sum of an “efficient” mean zero Gaussian process G0 and an independent
“noise” process Δ0. In accord with finite dimensional problems, an estimator
is therefore considered to be semiparametrically efficient if it is regular and
its asymptotic distribution equals that of G0; that is, its corresponding noise
process Δ0 equals zero almost surely. Obtaining a semiparametric efficiency
bound then amounts to characterizing the distribution of G0, which in finite
dimensional problems is equivalent to reporting its covariance matrix. In the
present context, we obtain the semiparametric efficiency bound by deriving
the covariance kernel of the Gaussian process G0. These insights are readily
applicable to other convex partially identified models, a point we illustrate by
showing that the estimators proposed in Beresteanu and Molinari (2008) and
Bontemps, Magnac, and Maurin (2012) are efficient.

Among the implications of semiparametric efficiency is that an efficient es-
timator minimizes diverse measures of asymptotic risk among regular estima-
tors. Due to the close link between convex sets and their support functions,
optimality in estimating the support function of the identified set further leads
to optimality in estimating the identified set itself. Specifically, we show that,
among regular convex set estimators, the set associated with the efficient es-
timator for the support function minimizes asymptotic risk for a wide class of
loss functions based on Hausdorff distance. These results complement Song
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(2012), who employed semiparametric efficient estimators of interval valued
identified sets to construct an optimal statistic for researchers that must make
a point decision.

Having characterized the semiparametric efficiency bound, we establish that
the support function of the sample analog to (1) is the efficient estimator.
A consequence of this result is that the sample analog is also efficient for
estimating the “marginal” identified set of any particular coordinate of the
vector θ. Interestingly, regular estimation of the support functions of these
marginal identified sets requires weaker assumptions than those needed to ob-
tain a regular estimator of the support function of Θ0(P). Finally, we conclude
by constructing a bootstrap procedure for consistently estimating the distribu-
tion of the efficient limiting process G0. We illustrate the applicability of this
result by constructing inferential procedures that are pointwise (in P) consis-
tent in level.

In related work, Beresteanu and Molinari (2008) first employed support
functions in the study of partially identified models. The authors derived meth-
ods for conducting inference on the identified set through its support function,
providing insights we rely upon in our analysis. The use of support functions to
characterize semiparametric efficiency, however, is novel to this paper. Other
work on estimation includes Hirano and Porter (2012), who obtained condi-
tions under which no regular estimators exist in intersection bounds models
for scalar valued parameters, and Song (2010), who proposed robust estima-
tors for such problems. Our results complement theirs by clarifying what the
sources of irregularity are in settings where the parameter of interest has di-
mension greater than 1.

A large literature on the moment inequalities model has focused on the com-
plementary problem of inference. The framework we employ is not as general
as the one pursued in these papers, which, for example, do not impose con-
vexity; see Romano and Shaikh (2008), Andrews and Guggenberger (2009),
Rosen (2008), Menzel (2009), Bugni (2010), Canay (2010), and Andrews and
Barwick (2012), among others. This paper is also part of the literature on ef-
ficient estimation in econometrics, which has primarily studied finite dimen-
sional parameters identified by moment equality restrictions; see Chamberlain
(1987, 1992), Brown and Newey (1998), Ai and Chen (2009), and references
therein.

The remainder of the paper is organized as follows. Section 2 introduces the
moment inequalities we study and examples of models that fall within its scope.
In Section 3, we characterize the efficiency bound, while in Section 4, we show
that the plug-in estimator is efficient. Section 5 derives the consistent bootstrap
procedure. The Supplemental Material (Kaido and Santos (2014)) contains all
proofs and a Monte Carlo study.
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2. GENERAL SETUP

It will prove helpful to consider the identified set as a function of the un-
known distribution of Xi. For this reason, we make such dependence explicit
by defining the identified set under Q to be

Θ0(Q)≡
{
θ ∈Θ :F

(∫
m(x�θ)dQ(x)

)
≤ 0

}
�

Thus, Θ0(Q) is the set of parameter values that is identified by the moment
restrictions when data are generated according to the probability measure Q.
We may then interpret the actual identified set Θ0(P) as the value the known
mapping Q 	→Θ0(Q) takes at the unknown distribution P .

Our analysis focuses on settings where the identified set is convex, which
we ensure by requiring that the functions θ 	→ F(i)(

∫
m(x�θ)dP(x)) be them-

selves convex for all 1 ≤ i ≤ dF—here and throughout, w(i) denotes the ith
coordinate of a vector w. Unfortunately, convexity is not sufficient for estab-
lishing that Θ0(P) admits a regular estimator. In particular, special care must
be taken when a constraint function is linear in θ leading to a “flat face” in the
boundary of the identified set. We will show by example that when the slope
of a linear constraint depends on the underlying distribution, a small pertur-
bation of P may lead to a nondifferentiable change in the identified set. This
lack of differentiability in turn implies that there exist no asymptotically linear
regular estimators (van der Vaart (1991), Hirano and Porter (2012)).

For this reason, we assume that the slope of any linear constraint is known.
Specifically, we let

m(x�θ)≡ (
mS(x�θ)

′� θ′A′)′
�(2)

where mS : X ×Θ→ RdmS is a known measurable function, and A is a known
dF × dθ matrix. For an also known function FS : RdmS → RdF , we then assume
F : Rdm → RdF satisfies

F

(∫
m(x�θ)dP(x)

)
=Aθ+ FS

(∫
mS(x�θ)dP(x)

)
�(3)

where, for each 1 ≤ i ≤ dF , the function θ 	→ F(i)S (
∫
mS(x�θ)dP(x)) may only

depend on a subvector of θ, but is required to be strictly convex in this subvec-
tor. Formally, let Si ⊆ {1� � � � � dθ} denote the smallest set such that, if θ1� θ2 ∈Θ
satisfy θ(j)1 = θ(j)2 for all j ∈ Si, then

F(i)S

(∫
mS(x�θ1)dQ(x)

)
= F(i)S

(∫
mS(x�θ2)dQ(x)

)
(4)
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for all Borel measures Q on X .2 We then refer to the arguments of θ 	→
F(i)S (

∫
mS(x�θ)dP(x)) as the coordinates of θ corresponding to indices in Si,

and require that, for all λ ∈ (0�1),

F(i)S

(∫
mS

(
x�λθ1 + (1 − λ)θ2

)
dP(x)

)

< λF(i)S

(∫
mS(x�θ1)dP(x)

)
+ (1 − λ)F(i)S

(∫
mS(x�θ2)dP(x)

)

whenever θ(j)1 �= θ
(j)
2 for some j ∈ Si. For instance, if Si = ∅, then, by (3), con-

straint i is linear in θ with known slope but intercept potentially depending
on P . Similarly, if Si = {1� � � � � dθ}, then constraint i is strictly convex in θ. In
between these cases are specifications of the constraints that are linear in some
parameters and strictly convex in others.

As a final piece of notation, it will prove helpful to index the constraints that
are active at each point θ in an identified set Θ0(Q). Toward this end, for each
θ ∈Θ0(Q), we define

A(θ�Q)≡
{
i ∈ {1� � � � � dF} :F(i)

(∫
m(x�θ)dQ(x)

)
= 0

}
�

2.1. Examples

In order to fix ideas, we briefly discuss applications of our general frame-
work. We revisit these examples in more detail in the Supplemental Material,
where we additionally examine the implications of our regularity conditions
and provide sufficient conditions for them to hold.

