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This Appendix provides a number of details relegated from the main text. The Appendix is
structured as follows:

• Section A provides a number of facts about momentum.

• Section B provides details on the microdata data and the procedures used to clean it as well
as the house price indices and estimated seller equity used in Section 2 of the main text.

• Section C provides econometric proofs and robustness tests related to the micro evidence for
concave demand presented in Section 2 of the main text. This includes many robustness and
specification tests for the main IV analysis as well as robustness tests for the OLS specifications
and analysis of the robustness of the results to other sources of markup variation, which may
induce measurement error.

• Section D provides facts about prices from the matched Altos-DataQuick microdata to sup-
port some of the assumptions made in the model. In particular, it provides evidence to
support the assumption that the average house is sold at list price by comparing list prices
with transaction prices in the DataQuick and Altos matched microdata. It also provides evi-
dence on the frequency of price change to motivate the staggered pricing friction calibration.

• Section E provides details and proofs related to the backward-looking and staggered price
models as well as the non-concave model.

• Section F details the calibration procedure for the model parameters and shocks.

• Section G provides additional simulation results and robustness checks, including a downward
price shock and a deterministic shock so that the model solution is not approximated.

A Facts About Momentum

A.1 Data

A.1.1 National and Regional Data

The main national-level price series used is the CoreLogic national repeat-sales house price index.
This is an arithmetic interval-weighted house price index from January 1976 to August 2013. The
monthly index is averaged at a quarterly frequency and adjusted for inflation using the Consumer
Price Index, BLS series CUUR0000SA0.

Other price a measures used include:

• A median sales price index for existing single-family homes. The data is monthly for the
whole nation from January 1968 to January 2013 and available on request from the National
Association of Realtors.

• The quarterly national “expanded purchase-only” HPIs that only includes purchases and
supplements the FHFA’s database from the GSEs with deeds data from DataQuick from Q1
1991 to Q4 2012. This is an interval-weighted geometric repeat-sales index.
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• The monthly Case-Shiller Composite Ten from January 1987 to January 2013. This is an
interval-weighted arithmetic repeat-sales index.

• Amedian sales price index for all sales (existing and new homes) from CoreLogic from January
1976 to August 2013.

For annual AR(1) regressions, I use non-seasonally-adjusted data. For other specifications, I use
seasonally-adjusted data. I use the data provider’s seasonal adjustment if available and otherwise
seasonally adjust the data using the Census Bureau’s X-12 ARIMA software using a multiplicative
seasonal factor.

A.1.2 City-Level Data

The city level data set consists of local repeat-sales price indices for 103 CBSA divisions from
CoreLogic. These CBSAs divisions include all CBSAs divisions that are part of the 100 largest
CBSAs which have data from at least 1995 onwards. Most of these CBSAs have data starting in
1976. Table A1 shows the CBSAs and years. This data is used for the annual AR(1) regression
coe�cient histogram in Figure A1 and is adjusted for inflation using the CPI.

A.2 Facts on Momentum in the United States

House price momentum has consistently been found across cities, countries, time periods, and price
index measurement methodologies (Cho, 1996; Titman et al., 2014). Figure A1 shows two nation-
wide measures of momentum for the CoreLogic repeat-sales house price index for 1976 to 2013
and a third measure for the same index across 103 cities. Panel A shows that autocorrelations are
positive for 11 quarterly lags of the quarterly change in the price index adjusted for inflation and
seasonality. Panel B shows an impulse response in log levels to an initial one percent price shock
estimated from an AR(5). In response to the shock, prices gradually rise for two to three years before
mean reverting. Finally, panel C shows a histogram of AR(1) coe�cients estimated separately for
103 metropolitan area repeat-sales house price indices from CoreLogic using a regression of the
annual change in log price on a one-year lag of itself as in Case and Shiller (1989):

�t,t�4 ln p = �0 + �1�t�4,t�8 ln p+ ". (A1)

�1 is positive for all 103 cities, and the median city has an annual AR1 coe�cient of 0.60.
To assess the robustness of these facts about house price momentum, Table A2 shows several

measures of momentum for five di↵erent national price indices. The indices are the CoreLogic Na-
tional repeat-sales house price index discussed in the main text, the Case-Shiller Composite Ten,
the FHFA expanded repeat-sales house price index, the National Association of Realtors’ national
median price for single-family homes, and CoreLogic’s national median price for all transactions.
The first column shows the coe�cient on an AR(1) in log annual price change run at quarterly
frequency as in equation (A1).1 The next two columns show the one- and two-year lagged auto-
correlations of the quarterly change in log price. The fourth column shows the quarterly lag in
which the autocorrelation of the quarterly change in log price is first negative. The fifth column
shows the quarter subsequent to a shock in which the impulse response from an estimated AR(5)

1Case and Shiller (1989) worry that the same house selling twice may induce correlated errors that generate
artificial momentum in regression (A1) and use �pt,t�4 from one half of their sample and �pt�4,t�8 from the other. I
have found that this concern is minor with 25 years of administrative data by replicating their split sample approach
with my own house price indices estimated from the DataQuick micro data.
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Table A1: CBSAs in CoreLogic City-Level Price Data Set

CBSA Code Main City Name Start End 32820 Memphis, TN 1984 2013

10420 Akron, OH 1978 2013 33124 Miami, FL 1976 2013

10580 Albany, NY 1992 2013 33340 Milwaukee, WI 1976 2013

10740 Albuquerque, NM 1992 2013 33460 Minneapolis, MN 1976 2013

10900 Allentown, PA 1976 2013 34980 Nashville, TN 1976 2013

12060 Atlanta, GA 1976 2013 35004 Nassau, NY 1976 2013

12420 Austin, TX 1976 2013 35084 Newark, NJ-PA 1976 2013

12540 Bakersfield, CA 1976 2013 35300 New Haven, CT 1985 2013

12580 Baltimore, MD 1976 2013 35380 New Orleans, LA 1976 2013

12940 Baton Rouge, LA 1992 2013 35644 New York, NY 1976 2013

13140 Beaumont, TX 1993 2013 36084 Oakland, CA 1976 2013

13644 Bethesda, MD 1976 2013 36420 Oklahoma City, OK 1976 2013

13820 Birmingham, AL 1976 2013 36540 Omaha, NE 1990 2013

14484 Boston, MA 1976 2013 36740 Orlando, FL 1976 2013

14860 Bridgeport, CT 1976 2013 37100 Ventura, CA 1976 2013

15380 Bu↵alo, NY 1991 2013 37764 Peabody, MA 1976 2013

15764 Cambridge, MA 1976 2013 37964 Philadelphia, PA 1976 2013

15804 Camden, NJ 1976 2013 38060 Phoenix, AZ 1976 2013

16700 Charleston, SC 1976 2013 38300 Pittsburgh, PA 1976 2013

16740 Charlotte, NC 1976 2013 38900 Portland, OR 1976 2013

16974 Chicago, IL 1976 2013 39100 Poughkeepsie, NY 1976 2013

17140 Cincinnati, OH 1976 2013 39300 Providence, RI 1976 2013

17460 Cleveland, OH 1976 2013 39580 Raleigh, NC 1976 2013

17820 Colorado Springs, CO 1976 2013 40060 Richmond, VA 1976 2013

17900 Columbia, SC 1977 2013 40140 Riverside, CA 1976 2013

18140 Columbus, OH 1976 2013 40380 Rochester, NY 1991 2013

19124 Dallas, TX 1977 2013 40484 Rockingham County, NH 1990 2013

19380 Dayton, OH 1976 2013 40900 Sacramento, CA 1976 2013

19740 Denver, CO 1976 2013 41180 St. Louis, MO 1978 2013

19804 Detroit, MI 1989 2013 41620 Salt Lake City, UT 1992 2013

20764 Edison, NJ 1976 2013 41700 San Antonio, TX 1991 2013

21340 El Paso, TX 1977 2013 41740 San Diego, CA 1976 2013

22744 Fort Lauderdale, FL 1976 2013 41884 San Francisco, CA 1976 2013

23104 Fort Worth, TX 1984 2013 41940 San Jose, CA 1976 2013

23420 Fresno, CA 1976 2013 42044 Santa Ana, CA 1976 2013

23844 Gary, IN 1992 2013 42644 Seattle, WA 1976 2013

24340 Grand Rapids, MI 1992 2013 44140 Springfield, MA 1976 2013

24660 Greensboro, NC 1976 2013 44700 Stockton, CA 1976 2013

24860 Greenville, SC 1976 2013 45060 Syracuse, NY 1992 2013

25540 Hartford, CT 1976 2013 45104 Tacoma, WA 1977 2013

26180 Honolulu, HI 1976 2013 45300 Tampa, FL 1976 2013

26420 Houston, TX 1982 2013 45780 Toledo, OH 1976 2013

26900 Indianapolis, IN 1991 2013 45820 Topeka, KS 1985 2013

27260 Jacksonville, FL 1976 2013 46060 Tucson, AZ 1976 2013

28140 Kansas City, MO 1985 2013 46140 Tulsa, OK 1981 2013

28940 Knoxville, TN 1977 2013 47260 Virginia Beach, VA 1976 2013

29404 Lake County, IL 1982 2013 47644 Warren, MI 1976 2013

29820 Las Vegas, NV 1983 2013 47894 Washington, DC 1976 2013

30780 Little Rock, AR 1985 2013 48424 West Palm Beach, FL 1976 2013

31084 Los Angeles, CA 1976 2013 48620 Wichita, KS 1986 2013

31140 Louisville, KY 1987 2013 48864 Wilmington, DE 1976 2013

32580 McAllen, TX 1992 2013 49340 Worcester, MA 1976 2013
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Table A2: The Robustness of Momentum Across Price Measures and Metrics

Price Measure Annual 1 Year 2 Year Lag in Which Quarter Quarter of
AR(1) Lagged Lagged Quarterly �p of Peak Peak Value of

Coe�cient Autocorr of Autocorr of Autocorr is of AR(5) Lo-MacKinlay
Quarterly �p Quarterly �p First < 0 IRF Variance Ratio

CoreLogic Repeat 0.665 0.516 0.199 12 12 19
Sales HPI, 1976-2013 (0.081)

Case-Shiller 0.670 0.578 0.251 14 11 20
Comp 10, 1987-2013 (0.088)
FHFA Expanded 0.699 0.585 0.344 14 11 18
HPI, 1991-2013 (0.089)
NAR Median 0.458 0.147 0.062 12 6 16

Price, 1968-2013 (0.103)
CoreLogic Median 0.473 0.215 0.046 11 7 16
Price, 1976-2013 (0.082)

Notes: Each row shows six measures of momentum for each of the five house price indices. The first row shows the AR(1

coe�cient for a regression of the annual change in log price on a on-year lag of itself estimated on quarterly data, as in

equation (A1), with robust standard errors in parenthesis. The second and third columns show the one and two year lagged

autocorrelations of the quarterly change in log price. The fourth column shows the quarterly lag in which the autocorrelation of

the quarterly change in log price is first negative. The fifth column indicates the quarter in which the impulse response function

estimated from an AR(5), reaches its peak. Finally, the last column shows the quarterly lag for which the Lo-MacKinlay

variance ratio computed as in equation (A2) reaches its peak.

Table A3: Testing For Asymmetry in Momentum

Dependent Variable: Annual Change in Log Price Index at CBSA Level

Specification With Interaction Without Interaction

Coe�cient on Year-Lagged 0.614*** 0.591***
Annual Change in Log Price (0.011) (0.020)

Coe�cient on Interaction With 0.045
Positive Lagged Change (0.031)

CBSA Fixed E↵ects Yes Yes
CBSAs 103 103

N 13,188 13,188

Notes: *** p<0.001. Each column shows a regression of the annual change in log price on a one-year lag of itself and CBSA

fixed e↵ects. In column two, the interaction between the lag of annual change in log price with an indicator for whether the

lag of the annual change in log price is also included as in equation (A3). The regressions are estimated on the panel of 103

CBSAs repeat-sales price indices listed in TableA1. Robust standard errors are in parentheses.
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Figure A1: Momentum in Housing Prices
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Notes: Panel A and B show the autocorrelation function for quarterly real price changes and an impulse response of log real

price levels estimated from an AR(5) model, respectively. The IRF has 95% confidence intervals shown in grey. An AR(5) was

chosen using a number of lag selection criteria, and the results are robust to altering the number of lags. Both are estimated

using the CoreLogic national repeat-sales house price index from 1976-2013 collapsed to a quarterly level, adjusted for inflation

using the CPI, and seasonally adjusted. Panel C shows a histogram of annual AR(1) coe�cients of annual house price changes

as in regression (A1) estimated separately on 103 CBSA division repeat-sales house price indices provided by CoreLogic. The

local HPIs are adjusted for inflation using the CPI. The 103 CBSAs and their time coverage, which ranges from 1976-2013 to

1995-2013, are listed in TableA1.

estimated in log levels reaches its peak value. Finally, the sixth column shows the quarterly lag in
which the Lo-MacKinlay variance ratio statistic reaches its peak value. This statistic is equal to,

V (k) =
var

⇣P
t�k+1
t=1 rt�k+1

⌘
/k

var (rt)
=

var (log (pt)� log (pt�k)) /k

var (log (pt)� log (pt�1))
, (A2)

where rt = log (pt)� log (pt�1) is the one-period return. If this statistic is equal to one, then there
is no momentum, and several papers have used the maximized period of the statistic as a measure
of the duration of momentum.

Table A2 shows evidence of significant momentum for all price measures and all measures of
momentum. The two median price series exhibit less momentum as the IRFs peak at just under
two years and the two-year-lagged autocorrelation is much closer to zero.

