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Abstract

This discussion reviews recent advances in econometric analysis of model misspeci-

fication, drawing on the chapters by Armstrong and by Andrews, Chen, and Tecchio.

It highlights how misspecification affects bias, variance, and the interpretation of es-

timands, and discusses the role of expanded models that capture plausible departures

from baseline assumptions. The discussion contrasts local and global misspecification

frameworks, examines their implications for robust inference, and underscores the role of

user-chosen components—such as weighting matrices and tuning parameters—in shap-

ing empirical conclusions. By connecting these ideas to examples from causal inference,

social interaction models, and partially identified settings, the discussion outlines direc-

tions for developing inference procedures that remain credible in the presence of model

misspecification.
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1 Introduction

The econometrics literature has long examined how to build and test empirical models.

The standard toolkit available to applied researchers includes specification tests for a wide

range of parametric and moment-based models. Econometric theory has also developed

formal frameworks for analyzing local misspecification, robustness, and bias-aware inference.

The implications of misspecification and specification testing for inference, such as their

effects on standard errors and post-regularization procedures, have been extensively studied.

Building on these developments, the preceding chapters by Armstrong and by Andrews, Chen,
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and Tecchio (ACT) address key current issues related to misspecification and offer practical

recommendations for both econometricians and applied researchers.

These chapters share several recurring themes. First, they underscore the challenges and

pitfalls associated with commonly used estimands, such as those based on linear models,

when these models are misspecified. Second, they highlight the gap between the textbook

treatment of misspecification and empirical practice. Third, both contributions offer practical

guidance on how to handle user-chosen components in estimation.

A point that merits attention is the gap between the textbook treatment of misspecifi-

cation and empirical practice. On the one hand, textbooks emphasize formal model checks

based on statistical tests—such as the Hausman test for models that admit both efficient

and robust estimators (Hausman, 1978), the information matrix test for parametric models

(White, 1982), and the J-test for moment-based models (Hansen, 1982). On the other hand,

as documented by ACT, such tests are rarely reported in recent empirical work, raising the

question of why this gap exists. Several factors may explain it. First, conventional specifi-

cation tests can indicate that a model is misspecified but offer little guidance on how to fix

the problem; moreover, a non-significant result does not imply that the model is correctly

specified. Second, practitioners often rely on informal methods of assessing model fit, and

such practices have become increasingly prevalent. Third, concerns about sequential testing,

regularization, and their implications for valid inference may discourage researchers from con-

ducting formal tests, leading to a preference for more flexible modeling approaches. Given

this state of the empirical practice, the two chapters provide a timely review of existing tools

and introduce new proposals aimed at making inference more credible in the presence of

potential misspecification. The discussion below highlights several key insights from these

chapters and outlines directions for further research.

1.1 Impacts of Misspecification on Bias and Variance

The chapter by Armstrong offers a framework for assessing how model misspecification

affects inference. The central idea is to broaden a baseline model along the key dimensions
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where misspecification is most likely to occur. This approach requires the researcher to be

explicit about (i) how the model is expanded and (ii) which class of estimators or inference

methods is considered. Implementing such an analysis, in turn, calls for examining the

statistical properties of the proposed procedures within the expanded model.

A key object is the influence function of the estimand T (θ0) of interest. For an asymptoti-

cally linear estimator T̂ of T (θ0) such that
√
n(T̂−T (θ0)) = n−1/2

∑n
i=1 IF (Wi)+op(1), IF (·)

is called the influence function. It characterizes the sensitivity (and hence potential bias) of

the estimator to perturbations of the data-generating process (Hampel, 1974; Ichimura and

Newey, 2022).1 The set of admissible perturbation directions, and thus the departures for

which EP [IF (W )] may be nonzero, is determined by how the baseline model is expanded. In

many applications, this expansion governs both worst-case bias and variance. Consequently,

the statistical risk of T̂ depends on the expansion amount M as well as on any user-chosen

components of the estimation procedure. For example, consider a model characterized by

moment conditions

E[g(Xi, θ)] = 0 (1.1)

for some θ ∈ Θ. One way to expand this baseline model is to allow for local misspecification,

where some violation c/
√
n of the moment restrictions with the same order of sampling

variation is allowed. This leads to a bias-variance trade-off of the following form:

bias
2
= sup

c∈C(M)
|k′W c/

√
n|2, and V (kw) = k′WΣkW /n, (1.2)

where C(M) = {c : ∥c∥ ⩽ M}, and kW is the GMM estimator’s influence function as given in