Our first example is a special case of the analysis in Manski and Tamer
(2002).

EXAMPLE 2.1—Interval Censored Outcome: An outcome variable Y is gen-
erated according to

Y =Z′θ0 + ε�
where Z ∈ Rdθ is a regressor with discrete support Z ≡ {z1� � � � � zK} and ε sat-
isfies E[ε|Z] = 0. Suppose Y is unobservable, but there exist (YL�YU) such
that YL ≤ Y ≤ YU almost surely. The identified set for θ0 then consists of all
parameters θ ∈Θ satisfying the inequalities

E[YL|Z = zk] − z′
kθ≤ 0� k= 1� � � � �K�

z′
kθ−E[YU |Z = zk] ≤ 0� k= 1� � � � �K�

2If A ⊆ {1� � � � � dθ} and B ⊆ {1� � � � � dθ} satisfy (4), then so does A ∩ B, implying Si is well
defined.
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These inequalities can be written as in (3) with F(i)S (
∫
mS(x�θ)dP(x)) equal

to E[YL|Z = zk] or −E[YU |Z = zk] for some k. Note that all constraints are
linear, and hence Si = ∅ for all i.

Another prominent application of moment inequality models is in the con-
text of discrete choice.

EXAMPLE 2.2—Discrete Choice: Suppose an agent chooses z ∈ RdZ from a
set Z ≡ {z1� � � � � zK} so as to maximize his expected payoff E[π(Y�Z�θ0)|F ],
where Y is a vector of observable random variables and F is the agent’s infor-
mation set. Letting z∗ ∈ Z denote the optimal choice, we obtain

E
[
π(Y�z�θ0)−π(

Y�z∗� θ0

)|F
] ≤ 0(5)

for all z ∈ Z . A common specification is that π(y� z�θ0)= ψ(y� z)+ z′θ0; see
Pakes et al. (2006) and Pakes (2010). Therefore, under suitable assumptions
on the agent’s beliefs, the optimality conditions in (5) then imply that θ0 must
satisfy the moment inequalities

E
[((
ψ(Y�zj)−ψ(Y�zk)

) + (zj − zk)′θ0

)
1
{
Z∗ = zk

}] ≤ 0(6)

for any zj� zk ∈ Z . As in Example 2.1, the restrictions in (6) may be expressed
in the form of (3).

Strictly convex moment inequalities arise in asset pricing (Hansen, Heaton,
and Luttmer (1995)).3

EXAMPLE 2.3—Pricing Kernel: Let Z ∈ RdZ denote the payoffs of dZ secu-
rities which are traded at a price of U ∈ RdZ . If short sales are not allowed
for any securities, then the feasible set of portfolio weights is restricted to RdZ+
and the standard Euler equation does not hold. Instead, under power utility,
Luttmer (1996) derived a modified (unconditional) Euler equation of the form

E

[
1

1 + ρY
−γZ −U

]
≤ 0�(7)

where Y is the ratio of future over present consumption, ρ is the investor’s
subjective discount rate, and γ is the relative risk aversion coefficient. If Z(i) ≥
0 almost surely and Z(i) > 0 with positive probability, then the constraints in
(7) are strictly convex in θ= (ρ�γ)′ ∈ R2. To map (7) into (3), we letA= 0 and
F(i)S (

∫
mS(x�θ)dP(x))=E[ 1

1+ρY
−γZ(i) −U(i)], implying Si = {1�2} for all i.

3We note our semiparametric efficiency bound is for i.i.d. data and requires an extension to
time series for its applicability to asset pricing. Example 2.3 is nonetheless introduced to illustrate
the role of strictly convex constraints.
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The following example is based on the discussion in Blundell and MaCurdy
(1999).

EXAMPLE 2.4—Participation Constraint: Consider an agent with Stone–
Geary preferences over consumption C ∈ R+ and leisure L ∈ [0�T ] parame-
terized by

u(C�L)= log(C − α)+β log(L)�

Given wage W and non-labor income Y ∈ R+, the agent maximizes expected
utility subject to the budget constraint C = Y +W (T −L) and the constraint
0 ≤L≤ T . If Y is unknown to the agent when the labor decision is made, then
her first order conditions imply

E

[(
W

C − α − β

L

)
Z

]
=E

[
E

[
W

C − α − β

L

∣∣F
]
Z

]
≤ 0�(8)

where F is the information available to the agent when choosing L, and Z
is any positive F -measurable random vector. For θ = (α�β)′, in this example
Si = {1} for all i.

3. SEMIPARAMETRIC EFFICIENCY

3.1. Preliminaries

Throughout, we let 〈p�q〉 = p′q denote the Euclidean inner product of two
vectors p�q ∈ Rdθ and ‖p‖ = 〈p�p〉1/2 be the Euclidean norm. Following the
literature, we employ the Hausdorff metric to evaluate distance between sets
in Rdθ . Hence, for any closed sets A and B, we let

dH(A�B)≡ max
{ �dH(A�B)� �dH(B�A)

}
�

�dH(A�B)≡ sup
a∈A

inf
b∈B

‖a− b‖�

where dH and �dH are the Hausdorff and directed Hausdorff distances, respec-
tively.

For S
dθ ≡ {p ∈ Rdθ :‖p‖ = 1} the unit sphere in Rdθ , we denote by C(Sdθ)

the space of bounded continuous functions on S
dθ and equip C(Sdθ) with the

supremum norm ‖f‖∞ ≡ supp∈S
dθ |f (p)|. The support function ν(·�K) : Sdθ →

R of a compact convex set K ⊂ Rdθ is then given by

ν(p�K)≡ sup
k∈K

〈p�k〉� p ∈ S
dθ �

Heuristically, the support function assigns to each vector p the signed distance
between the origin and the hyperplane orthogonal to p that is tangent toK. By
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Hörmander’s embedding theorem, the support functions of any two compact
convex sets K1 and K2 belong to C(Sdθ), and in addition,

dH(K1�K2)= sup
p∈S

dθ

∣∣ν(p�K1)− ν(p�K2)
∣∣�(9)

Therefore, convex compact sets can be identified in a precise sense with ele-
ments of C(Sdθ) in a way that preserves distances; that is, there exists an isom-
etry between them.

In our analysis, we study the identified set Θ0(P) which we characterize by
its support function

ν
(
p�Θ0(P)

) = sup
θ∈Θ0(P)

〈p�θ〉�(10)

As P is unknown, we view ν(·�Θ0(P)) as an infinite dimensional parameter
defined on C(Sdθ) and aim to characterize the semiparametric efficiency bound
for its estimation.

3.1.1. Efficiency in C(Sdθ)
We briefly review the concept of semiparametric efficiency as applied to reg-

ular infinite dimensional parameters defined on C(Sdθ); please refer to Chap-
ter 5 in Bickel, Klassen, Ritov, and Wellner (1993) for a full discussion. Our
analysis is done under the assumption that the data are independent and iden-
tically distributed (i.i.d.), and hence we start by imposing the following.

ASSUMPTION 3.1: {Xi}ni=1 is an i.i.d. sample with eachXi distributed according
to P .