Table A3 tests for asymmetry in momentum. Many papers describe prices as being primarily
sticky on the downside (e.g., Leamer, 2007; Case, 2008). To assess whether this is the case, I turn
to the panel of 103 CBSA repeat-sales price indices described in Appendix B, which allows for a
more powerful test of asymmetry than using a single national data series. I estimate a quarterly
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Table A4: Momentum Across Countries

Country AR(1) Coe�cient N Country AR(1) Coe�cient N

Australia, 1986-2013 0.217* 100 Netherlands, 1995-2013 0.951*** 67
(0.108) (0.079)

Belgium, 1973-2013 0.231** 154 Norway, 1992-2013 -0.042 79
(0.074) (0.091)

Denmark, 1992-2013 0.412*** 78 New Zealand, 1979-2013 0.507*** 127
(0.110) (0.075)

France, 1996-2013 0.597*** 62 Sweden, 1986-2013 0.520*** 103
(0.121) (0.100)

Great Britain, 1968-2013 0.467*** 173 Switzerland, 1970-2013 0.619*** 167
(0.079) (0.082)

Notes: * p< 0.05, ** p<0.01, *** p<0.001. Each row shows the AR(1) coe�cient for a regression of the annual change in log price

on an annual lag of itself, as in equation (A1), estimated on quarterly, non-inflation-adjusted data from the indicated country

for the indicated time period. Robust standard errors are in parentheses, and N indicates the number of quarters in the sample.

The BIS identifiers and series descriptions are listed for each country. Australia: Q:AU:4:3:0:1:0:0, residential property for all

detached houses, eight cities. Belgium Q:BE:0:3:0:0:0:0, residential property all detached houses. Denmark: Q:DK:0:2:0:1:0:0,

residential all single-family houses. France: Q:FR:0:1:1:6:0, residential property prices of existing dwellings. Great Britain:

Q:GB:0:1:0:1:0:0, residential property prices all dwellings from the O�ce of National Statistics. Netherlands: Q:NL:0:2:1:1:6:0,

residential existing houses. Norway: Q:NO:0:3:0:1:0:0, Residential detached houses. New Zealand: Q:NZ:0:1:0:3:0:0, residential

all dwellings. Sweden: Q:SE:0:2:0:1:0:0, owner-occupied detached houses. Switzerland: Q:CH:0:2:0:2:0:0, owner-occupied

single-family houses.

AR(1) regression of the form:

�t,t�4 ln pc = �0 + �1�t�4,t�8 ln pc + �2�t�4,t�8 ln pc ⇥ 1 [�t�4,t�8 ln pc > 0] + �c + ", (A3)

where c is a city. If momentum is stronger on the downside, the interaction coe�cient �2 should
be negative. However, Table A3 shows that the coe�cient is insignificant and positive. Thus
momentum appears equally strong on the upside and downside when measured using a repeat-sales
index.

A.3 House Price Momentum Across Countries

Table A4 shows annual AR(1) regressions as in equation (A1) run on quarterly non-inflation-
adjusted data for ten countries. The data come from the Bank for International Settlements, which
compiles house price indices from central banks and national statistical agencies. The data and
details can be found online at http://www.bis.org/statistics/pp.htm. I select ten countries from the
BIS database that include at least 15 years of data and have a series for single-family detached homes
or all homes. Countries with per-square-foot indices are excluded. With the exception of Norway,
which shows no momentum, and the Netherlands, which shows anomalously high momentum, all of
the AR(1) coe�cients are significant and between 0.2 and 0.6. Price momentum thus holds across
countries as well as within the United States and across U.S. metropolitan areas.

B Data

The matched listings-transactions micro data covers the San Francisco Bay, San Diego, and Los
Angeles metropolitan areas. The San Francisco Bay sample includes Alameda, Contra Costa,
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Marin, San Benito, San Francisco, San Mateo, and Santa Clara counties. The Los Angeles sample
includes Los Angeles and Orange counties. The San Diego sample only includes San Diego County.
The data from DataQuick run from January 1988 to August 2013. The Altos data run from October
2007 to May 2013. I limit my analysis to April 2008 to February 2013, as described in footnote 6.

B.1 DataQuick Characteristic and History Data Construction

The DataQuick data is provided in separate assessor and history files. The assessor file contains
house characteristics from the property assessment and a unique property ID for every parcel in
a county. The history file contains records of all deed transfers, with each transfer matched to a
property ID. Several steps are used to clean the data.

First, both data files are formatted and sorted into county level data files. For a very small
number of properties, data with a typo is replaced as missing.

Second, some transactions appear to be duplicates. Duplicate values are categorized and com-
bined into one observation if possible. I drop cases where there are more than ten duplicates, as this
is usually a developer selling o↵ many lots individually after splitting them. Otherwise, I pick the
sale with the highest price, or, if as a tiebreaker, the highest loan value at origination. In practice,
this a↵ects very few observations.

Third, problematic observations are identified. In particular, transfers between family mem-
bers are identified and dropped based on a DataQuick transfer flag and a comparison buyer and
seller names. Sales with prices that are less than or equal to one dollar are also counted as trans-
fers. Partial consideration sales, partial sales, group sales, and splits are also dropped, as are
deed transfers that are part of the foreclosure process but not actually transactions. Transactions
that appear to be corrections or with implausible origination loan to value ratios are also flagged
and dropped. Properties with implausible characteristics (<10 square feet, < 1 bedroom, < 1/2
bathroom, implausible year built) have the implausible characteristic replaced as a missing value.

From the final data set matched to Altos, I only use resale transactions (as opposed to new
construction or subdivisions) of single-family homes, both of which are categorized by DataQuick.

For the purposes of estimating the equity for each house when it is listed, I also create a
secondary dataset that includes not only the history of deed transfers but also the history of
mortgage liens for each property. This data includes the value, lender, interest rate type (adjustable-
or fixed-rate), as well as the initial interest rate on the loan as estimated by DataQuick using the date
of origination of the loan and loan characteristics together with other proprietary data on interest
rates. The estimated interest rate is not available until 1995 for most counties in California. The
data is cleaned identically to the main data set for transfers. For the loan data, duplicates, group
sales, split properties, partial sales, partial consideration sales, and loans that are less than $10,000
are dropped.

B.2 Altos Research Listings Data Construction and Match to DataQuick

The Altos research data contains address, MLS identifier, house characteristics, list price, and date
for every week-listing. Altos generously provided me access to an address hash that was used to
parse the address fields in the DataQuick assessor data and Altos data and to create a matching
hash for each. Hashes were only used that appeared in both data files, and hashes that matched
to multiple DataQuick properties were dropped.

After formatting the Altos data, I match the Altos data to the DataQuick property IDs. I
first use the address hash, applying the matched property ID to every listing with the same MLS
identifier (all listings with the same MLS ID are the same property, and if they do not all match
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it is because some weeks the property has the address listed di↵erently, for instance “street” is
included in some weeks but not others). Second, I match listings not matched by the address hash
by repeatedly matching on various combinations of address fields and discarding possible matches
when there is not a unique property in the DataQuick data for a particular combination of fields,
which prevents cases where there are two properties that would match from being counted as a
match. I determine the combinations of address fields on which to match based on an inspection
of the unmatched observations, most of which occur when the listing in the MLS data does not
include the exact wording of the DataQuick record (e.g., missing “street”). The fields typically
include ZIP, street name, and street number and di↵erent combinations of unit number, street
direction, and street su�x. In some cases I match to the first few digits of street number or the
first word of a street name. I finally assign any unmatched observations with the same MLS ID as
a matched observation or the same address hash, square feet, year built, ZIP code, and city as a
matched observation the property ID of the matched observation. I subsequently work only with
matched properties so that I do not inadvertently count a bad match as a withdrawal.

The observations that are not matched to a DataQuick property ID are usually multi-family
homes (which I drop due to the problematic low match rate), townhouses with multiple single-family
homes at the same address, or listings with typos in the address field.

I use the subset of listings matched to a property ID and combine cases where the same property
has multiple MLS identifiers into a contiguous listing to account for de-listings and re-listings of
properties, which is a common tactic among real estate agents. In particular, I count a listing as
contiguous if the property is re-listed within 13 weeks and there is not a foreclosure between the
de-listing and re-listing. I assign each contiguous listing a single identifier, which I use to match to
transactions.

In a few cases, a listing matches to several property IDs. I choose the property ID that matches
to a transaction or that corresponds to the longest listing period. All results are robust to dropping
the small number of properties that match to multiple property IDs.

I finally match all consolidated listings to a transaction. I drop transactions and corresponding
listings where there was a previous transaction in the last 90 days, as these tend to be a true
transaction followed by several subsequent transfers for legal reasons (e.g., one spouse buys the
house and then sells half of it to the other). I first match to a transaction where the date of
last listing is in the month of the deed transfer request or in the prior three months. I then
match unmatched listings to a transaction where the date of last listing is in the three months
after the deed transfer request (if the property was left on the MLS after the request, presumably
by accident). I then repeat the process for unmatched listings for four to 12 months prior and
four to 12 months subsequent. Most matches have listings within three months of the last listing.
The matching procedure takes care to make sure that listings that match to a transaction that is
excluded from the final sample (for instance due to it being a transfer or having an implausible sale
price) are dropped and not counted as unmatched listings.

For matched transactions, I generate two measures of whether a house sold within a given time
frame. The first, used in the main text, is the time between the date of first listing and the date
of filing of the deed transfer request. The second, used in robustness checks in Appendix C, is the
time between date of first listing and the first of the last listing date or the transfer request.

Figure A2 shows the fraction of all single-family transactions of existing homes for which my
data accounts in each of the three metropolitan areas over time. Because the match rates start low
in October 2007, I do not start my analysis until April 2008, except in San Diego where almost all
listings have no listed address until August 2008. Besides that, the match rates are fairly stable,
except for a small dip in San Diego in mid-2009 and early 2012 and a large fall o↵ in the San
Francisco Bay area after June 2012. I consequently end the analysis for the San Francisco Bay area
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at June 2012. Figures A3, A4, and A5 show match rates by ZIP code. One can see that the match
rate is consistently high in the core of each metropolitan area and falls o↵ in the outlying areas,
such as western San Diego county and Escondido in San Diego, Santa Clarita in Los Angeles, and
Brentwood and Pleasanton in the San Francisco Bay area.

B.3 Construction of House Price Indices

I construct house price indices largely following Case and Shiller (1989) and follow sample restric-
tions imposed in the construction of the Case-Shiller and Federal Housing Finance Administration
(FHFA) house price indices.

For the repeat sale indices, I drop all non-repeat sales, all sales pairs with less than six months
between sales, and all sales pairs where a first stage regression on year dummies shows a property
has appreciated by 100 percent more or 100 percent less than the average house in the MSA. I
estimate an interval-corrected geometric repeat-sales index at the ZIP code level. This involves
estimating a first stage regression:

ph`t = ⇠h` + �t + "h`t, (A4)

where p is the log price of a house h in location ` at time t, ⇠h` is a sales pair fixed e↵ect, �t is a
time fixed e↵ect, and "h`t is an error term.

I follow Case and Shiller (1989) by using a GLS interval-weighted estimator to account for the
fact that longer time intervals tend to have a larger variance in the error of (A4). This is typically
implemented by regressing the square of the error term "

2
h`t

on a linear (Case-Shiller index) or
quadratic (FHFA) function of the time interval between the two sales. The regression coe�cients
are then used to construct weights corresponding to 1p

"̂
2
h`t

where "̂2
h`t

is a predicted value from the

interval regression. I find that the variance of the error of (A4) is non-monotonic: it is very high for
sales that occur quickly, falls to its lowest level for sales that occur approximately three years after
the first sale, and then rises slowly over time. This is likely due to flippers who upgrade a house
and sell it without the upgrade showing up in the data. Consequently, I follow a non-parametric
approach by binning the data into deciles of the time interval between the two sales, calculate the
average "2

h`t
for the decile "̄2

h`t
, and weight by 1p

"̄
2
h`t

. The results are nearly identical using a linear

interval weighting.
exp (�t) is then a geometric house price index. The resulting indices can be quite noisy. Conse-

quently, I smooth the index using a 3-month moving average, which produced the lowest prediction
error of several di↵erent window widths. The resulting indices at the MSA level are very comparable
to published indices by Case-Shiller, the FHFA, and CoreLogic.

The log predicted value of a house at time t, p̂t, that sold originally at time ⌧ for P⌧ is:

p̂t = log

0

@
exp

⇣
�̂t

⌘

exp
⇣
�̂⌧

⌘P⌧

1

A .

For the hedonic house price indices, I use all sales and estimate:

pi`t = �t + �Xi + "i`t, (A5)

where Xi is a vector of third-order polynomials in four housing characteristics: age, bathrooms,
bedrooms, and log (square feet), all of which are winsorized at the one percent level by county
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Figure A2: Match Rates by Month of Transaction
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Figure A4: Match Rates by ZIP Code: Los Angeles
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Figure A5: Match Rates by ZIP Code: San Diego

Fraction of
Transactions
Matched to Listing
.8 − 1
.7 − .8
.6 − .7
.5 − .6
.4 − .5
.3 − .4
.2 − .3
0 − .2

11



for all properties in a county, not just those that trade. Recall that these characteristics are all
recorded as a single snapshot in 2013, so Xi is not time dependent. I do not include a characteristic
if over 25 percent of the houses in a given geography are missing data for a particular characteristic.
Again exp (�t) is a house price index, which I smooth using a 3-month moving average. The log
predicted price of a house is:

p̂it = �̂Xi + �̂i.

For homes that are missing characteristics included in an area’s house price index calculation, I
replace the characteristic with its average value in a given ZIP code.