Armstrong’s chapter, and M controls the size of the expanded model. The weighting matrix

can then be chosen to balance these quantities (Armstrong and Kolesár, 2021b). In this

expanded model, the amount of expansion enters the worst-case bias but not the variance.

1If the data-generating distribution changes from P to Pϵ = (1 − ϵ)P + ϵδw, where δw represents a point
mass (or an approximating sequence of it) at w, then the pathwise derivative of the functional T (θ(P )) in the
direction of w is d

dϵ
T (θ(Pϵ))

∣∣
ϵ=0

= IF (w).
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This framework is useful when a small degree of misspecification around a trusted model is

suspected.

As discussed in ACT’s chapter (Section 4), an alternative is to work under global misspec-

ification, where the moment condition fails, i.e., 0 /∈ {E[g(Xi, θ)] : θ ∈ Θ}. In this case, the

GMM estimator converges to the minimizer of the population criterion, and smooth function-

als of this pseudo-true value remain estimable. However, the bias does not vanish with sample

size, and the asymptotic variance generally differs from that under correct specification. ACT

review and recommend misspecification-robust variance estimators, either analytic formulas

or the bootstrap without re-centering, that are consistent under global misspecification. The

same guidance extends to semiparametric moment-condition models. In particular, Ai and

Chen (2007) derive the asymptotic variance for semiparametric minimum-distance estima-

tors under misspecification and show that, with additional structure (e.g., linearly separable

nuisance components), misspecification need not affect the first-order variance.

Certain combinations of expanded models and estimators can yield tractable characteri-

zations of statistical risk that provide insights into the trade-off between robustness and effi-

ciency. Examples of such parameter spaces include (i) Huber’s gross error model, (ii) convex

parameter spaces for parametric and nonparametric models, and (iii) the set of distributions

characterized by convex capacities. Key results on robust inference and optimality in such

classes were established in the statistics literature (Huber, 1964; Huber and Strassen, 1973;

Donoho, 1994), which have been applied to regression and moment-based models (Armstrong

and Kolesár, 2018, 2021a,b) and structural incomplete models (Kaido and Zhang, 2019). Ex-

ploring such structures further and extending the analysis to a broader class of applications

is a natural next step. For instance, a growing literature on models of social interaction

investigates how different modeling assumptions affect identification and inference (Aronow

and Samii, 2017; Athey et al., 2018; Leung, 2022; Sävje, 2024). To illustrate and connect

with the examples discussed in the chapter, consider a simple setting in which the outcome
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is generated by

Yi = α+ τDi + r(Si) + εi, εi
iid∼ (0, σ2),

where r(·) is an unknown function capturing spillover effects, and Si = Si(D) ∈ S = [0, 1]

denotes the exposure mapping (Manski, 2013; Aronow and Samii, 2017)—for example, the

fraction of treated peers within a cluster such as a school—which depends on the treatment

vectorD. A simple approach to estimating τ is to regress Yi onDi while approximating r(·) by

a step function defined over K exposure bins B = {B1, . . . , BK} forming a partition of S. In

this specification, misspecification of either r(·) or Si(·) may induce bias by conflating direct

and indirect effects, and may also inflate variance: the coarseness of the exposure partition

affects the sampling variability of the estimator. Different bias–variance tradeoffs can thus

emerge depending on the choice of the expanded parameter space for (r(·), {Si(·)}ni=1), the

sampling design, and the asymptotic approximation adopted.

Returning to the point on how to seek robustness, there are often multiple ways to pro-

ceed when expanding a baseline model. Armstrong’s chapter categorizes them into several

broad classes: (i) data-driven lower bounds for M ; (ii) model augmentation through auxil-

iary assumptions; (iii) placebo tests; and (iv) model expansions defined through statistical

distance measures. This menu will likely continue to grow in the coming years.