We let M denote the set of Borel probability measures on X , endowed with
the τ-topology,4 and μ be a positive σ-finite measure such that P is absolutely
continuous with respect to μ (denoted P � μ). Of particular interest is the set
Mμ ≡ {P ∈ M :P � μ}, which may be embedded in

L2
μ ≡ {f : X → R :‖f‖L2

μ
<∞}� ‖f‖2

L2
μ
≡

∫
f 2(x)dμ(x)�

via the mapping Q 	→ √
dQ/dμ. A model P ⊆ Mμ is then a collection of prob-

ability measures, which can be identified with a subset S of L2
μ that is given

by

S ≡ {
h ∈L2

μ :h= √
dQ/dμ for some Q ∈ P

}
�(11)

4The τ-topology is the coarsest topology on M under which the mappings Q 	→ ∫
f (x)dQ(x)

are continuous for all measurable and bounded functions f : X → R. Note that unlike the weak
topology, continuity of f is not required.
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Employing the introduced notation, we then define curves and tangent sets in
the usual manner.

DEFINITION 3.1: A function h :N →L2
μ is a curve in L2

μ if N ⊆ R is a neigh-
borhood of zero and η 	→ h(η) is continuously Fréchet differentiable on N .
For notational simplicity, we write hη for h(η) and let ḣη denote its Fréchet
derivative at any point η ∈N .

DEFINITION 3.2: For S ⊆L2
μ and a function s ∈ S, the tangent set of S at s is

defined as

Ṡ0 ≡ {
ḣ0 :hη is a curve in L2

μ with h0 = s and hη ∈ S for all η
}
�

The tangent space of S at s, denoted by Ṡ, is the closure of the linear span of
Ṡ0 (in L2

μ).

Each curve η 	→ hη, with hη ∈ S, can be associated with a quadratic mean
differentiable submodel η 	→ Pη ∈ P by the relation hη = √

dPη/dμ. The main
difference between the efficiency analysis of finite and infinite dimensional pa-
rameters is in the appropriate notion of differentiability. Formally, a parame-
ter defined on C(Sdθ) is a mapping ρ : P → C(Sdθ) that assigns to each Q ∈ P
a function in C(Sdθ). In our context, ρ assigns to Q the support function of
its identified set; that is, ρ(Q)= ν(·�Θ0(Q)). To derive a semiparametric effi-
ciency bound for estimating ρ(P), we require ρ : P → C(Sdθ) to be smooth in
the sense of being pathwise weak-differentiable at P .

DEFINITION 3.3: For a model P ⊆ Mμ and a parameter ρ : P → C(Sdθ), we
say ρ is pathwise weak-differentiable at P if there is a continuous linear oper-
ator ρ̇ : Ṡ → C(Sdθ) such that

lim
η→0

∣∣∣∣
∫

S
dθ

{
ρ(hη)(p)− ρ(h0)(p)

η
− ρ̇(ḣ0)(p)

}
dB(p)

∣∣∣∣ = 0�

for any finite Borel measure B on S
dθ and any curve η 	→ hη with hη ∈ S and

h0 = √
dP/dμ.

Given these definitions, we can state a precise notion of semiparametric ef-
ficiency for estimating ρ(P) in terms of the convolution theorem. We refer the
reader to Theorem 5.2.1 in Bickel et al. (1993) for a more general statement of
the convolution theorem and a proof of this result.

THEOREM 3.1—Convolution Theorem: Suppose: (i) Assumption 3.1 holds,
(ii) P ∈ P, (iii) Ṡ0 is linear, and (iv) ρ : P → C(Sdθ) is pathwise weak-differentiable
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at P . Then, there exists a tight mean zero Gaussian process G0 in C(Sdθ) such that
any regular estimator {Tn} of ρ(P) must satisfy

√
n
(
Tn − ρ(P)) L→ G0 +Δ0�

where
L→ denotes convergence in law, and Δ0 is some tight random element inde-

pendent of G0.5

In complete accord with the finite dimensional setting, the asymptotic dis-
tribution of any regular estimator can be characterized as that of a Gaussian
process G0 plus an independent term Δ0. Thus, a regular estimator may be con-
sidered efficient if its asymptotic distribution equals that of G0. Heuristically,
the asymptotic distribution of any competing regular estimator must then equal
that of the efficient estimator plus an independent “noise” term. Computing a
semiparametric efficiency bound is then equivalent to characterizing the dis-
tribution of G0. In finite dimensional problems, this amounts to computing the
covariance matrix of the distributional limit. In the present context, we instead
aim to obtain the covariance kernel for the Gaussian process G0, denoted

I−1(p1�p2)≡ Cov
(
G0(p1)�G0(p2)

)
�

and usually termed the inverse information covariance functional for ρ in the
model P.

REMARK 3.1: More generally, if a possibly nonconvex identified setΘ0(P) is
an element of a metric space B1, then we can consider estimation of the param-
eter ρ1 : P → B1 given by ρ1(P)=Θ0(P). However, a key complication in this
approach is that B1 is often not a vector space—a crucial requirement in the
theory of semiparametric efficiency. For this reason, in our setting we instead
employ an isometry ρ2 : B1 → B2 into a Banach space B2, and examine estima-
tion of ρ(P)≡ ρ2 ◦ρ1(P).6 This insight is applicable to other partially identified
models; for example, a bounded setK can be embedded in L1

μ through its indi-
cator function. Establishing pathwise weak-differentiability in these contexts,
however, will require substantially different arguments than ours.

5{Tn} is regular if there is a tight Borel measurable G on C(Sdθ ) such that, for every curve η 	→
hη in S passing through s ≡ √

dP/dμ and every {ηn} with ηn =O(n−1/2),
√
n(Tn − ρ(hηn)) Ln→ G,

where Ln is the law under Pnηn .
6Concretely, in our framework, B1 corresponds to the space of convex compact sets endowed

with the Hausdorff metric, B2 = C(Sdθ ) and ρ2(K)= ν(·�K) for any K ∈ B1.
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3.2. Efficiency Bound

3.2.1. Assumptions

We require the following assumptions to derive the distribution of the effi-
cient limiting process G0.

ASSUMPTION 3.2: Θ⊂ Rdθ is convex, compact, and has nonempty interior Θo

(relative to Rdθ).

ASSUMPTION 3.3: The functions m : X ×Θ→ Rdm and F : Rdm → RdF satisfy
(2) and (3).

ASSUMPTION 3.4: (i) m : X × Θ→ Rdm is bounded; (ii) θ 	→m(x�θ) is dif-
ferentiable at all x ∈ X with ∇θm(x�θ) bounded in (x�θ) ∈ X × Θ; (iii) θ 	→
∇θm(x�θ) is equicontinuous in x ∈ X .

ASSUMPTION 3.5: There is an open set V0 ⊆ Rdm such that (i) v 	→ F(v) is
differentiable on V0, and (ii) v 	→ ∇F(v) is uniformly continuous and bounded
on V0.

The convexity of Θ can be relaxed provided m(x� ·) is well defined on the
convex hull ofΘ for all x ∈ X . Assumption 3.4 requiresm(x�θ) and ∇θm(x�θ)
to be bounded on X ×Θ, which for some parameterizations implies X is com-
pact. Assumption 3.5 imposes similar requirements on F .

In addition to Assumptions 3.1–3.5, we need to impose the following require-
ments on P .