For my analysis, I use a ZIP code level index, but all results are robust to alternatively using
a house price index for all homes within one mile of the centroid of a home’s seven-digit ZIP code
(roughly a few square blocks). I do not calculate a house price index if the area has fewer than 500
sales since 1988. This rules out about 5% of transactions, typically in low-density areas far from
the core of the MSA. For each ZIP code, I calculate the standard deviation of the prediction error
of the house price index from 1988 to 2013 and weight most specifications by the reciprocal of the
standard deviation.

B.4 Construction of the Final Analysis Samples

I drop listings that satisfy one of several criteria:

1. If the list price is less than $10,000;

2. If the assessed structure value is less than five percent of the assessed overall value;

3. If the data shows the property was built after the sale date or there has been “significant
improvement” since the sale date;

4. If there was an implausibly large change in the house’s value, indicating a typo or large
renovation;

5. If there is a previous sale within 90 days.

Each observation is a listing, regardless of whether it is withdrawn or ends in a transaction. The
outcome variable is sold within 13 weeks, where withdrawn listings are counted as not transacting.
The price variable is the initial list price. The predicted prices are calculated for the week of first
listing by interpolation from the monthly index values. The sample is summarized in Table 1 in
the main text, and the fraction of the sample accounted for by each MSA and year are summarized
in Table A5.

B.5 Estimation of Equity Positions at Date of Listing

I estimate the equity position of the seller at date of listing for each listing in the final sample
using the DataQuick data on both transactions and mortgage liens together with the listing dates
for each property. While the data on mortgages is rich—it contains every lien, and I am able to
observe loan amounts, loan type (fixed or adjustable rate), and DataQuick’s estimated mortgage
interest rate—I do not have enough data to perfectly calculate equity for three reasons. First, I only
observe new mortgage liens and cannot tell which mortgages have been prepaid or replaced. I thus
cannot definitely know whether a new mortgage is a refinance, consolidation, or a second mortgage.
Second, I do not observe some features of the mortgage, such as the frequency and time of reset,
the margin over one-year LIBOR (or a similar index) to which an adjustable rate mortgage resets,
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Table A5: Share of Sample Accounted For By Each MSA and Year

Sample All Prior Trans All Prior Trans
All All Transactions Transactions

SF Bay 26.99 % 26.59 % 27.86 % 27.31 %
Los Angeles 58.76 % 59.52 % 57.47 % 58.35 %
San Diego 14.25 % 13.89 % 14.67 % 14.34 %

2008 18.17 % 20.06 % 16.48 % 18.26 %
2009 20.66 % 20.90 % 21.06 % 21.38 %
2010 23.88 % 23.45 % 23.56 % 23.08 %
2011 21.09 % 20.37 % 21.60 % 20.95 %
2012 14.90 % 14.00 % 15.94 % 15.05 %
2013 1.30 % 1.21% 1.36 % 1.27 %

Notes: Each cell indicates the percentage of each sample accounted for by each MSA (above the line) or by each year of first

listing (below the line).

the interest rate path (e.g. teaser rates or balloon mortgages), whether the mortgage is interest
only, and whether the borrower is current on their mortgage payments or has prepaid. Finally, if
a mortgage is a home equity line of credit, I do not observe its draw down. There are also cases
where loan type or interest rate are missing.

Because of these data limitations, I follow a procedure to estimate equity similar to DeFusco
(2018) and make several assumptions that allow me to estimate the equity of each home. In
particular I assume:

1. Assumptions about mortgages:

(a) All adjustable rate mortgages are 5/1 ARMs (among the most popular ARMs) that
amortize over 30 years that reset to a 2.75% margin over one-year LIBOR on the date of
reset, which according to the Freddie Mac Primary Mortgage Market Survey is roughly
the average historical margin.

(b) All fixed rate mortgages and mortgages of unknown type are 30 year fixed rate mortgages.

(c) All mortgages with a missing DataQuick estimated interest rate (most are prior to 1995)
are assigned an interest rate equal to the average interest rate on a 30-year fixed rate
mortgage in the month of origination from the Freddie Mac Primary Mortgage Market
Survey.

2. All borrowers are current on their mortgage, have not prepaid their mortgage unless they move
or refinance, and all home equity lines of credit are drawn down immediately. Consequently,
the mortgage balance at listing can be computed by amortizing all outstanding loans to the
date of listing.

3. All houses can have at most two outstanding mortgages at one time (the DataQuick data
includes up to three in a given history entry, and I choose the largest two). Mortgages are
estimated to be a first or second mortgage according to several rules:

(a) Initial mortgage balances:

i. If a property has an observed prior transaction, the initial mortgage balance is the
mortgage amount associated with that transaction (the mortgage balance used to
estimate the cumulative loan to value ratio)
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ii. If the house has no observed prior transactions but there are observed mortgage
liens, a new loan is counted as a first mortgage if it is greater than or equal to
50% of the hedonic value of the house (computed using the ZIP hedonic price index
described above) at the time of purchase and a second mortgage if it is less than
50%.

iii. If the house has no observed prior transactions and no observed new mortgage liens
since 1988, there is no mortgage balance by 2008 when the sample starts. Since
we are interested in screening out houses with negative equity, this is a harmless
assumption as any homeowner with no new mortgage liens in 20 years has a very
low mortgage balance and very high equity.

(b) If a new lien record shows two mortgages simultaneously taken out, both outstanding
mortgage “slots” are updated unless the two mortgages have the same value (a likely
duplicate in the records) or both are very small (less than half of the outstanding mort-
gage balance together), in which case they are likely a second and third mortgage and
only the larger of the two is counted as a second mortgage.

(c) If a new lien record shows one new mortgage, then:

i. If the property has no mortgage, it is a first mortgage.

ii. If the property only has a second mortgage (only for homes with no observed prior
transaction), the new mortgage is a first mortgage if it is over half of the hedonic
estimated value and otherwise a second mortgage.

iii. If the property has no second mortgage, the new mortgage is a second mortgage
if it is less than half the estimated first mortgage balance and otherwise the new
mortgage is a refinancing of the first mortgage.

iv. If there is currently a second mortgage, there are two cases:

A. If the balance is greater than the total current combined mortgage balance minus
$10,000 (for error), this is a mortgage consolidation. Replace the first mortgage
with the new mortgage and eliminate the second mortgage.

B. Otherwise, the loan for which the outstanding balance is closest to the new loan
amount is replaced, unless the loan is closer to the second mortgage and under
25% of the second mortgage balance in which case it is a third mortgage and is
dropped, as I assume that houses have up to two mortgages for simplicity.

Given the above assumptions, I calculate the mortgage balance at each listing and merge this into
the final data set. Equity at listing is then calculated as

Equity = 1� Mortgage Balance

Predicted Value
.

The rules for determining a first and second mortgage appear to be a reasonable approximation
for equity based on a visual inspection of at loan histories for many houses in the data set. There
will be some noise due to inaccuracies about the loan interests rate, amortization schedule, what
is a first versus second mortgage, error in the home’s predicted value, et cetera, but the estimated
mortgage balance at listing shoudl be a good proxy for the seller’s equity position in most cases.
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C Micro Evidence For Concave Demand

C.1 Binned Scatter Plots

Throughout the analysis, I use binned scatter plots to visualize the structural relationship between
list price relative to the reference list price and probability of sale. This section briefly describes
how they are produced.

Recall that the econometric model is:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t, (A6)

where ph`t � p̃h`t is equal to f (zh`t) in:

ph`t = f (zh`t) + �Xh`t + ⇠`t + uh`t. (A7)

To create the IV binned scatter plots. I first estimate f (zh`t) by (A7) and let ph`t � p̃h`t =
f (zh`t). I drop the top and bottom 0.5 percentiles of ph`t� p̃h`t and ZIP-quarter cells with a single
observation and create 25 indicator variables ⇣b corresponding to 25 bins q of ph`t � p̃h`t. I project
sale within 13 weeks dh`t on fixed e↵ects and the indicator variables:

dh`t =  `t + ⇣b + ⌫h`tq (A8)

I visualize g (·) by plotting the average ph`t � p̃h`t for each bin against the average dh`t �  `t for
each bin, which is equivalent to ⇣b.

C.2 Proof of Lemma 1

Recall that the Lemma assumes that:

zh`t ? (uh`t, "h`t) ,

ph`t = f (zh`t) + ⇣h`t + p̃h`t,

⇣h`t ? f (zh`t), and that the true regression function g (·) is a third-order polynomial. Because of the
fixed e↵ect ⇠h`t in p̃h`t, ⇣h`t can be normalized to be mean zero. Using the third-order polynomial
assumption, the true regression function is:

g (ph`t � p̃h`t) = E [dh`tq|f (zh`t) + ⇣h`t, `t] = �1 (f (zh`t) + ⇣h`t)+�2 (f (zh`t) + ⇣h`t)
2+�3 (f (zh`t) + ⇣h`t)

3 .

However, ⇣h`t is unobserved, so I instead estimate:

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3

+ �1E [⇣h`t|f (zh`t)] + 2�2E [f (zh`t) ⇣h`t] + �2E
⇥
⇣
2
h`t

|f
⇤

+ 3�3f (zh`t)E
⇥
⇣
2
h`t

|f
⇤
+ 3�23f (zh`t)E [⇣h`t|f ] + �3E

⇥
⇣
3
h`t

|f
⇤
.

However, because ⇣h`t ? f (zh`t), E [⇣h`t|f (zh`t)] = 0, E [f (zh`t) ⇣h`t] = 0, and E
⇥
⇣
2
h`t

|f
⇤
and

E
⇥
⇣
3
h`t

|f
⇤
are constants. The �2E

⇥
⇣
2
h`t

|f
⇤
and �3E

⇥
⇣
3
h`t

|f
⇤
terms will be absorbed by the fixed

e↵ects  `t, leaving:

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3 + 3�3f (zh`t)E
⇥
⇣
2
h`t

|f
⇤
.
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Figure A6: Reduced-Form Relationship Between the Instrument and the Outcome Variable
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Notes: This figure shows the reduced-form relationship between the instrument on the x-axis and the probability of sale within

13 weeks on the y axis. Both are residualized against ZIP ⇥ first quarter of listing fixed e↵ects and the repeat-sales and

hedonic predicted prices, and the means are added back in. Before binning, the top and bottom 0.5 percent of the log sale price

residual and any observations fully absorbed by fixed e↵ects are dropped. This plot of the reduced form shows the basic concave

relationship that the IV approach, although the downward-sloping first stage flips and shrinks the x-axis. The left panel shows

IV sample 1, which drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,

sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. The right panel

shows IV sample 2, which does away with the estimated equity requirement and instead drops DataQuick determined short

sales and withdrawn listings that are foreclosed upon in the subsequent year..

Thus when one estimates g (·) by a cubic polynomial of f (zh`t),

dh`tq = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3 +  `t + "h`t,

one recovers �1 = �1 + 3�3E
⇥
⇣
2
h`t

|f
⇤
, �2 = �2, and �3 = �3, so the true second- and third-order

terms are recovered.
For the quadratic case, I estimate

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3

+�1E [⇣h`t|f (zh`t)] + 2�2E [f (zh`t) ⇣h`t] + �2E
⇥
⇣
2
h`t

|f
⇤

= �1f (zh`t) + �2f (zh`t)
2
.

and so �1 = �1 and �2 = �2 and the true first- and second-order terms are recovered.

C.3 Instrumental Variable Robustness and Specification Tests

This section provides robustness and specification tests for the IV estimates described in Section
2. All robustness tests are shown for both IV sample 1 and IV sample 2, although the results are
similar across samples.
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Figure A7: Instrumental Variable Estimates With Probability of Sale Axis in Logs
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Notes: For both samples, the figure shows a binned scatter plot of the log of the probability of sale within 13 weeks net of ZIP

⇥ first quarter of listing fixed e↵ects (with the average probability of sale within 13 weeks added in) against the estimated log

relative markup p� p̃. It also shows an overlaid cubic fit of the relationship, as in equation (2). To create the figure, a first stage

regression of the log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter of listing

level, and repeat sales and hedonic log predicted prices, as in (5), is estimated by OLS. The predicted value of the polynomial

of the instrument is used as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative

markup and plots the mean of the estimated relative markup against the log of the mean of probability of sale within 13 weeks

net of fixed e↵ects for each bin, as detailed in Appendix C. The log transformation is applied at the end as the y variable is

binary. Before binning, the top and bottom 0.5 percent of the log sale price residual and any observations fully absorbed by

fixed e↵ects are dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error

in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures,

sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with

all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement

and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year.

The grey bands indicate a pointwise 95-percent confidence interval for the cubic fit created by block bootstrapping the entire

procedure on 35 ZIP-3 clusters. N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to

dropping unique zip-quarter cells and winsorizing.

Figure A6 shows the reduced-form relationship between the instrument and outcome variable
when both are residualized against fixed e↵ects and the repeat-sales and hedonic predicted price.
The estimates presented in the main text rescale the instrument axis into price (and in the process
flip and shrink the x axis), but the basic concave relationship between probability of sale and
appreciation since purchase is visible in the reduced form. The clear concave relationship in the
reduced form is important because it ensures that nonlinearities in the first stage are not driving
the overall concave relationship (although one could surmise this from the smooth and monotonic
first stage).

Figure A7 shows IV binned scatter plots when the y-axis is rescaled to a logarithmic scale so
that the slope represents the elasticity of demand. The demand curve is still robustly concave.

Figure A8 shows third-order polynomial fits varying the number of weeks that a listing needs
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Figure A8: Instrumental Variable Estimates: Varying The Sell-By Date
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Notes: For both samples, the figure shows third-order polynomial fits of equation (2) for the probability of sale by eleven di↵erent

deadlines (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 weeks) net of fixed e↵ects (with the average probability of sale added

in) against the estimated log relative markup. To create the figure, a first stage regression of the log list price on a fifth-order

polynomial in the instrument, fixed e↵ects at the ZIP x first quarter of listing level, and repeat sales and hedonic log predicted

prices, as in (5), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup

before equation (2) is run. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error

in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures,

sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with

all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement

and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year.