These approaches differ in the dimensions along which robustness to misspecification is

sought, but they share the common feature of explicitly defining an expanded model. A

central question is how to choose an appropriate parameterization, particularly the degree

of expansion, as this choice directly affects inference. Recent studies have explored ways to

guide the choice of sensitivity parameters—such as those discussed in Category (ii) in the

context of omitted variables, by Manski and Pepper (2018); Rambachan and Roth (2023)

in event-study settings, and similar developments have emerged for calibrating the degree of

unobserved confounding, using either domain knowledge or data-driven heuristics (Hsu and

Small, 2013; Kallus and Zhou, 2021). While formalizing this process remains challenging,
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connecting the selection of sensitivity parameters to an underlying decision problem may

provide a promising path forward. Such a connection has been explored in the context of

treatment choice by Kallus and Zhou (2021).

1.2 Misspecification, Estimands, and Credible Inference

The chapter by ACT highlights four key themes: (i) the distinction between econometric

misspecification, a failure of the underlying model assumptions, and statistical misspecifica-

tion, which concerns the discrepancy between the observable data distribution and the class of

permitted distributions; (ii) the definition and interpretation of estimands under misspecifi-

cation; (iii) inference procedures under global misspecification, emphasizing the role of robust

standard errors; and (iv) a novel use of the J-statistic under local misspecification. Taken

together, these elements provide a coherent framework for diagnosing and interpreting model

misspecification, clarifying what the researcher is estimating when some of the assumptions

fail, and guiding inference in such settings.

The chapter discusses these points effectively, using examples from linear causal and

moment-based models. Here, I expand the discussion of a nonparametric potential-outcome

framework in Section 2.1 of ACT.

Example 1 (Potential Outcome Model): Let (Y,D,Z) ∈ Y ×D×Z denote the observed

outcome, treatment, and instrument. Let Y ∗ = (Y (d, z))d∈D, z∈Z and D∗ = (D(z))z∈Z be

potential outcomes and treatments. Assume Z is independent of (Y ∗, D∗), possibly condi-

tional on covariates. In ACT’s notation, Q is the joint law of (Y ∗, D∗) and P is the law

of (Y,D,Z). Many causal estimands are functionals of Q, e.g. average and policy-relevant

treatment effects

θ(Q) = EQ[Y (d)− Y (d′)] and θ(Q) = EQ

[
Y (D(z))− Y (D(z′))

]
,

which makes target parameters explicit and interpretable.

Key assumptions in this class include exclusion and shape restrictions on (Y ∗, D∗). For
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example, Imbens and Angrist (1994) impose (i) exclusion: Y (d, z) = Y (d, z′) for all (d, z, z′) ∈

D × Z2, and (ii) selection monotonicity : for any z, z′ ∈ Z, either D(z) ⩾ D(z′) or D(z) ⩽

D(z′). These conditions restrict the support of (Y ∗, D∗) and hence the admissible set Q

of joint laws, helping define and interpret causal parameters and discipline unobserved het-

erogeneity. Other support restrictions include monotonicity of outcomes or vector-valued

treatments and mediation assumptions (Heckman and Pinto, 2018; Mogstad et al., 2021;

Kwon and Roth, 2024). As pointed out by ACT, the joint distribution Q on a postulated

support can be viewed as a structure that remains fixed when we undertake a policy change.

Depending on θ and the maintained assumptions, θ(Q) may be point- or set-identified.

The partial-identification literature has developed methods for characterizing sharp identifi-

cation regions and inference for θ(Q) (Manski, 2003; Molinari, 2020). Although the modeling

restrictions concern latent objects, they yield nontrivial testable implications. Examples in-

clude tests of IV validity (Balke and Pearl, 1997; Kitagawa, 2015; Kédagni and Mourifié,

2020), “judge IV” designs (Frandsen et al., 2023), encouragement designs (Bai et al., 2025)

and full mediation (Kwon and Roth, 2024), among others.