ASSUMPTION 3.6: (i) Θ0(P) �= ∅ and Θ0(P) ⊂ Θo; (ii) there is a neighbor-
hood N(P) ⊆ M such that, for all Q ∈ N(P) and 1 ≤ i ≤ dF , the function θ 	→
F(i)S (

∫
mS(x�θ)dQ(x)) is strictly convex in its arguments; (iii)

∫
m(x�θ)dP(x) ∈

V0 for all θ ∈ Θ; (iv) for all θ ∈ Θ0(P), the vectors {∇F(i)(∫ m(x�θ)dP(x)) ×∫ ∇θm(x�θ)dP(x)}i∈A(θ�P) are linearly independent.

Assumption 3.6(i) implies Θ0(P) is characterized by the inequality con-
straints and not by the parameter space. Certain parameter constraints, how-
ever, may be imposed through the moment restrictions; see Remark 3.4. In As-
sumption 3.6(ii), convexity of the constraints is required at all Q near P (in the
τ-topology), which implies Θ0(Q) is also convex. Assumption 3.6(iii), together
with Assumptions 3.4(ii) and 3.5(ii), ensure the constraints are differentiable
in θ. Finally, Assumption 3.6(iv) is the key requirement ensuring ν(·�Θ0(P))
is a regular parameter at P . This assumption implies Θ0(P) has a nonempty
interior, which rules out identification but also ensures that the convex pro-
gramming problem in (10) satisfies a Slater constraint qualification. The latter
result provides us with a sufficient, but not necessary, condition for establish-
ing that ν(·�Θ0(P)) has a Lagrangian representation, that is, the duality gap is
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zero. Additionally, Assumption 3.6(iv) rules out moment equalities, though we
note that strictly convex moment equalities would imply either that the model
is identified or that the identified set is nonconvex. Interestingly, a violation of
Assumption 3.6(iv) is also the condition under which Hirano and Porter (2012)
showed irregularity in the problem they studied.

Finally, we define the model P ⊂ M to be the set of probability measures that
are dominated by common measure μ, and in addition satisfy Assumption 3.6,

P ≡ {
P ∈ M :P � μ and Assumptions 3.6(i)–(iv) hold

}
�

REMARK 3.2: Requiring the slope of linear constraints to be known is de-
manding but, as we now show, crucial for the support function to be pathwise
weak-differentiable. Let X ⊂ R2 be compact, Θ ≡ {θ ∈ R2 :‖θ‖ ≤ B}, and de-
note x = (x(1)� x(2))′, θ = (θ(1)� θ(2))′. Suppose that, in (1), F : R3 → R3 is the
identity, and that, for some K > 0, the function m : X ×Θ→ R3 is given by

m(1)(x�θ)≡ x(1)θ(1) + x(2)θ(2) −K�
m(2)(x�θ)≡ −θ(2)� m(3)(x�θ)≡ −θ(1)�

We note that Assumptions 3.2, 3.4, 3.5, and 3.6 then hold provided E[X(1)]> 0,
E[X(2)] > 0, and B > K/min{E[X(1)]�E[X(2)]}. Further suppose P � μ, and
η 	→ hη is a curve in L2

μ with

∫
h2
η(x)dμ(x)= 1�

∫
x(1)h2

η(x)dμ(x)=E[
X(1)

]
(1 +η)�

∫
x(2)h2

η(x)dμ(x)=E[
X(2)

]
�

and h0 = √
dP/dμ. If Pη satisfies

√
dPη/dμ = hη, then it follows that Pη ∈ P

for η in a neighborhood of zero. However, at the point p̄ ≡ v̄/‖v̄‖ with v̄ ≡
(E[X(1)]�E[X(2)])′, we obtain that

ν
(
p̄�Θ0(Pη)

) =

⎧⎪⎪⎨
⎪⎪⎩
K

‖v̄‖ � if η≥ 0�

K

‖v̄‖
E[X(1)]

(E[X(1)] +η)� if η< 0�

which implies that the support function is not pathwise weak-differentiable at
η= 0.7

7We are indebted to Mark Machina for this example.



EFFICIENT ESTIMATION OF MODELS 399

REMARK 3.3: The null hypothesis that Assumption 3.6(iv) fails to hold can
be recast as a null hypothesis concerning moment inequalities. Specifically, let
d ∈ {0�1}dF , α ∈ RdF , and

T1(θ�d�P)≡
dF∑
i=1

{
d(i)

(
F(i)

(∫
m(x�θ)dP(x)

))2

+ (
1 − d(i))(F(i)(∫

m(x�θ)dP(x)

))2

+

}
�

T2(θ�α�d�P)≡
dθ∑
j=1

(
dF∑
i=1

d(i)α(i)∇F(i)
(∫

m(x�θ)dP(x)

)

×
∫

∂

∂θ(j)
m(x�θ)dP(x)

)2

�

where (a)+ ≡ max{a�0}. It follows that P does not satisfy Assumption 3.6(iv) if
and only if there is a θ ∈Θ, d ∈ {0�1}dF , and α ∈ RdF satisfying

∑
i d

(i)(α(i))2 = 1
such that T1(θ�d�P) + T2(θ�α�d�P) = 0. Though the derivation of a test of
this null hypothesis is beyond the scope of this paper, we note that it is closely
related to the specification testing problem examined in Bugni, Canay, and Shi
(2012).

REMARK 3.4: Norm constraints such as ‖θ‖2 ≤ B can be accommodated by
setting, for example, F(i)(

∫
m(x�θ)dQ(x)) ≡ ‖θ‖2 − B for some 1 ≤ i ≤ dF

and all Q. Upper or lower bound constraints on individual elements θ(i) of the
vector θ may be similarly imposed.

3.2.2. Inverse Information Covariance Functional

Before characterizing the covariance kernel of the limiting efficient process
G0, we first introduce some additional notation. Since the moment restrictions
are convex in θ, the support function

ν
(
p�Θ0(P)

) = sup
θ∈Θ

〈p�θ〉 s.t. F

(∫
m(x�θ)dP(x)

)
≤ 0(12)

is the maximum of a convex program. Moreover, under our assumptions, there
exist unique and finite Lagrange multipliers λ(p�P) such that ν(p�Θ0(P)) ad-
mits the Lagrangian representation

ν
(
p�Θ0(P)

) = sup
θ∈Θ

{
〈p�θ〉 + λ(p�P)′F

(∫
m(x�θ)dP(x)

)}
�(13)
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In addition, the maximizers of (12) also solve (13), and consist of the boundary
points of Θ0(P) at which Θ0(P) is tangent to the hyperplane {θ ∈ Rdθ : 〈p�θ〉 =
ν(p�Θ0(P))}. These boundary points, together with their associated Lagrange
multipliers, are instrumental in characterizing the semiparametric efficiency
bound.

THEOREM 3.2: Let Assumptions 3.1–3.5 hold, define H(θ) ≡ ∇F(E[m(Xi�
θ)]), and, for each θ1� θ2 ∈ Θ, let Ω(θ1� θ2) ≡ E[(m(Xi�θ1) − E[m(Xi�
θ1)])(m(Xi�θ2)−E[m(Xi�θ2)])′]. If P ∈ P, then

I−1(p1�p2)

= λ(p1�P)
′H

(
θ∗(p1)

)
Ω

(
θ∗(p1)�θ

∗(p2)
)
H

(
θ∗(p2)

)′
λ(p2�P)�

for any θ∗(p1) ∈ arg maxθ∈Θ0(P)
〈p1� θ〉 and any θ∗(p2) ∈ arg maxθ∈Θ0(P)

〈p2� θ〉.