N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to dropping unique zip-quarter cells

and winsorizing.

to sell within to count as a sale from six weeks to 26 weeks. Concavity is evident regardless of the
deadline used for the binary y-variable.

Figure A9 shows the IV binned scatter plot and a third-order polynomial fit when the sample
is limited to transactions and transaction prices are used rather than initial list prices. Substantial
concavity is still present, assuaging concerns that the concavity in list prices may not translate into
a strategic complementarity in transaction prices. The upward slope in the middle of the figure is
not statistically significant.

Figure A10 shows third-order polynomial fits for each ZIP-3 in the data set with over 2,000
observations, so that the cubic polynomial is estimated with some degree of confidence. These
ZIP-3s form the core of my analysis sample. The pointwise standard errors on each line are fairly
wide and are not shown, but one can see that almost all of the ZIP-3s there is substantial curvature.

Figure A11 provides some evidence on the exclusion restriction by showing how observed quality
varies with time since purchase. In particular, it shows plots of six measures of observed quality
residualized against zip by quarter of listing fixed e↵ects (with the mean added back in) against
the date of the previous transaction for both of the IV samples. For both samples, there is no
clear relationship between bedrooms and bathrooms and original sale date. To the extent to
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Figure A9: Instrumental Variable Estimates: Transaction Prices
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Notes: For both samples, the figure shows a binned scatter plot of the probability of sale within 13 weeks net of ZIP ⇥ first

quarter of listing fixed e↵ects (with the average probability of sale within 13 weeks added in) against the estimated log relative

markup p� p̃ measured using transaction prices rather than list prices. It also shows an overlaid cubic fit of the relationship,

as in equation (2). To create the figure, a first stage regression of the log transaction price on a fifth-order polynomial in the

instrument, fixed e↵ects at the ZIP x first quarter of listing level, and repeat sales and hedonic log predicted prices, as in (5), is

estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup. The figure splits the

data into 25 equally-sized bins of this estimated relative markup and plots the mean of the estimated relative markup against

the mean of the probability of sale within 13 weeks net of fixed e↵ects for each bin, as detailed in Appendix C. Before binning,

the top and bottom 0.5 percent of the log sale price residual and any observations fully absorbed by fixed e↵ects are dropped.

The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales house

price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less

than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and homes

with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement and instead drops

DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The grey bands

indicate a pointwise 95-percent confidence interval for the cubic fit created by block bootstrapping the entire procedure on 35

ZIP-3 clusters. N = 96,400 observations for IV sample 1 and 86,033 observations for IV sample 2 prior to dropping unique

zip-quarter cells and winsorizing.

which unobserved quality varies with these observed measures of quality, this is consistent with the
exclusion restriction. There is a weak negative relationship between log square feet and original
sale date, but there are strong negative relationships between lot size, rooms, age, and original sale
date. Age is slightly nonmonotonic as it rises post 2005, but otherwise the results are more or less
linear, and do not strongly vary with the housing cycle. To the extent to which unobserved quality
varies with these observed measures of quality, these results imply that a linear time trend would
pick up the e↵ects of unobservables. This motivates a robustness check using a linear time trend
in date of purchase (or time since purchase) below.

Tables A6, A8, A10, A12, A14, A16, and A18 present various robustness and specification tests
of the main IV specification for IV sample 1 (column 3 of Table 2). Tables A7, A9, A11, A13,
A15, A17, and A19 repeat the same robustness tests for IV sample 2 (column 5 of Table 2). For all
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Figure A10: Instrumental Variable Estimates: Best Fit Polynomial By ZIP-3
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Notes: For both samples, the figure shows for each ZIP-3 with over 2,000 observations a cubic fit of the log of the probability of

sale within 13 weeks net of ZIP ⇥ first quarter of listing fixed e↵ects (with the average probability of sale within 13 weeks added

in) against the estimated log relative markup p� p̃ as in equation (2). To create the figure, a pooled first stage regression of

the log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter of listing level, and repeat

sales and hedonic log predicted prices, as in (5), is estimated by OLS. The predicted value of the polynomial of the instrument

is used as the relative markup in equation (2), which is estimated for each ZIP-3 with over 2,000 observations. For each ZIP-3,

the x-axis of the best-fit polynomial reflects the 1st to 99th percentiles of the log relative markup in that ZIP. IV sample 1

drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase, sales by investors

who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the

estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed

upon in the subsequent year.

robustness tables, each row in the tables represents a separate regression, with the specifications
described in the Appendix text. Coe�cients for a quadratic polynomial in the log relative markup
and a bootstrapped 95 percent confidence interval for the quadratic term are reported as in the main
text. The robustness and specification checks consistently show evidence of significant concavity,
although in a few specifications the bootstrapped confidence intervals widen when the sample size
is reduced to the point that the results are no longer significant.

Tables A6 and A7 evaluate the exclusion restriction that unobserved quality is independent of
when a seller purchased by controlling for date of purchase (above the horizontal line) and time
since purchase (below the horizontal line). The first specification adds a linear trend in date of
purchase or time since purchase in Xh`t along with the two predicted prices, thus accounting for
any variation in unobserved quality that varies linearly in date of purchase or time since purchase.
To the extent that unobserved quality varies with date of purchase in the same way that lot size,
rooms, and age do in Figure A11, a linear time trend will help control for unobserved quality.
If anything, adding a linear time trend strengthens the finding of concavity, with more negative
point estimates on the quadratic term. The second specification adds a separate linear time trend
for each MSA, and things look similar albeit with slightly wider confidence intervals. The third
specification adds a separate linear time trend for each ZIP-3. The confidence interval widens in IV
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Figure A11: Observed Quality (Residualized Against ZIP-Quarter FE) By Original Sale Date
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Notes: For both samples, the figure shows binned scatter pots of six observed measures of quality versus the original sale date.

For each figure, the quality measure (but not the original sale date) is residualized against zip by quarter of listing dummies

and the mean is added back in to create a residualized quality measure. The data is then binned into 100 bins of the original

sale date and the mean residualized quality is plotted against the mean original sale date for each bin. IV sample 1 drops sales

of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously

purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated

equity requirement and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the

subsequent year.
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sample 1 to the point that the quadratic bootstrapped 95 percent confidence interval includes zero,
although zero remains slightly outside the confidence interval for IV sample 2. Importantly, as the
confidence intervals widen, the point estimates stay stable, indicating that concavity is present and
robust until the data is pushed to its statistical limit.

The next three rows of Tables A6 and A7 take an alternate, less parametric approach to control-
ling for when a seller purchased. Rather than using a linear time trend, the first two specifications
include fixed e↵ects for quintiles and deciles of time since purchase or date of purchase in Xh`t,
where the quintile or decile are computed within ZIP codes. This controls for di↵erences in unob-
served quality within these bins. The concavity remains significant, although the point estimate is
a bit less negative when only variation within deciles of date of or time since purchase are used.
Finally, the last specification controls for quintile of date of purchase or time since purchase inter-
acted with ZIP code. This controls for unobserved quality within a ZIP code and date of or time
since purchase quintile. Concavity again remains significant, providing further reassurance that the
results are not being driven by unobserved quality di↵ering by when the seller purchase.

To address concerns that the results are being driven by unobserved quality di↵erences among
houses that were purchased during the peak of the boom and ensuing bust, Tables A8 and A9 limit
the sample to houses purchased at di↵erent time periods. The first three rows limit the sample to
homes purchased before the bust (before 2005), after 1994, and in a window from 1995 to 2004.
The last two rows add linear time trends to the purchased before 2005 sample. In all cases, the
bootstrapped 95 percent confidence intervals for the quadratic term continue to show significant
concavity, and if anything the point estimate on the quadratic term are more negative.

Tables A10 and A11 show various specification checks. The first set of regressions limit the
analysis to ZIP-quarter cells with at least 15 and 20 observations to evaluate whether small sample
bias in the estimated fixed e↵ect ⇠h`t could be a↵ecting the results. In both cases, the results appear
similar to the full sample and the bootstrapped confidence interval shows a significantly negative
quadratic term, which suggests that bias in the estimation of the fixed e↵ects is not driving the
results. The second set introduces Xh`t, the vector of house characteristics that includes the repeat-
sales and hedonic predicted prices, as a quadratic, cubic, quartic, and quintic function instead of
linearly. The assumed linearity of these characteristics is not driving the results. In particular,
introducing zh`t nonlinearly and p̂

repeat

h`t
linearly is not driving the results, as when zh`t and p̂

repeat

h`t

are both introduced as fifth-order polynomials the results are virtually unchanged. Finally, the
third set considers di↵erent specifications for the flexible function of the instrument f (zh`t) in the
first stage, which is quintic in the baseline specification. Again, the order of f (·) does not appear
to alter the finding of significant concavity.

Table A12 and A13 show various robustness checks. These include:

• House Characteristic Controls: This specification includes a third-order polynomial in age,
log square feet, bedrooms, and bathrooms in Xh`t along with the predicted prices.

• Alternate Time To Sale Definition: Instead of measuring time to sale as first listing to the
filing of the deed transfer request, this specification measures time to sale as first listing to
the first of the deed transfer request or the last listing.

• 18 and 10 Weeks to Sale: This specification varies sell-by deadline for the binary y-variable
from 13 weeks to 10 and 18 weeks, respectively.

• No Weights: This specification does not weight observations by the inverse standard deviation
of the repeat-sales house price index prediction error at the ZIP level.
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Table A6: IV Sample 1 Robustness 1: Controls for When a Seller Purchased

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Linear Trend in 0.476*** -3.360*** -64.978* [-141.455,-28.643] 140,344
Date of Purchase (0.008) (0.660) (27.420)

Separate Lin Trend by MSA 0.475*** -3.384*** -65.263* [-132.992,-23.934] 140,344
in Date of Purchase (0.008) (0.602) (27.196)

Separate Lin Trend by ZIP3 0.472*** -3.846*** -67.074 [-209.563,31.991] 140,344
in Date of Purchase (0.009) (0.790) (58.677)

FE For Quintile by ZIP5 0.484*** -2.768*** -59.616** [-119.857,-119.857] 140,344
of Date of Purchase by ZIP5 (0.008) (0.511) (21.200)

FE For Decile by ZIP5 0.483*** -2.117*** -38.520** [-73.311,-23.815] 140,344
of Date of Purchase (0.008) (0.399) (12.798)
FE For Quintile of 0.489*** -1.832*** -45.086** [-89.831,-29.013] 140,344

Date of Purchase by ZIP5 (0.008) (0.339) (14.389)

Linear Trend in 0.476*** -3.381*** -65.428* [-143.701,-28.427] 140,344
Time Since Purchase (0.008) (0.671) (27.992)

Separate Lin Trend by MSA 0.475*** -3.405*** -65.711* [-135.552,-23.315] 140,344
in Time Since Purchase (0.008) (0.613) (27.805)

Separate Lin Trend by ZIP3 0.472*** -3.877*** -66.861 [-211.542,34.073] 140,344
in Time Since Purchase (0.009) (0.804) (59.931)
FE For Quintile by ZIP5 0.484*** -2.767*** -59.616** [-119.918,-37.027] 140,344

of Time Sincef Purchase by ZIP5 (0.008) (0.511) (21.203)
FE For Decile by ZIP5 0.483*** -2.117*** -38.520** [-73.168,-23.829] 140,344
of Time Since Purchase (0.008) (0.399) (12.792)

FE For Quintile of 0.489*** -1.832*** -45.086** [-89.831,-29.013] 140,344
Time Since of Purchase by ZIP5 (0.008) (0.339) (14.385)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

• No Possibly Problematic Observations: A small number of listings are matched to multiple
property IDs and I use an algorithm described in Appendix B to guess of which is the relevant
property ID. Additionally, there are spikes in the number of listings in the Altos data for a few
dates, which I have largely eliminated by dropping listings that do not match to a DataQuick
property ID. Despite the fact that these two issues a↵ect a very small number of observations,
this specification drops both types of potentially problematic observations to show that they
do not a↵ect results.

• By Time Period: This specification splits the data into two time periods, February 2008 to
June 2010 and July 2010 to February 2013.
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Table A7: IV Sample 2 Robustness 1: Controls for When a Seller Purchased

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Linear Trend in 0.458*** -2.673*** -42.695* [-91.13,-21.18] 137,238
Date of Purchase (0.009) (0.532) (18.076)

Separate Lin Trend by MSA 0.457*** -2.698*** -43.123* [-87.811,-19.434] 137,238
in Date of Purchase (0.009) (0.485) (17.723)

Separate Lin Trend by ZIP3 0.455*** -2.928*** -43.085 [-134.888,-4.592] 137,238
in Date of Purchase (0.010) (0.640) (32.826)

FE For Quintile by ZIP5 0.463*** -2.481*** -45.042* [-95.238,-26.751] 137,238
of Date of Purchase by ZIP5 (0.009) (0.547) (17.575)

FE For Decile by ZIP5 0.464*** -2.000*** -32.312* [-68.555,-19.295] 137,238
of Date of Purchase (0.010) (0.461) (13.160)
FE For Quintile of 0.465*** -1.600*** -29.582* [-61.786,-19.183] 137,238

Date of Purchase by ZIP5 (0.009) (0.307) (11.512)

Linear Trend in 0.458*** -2.684*** -42.910* [-92.536,-21.014] 137,238
Time Since Purchase (0.009) (0.538) (18.339)

Separate Lin Trend by MSA 0.457*** -2.709*** -43.336* [-89.129,-19.319] 137,238
in Time Since Purchase (0.009) (0.491) (18.011)

Separate Lin Trend by ZIP3 0.455*** -2.942*** -43.110 [-137.981,-4.543] 137,238
in Time Since Purchase (0.010) (0.647) (33.263)
FE For Quintile by ZIP5 0.463*** -2.481*** -45.051* [-95.247,-26.694] 137,238

of Time Sincef Purchase by ZIP5 (0.009) (0.547) (17.575)
FE For Decile by ZIP5 0.464*** -2.000*** -32.308* [-68.579,-19.333] 137,238
of Time Since Purchase (0.010) (0.461) (13.155)

FE For Quintile of 0.465*** -1.600*** -29.582* [-61.779,-19.183] 137,238
Time Since of Purchase by ZIP5 (0.009) (0.307) (11.511)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

• By MSA: This specification runs separate regressions for the San Francisco Bay, Los Angeles,
and San Diego areas.