In the context of moment-based models, the chapter makes a creative proposal for using

the J-statistic as a diagnostic tool in credible empirical research. The GMM weighting matrix

W is a user-specified component. While standard econometric texts describe the form of W

that guarantees asymptotic efficiency and discuss practical implementations of the efficient

weighting matrix, a substantial literature has noted that such estimators may exhibit poor

finite-sample performance. The choice of the weighting matrix, therefore, remains a subtle

and consequential aspect of empirical implementation.

The chapter by ACT introduces an important additional perspective. Because W is

researcher-chosen, it can be strategically selected to produce more favorable empirical results.

The J-statistic provides a natural diagnostic for assessing the credibility of inference in this

setting. Specifically, within the local misspecification framework discussed in the previous
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section, they establish the following equivalence (in the asymptotic sense):

VIF(θ̂W ) ⩽ 1 + τ2 ⇔ θ̂W ∈ [θ̂eff ± τ σ̂eff
√
J ],

where θ̂eff is an asymptotically efficient GMM estimator, σ̂eff an estimator of the variance of

θ̂eff, and the variance inflation factor VIF(θ̂W ) = σ̂2
θ̂W

/σ̂2
θ̂eff

measures how much the asymptotic

variance of θ̂W gets inflated relative to the efficient one. This relation implies that a smaller

J leaves less scope for weight-hacking, while a larger J permits greater sensitivity to W .

Reporting J therefore quantifies the potential for weight choice to matter. A natural question

that follows is how practitioners should discipline themselves against weight-hacking when J

is large. One pragmatic approach may be to restrict attention to a more structured subclass

of weighting matrices—for example, diagonal or block-diagonal forms—which limit flexibility.

Further work on principled restrictions and reporting practices would be valuable. Finally, the

insight behind the J-statistics may extend to other settings, such as regular semiparametric

models (Chen and Santos, 2018). The key structure behind the above result is that an

estimator can be expressed as θ̂W = θ̂eff + v′WZ where the second term captures the W -

specific departure from efficiency, and the J-statistic quantifies the size of Z. Thus, in any

problem where a researcher-chosen component induces a deviation from an efficient estimator,

the same reasoning can bound how much that choice can move the estimate. A full treatment

would require model-specific regularity conditions; nonetheless, the approach taken by ACT

can potentially inform a wide range of problems.

More broadly, researchers often encounter settings where (i) the model may be misspecified

yet difficult to detect in finite samples; (ii) inference relies on user–chosen components; and

(iii) diagnostics that summarize the extent of potential misspecification are available. Even

when the structure discussed above for the J-statistic does not apply verbatim, it is useful

to develop methods that translate such diagnostics into credible inference.

As a concrete example, consider structural discrete-choice models for individual decisions

or firm competition, which allow flexible treatment of partially understood elements such
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as choice-set formation or equilibrium selection (see, e.g., Tamer, 2003; Barseghyan et al.,

2021). In these models, misspecification of primitives, such as functional forms, solution con-

cepts, and exogeneity assumptions, remains a central concern. Under misspecification, the

set of parameter values satisfying the model-implied restrictions may be empty, analogous to

what occurs in globally misspecified moment equation models. This observation motivates

an approach that conducts inference on a non-empty set of pseudo-true parameter values,

which remains well-defined even when the model is misspecified. In this spirit, Kaido and

Molinari (2025) and Andrews and Kwon (2024) study inference for pseudo-true parameters

under misspecification: the former defines pseudo-true values via minimization of the Kull-

back–Leibler divergence, following White (1982), while the latter defines them in terms of

minimal violations of moment inequality restrictions.

When the degree of misspecification is mild, the identified set may remain non-empty, but

inference requires additional care. Andrews and Kwon (2024) show that existing specification

tests often have limited power to detect mild misspecification, and that inference procedures

which ignore misspecification can be substantially distorted. Nevertheless, the magnitude

of violations of certain moment restrictions, such as those underlying specification tests,

may still be informative, in a manner analogous to the J-statistic. Designing procedures

that incorporate such quantities into estimation and reporting to improve transparency is a

promising direction.
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