An important implication of Theorem 3.2 is that the semiparametric effi-
ciency bound for estimating the support function at a particular point p̄ ∈ S

dθ

(a scalar parameter) is

Var
{
λ(p̄�P)′∇F(

E
[
m

(
Xi�θ

∗(p̄)
)])
m

(
Xi�θ

∗(p̄)
)}
�

for any θ∗(p̄) ∈ arg maxθ∈Θ0(P)
〈p̄� θ〉. Hence, since Lagrange multipliers cor-

responding to nonbinding moment inequalities are zero, the semiparametric
efficiency bound for ν(p̄�Θ0(P)) is the variance of a linear combination of the
binding constraints at the boundary point θ∗(p̄) ∈ ∂Θ0(P). Heuristically, the
Lagrange multipliers represent the marginal value of relaxing the constraints
in expanding the boundary of the identified set outwards in the direction p̄,
that is, in increasing the value of the support function at p̄. Thus, the semi-
parametric efficiency bound is the variance of a linear combination of the
binding constraints, where the weight each constraint receives is determined
by its importance in shaping the boundary of the identified set at the point
θ∗(p̄) ∈ ∂Θ0(P).

3.3. Related Model

Our results are most easily extendable to settings where the identified set
is also convex. To illustrate this point, we now highlight a close connection of
the problem we study with an incomplete linear model previously examined in
Beresteanu and Molinari (2008) and Bontemps, Magnac, and Maurin (2012).

For Z ∈ RdZ , Y ∈ R, and V ∈ RdZ , we consider the identified set for the
parameter θ0 satisfying

E
[
V

(
Y −Z′θ0

)] = 0�(14)
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when Y is not observed but is instead known to satisfy YL ≤ Y ≤ YU , with
(YL�YU) observable. Letting X ≡ (YL�YU�V

′�Z′)′ and P denote its distribu-
tion, we then obtain that, under appropriate moment restrictions, the identified
set for θ0 is given by

Θ0�I(P)≡ {
θ ∈ RdZ :E

[
V

(
Ỹ −Z′θ

)] = 0 for some r.v. Ỹ

s.t. YL ≤ Ỹ ≤ YU a.s.
}
�

If Σ(P) ≡ ∫
vz′ dP(x) is invertible, then Θ0�I(P) is bounded and convex with

support function

ν
(
p�Θ0�I(P)

)
(15)

=
∫
p′Σ(P)−1v

(
yL + 1

{
p′Σ(P)−1v > 0

}
(yU − yL)

)
dP(x);

see Bontemps, Magnac, and Maurin (2012). We impose that Z and V be of
equal dimension because it is only in this instance that (15) holds, which greatly
simplifies verifying pathwise weak-differentiability.

In order to derive an efficiency bound for estimating ν(·�Θ0�I(P)), we as-
sume P ∈ PI, where

PI ≡
{
P � μ :

∫
vz′ dP(x) is invertible

}

for some μ ∈ M. Unlike in Theorem 3.2, however, additional requirements are
imposed on μ.

ASSUMPTION 3.7: (i) X ⊂ RdX is compact; (ii) μ ∈ M satisfies μ((yL� yU�
v′� z′)′ : yL ≤ yU) = 1; and (iii) μ((yL� yU� v′� z′)′ : c′v = 0) = 0 for any vector
c ∈ RdZ with c �= 0.

Since P � μ for all P ∈ PI, we note that Assumptions 3.7(i)–(ii) imply X is
bounded and YL ≤ YU P-a.s. In particular, YL and YU must be bounded P-a.s.
for all P ∈ PI, and hence all measurable selections of the random set [YL�YU ]
are integrable. Similarly, P � μ and Assumption 3.7(iii) ensure P(c′V = 0)= 0
for all c �= 0. Beresteanu and Molinari (2008) first established the importance
of this requirement, showing that Θ0�I(P) is strictly convex if P satisfies it, but
has “flat faces” otherwise. Interestingly, in close connection to Remark 3.2,
Q 	→ ν(p�Θ0�I(Q)) may not be pathwise weak-differentiable when Assump-
tion 3.7(iii) fails to hold because the slopes of the resulting “flat faces” may
then depend on P .8

8We thank Francesca Molinari for this insight; see the Supplemental Material for a more de-
tailed discussion.
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THEOREM 3.3: Let Assumptions 3.1 and 3.7 hold, and define ψν : Sdθ × X →
R, ψΣ : Sdθ × X → R by

ψν(p�x�P)≡ {
yL + 1

{
p′Σ(P)−1v > 0

}
(yU − yL)

}
v′Σ(P)−1p�(16)

ψΣ(p�x�P)≡ p′Σ(P)−1zv′Σ(P)−1(17)

×
{∫

v
(
yL + 1

{
p′Σ(P)−1v > 0

}
(yU − yL)

)
dP(x)

}
�

If P ∈ PI and ψ ≡ ψν − ψΣ, then the semiparametric efficiency bound for
ν(·�Θ0�I(P)) satisfies

I−1(p1�p2)= E
[(
ψ(p1�Xi�P)−E[

ψ(p1�Xi�P)
])

× (
ψ(p2�Xi�P)−E[

ψ(p2�Xi�P)
])]
�

The semiparametric efficiency bound of Theorem 3.3 coincides with the
asymptotic distribution of the estimators studied in Beresteanu and Molinari
(2008) and Bontemps, Magnac, and Maurin (2012), thus verifying their effi-
ciency. We also note that if P(YL = YU) = 1, so that the model is identified,
then Theorem 3.3 implies that the efficient estimator is p 	→ 〈p� θ̂〉 for θ̂ the
GMM estimator of (14).

4. EFFICIENT ESTIMATION

4.1. The Estimator

Given a sample {Xi}ni=1, we let P̂n denote the empirical measure; that is,
P̂n(A) ≡ 1

n

∑
i 1{Xi ∈A} for any Borel set A ⊆ X . Under Assumption 3.1, P̂n

is consistent for P under the τ-topology. Therefore, a natural estimator for the
support function ν(·�Θ0(P)) is its sample analog

ν
(
p�Θ0(P̂n)

) = sup
θ∈Θ

〈p�θ〉 s.t. F

(
1
n

n∑
i=1

m(Xi�θ)

)
≤ 0�(18)

It is useful to note that Assumption 3.6(ii) implies that the constraints in (18)
are convex in θ ∈Θ with probability tending to 1. As a result, ν(p�Θ0(P̂n)) also
admits a characterization as a Lagrangian:

ν
(
p�Θ0(P̂n)

) = sup
θ∈Θ

{
〈p�θ〉 + λ(p� P̂n)′F

(
1
n

n∑
i=1

m(Xi�θ)

)}
�(19)

This dual representation, together with the envelope theorem of Milgrom and
Segal (2002), enables us to conduct a Taylor expansion of ν(·�Θ0(P̂n)) around
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ν(·�Θ0(P)). In this manner, we are able to characterize the influence function
of {ν(·�Θ0(P̂n))} (in C(Sdθ)), and establish its efficiency.