The results continue to show concavity, although in some specifications it is weakened by the smaller
sample size and no longer significant. In particular, in San Diego the confidence intervals are so
wide that nothing can be inferred. The insignificance is in large part because the standard errors
are created by block bootstrapping on ZIP-3 clusters, so in San Diego there are very few e↵ective
observations. Additionally, in the second half of the sample, the result is weakened although still
significant.

Table A14 and A15 show various robustness checks. These include:
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Table A8: IV Sample 1 Robustness 2: Sample Restrictions For Date of Purchase

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Purchased Pre 2005 0.492*** -2.357*** -93.245* [-220.122,-44.835] 107,980
(0.008) (0.631) (46.725)

Purchased Post 1994 0.475*** -2.474*** -45.538*** [-63.142,-32.285] 122,818
(0.003) (0.137) (7.809)

Purchased 1995-2004 0.489*** -2.992*** -136.931* [-306.78,-75.278] 90,454
(0.009) (0.656) (60.586)

Pre 2005 With Trend 0.493*** -1.818*** -66.248** [-129.257,-35.281] 107,980
in Date of Purchase (0.008) (0.382) (24.604)
Pre 2005 With Trend 0.493*** -1.833*** -67.119** [-130.846,-35.509] 107,980
in Time Since Purchase (0.008) (0.388) (25.041)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

• Beta varies by MSA-Year or MSA-Quarter: In this specification, �, the control for observables
in the first stage relationship which is assumed fixed across MSAs and years in the baseline
specification, is estimated separately for each MSA-year or MSA-quarter rather than in a
pooled regression. This accounts for potentially di↵erential sorting between households and
homes across space and time.

• Only Low All Cash Share ZIPs: This specification limits the sample to ZIP codes where less
than 10 percent of buyers buy in all cash (a hallmark of investors).

• Uniqueness Controls: This specification drops households that appear to be unique in their
ZIP code in an e↵ort to get a more homogenous sample. Uniqueness is defined three ways.
First, if beds, baths, square feet, lot size, rooms, or year built is more than 2 standard
deviations from the mean value (e.g. unique on one dimension). Second, the same metric
with a threshold of 1.5 standard deviations. Third, if the average squared value of a house’s Z
score for these characteristics is above 2. Note that if a characteristic is missing for a house,
it is not counted as having a high Z score.

• Tier Controls: This specification uses a ZIP code level repeat sales house price index as in the
main estimation to estimate the value of all homes based on their most recent transaction.
It then splits each ZIP code into two or four tiers based on the estimated value of the house
and makes the fixed e↵ects ⇠`t and  `t to be ZIP-quarter-tier level instead of the ZIP-quarter
level in the baseline specification.

The results show that the concavity is not a↵ected by any of the above controls, although confidence

25



Table A9: IV Sample 2 Robustness 2: Sample Restrictions For Date of Purchase

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Purchased Pre 2005 0.471*** -2.523*** -90.567* [-185.042,-51.624] 105,775
(0.010) (0.651) (37.485)

Purchased Post 1994 0.455*** -2.077*** -30.401*** [-41.221,-20.681] 120,229
(0.002) (0.122) (5.241)

Purchased 1995-2004 0.465*** -2.987*** -111.862* [-252.84,-72.415] 88,766
(0.010) (0.730) (46.582)

Pre 2005 With Trend 0.472*** -2.014*** -66.436** [-124.922,-37.902] 105,775
in Date of Purchase (0.009) (0.427) (20.940)
Pre 2005 With Trend 0.472*** -2.026*** -66.965** [-127.425,-38.101] 105,775
in Time Since Purchase (0.009) (0.434) (21.340)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

intervals do widen when fewer observations are used (only low all cash share ZIPs) or when more
fixed e↵ects are added.

The top section of Tables A16 and A17 show results for the subset of homes that transact
for three di↵erent outcome variables. First, it shows the main sale within 13 weeks outcome, for
which the concavity is still significant. The second two specifications show results using weeks
on the market as the outcome variable, for which concavity is indicated by a positive quadratic
term rather than a negative term when probability of sale is the dependent variable. For both the
baseline and alternate weeks on the market definitions, there is significant concavity.

The bottom section of Tables A16 and A17 show results for di↵erent sample restrictions. The
top row includes investors who previously purchased with all cash. The concavity is somewhat
weakened, which is not surprising as these sellers, who have had low appreciation since purchase,
likely upgrade the house in unobservable ways, which should make these low appreciation (and by
the instrument, high list price) houses sell faster, reducing the concavity.

For IV sample 1, the next four rows of Table A16 show results when the estimated equity
threshold for inclusion in the sample is changed, while the last two rows show results when short sales
and houses subsequently foreclosed upon are excluded and when houses with negative appreciation
since purchase are excluded.2 While the results are robust, they are weaker when we condition on a
higher equity requirement. This is the case both because shrinking sample sizes expand confidence
intervals and because the point estimate on the quadratic term drops a bit as the lowest appreciation

2For a few of the specifications with a high equity threshold, houses with less than 10 percent negative appreciation
since purchase (rather than negative 20 percent) are dropped. This is done so that the stricter equity requirement does
not make it so that the houses with the lowest appreciation since purchase are essentially all sellers who previously
purchased with abnormally high down payments and who should be far less responsive to the instrument.
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Table A10: IV Sample 1 Robustness 3: Specification Checks

Dependent Var: Sell Within 13 Weeks
Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient

(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs
Only FE Cells With 0.483*** -2.381*** -35.437** [-62.362,-20.101] 99,594
At Least 15 Obs (0.010) (0.381) (10.862)

Only FE Cells With 0.484*** -2.364*** -33.537** [-62.418,-14.822] 79,304
At Least 20 Obs (0.011) (0.439) (12.313)
Predicted Prices 0.480*** -2.317*** -42.381*** [-65.556,-30.138] 140,344

Introduced as Quadratic (0.008) (0.322) (9.229)
Predicted Prices 0.481*** -2.323*** -43.270*** [-66.779,-30.618] 140,344

Introduced as Cubic (0.008) (0.318) (9.276)
Predicted Prices 0.481*** -2.307*** -42.764*** [-66.865,-30.291] 140,344

Introduced as Quartic (0.008) (0.317) (9.297)
Predicted Prices 0.480*** -2.300*** -42.420*** [-66.052,-30.379] 140,344

Introduced as Quintic (0.008) (0.318) (9.256)
Linear Fn of Instrument 0.490*** -2.425*** -70.956*** [-121.787,-51.831] 140,344

(0.008) (0.360) (17.669)
Quadratic Fn of Instrument 0.489*** -2.288*** -67.890*** [-112.521,-49.987] 140,344

(0.009) (0.354) (15.904)
Cubic Fn of Instrument 0.478*** -2.206*** -36.511*** [-63.469,-24.76] 140,344

(0.008) (0.343) (10.339)
Quartic Fn of Instrument 0.480*** -2.236*** -42.040*** [-72.821,-28.122] 140,344

(0.008) (0.350) (11.795)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

since purchase borrowers have non-zero equity and are less sensitive to the instrument. Nonetheless,
the results are either significantly concave or just barely insignificant at the 95 percent confidence
level, making clear that the finding of concavity is not being driven by the sample selection criteria.

For IV sample 2, the bottom three rows of table A17 impose an estimated equity requirement
of varying levels on IV sample 2. Again, the results are a bit weaker for higher equity requirements
but are still significant.

Finally Tables A18 and A19 show results controlling for the number of nearby foreclosures
(within 1 and 0.25 miles) over the entire downturn and over the past year. The results are very
stable, indicating that the concavity cannot be explained by nearby foreclosure sales. These results
are largely unchanged if one looks at other distance thresholds.
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Table A11: IV Sample 2 Robustness 3: Specification Checks

Dependent Var: Sell Within 13 Weeks
Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient

(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs
Only FE Cells With 0.471*** -1.964*** -25.751*** [-44.255,-14.298] 94,447
At Least 15 Obs (0.011) (0.280) (7.209)

Only FE Cells With 0.474*** -1.971*** -24.945** [-47.136,-9.286] 72,579
At Least 20 Obs (0.013) (0.336) (9.568)
Predicted Prices 0.461*** -2.000*** -30.532*** [-45.069,-21.543] 137,238

Introduced as Quadratic (0.009) (0.265) (6.103)
Predicted Prices 0.461*** -2.018*** -31.192*** [-45.058,-22.07] 137,238

Introduced as Cubic (0.009) (0.263) (6.071)
Predicted Prices 0.461*** -2.009*** -30.829*** [-44.901,-21.843] 137,238

Introduced as Quartic (0.009) (0.263) (6.082)
Predicted Prices 0.461*** -2.007*** -30.730*** [-44.938,-21.915] 137,238

Introduced as Quintic (0.009) (0.264) (6.113)
Linear Fn of Instrument 0.471*** -2.107*** -52.619*** [-91.046,-38.946] 137,238

(0.009) (0.301) (13.492)
Quadratic Fn of Instrument 0.469*** -1.964*** -49.855*** [-86.671,-36.932] 137,238

(0.009) (0.296) (12.585)
Cubic Fn of Instrument 0.459*** -1.908*** -26.688*** [-47.592,-18.009] 137,238

(0.009) (0.287) (7.610)
Quartic Fn of Instrument 0.461*** -1.921*** -29.661*** [-50.928,-20.422] 137,238

(0.009) (0.292) (7.981)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

C.4 Ordinary Least Squares

OLS assumes that there is no unobserved quality and thus no need for an instrument. This ordinary
least squares approach implies that:

p̃h`t = ⇠`t + �Xh`t,

and so ph`t � p̃h`t is equal to the regression residual ⌘h`t in:

ph`t = ⇠`t + �Xh`t + ⌘h`t, (A9)

which can be estimated in a first stage and plugged into the second stage equation:

dh`t = g (⌘h`t) +  `t + "h`t.

This section provides additional OLS results to show that the findings in Figure 1 and columns
one, two, and four of Table 2 are robust.
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Table A12: IV Sample 1 Robustness 4: Miscellaneous Robustness Tests

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.481*** -2.514*** -50.595*** [-80.123,-33.569] 133,671
Controls (0.008) (0.366) (12.066)

Alternate Time 0.511*** -2.140*** -36.433*** [-59.576,-25.285] 140,344
to Sale Defn (0.010) (0.320) (9.014)

Dep Var: 18 Weeks 0.547*** -2.205*** -40.078*** [-65.127,-27.644] 140,344
(0.007) (0.340) (9.607)

Dep Var: 10 Weeks 0.425*** -2.132*** -41.778*** [-71.622,-29.343] 140,344
(0.007) (0.321) (11.095)

No Weights 0.466*** -1.868*** -34.965*** [-58.351,-23.906] 140,344
(0.008) (0.312) (8.778)

No Poss Problematic Obs 0.485*** -2.231*** -40.822*** [-68.327,-29.289] 135,858
(0.007) (0.340) (9.944)

No Short Interval Between 0.481*** -2.278*** -41.368*** [-69.123,-28.903] 139,580
Prev Trans and Listing (0.008) (0.356) (10.562)

First Listed 2008-7/2010 0.453*** -2.190*** -30.295** [-55.285,-10.604] 69,240
(0.012) (0.346) (11.216)

First Listed 7/2010-2013 0.502*** -2.248*** -44.960* [-94.677,-26.093] 71,104
(0.008) (0.372) (18.294)

Bay Area 0.511*** -2.609*** -36.537** [-70.887,-19.171] 39,550
(0.016) (0.633) (13.883)

Los Angeles 0.463*** -1.940*** -47.637** [-85.803,-24.353] 82,803
(0.008) (0.415) (15.634)

San Diego 0.494*** -4.374*** -100.529 [-100.529,483.072] 17,991
(0.018) (0.451) (132.245)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.
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Table A13: IV Sample 2 Robustness 4: Miscellaneous Robustness Tests

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.462*** -2.145*** -36.076*** [-53.821,-25.145] 130,958
Controls (0.010) (0.293) (7.669)

Alternate Time 0.487*** -1.897*** -27.126*** [-44.842,-18.793] 137,238
to Sale Defn (0.011) (0.285) (6.575)

Dep Var: 18 Weeks 0.519*** -1.951*** -27.989*** [-43.7,-18.914] 137,238
(0.009) (0.301) (6.431)

Dep Var: 10 Weeks 0.411*** -1.800*** -29.772*** [-50.912,-21.054] 137,238
(0.009) (0.271) (7.714)

No Weights 0.444*** -1.628*** -24.665*** [-42.218,-16.763] 137,238
(0.010) (0.278) (6.326)

No Poss Problematic Obs 0.466*** -1.903*** -29.225*** [-49.197,-20.982] 132,835
(0.009) (0.292) (7.299)

No Short Interval Between 0.462*** -1.942*** -29.580*** [-49.421,-20.53] 136,342
Prev Trans and Listing (0.009) (0.295) (7.450)