THEOREM 4.1: If Assumptions 3.1, 3.2, 3.3, 3.4, and 3.5 hold and P ∈ P, then it
follows that: (i) {ν(·�Θ0(P̂n))} is a regular estimator for ν(·�Θ0(P)); (ii) uniformly
in p ∈ S

dθ ,

√
n
{
ν
(
p�Θ0(P̂n)

) − ν(p�Θ0(P)
)}

= λ(p�P)′ 1√
n

n∑
i=1

H
(
θ∗(p)

)
× {
m

(
Xi�θ

∗(p)
) −E[

m
(
Xi�θ

∗(p)
)]} + op(1)�

where θ∗(p) ∈ arg maxθ∈Θ0(P)
〈p�θ〉 for all p ∈ S

dθ ; (iii) as a process in C(Sdθ),

√
n
{
ν
(·�Θ0(P̂n)

) − ν(·�Θ0(P)
)} L→ G0�

where G0 is a mean zero tight Gaussian process on C(Sdθ) with Cov(G0(p1)�
G0(p2))= I−1(p1�p2).

In moment inequality models, it is common for the limiting distribution of
statistics {Tn(θ)} to be discontinuous in θ ∈ Θ0(P). It is interesting to note
that, in contrast, in Theorem 4.1 G0 is continuous in p ∈ S

dθ almost surely.9

Heuristically, the continuity of G0 results from the Lagrange multipliers de-
termining the weight a binding constraint receives at each p ∈ S

dθ . Hence, if
p1 and p2 are close, then the complementary slackness condition and conti-
nuity of p 	→ λ(p�P) imply that constraints that are binding at p1 but not p2

must have a correspondingly small weight. As a result, the empirical process is
continuous despite different constraints being binding at different p ∈ S

dθ .

4.2. Asymptotic Risk

Theorem 4.1 implies {ν(·�Θ0(P̂n))} is asymptotically optimal for a wide class
of loss functions.

THEOREM 4.2: Let Assumptions 3.1–3.5 hold, P ∈ P, and L : C(Sdθ)→ R+ be
a subconvex function10 such that, for all f ∈ C(Sdθ), L(f) ≤M0 +M1‖f‖κ∞ for

9A key difference being G0 has domain S
dθ , while test statistics {Tn(θ)} often have domain Θ.

10L is subconvex if, for all f ∈ C(Sdθ ), L(0) = 0 ≤ L(f ), L(f ) = L(−f ), and {f :L(f ) ≤ c} is
convex for all c ∈ R.
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some M0�M1 > 0 and κ <∞. If D0 are the continuity points of L and P(G0 ∈
D0)= 1, then, for any regular estimator {Tn} of ν(·�Θ0(P)),

lim inf
n→∞

E
[
L

(√
n
{
Tn − ν(·�Θ0(P)

)})]
≥ lim sup

n→∞
E

[
L

(√
n
{
ν
(·�Θ0(P̂n)

) − ν(·�Θ0(P)
)})] =E[

L(G0)
]
�

The lower bound on asymptotic risk obtained in Theorem 4.2 is a direct con-
sequence of the Convolution Theorem and, in fact, holds for any subconvex
function L : C(Sdθ)→ R+. The requirement that L(f) be majorized by a poly-
nomial in the norm of f is imposed to show that the plug-in estimator actually
attains the bound. Below, we provide some examples of possible choices of loss
function L.

EXAMPLE 4.1: Suppose in Example 2.1 we are concerned with the mean ab-
solute error in estimating the upper bound on E[Y |Z = z0] for some z0 ∈ Z .
Since supθ∈Θ0(P)

〈z0� θ〉 = ‖z0‖ν(z0/‖z0‖�Θ0(P)), we may apply Theorem 4.2
with L(f) = |‖z0‖f (z0/‖z0‖)| for any f ∈ C(Sdθ). Alternatively, for the ex-
pected maximal estimation error across multiple upper (or lower) bounds,
we may let L(f) = supp∈S

dθ |w(p)f (p)| for any bounded weight function
w : Sdθ → R.

EXAMPLE 4.2: If we are interested in the mean squared error of estimating
the diameter of the identified set for a coordinate θ(i) of θ, then we may set
L(f) = (f (p0) − f (−p0))

2, where p(i)0 = 1 and p(j)0 = 0 for all j �= i. Analo-
gously, a common measure of “center” of a convex set K is given by its Steiner
point, defined as

∫
pν(p�K)dΛ(p) for Λ the uniform measure on S

dθ . To ob-
tain the mean squared error in estimating the center of Θ0(P), we may then
set L(f)= (∫ pf(p)dΛ(p))2.

Due to the equality of the Hausdorff distance between convex sets and the
supremum distance between their corresponding support functions (see (9)),
Theorem 4.2 further implies an asymptotic optimality result for asymptotic risk
based on the Hausdorff metric. Specifically, define

Θ̂n ≡ co
{
Θ0(P̂n)

}
�(20)

where co{Θ0(P̂n)} denotes the convex hull of Θ0(P̂n). Corollary 4.1 then estab-
lishes that, for a wide class of loss functions, Θ̂n is an asymptotically optimal
estimator of Θ0(P).

COROLLARY 4.1: Let Assumptions 3.1–3.5 hold, P ∈ P, and L : R+ → R+ be a
subconvex function continuous on D0 ⊆ R+, and satisfying lim supa→∞L(a)a

−κ <
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∞ for some κ > 0. If {Kn} is a regular convex compact valued set estimator for
Θ0(P), and P(‖G0‖∞ ∈ D0)= 1, then11

lim inf
n→∞

E
[
L

(√
ndH

(
Kn�Θ0(P)

))] ≥ lim sup
n→∞

E
[
L

(√
ndH

(
Θ̂n�Θ0(P)

))]
= E

[
L

(‖G0‖∞
)]
�

For instance, settingL(a)= a2 in Corollary 4.1 yields quadratic loss based on
Hausdorff distance. Alternatively, by selecting L(a) = 1{a ≥ t} for any t ∈ R,
we can conclude that the asymptotic distribution of

√
ndH(Θ̂n�Θ0(P)) is first

order stochastically dominated by that of
√
ndH(Kn�Θ0(P)).

4.3. Marginal Identified Sets

It is often of interest to estimate the identified set of a coordinate or subvec-
tor of θ, rather than Θ0(P) itself. The support functions of these “marginal”
identified sets are given by restrictions of ν(·�Θ0(P)) to known subsets C ⊆ S

dθ ,
which we denote by ν|C(·�Θ0(P)); see Remark 4.1.12

In a finite dimensional setting, the coordinates of an efficient estimator are
themselves efficient for the coordinates of the parameter of interest. Analo-
gously, Theorem 4.1 implies that the restriction of the “plug-in” estimator, de-
noted {ν|C(·�Θ0(P̂n))}, is an efficient estimator for ν|C(·�Θ0(P)). However, the
more modest goal of obtaining an efficient estimator for ν|C(·�Θ0(P)), rather
than for ν(·�Θ0(P)), can be accomplished under less stringent assumptions on
F and m. Specifically, it is possible to allow the slope of linear constraints to
depend on P , provided we impose that P satisfies the following.

ASSUMPTION 4.1: For all p ∈ C, there is a unique θ∗(p) ∈ Θ0(P) with
〈p�θ∗(p)〉 = ν(p�Θ0(P)).

Assumption 4.1 imposes that, at each p ∈ C, the corresponding tangent hy-
perplane be supported by a unique boundary point of Θ0(P). A similar re-
quirement is also imposed by Pakes et al. (2006) when deriving the asymp-
totic distribution of estimators of extremum points of the identified set. In Re-
mark 3.2, for example, Assumption 4.1 excludes p ∈ S

dθ for which the tangent
hyperplane coincides with a “flat face” ofΘ0(P)—precisely the points at which
ν(p�Θ0(P)) is not pathwise weak-differentiable. To reflect this additional re-
striction on P , we define

PL ≡ {
P ∈ M :P � μ and Assumptions 3.6(i)–(iv) and 4.1 hold

}
�

11We say {Kn} is a regular estimator of Θ0(P) if its support function ν(·�Kn) is a regular esti-
mator for ν(·�Θ0(P)).

12For any subset C ⊆ S
dθ , ν|C(·�Θ0(P)) : C → R is defined by ν|C(p�Θ0(P))= ν(p�Θ0(P)) for

all p ∈ C.
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To allow the slope of linear constraints to depend on P , we let mA : X →
RdmA and

m(x�θ)≡ (
mS(x�θ)

′�mA(x)
′� θ′)′

�(21)

For v 	→ FA(v) a map such that FA(v) is a dF ×dθ matrix for each v ∈ RdmA , we
then impose

F

(∫
m(x�θ)dP(x)

)
(22)

= FA
(∫

mA(x)dP(x)

)
θ+ FS

(∫
mS(x�θ)dP(x)

)

(contrast to (3)). We formalize this new structure for the inequalities in the
following assumption.

ASSUMPTION 4.2: (i) The functions m : X × Θ → Rdm and F : Rdm → RdF

satisfy (21) and (22); (ii) for each i ∈ {1� � � � � dF}, we have either Si = ∅ or
Si = {1� � � � � dθ}.

Assumption 4.2(i) generalizes Assumption 3.3, since we can set FA(v) =A
for all v ∈ RdmA and some known dF × dθ matrix A. Assumption 4.2(ii) addi-
tionally imposes that each constraint be either linear or strictly convex in θ.
This requirement is not necessary for showing existence of a regular estima-
tor of ν|C(·�Θ0(P)), but it is needed to establish the semiparametric efficiency
of {ν|C(·�Θ0(P̂n))}. Under Assumption 4.2(ii), knowledge that P satisfies As-
sumption 4.1 does not affect the tangent space, and hence the plug-in estima-
tor remains efficient. In contrast, it is possible to construct examples violat-
ing Assumption 4.2(ii) where the tangent spaces relative to PL and P differ,
and hence so do the semiparametric efficiency bounds. Characterizing the effi-
ciency bound without Assumption 4.2(ii) is a challenging problem beyond the
scope of this paper.

THEOREM 4.3: Let Assumptions 3.1, 3.2, 3.4, 3.5, and 4.2 hold. If P ∈ PL and
C ⊆ S

dθ is compact, then {ν|C(·�Θ0(P̂n))} is a semiparametrically efficient estima-
tor of ν|C(·�Θ0(P)) (in C(C)).

REMARK 4.1: Suppose θ = (θ1� θ2) ∈ Rdθ1 +dθ2 , and we are interested in the
marginal identified set

Θ0�M(P)≡ {
θ1 ∈ Rdθ1 : (θ1� θ2) ∈Θ0(P) for some θ2 ∈ Rdθ2

}
�
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For any p1 ∈ S
dθ1 , the support function of the marginal identified set Θ0�M(P)

then satisfies

ν
(
p1�Θ0�M(P)

) = sup
θ1∈Θ0�M(P)

〈p1� θ1〉 = sup
(θ1�θ2)∈Θ0(P)

{〈p1� θ1〉 + 〈0� θ2〉
}

= ν
(
(p1�0)�Θ0(P)

)
�

Hence, we obtain ν(·�Θ0�M(P)) = ν|C(·�Θ0(P)) for C ≡ {(p1�p2) ∈ S
dθ1 +dθ2 :

p2 = 0}.

5. A CONSISTENT BOOTSTRAP

We obtain a consistent bootstrap procedure by following a “score based”
approach as proposed in Lewbel (1995); see also Donald and Hsu (2009) and
Kline and Santos (2012). In particular, forWi ∈ R a mean zero random variable
and {Wi}ni=1 an i.i.d. sample independent of {Xi}ni=1, we let

G∗
n(p)≡ λ(p� P̂n)

′∇F
(

1
n

n∑
i=1

m
(
Xi� θ̂(p)

))
(23)

× 1√
n

n∑
i=1

{
m

(
Xi� θ̂(p)

) − 1
n

n∑
i=1

m
(
Xi� θ̂(p)

)}
Wi�

where λ(p� P̂n) is as in (19) and θ̂(p) is any maximizer for the optimization
problem in (19). Heuristically, the stochastic processp 	→G∗

n(p) is constructed
by perturbing an estimate of the efficient influence function (or score) by the
random weights {Wi}ni=1. These weights are assumed to satisfy the following.

ASSUMPTION 5.1: (i) {Xi�Wi}ni=1 is an i.i.d. sample; (ii) Wi is independent of
Xi; (iii) Wi satisfies E[Wi] = 0, E[W 2

i ] = 1 and E[|Wi|2+δ]<∞ for some δ > 0.

By construction, the distribution of G∗
n depends on that of both {Xi}ni=1 and

{Wi}ni=1. We show, however, that the distribution of G∗
n conditional on the data

{Xi}ni=1 (but not {Wi}ni=1) is a consistent estimator for the law of G0. Formally,
letting L∗ denote a law statement conditional on {Xi}ni=1, Theorem 5.1 estab-
lishes consistency of the law of G∗

n under L∗ for that of G0.

THEOREM 5.1: If Assumptions 3.1–3.5 and 5.1 hold and P ∈ P, thenG∗
n

L∗→ G0

(in probability).
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5.1. Estimating Critical Values

In order to conduct inference, it is often necessary to estimate quantiles of
transformations of G0. In this section, we develop a procedure applicable when
the transformation is of the form

sup
p∈Ψ0

Υ
(
G0(p)

)
�(24)

where Ψ0 ⊆ S
dθ and Υ : R → R is a known continuous function. The set Ψ0 ⊆

S
dθ need not be known, but we assume the availability of a consistent estimator

{Ψ̂n} for Ψ0 in Hausdorff distance.

ASSUMPTION 5.2: (i) Υ : R → R is continuous; (ii) Ψ̂n ⊆ S
dθ is compact almost

surely; (iii) {Ψ̂n} satisfies dH(Ψ̂n�Ψ0)= op(1) with Ψ0 compact.

Quantiles of random variables as in (24) may then be consistently estimated
employing

ĉ1−α ≡ inf
{
c :P

(
sup
p∈Ψ̂n

Υ
(
G∗
n(p)

) ≤ c∣∣{Xi}ni=1

)
≥ 1 − α

}
�(25)

While ĉ1−α is often not explicitly computable, it can be approximated using the
following algorithm:

STEP 1: Compute the full sample support function estimate ν(·�Θ0(P̂n)) and
obtain the Lagrange multipliers {λ(p� P̂n)}p∈S

dθ and corresponding maximizers
{θ̂(p)}p∈S

dθ to (19).

STEP 2: Generate B samples {Wi}ni=1 to construct a sample of size B of G∗
n

(denoted {G∗
n�b}Bb=1).

STEP 3: Approximate ĉ1−α by the 1 − α quantile of {supp∈Ψ̂n Υ (G
∗
n�b(p))}Bb=1.