First Listed 2008-7/2010 0.438*** -2.088*** -27.212** [-49.764,-14.762] 69,603
(0.012) (0.362) (8.898)

First Listed 7/2010-2013 0.483*** -1.695*** -28.092* [-61.53,-14.924] 67,635
(0.010) (0.273) (12.574)

Bay Area 0.505*** -2.343*** -34.164* [-74.646,-15.522] 37,742
(0.020) (0.591) (16.990)

Los Angeles 0.438*** -1.722*** -29.972* [-59.485,-8.72] 81,998
(0.009) (0.350) (11.803)

San Diego 0.474*** -3.329*** -49.741 [-547.966,103.933] 17,498
(0.017) (0.667) (110.829)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Table A14: IV Sample 1 Robustness 5: Miscellaneous Robustness Tests II

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Beta Varies By MSA-Year 0.481*** -2.442*** -48.770*** [-78.037,-33.523] 140,344
(0.008) (0.351) (11.218)

Beta Varies by MSA-Quarter 0.481*** -2.466*** -50.577*** [-78.156,-33.86] 140,344
(0.008) (0.349) (11.185)

Only Low All Cash Share ZIPs 0.512*** -3.163*** -47.394* [-103.288,-24.069] 58,171
(0.011) (0.521) (19.797)

Uniqueness: Any Characteristic 0.494*** -2.341*** -44.000*** [-70.292,-31.184] 116,495
Over 2 SD From Mean (0.008) (0.377) (10.148)

Uniqueness: Any Characteristic 0.504*** -2.384*** -47.284*** [-80.995,-33.281] 90,085
Over 1.5 SD From Mean (0.009) (0.384) (12.678)

High Aggregate Uniqueness Index 0.502*** -2.820*** -58.017*** [-98.104,-38.305] 92,645
(0.008) (0.484) (15.291)

FE: Quarter x ZIP x 0.480*** -2.321*** -43.091*** [-69.675,-28.318] 140,030
Top or Bottom Tier in ZIP (0.008) (0.327) (10.839)

FE: Quarter x ZIP x 0.480*** -2.516*** -45.689*** [-72.385,-22.595] 140,030
Tier Quartile in ZIP (0.008) (0.332) (12.072)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.
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Table A15: IV Sample 2 Robustness 5: Miscellaneous Robustness Tests II

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Beta Varies By MSA-Year 0.461*** -2.099*** -35.003*** [-52.123,-23.767] 137,238
(0.009) (0.292) (7.399)

Beta Varies by MSA-Quarter 0.462*** -2.103*** -35.346*** [-52.401,-24.195] 137,238
(0.009) (0.292) (7.412)

Only Low All Cash Share ZIPs 0.500*** -2.554*** -35.700* [-78.086,-17.256] 55,232
(0.013) (0.457) (15.817)

Uniqueness: Any Characteristic 0.477*** -2.076*** -33.991*** [-51.256,-24.2] 113,714
Over 2 SD From Mean (0.009) (0.306) (7.129)

Uniqueness: Any Characteristic 0.487*** -2.124*** -37.348*** [-61.747,-26.938] 88,003
Over 1.5 SD From Mean (0.010) (0.319) (9.079)

High Aggregate Uniqueness Index 0.484*** -2.474*** -44.945*** [-77.341,-29.962] 90,815
(0.010) (0.412) (11.603)

FE: Quarter x ZIP x 0.462*** -2.019*** -30.136*** [-48.423,-17.66] 136,654
Top or Bottom Tier in ZIP (0.009) (0.285) (7.814)

FE: Quarter x ZIP x 0.464*** -2.200*** -34.143*** [-54.441,-13.74] 136,654
Tier Quartile in ZIP (0.010) (0.273) (10.228)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Table A16: IV Sample 1 Robustness 6: Transactions Only and Relaxing Sample Restrictions

Dependent Variable Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Sell Within 13 Weeks 0.680*** -1.991*** -56.791** [-102.866,-35.732] 96,400
(0.007) (0.325) (17.277)

Weeks on Market 12.959*** 69.766*** 2,008.614*** [1333.398,3282.778] 96,400
(0.217) (9.739) (492.627)

Weeks on Market 11.130*** 57.628*** 1,758.968*** [1149.601,2919.092] 96,400
Alternate Defn (0.407) (7.678) (436.691)

Including Investors Who Prev 0.480*** -1.553*** -21.995* [-45.709,-12.182] 169,147
Purchased With All Cash (0.007) (0.272) (8.594)
Keeping Estimated Equity 0.451*** -3.215*** -49.967*** [-89.533,-31.677] 158,217

> -30% (0.008) (0.477) (15.030)
Keeping Estimated Equity 0.464*** -3.054*** -54.223*** [-95.958,-36.222] 150,932

> -20% (0.008) (0.450) (15.497)
Keeping Estimated Equity 0.498*** -1.410*** -22.902** [-39.058,-1.223] 113,717

> 0 % † (0.009) (0.266) (8.845)
Keeping Estimated Equity 0.512*** -1.001*** -15.918* [-26.834,2.268] 99,640

> 10% † (0.009) (0.216) (6.893)
Dropping Short Sales and 0.499*** -1.360*** -23.190** [-39.136,-5.792] 107,896
Subsequent Foreclosure † (0.010) (0.236) (8.128)
Dropping Short Sales and 0.475*** -1.132*** -29.955** [-55.902,-16.12] 102,342

Neg Appreciation Since Purch (0.010) (0.300) (10.174)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing. The rows with a † indicate that rather than excluding households who had less than negative 20 percent
appreciation since purchase from the sample, households with less than negative 10 percent appreciation since purchase have
been excluded. This is done so that the stricter equity requirement does not make it so that the houses with the lowest
appreciation since purchase have essentially all sellers who previously purchased with abnormally high down payments.
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Table A17: IV Sample 2 Robustness 6: Transactions Only and Relaxing Sample Restrictions

Dependent Variable Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Sell Within 13 Weeks 0.710*** -0.910*** -23.200*** [-37.92,-12.298] 86,033
(0.007) (0.131) (6.773)

Weeks on Market 11.953*** 28.944*** 753.945*** [474.25,1126.112] 86,033
(0.212) (4.313) (167.095)

Weeks on Market 10.278*** 22.794*** 714.468*** [480.683,1051.453] 86,033
Alternate Defn (0.354) (3.660) (145.799)

Including Investors Who Prev 0.463*** -1.442*** -18.225** [-35.973,-10.607] 166,595
Purchase With All Cash (0.008) (0.263) (6.580)
Keeping Estimated Equity 0.477*** -1.815*** -24.651*** [-39.623,-15.414] 129,481

> -30% (0.009) (0.257) (6.090)
Keeping Estimated Equity 0.482*** -1.685*** -21.100*** [-33.209,-10.933] 126,501

> -20% (0.009) (0.236) (5.508)
Keeping Estimated Equity 0.488*** -1.483*** -13.854* [-23.383,-1.408] 121,369

> -10 % (0.009) (0.209) (5.434)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Table A18: IV Sample 1 Robustness 7: Controls for Nearby Foreclosures

Dependent Variable Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Control For Foreclosures (0.008) (0.339) (12.415)
Within .25 Miles Over Entire Downturn 0.479*** -2.301*** -41.762** [-78.965,-30.086] 140,344

Control For Foreclosures (0.008) (0.358) (13.021)
Within 1 Mile Over Entire Downturn 0.479*** -2.308*** -41.484** [-78.457,-29.78] 140,344

Control For Foreclosures (0.008) (0.342) (12.338)
Within .25 Miles in Past Year 0.479*** -2.293*** -41.415** [-78.461,-29.906] 140,344

Control For Foreclosures (0.008) (0.359) (13.025)
Within 1 Mile in Past Year 0.479*** -2.303*** -41.487** [-78.618,-29.784] 140,344

(0.008) (0.357) (12.944)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

Table A19: IV Sample 2 Robustness 7: Controls for Nearby Foreclosures

Dependent Variable Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Control For Foreclosures 0.460*** -1.965*** -28.984*** [-55.093,-20.726] 137,238
Within .25 Miles Over Entire Downturn (0.009) (0.284) (8.664)

Control For Foreclosures 0.460*** -1.952*** -28.402*** [-53.095,-20.356] 137,238
Within 1 Mile Over Entire Downturn (0.009) (0.277) (8.325)

Control For Foreclosures 0.460*** -1.956*** -28.846*** [-55.099,-20.525] 137,238
Within .25 Miles in Past Year (0.009) (0.285) (8.663)

Control For Foreclosures 0.460*** -1.944*** -28.266*** [-53.067,-20.276] 137,238
Within 1 Mile in Past Year (0.009) (0.279) (8.337)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial for a di↵erent robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed e↵ects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

35



Table A20: Ordinary Least Squares Robustness

Dependent Var: Weeks on Market

Specification Quadratic Polynomial Coe�cients Quadratic Coe�cient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.460*** -0.184*** -0.612*** [-0.769,-0.506] 399,423
Controls (0.005) (0.010) (0.068)

Alternate Time 0.514*** -0.222*** -0.530*** [-0.703,-0.402] 416,373
to Sale Defn (0.013) (0.014) (0.080)

Dep Var: 18 Weeks 0.542*** -0.180*** -0.595*** [-0.773,-0.467] 416,373
(0.005) (0.015) (0.080)

Dep Var: 10 Weeks 0.393*** -0.218*** -0.467*** [-0.633,-0.352] 416,373
(0.004) (0.012) (0.074)

Hedonic Predicted 0.470*** -0.176*** -0.391*** [-0.578,-0.236] 663,976
Price Only (0.006) (0.012) (0.091)

Low REO ZIPs 0.470*** -0.331*** -0.382* [-0.752,-0.147] 134,666
(0.013) (0.026) (0.174)

Low Short Sale ZIPs 0.476*** -0.325*** -0.433* [-0.765,-0.146] 109,249
For Predicted Price (0.016) (0.022) (0.172)

Only FE Cells With 0.460*** -0.250*** -0.481*** [-0.715,-0.336] 251,945
At Least 20 Obs (0.008) (0.014) (0.099)
Predicted Prices 0.459*** -0.212*** -0.596*** [-0.725,-0.495] 416,373

Introduced as Cubic (0.004) (0.011) (0.059)
Beta Varies By MSA-Year 0.458*** -0.199*** -0.543*** [-0.704,-0.437] 416,373

(0.005) (0.012) (0.070)

First Listed 2008-7/2010 0.451*** -0.289*** -0.452*** [-0.637,-0.31] 223,429
(0.008) (0.013) (0.084)

First Listed 7/2010-2013 0.465*** -0.106*** -0.595*** [-0.757,-0.499] 192,944
(0.005) (0.018) (0.069)

Bay Area 0.478*** -0.213*** -0.573*** [-0.728,-0.414] 110,719
(0.010) (0.015) (0.081)

Los Angeles 0.446*** -0.199*** -0.495*** [-0.755,-0.336] 247,818
(0.005) (0.019) (0.110)

San Diego 0.473*** -0.196*** -0.718*** [-0.759,-0.677] 57,836
(0.008) (0.030) (0.025)

Notes: * p<0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(.) in equation (2) is approximated
using a quadratic polynomial. Quality is assumed to be perfectly measured by the hedonic and repeat-sales predicted prices and
have no unobserved component. Consequently, the log list price is regressed on fixed e↵ects and the predicted prices and uses
the residual as the estimated relative markup into equation (2), as described in Appendix C. The fixed e↵ects at the quarter of
initial listing x ZIP x distress status level. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed
homes and foreclosure auctions), and short sales (cases where the transaction was less than the amount outstanding on the loan
and withdrawals that are subsequently foreclosed on in the next two years). The entire procedure is weighted by the reciprocal
of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988
to 2013. Before running the second-stage regression, 0.5 percent of the sample is winsorized on each end of the distribution
of the relative markup, and any observations fully absorbed by fixed e↵ects are dropped. Standard errors and the 95 percent
confidence interval for the quadratic term are computed by block bootstrapping the entire procedure on 35 ZIP-3 clusters. The
number of observations listed is prior to dropping observations that are unique to a ZIP-quarter cell and winsorizing. The
appendix text details each specification.
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Figure A12: The E↵ect of List Price on Probability of Sale: Ordinary Least Squares
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B. Transactions Only
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C. IV Sample 1
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D. IV Sample 2

Notes: Each panel shows a binned scatter plot of the probability of sale within 13 weeks against the log relative markup. The

OLS methodology assumes no unobserved quality. To create each figure, a first stage regression of log list price on fixed e↵ects

at the ZIP x first quarter of listing level x seller distress status level and repeat sales and hedonic log predicted prices, as in

(A9), is estimated by OLS. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed homes and

foreclosure auctions), and short sales (cases where the transaction price is less than the amount outstanding on the loan and

withdrawals that are subsequently foreclosed on in the next two years). The residual is used as the relative markup in equation

(2), which is estimated by OLS. The figure splits the data into 25 equally-sized bins of the estimated relative markup and

plots the mean of the estimated relative markup against the log of the mean of the probability of sale within 13 weeks net of

fixed e↵ects for each bin. Before binning, 0.5 percent of the sample is winsorized on each end of the distribution of the relative

markup, and any observations fully absorbed by fixed e↵ects are dropped. The entire procedure is weighted by the reciprocal

of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988

to 2013. Panel A uses all listings with a prior observed sale N=416,373. Panel B uses listings with a prior observed sale that

lead to transactions N = 310,758. Panel C uses IV sample 1,which drops sales of foreclosures, sales of homes with less than

negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and homes with

under -10 percent estimated equity. For panel C, N=140,344. Panel D uses IV sample 2 does away with the estimated equity

requirement in IV sample 1 and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed

upon in the subsequent year. For panel D, N=137,2387. In all cases, he number of observations listed is prior to dropping

unique zip-quarter cells and winsorizing.

Because the OLS sample may include distressed sales, I take a conservative approach and include
fixed e↵ects at the ZIP ⇥ quarter ⇥ distress status level. Distressed status is defined as either non-
distressed, REO, or a short sale (or withdrawn listing subsequently foreclosed upon). The results
would look similar if ZIP ⇥ quarter fixed e↵ects were used and an additive categorical control for
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distressed status were included in Xh`t.
First, Figure A12 shows binned scatter plots for OLS for all listings, transactions only, and each

of the IV samples. In each, a clear pattern of concavity is visible, but as discussed in the main text,
the upward slope on the left indicates the presence of substantial unobserved quality—particularly
among homes that do not sell—and thus the need for an instrument.3 The concavity is only slightly
stronger in the IV samples, assuaging concerns about sample selection. Importantly, most of the
di↵erences occur in the extremely low log relative markup quantiles, which do not look like outliers
in the IV binned scatter plot, assuaging concerns about sample selection driving some of the findings
of concavity.

Table A20 shows a number of robustness and specification checks. Those di↵erent from the IV
specification checks described previously are:

• House Characteristic Controls: As with IV, this includes a third-order polynomial in age, log
square feet, bedrooms, and bathrooms, but it also includes additive fixed e↵ects for quintiles
of the time since purchase distribution in Xh`t.

• Hedonic predicted price only: Drops the repeat-sales house price index from Xh`t. This
expands the sample to all listings in the data rather than only those with a prior observed
sale.

• Low REO ZIPs: Only includes ZIP codes with less than 20 percent REO sale shares from
2008 to 2013. (REO is a sale of a foreclosed property.)

• Low Short ZIPs: Only includes ZIP codes with less than 20 percent short sale shares from
2008 to 2013. (A short sale occurs when a homeowner sells their house for less than their
outstanding mortgage balance and must negotiate the sale with their lender.)

• No REO or Short Sale: Drops REOs, short sales, and withdrawn sales subsequently foreclosed
upon homes, thus only leaving non-distressed sales.

• Transactions only: Drops houses withdrawn from the market.

• IV Subsample: Drops homes with negative appreciation since purchase, REOs, and homes
previously purchased with all cash.

All specifications show significant concavity.

C.5 Measurement Error and Robustness to Other Sources of Markup Variation

In my estimation, I assume ⇣h`t = 0, that is that there are no other sources of markup variation
that manifest themselves as Berkson measurement error. While this is not realistic, I argue that
if ⇣h`t 6= 0 and ⇣h`t ? f (zh`t), using a quadratic or cubic polynomial for g (·) will lead to unbiased
estimates of the coe�cient on the quadratic or cubic terms. This appendix relaxes these assumptions
to assess the robustness of the econometric strategy to other sources of markup variation entering
g (·) nonlinearly when ⇣h`t is independent of the instrument and when ⇣h`t is correlated with the
instrument.

Recall that I want estimate the non-linear e↵ect of the relative markup ph`t � p̃h`t on the
probability of sale dh`t. The reference price is p̃h`t = ⇠`t + qh`t, where ⇠`t is the average price in

3An alternative explanation is that in the later years of my sample I do not have follow-up data on foreclosures, so
some withdrawn short sales are counted as non-distressed. This may explain some of the upward slope, as the upward
slope is concentrated in non-withdrawn properties, high short sale ZIP codes, and the later years of my sample.
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location ` at time t. qh`t is quality defined as qh`t = �Xh`t + uh`t where uh`t is unobserved quality
and Xh`t are observable measures of quality. Unobserved quality a↵ects qh`t, which in turn a↵ects
p̃h`t.

Unobserved quality is problematic for two reasons. First, it is likely correlated with price.
This endogeneity problem is the main issue I address through instrumental variables. Second, one
cannot observe p̃h`t directly, so there is a measurement error problem. In a classical measurement
error setup in which the error is independent of the true value, the instrumental variable would
solve this issue as well. However, here by construction I have that �Xh`t, the observed quality, is
independent of uh`t, the unobserved quality. In other words, the measurement error is independent
of the proxy I see (observed quality) rather than being independent of true quality qh`t. This is
known as Berkson measurement error, and it cannot be solved through traditional IV methods.4

This manifests itself in the first stage of the IV estimation:

ph`t � p̃h`t = f (zh`t) + ⇣h`t

= f (zh`t) + ⇠`t + �Xh`t + uh`t + ⇣h`t.

The residual now has two components: uh`t, which is part of p̃h`t, and ⇣h`t, which is not. One thus
cannot identify ph`t � p̃h`t as it is observed with measurement error.

To assess whether the assumption that ⇣h`t = 0 may generate spurious concavity, I perform
Monte Carlo simulations that relax the assumptions in the main lemma. To do so, for each house
in IV sample 1 (results are similar across the two samples) I simulate dh`t using an assumed true
g (·), which is either the baseline cubic fit to the data in Figure 2 in the text or a linear fit to the
data, and an assumed measurement error distribution ⇣h`t. I simulate dh`t using:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t.

However, rather than assuming ph`t � p̃h`t = f (zh`t), I let ph`t � p̃h`t = f (zh`t) + ⇣h`t and report
results for di↵erent parameterizations for the other sources of relative markup variation ⇣h`t.

Specifically, I follow a five step procedure 1,000 times and report the average values:

1. Based on first stage, calculate ph`t � p̃h`t = f (zh`t). In doing so, I drop the 1st and 99th
percentile, which remain dropped throughout the exercise so sample sizes are consistent.

2. Estimate  `t given assumed g (·).

3. Draw ⇣h`t from assumed distribution. Using the assumed g (·), calculate g (f (zh`t) + ⇣h`t) +
 `t.

4. dh`t is drawn from a Bernoulli distribution in which the house sells with probability g (f (zh`t) + ⇣h`t)+
 `t.

5. Run the estimator of interest on the simulated dh`ts.

Table A21 shows results with a normally distributed ⇣h`t that is independent of f (zh`t). In
panel A, the assumed true g (·) is the third-order polynomial estimate of g (·) shown in Figure 2

4There are two main ways to address Berkson measurement error in a nonlinear setting. First, one can have
an additional outcome variable, which can be used as an instrument. I do not have such a variable here. Second,
one can use higher-order conditional moments (e.g. E

⇥
Y 2|X

⇤
in addition to E [Y |X]) to identify the distribution of

Berkson error. Unfortunately, this does not work either as a I have a binary outcome variable and so the higher-order
conditional moments do not provide any additional information. I have used this technique on alternate outcomes
such as weeks on the market conditional on a transaction, and my finding of concavity is unchanged.
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Table A21: Monte Carlo Simulations: Adding Independent Noise to Concave and Linear True
Demand Curve

Panel A: ⇣h`t Added to Concave Assumed True Demand Curve

Quadratic Polynomial SD of ⇣h`t
Coef Estimates 0 0.02 0.04

Constant 0.4789 0.464 0.422
(0.002) (0.002) (0.002)

Linear -2.218 -1.812 -0.820
(0.077) (0.077) (0.077)

Quadratic -41.572 -41.756 -35.524
(4.508) (4.662) (4.411)

Quadratic [-49.754,-32.349] [-50.934,-32.372] [-44.065,-26.622]
95% CI

Panel B: ⇣h`t Added to Linear Assumed True Demand Curve

Quadratic Polynomial SD of ⇣h`t
Coef Estimates 0 0.02 0.04

Constant 0.463 0.463 0.464
(0.002) (.002) (.002)

Linear -2.319 -2.317 -2.295
(0.083) (0.079) (0.077)

Quadratic 3.291 3.207 3.148
(4.513) (4.488) (4.39)

Quadratic [-5.673,11.947] [-5.362,11.746] [-5.427,11.722]
95% CI

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of a
quadratic polynomial for g(·) as in the main text. The simulated data is the actual data for all parameters except for whether
the house sold within 13 months, which is created as simulated data using an assumed value for g(·), here a cubic estimate, and
then adding noise to the first stage relative markup that is independent of the instrument and normally distributed with mean
zero and the indicated standard deviation. The simulation procedure is described in detail in the Appendix text and uses IV
sample 1.

in the main text. In panel B, the assumed true g (·) is a linear fit to the data, identical to Figure
2 in the main text but with a linear fit instead of a cubic fit. Panel A shows that increasing the
standard deviation of ⇣h`t leads to a g (·) that is steeper and more linear than the baseline estimates,
reflecting bias if the true g (·) is not a polynomial. Panel B shows that adding noise to a linear true
g (·) does not create spurious concavity. Other sources of variation in the relative markup that are
independent of the instrument would thus likely lead to an under-estimate of the true degree of
concavity, if anything, and would not generate spurious concavity.

Spurious concavity is, however, a possibility if the variance of ⇣h`t were correlated with zh`t.
Specifically, consider the case where the instrument captures most of the variation in the relative
markup for sellers with low appreciation since purchase but little of the variation with high appre-
ciation since purchase. Then the observed probability of sale at low ph`t� p̃h`t would be an average
of the probabilities of sale at true ph`t � p̃h`ts that are scrambled, yielding an attenuated slope for
low ph`t � p̃h`t. However, at high ph`t � p̃h`t, the observed ph`t � p̃h`t would be close to the true
ph`t � p̃h`t, yielding the true slope.

Table A22 illustrates that this type of bias could create spurious concavity. However, generating
the amount of concavity I observe in the data would require an extreme amount of unobserved
variation in the relative markup at low levels of appreciation since purchase and virtually no
unobserved variation in the relative markup at high levels of appreciation. To show this, I assume
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Table A22: Monte Carlo Simulations: Other Sources of Markup Variation Corr With Instrument

SD f (z) < .01 0 0.10 0.20 0.50 0.20 0.40
SD f (z) � .01 0 0 0 0 0.10 0.10

Constant 0.463 0.466 0.473 0.484 0.474 0.482
(0.002) (0.002) (0.002) (0.002) (0.002) (.002)

Linear -2.316 -2.273 -2.154 -1.973 -1.993 -1.847
(0.078) (0.081) (0.082) (0.082) (0.082) (0.081)

Quadratic 3.184 -2.434 -15.990 -37.090 -10.929 -27.476
(4.480) (4.523) (4.659) (4.682) (4.728) (4.652)

Quadratic [-5.893,11.690] [-11.253,5.992] [-25.000,-7.128] [-46.687,-27.727] [-20.048,-1.858] [-36.481,-18.358]
95% CI

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of a
three-part spline in g(·) as in the main text. The simulated data is the actual data for all parameters except for whether the
house sold within 13 months, which is created as simulated data using an assumed value for g(·), here a cubic estimate, and then
adding noise to the first stage relative markup. Here the variance of the noise depends on f (zh`t) (the estimated log relative
markup) and thus the instrument. Specifically, the noise is normally distributed with a standard deviation equal to the first
row if f (zh`t) < .01 and the second row if f (zh`t) � .01. This makes the noise larger for homes with more appreciation since
purchase, creating the potential spurious concavity from heteroskedasticity described in the text. The simulation procedure is
described in detail in the Appendix text and uses IV sample 1.

the true g (·) is linear and let the standard deviation of ⇣h`t depend on f (zh`t) in a piecewise
manner as indicated in the first two rows of the table. This piecewise formulation is a particularly
extreme dependence of ⇣h`t on f (zh`t). The first column shows estimates with no noise, which
are approximately linear. To generate statistically-significant spurious concavity, the standard
deviation of other sources of variation in the relative markup must be near 0.2 log points for
high appreciation since purchase and zero for low appreciation since purchase. However, the lower
bound of the 95 percent confidence interval in this case still falls well short of the point estimates
of the quadratic term in in the baseline IV specification for sample 1 shown in Table 2. To match
the point estimate on the quadratic term requires the relative markup be near 0.5 log points for
high appreciation since purchase and zero for low appreciation since purchase. This is an extreme
amount of measurement error for high appreciation since purchase relative to low appreciation
since purchase: at high appreciation since purchase the measurement error must have roughly 20
times the variation induced by the instrument and must account for nearly the entire amount of
variation in list and transaction prices in the raw data. This is implausible as unobserved quality
is almost certain to account for some of the variation in list and transaction prices for all levels
of appreciation since purchase, which bounds the variance of the measurement error distribution
below what is necessary to generate significant spurious concavity. The last two columns show that
one can obtain significant concavity with slightly less extreme assumptions, but still to get a point
estimate near what I observe in the data, one would need a standard deviation of 0.1 log points
for high appreciation since purchase and 0.4 log points for high appreciation since purchase, which
again seems implausibly large.

D Facts About House List Prices

This appendix provides facts about house list prices that motivate some of the assumptions made
in the model
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Figure A13: Histogram of the Di↵erence Between Log Transaction Price and Log Final List Price
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Notes: The figure shows a histogram of the di↵erence between log transaction price at the time of sale and log final list price

for all homes in the San Francisco Bay, Los Angeles, and San Diego areas that were listed between April 2008 and February

2013 that are matched to a transaction and have a previous observed listing. The 1st and 99th percentiles are dropped from

the histogram. N = 470,655.

D.1 List Prices Relative to Transaction Prices

As mentioned in the main text, the modal house sells at its list price at the time of sale and
the average and median house sell within 0.016 log points of their list price. To illustrate this,
Figure A13 shows a histogram of the di↵erence between the log final list price at sale and the log
transaction price in the Altos-DataQuick merged data after extreme outliers likely due to typos in
the list or transaction price have been dropped. 9.17 percent of transactions occur exactly at the
final list price, and 22.63 percent occur within one percent of the final list price. The mean of the
di↵erence between the log final list price and the log first list price is -0.016 log points, and the
median is -0.010 log points.