As Theorem 5.2 establishes, ĉ1−α is indeed consistent for the desired quan-
tile.

THEOREM 5.2: Let Assumptions 3.1–3.5, 5.1, 5.2 hold and P ∈ P. If the cumu-
lative distribution function (cdf) of supp∈Ψ0

Υ(G0(p)) is continuous and strictly

increasing at its 1 − α quantile, denoted c1−α, then ĉ1−α
p→ c1−α.

Theorem 5.2 may be employed, for example, to construct confidence regions
for Θ0(P).
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EXAMPLE 5.1: Let Θ̂ε
n ≡ {θ ∈ Rdθ : infθ̃∈Θ̂n ‖θ− θ̃‖ ≤ ε}, and c1−α denote the

1 − α quantile of supp∈S
dθ (−G0(p))+. Beresteanu and Molinari (2008) then

established that

lim
n→∞

P
(
Θ0(P)⊆ Θ̂ĉ1−α/

√
n

n

) = 1 − α(26)

for any consistent estimator ĉ1−α for c1−α. In particular, by letting Υ(a) =
(−a)+, and Ψ̂n = Ψ0 = S

dθ , Theorem 5.2 implies that (26) holds if c1−α is es-
timated employing the proposed bootstrap. Alternatively, Chernozhukov, Ko-
catulum, and Menzel (2012) provided a related construction based on the effi-
cient estimator that is equivariant to transformations of the parameters.

5.2. Application to Testing

As an illustration of the applicability of Theorem 5.2, we consider the hy-
pothesis testing problem

H0 :θ ∈Θ0(P)� H1 :θ /∈Θ0(P)�(27)

which is commonly inverted to construct confidence regions that cover each
element of Θ0(P) with a prespecified probability. In a related setting, Kaido
(2012) tested (27) employing the statistic13

Jn(θ)≡ √
n �dH

({θ}� Θ̂n

)
�(28)

For M(θ) ≡ arg maxp∈S
dθ {ν(p� {θ}) − ν(p�Θ0(P))}, the appropriate critical

value for Jn(θ) is then

c1−α(θ)≡ inf
{
c :P

(
sup

p∈M(θ)

(−G0(p)
)
+ ≤ c

)
≥ 1 − α

}
�(29)

Estimating c1−α(θ) requires a consistent estimator for M(θ), for which Kaido
(2012) proposed

M̂n(θ)≡
{
p ∈ S

dθ :
{
ν
(
p� {θ}) − ν(p�Θ0(P̂n)

)}
(30)

≥ sup
p̃∈S

dθ

{
ν
(
p̃� {θ}) − ν(p̃�Θ0(P̂n)

)} − κn√
n

}
�

13Kaido (2012) examined an arbitrary estimator of ν(·�Θ0(P)), not necessarily the efficient
one. This type of test statistic was first studied by Bontemps, Magnac, and Maurin (2012) in the
context of the incomplete linear model of Section 3.3.
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which satisfies dH(M(θ)�M̂n(θ)) = op(1) provided κn = o(n1/2) and κn ↑ ∞.
Applying Theorem 5.2 with Υ(a)= (−a)+, Ψ0 = M(θ), and Ψ̂n = M̂n(θ) then
implies that a consistent estimate of c1−α(θ) is

ĉ1−α(θ)≡ inf
{
c :P

(
sup

p∈M̂n(θ)

(−G∗
n(p)

)
+ ≤ c∣∣{Xi}ni=1

)
≥ 1 − α

}
�(31)

Theorem 5.3 establishes that the proposed bootstrap delivers pointwise (in
P) asymptotic size control.

THEOREM 5.3: Let Assumptions 3.1–3.5 and 5.1 hold, P ∈ P, α ∈ (0�0�5), and
κn ↑ ∞ with κn = o(n1/2). If θ ∈Θ0(P), and Var{G0(p)}> 0 for some p ∈ M(θ),
then it follows that

lim inf
n→∞

P
(
Jn(θ)≤ ĉ1−α(θ)

) ≥ 1 − α�(32)

5.2.1. Local Properties

The test that rejects (27) whenever Jn(θ) > ĉ1−α(θ) satisfies a local optimality
property. Specifically, we show that the power function of any test that controls
size over local parametric submodels must be weakly smaller than that of a test
based on Jn(θ) for all θ ∈ ∂Θ0(P) that are supported by a unique hyperplane.
Formally, let hη = √

dPη/dμ and H(θ) denote the set of submodels η 	→ Pη in
P with

(i) h0 = √
dP/dμ�(33)

(ii) θ ∈Θ0(Pη) if η≤ 0�

(iii) θ /∈Θ0(Pη) if η> 0�

Thus, H(θ) is the set of submodels passing through P for which Pη satisfies the
null hypothesis in (27) for η ≤ 0, and the alternative for η > 0. We consider
tests in terms of their power functions π : H(θ)→ [0�1], where π(Pη) is the
probability that the null hypothesis is rejected when Xi ∼ Pη.

THEOREM 5.4: Let Assumptions 3.1–3.5 and 5.1 hold, P ∈ P, θ0 ∈ ∂Θ0(P)
with M(θ0) = {p0} and Var{G0(p0)} > 0, and {πn} be any sequence of power
functions such that, for any Pη ∈ H(θ0), η≤ 0,

lim sup
n→∞

πn(Pη/√n)≤ α�(34)

If {π∗
n} is the power function of the test that rejects when Jn(θ0) > ĉ1−α(θ0),

then {π∗
n} satisfies (34). Moreover, for l̃(x) ≡ −λ(p0�P)

′H(θ0){m(x�θ0) −
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E[m(Xi�θ0)]} and any Pη ∈ H(θ0), η> 0,

lim sup
n→∞

πn(Pη/√n) ≤ lim
n→∞

π∗
n(Pη/

√
n)(35)

= 1 −�
(
z1−α −η2E[l̃(Xi)ḣ0(Xi)/h0(Xi)]√

E[G2
0(p0)]

)
�

where � is the cdf of a standard normal random variable and z1−α is its 1 − α
quantile.

The null hypothesis in (27) holds if and only if 〈p�θ〉 ≤ ν(p�Θ0(P)) for all
p ∈ S

dθ . When M(θ) = {p0}, such inequality holds with equality only at p0.
Heuristically, any local perturbation Pη/√n of P that violates the null hypothe-
sis in (27) must then satisfy 〈p0� θ〉> ν(p0�Θ0(Pη/√n)). As a result, it is possible
to locally relate (27) to the problem of testing 〈p0� θ〉 ≤ ν(p0�Θ0(P)) against
〈p0� θ〉> ν(p0�Θ0(P)). The limiting experiment of the latter hypothesis is akin
to a one sided test for a mean, and Theorem 5.4 follows by showing that the
proposed test is optimal in this context. We note, however, that the size con-
trol requirement in (34) is local to a P ∈ P, and the proposed test does not
necessarily control size uniformly over a larger set of distributions.

6. CONCLUSION

This paper obtains conditions under which the support function of the identi-
fied set is a regular parameter, and characterizes the semiparametric efficiency
bound for estimating it. These conditions are instructive in also determining
the sources of irregularity. As in standard maximum likelihood, however, the
results are local in nature. Consequently, care should be taken in implementa-
tion whenever there is reason to doubt the relevance of the assumption P ∈ P.
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