Table A23 reinforces these findings by showing mean and median log di↵erence for each of the
three MSAs in each year. The mean does not fluctuate by more than 0.03 log points across years
and MSAs.

Note that the stability of the di↵erence between list price and transaction price across years
and markets does not hold for the initial list price. This is because most houses are listed high and
then the list price is lowered over time. Consequently, the di↵erence between the log first list price
and the transaction price is -0.060 log points, 0.044 log points below the di↵erence between the
log final list price and the transaction price. This varies over time and across markets because the
number of markdowns varies as time to sale varies with market conditions. While this feature of
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Table A23: Di↵erence Between Log Transaction Price and Log Final List Price

Mean Median

SF Bay Los Angeles San Diego SF Bay Los Angeles San Diego

2008 -0.021 -0.008 -0.023 -0.013 -0.017 -0.011
2009 0.001 -0.028 -0.010 0.000 0.000 -0.003
2010 -0.011 -0.008 -0.026 -0.007 -0.013 -0.019
2011 -0.015 -0.021 -0.031 -0.011 -0.018 -0.023
2012-3 0.008 -0.026 -0.009 0.000 -0.005 -0.002

Notes: Each cell shows the mean di↵erence between the log transaction price and log final list price in the indicated MSA-year

cell. To reduce the influence of outliers, the 1st and 99th percentiles have bin dropped. N = 470,655.

the data is abstracted from in the model, the model does allow for list prices to change as market
conditions change, and thus it does allow for there to be di↵erences between the initial and final
list price. The key assumption is that houses sell at their final list price.

It is, however, possible that the di↵erence between list and transaction prices varies system-
atically based on whether a house is listed above or below average. This would be problematic
because I assume that the house sells at its list price regardless of whether it is overpriced or not.

To address this concern, I replicate the IV approach in the main text, but replace the indicator
variable for whether the house was sold within 13 months with the di↵erence between the log list
price and the log transaction price, using both the first and final log list price. The IV control
for unobserved quality is essential here, as in OLS it is unclear whether a house is being listed
high because it is of high unobserved quality or because the seller has chosen a high list price. By
instrumenting for unobserved quality, I isolate the e↵ect of listing high relative to a house’s quality
on whether the house sells above or below its list price.

Figure A14 shows the results. The left column shows IV sample 1, while the right column
shows IV sample 2. The top row shows binned scatter plots where the dependent variable is the
log transaction price minus the log first list price, while the bottom row shows binned scatter plots
where the dependent variable is the log transaction price minus the log final list price. In none of
them is there a pronounced pattern. If anything, the di↵erence between the log transaction price
and log first list price shows a slight inverse-U pattern, suggesting that sellers have to cut their
price less on average if they set their price at the “correct” initial price, but this e↵ect is small and
insignificant. The di↵erence between the log transaction price and log final list price shows no clear
pattern.

These results suggest that for empirically-relevant forms of ex-post bargaining, the list price
is the best predictor of the transaction price. Due to linear utility in the model, this will not
substantially alter the seller’s incentive to set a list price close to the market average. In particular,

if the demand curve d

⇣
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⌘
is concave in list price but the sale price is pt = p
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which is the same seller problem as my model with no ex-post bargaining.

43



Figure A14: IV Specification: Di↵erence Between Log Transaction Price and Log List Price vs.
Log Relative Markup
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Notes: Each panel shows a binned scatter plot of the di↵erence between the transaction price and the indicated log list price

for the set of houses that transact net of ZIP ⇥ first quarter of listing fixed e↵ects (with the average probability of sale within

13 weeks added in) against the estimated log relative markup p� p̃. To create the figure, a first stage regression of the log list

price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter of listing level, and repeat sales and

hedonic log predicted prices, as in (5), is estimated by OLS. The predicted value of the polynomial of the instrument is used

as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative markup and plots the

mean of the estimated relative markup against the mean of the di↵erence between the log transaction and log list price net

of fixed e↵ects for each bin, as detailed in Appendix C. Before binning, the top and bottom 0.5 percent of the log sale price

residual and any observations fully absorbed by fixed e↵ects are dropped. The entire procedure is weighted by the reciprocal

of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988

to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,

sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2

does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings

that are foreclosed upon in the subsequent year. The sample is the sample of houses that transact in each IV sample. N =

96,400 observations for IV sample 1 and 86,033 observations for IV sample 2 prior to dropping unique zip-quarter cells and

winsorizing.
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Figure A15: Kaplan-Meier Survival Curve For List Prices
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Notes: The figure shows the Kaplan-Meier survival curve for list price in the Altos-DataQuick data, where sales and withdrawals

are treated as censored observations and a price change is treated as a failure. The curve thus corresponds to the probability

of a list price surviving for a given number of weeks conditional on the property not having sold. The sample is made up of

885,836 listings with 1,849,398 list prices and 15,104,588 week-listings of homes in the San Francisco Bay, Los Angeles, and

San Diego areas. Any match between Altos and DataQuick is included in this sample. To help the reader observe price change

hazards in the first several weeks of listing, the survival curve is only shown through 20 weeks.

D.2 Frequency of Price Changes in Microdata

To assess the frequency of price changes in the microdata, I use the Altos-DataQuick matched data.
I create a dataset where each observation is a week-listing, with listings consolidated together so
that de-listings and re-listings within 13 weeks without an intervening foreclosure are counted as a
single listing (this is why I use only Altos listings that are matched to a DataQuick property). For
the three MSAs, this gives me 885,836 listings with 1,849,398 unique price-listings and 15,104,588
week-listings.

Figure A15 shows the Kaplan-Meier survival curve for list prices, which plots the probability
that a price survives for a given number of weeks conditional on the house not selling or being
withdrawn from the market. The median price lasts 9 weeks (week 1 to week 10), or approximately
two months. This is used to motivate a two-month fixed price in the staggered pricing model.

E Model

For simplicity of exposition, I define everything for the rule of thumb model and then describe how
the staggered pricing model di↵ers rather than juggling the two simultaneously.
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E.1 Market Tightness in Each Submarket and the Probabilities of Purchase
and Sale

The mass of sellers in the f submarket is St times the weighted average probability that any given
seller is in the f submarket E⌦ [1�G (·)], and the mass of sellers in the d submarket is similarly
StE⌦ [G (·)]. Consequently, the market market tightness in the f and d submarkets is:
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The probability a buyer who follows the signal buys a house is then:
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q
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where ✓t = Bt/St is the aggregate market tightness, and
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is the demand curve faced by a seller in the f submarket. Similarly, the probability a buyer buys
if they do not follow the signal is:

Pr [Buy|Do Not Follow] =
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where,

d
d

⇣
pt,⌦t, ✓̃t

⌘
= q

d

⇣
✓
d

t

⌘
G (pt � E⌦t [pt]� µ) (1� F ("⇤t (pt))) ,

is the demand curve faced by a seller in the d submarket.
Note that the demand curve faced by sellers, which is the ex-ante probability of sale for a house

with a list price pt, can be written as:
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The value function of a buyer who follows, V b,f

t
, a buyer who does not follow V

b,d

t
, and a buyer

prior to choosing a submarket V b
t , are then:
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o
.

E.2 Lemma 2: Optimal Price Setting

From the definition of V s
t , sellers solve:
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So that the markup is (suppressing arguments for parsimony):
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This optimal price is unique on the concave region of the demand curve by standard arguments.
However, the problem may not be globally concave if "̄ is past the point where G (·) begins to
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flatten, and sellers may have an incentive to deviate. If they do, they would always choose "̄, as
the demand curve is very inelastic in the non-concave region, pushing the markup to the highest
possible level. I describe tests for whether the seller would like to deviate to post "̄ in Section E.5.

E.3 F(·) Distribution, Full Equilibrium System, and Simulation Details

The F (·) distribution is parameterized as a uniform distribution with a mass point of weight � at
"̄. The density for " < "̄ is defined by:
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The upper-tail conditional expectation is:
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The G (·) distribution is a type 1 generalized normal. The PDF is:
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This implies a hazard function of:
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Note that the CDF is piecewise. However, in all calibrations µ � 0, so sgn (x� µ) < 0. I thus
perturb the equilibrium assuming that the equilibrium is on the upper-portion of the CDF. To assess
the quality of the log-quadratic approximation I make sure that the dynamic model stay son the
upper portion of the CDF and also compare the IRFs obtained from perturbation to IRFs obtained
from one-time shocks in a deterministic model. Appendix G shows they are nearly identical, so
this assumption is not crucial.

The markup is then:
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It is worth simplifying several conditions with expectations over the set of list prices ⌦. Note that
there are two list prices: pEt with mass ↵ and p

R
t with mass 1�↵, so E⌦t [X] = ↵X
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Consequently,
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To simplify notation, let:
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Then the market tightnesses are then:
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The system is made up of GE
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I simulate this system with a log-quadratic approximation using Dynare as described in the main
text. In Section E.5 I provide a test to show that the mass point at "̄ does not preclude the use of
perturbation methods since it is essentially never reached.

For the impulse response functions, I use Dynare to compute the impulse response as the average
di↵erence between two sets of 100 simulations that use the same sequence of random shocks except
for one period in which an additional standard deviation shock is added.
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E.4 Steady State

The steady state that can be found by equating the value of the endogenous variables across time
periods. Steady state values are denoted without t subscripts. Note that in steady state, pEt = p

R
t ,

so there is no price variation and all prices are equal to pt. Consequently, there is no heterogeneity.
I thus drop all i = {E,R} superscripts.

Begin with the laws of motion, recalling that we have mass one of houses and mass N of agents.
From (13) and (14),
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The steady state value functions are:
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Note that given ✓⇤, and "⇤, one can solve for dd and d
f and hence � and d. One can then solve

for p, V b, V h, V s, H, R, B, and S. Thus the steady state system can be reduced to a two equation
system with two unknowns, ✓⇤, and "⇤:
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This steady state can be solved numerically and has a unique solution.

E.5 Specification Checks

I run three di↵erent sets of checks on the model to make sure several assumptions I make in solving
it are not problematic in practice.

First, I check that "⇤,R
t

and "
⇤,E
t

do not go above "̄. In 200 simulations of 500 years each,

"
⇤,R
t

almost never goes above "̄ and "
⇤,E
t

goes above "̄ less than 0.1 percent of the time. Using a
perturbation method is thus not problematic despite the kink at "̄ because this kink is virtually
never reached.

Second, I check that my assumption that sellers do not have an incentive to deviate from
their interior optimum is correct. I do so by simulating for the seller’s objective function in their

optimization problem d

⇣
pt,⌦t, ✓̃t

⌘ �
pt � s� �V

s

t+1

�
if the seller posts the interior optimum pt or if

the seller alternately sets their price so "⇤t (pt) = "̄, which delivers the highest price for the seller
in the region of the demand curve where the house is almost certain to end up in the “do not
follow” market and hence the probability of sale is roughly constant. Setting this price thus has
the highest expected profit. In 200 simulations of 500 years each, I find that sellers would never
have an incentive to deviate from the interior optimum. This is because the mass point in the
idiosyncratic taste distribution occurs before the signal distribution G (·) begins to flatten.

Third, I calculate the dollar loss that backward-looking sellers experience by failing to optimize.
To do so, I simulate the value of a backward-looking seller using,

V
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,

which calculates a value function similar to that of a rational seller but using the probability of
sale and price of a backward-looking seller. The average and mean of this value is below half of
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one percent.

E.6 Staggered Pricing Model

E.6.1 Lemma 3: Optimal Staggered Price Setting

The price-setting seller’s value function is:
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and V
M
t = V

0
t . The first order condition is:
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Rearranging gives:
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which, defining  ⌧
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E.6.2 Altered Laws of Motion With Staggered Pricing

The laws of motion for sellers also need to be altered. Specifically, for all old vintages with ⌧ > 0 ,
there are no new entrants and so the number laws of motion are:

S
⌧

t =
⇣
1� d

⇣
p
⌧�1
t�1 ,⌦t�1, ✓̃t�1

⌘⌘
S
⌧�1
t�1 8⌧ > 0 (A14)

By contrast, new price setting sellers is equal to inflows plus those in the M � 1th vintage that
have yet to sell:

S
0
t =

⇣
1� d

⇣
p
M�1
t�1 ,⌦t�1, ✓̃t�1

⌘⌘
S
M�1
t�1 + �

h
Ht�1. (A15)

There is also an adding up constraint that St =
P

M�1
⌧=0 S

⌧
t .

E.6.3 Full Staggered Pricing Model

An equilibrium of the staggered pricing model can be defined as:

Definition 2. Equilibrium with a fraction ↵ of backward-looking sellers is a set of prices p
i
t,

demands d

⇣
p
i
t,⌦t, ✓̃t

⌘
, and purchase cuto↵s "⇤,i

t
for each type of seller i 2 {E,R} at each price

vintage ⌧ , a transaction-weighted average price pt, rational seller, buyer, homeowner, and renter
value functions V s

t , V
b
t , and V

h
t , a probability that buyers follow the signal �t, stocks of each type

of agent Bt, St, Ht, and Rt, and a process for the flow utility of renting �rt satisfying:

1. Optimal pricing for price resetters (22) for whom ⌧ = 0 and p
⌧
t = p

⌧�1
t�1 for ⌧ > 0.

2. Optimal purchasing decisions by buyers: "⇤,⌧
t

= p
⌧
t + b+ �V

b

t+1 � V
h
t ;

3. The demand curve for each vintage of seller ⌧ = {0, ...,M � 1} in the f submarket (10), the
d submarket, (11), and the aggregate (9), all of which result from buyer search behavior;

4. The value functions for buyers (17), homeowners (8), and for price resetting sellers (A12) and
each vintage of non-resetting sellers (A13).

5. The laws of motion for buyers (12) and each vintage of sellers (A14) and (A15) and the closed
system conditions for homes (14) and people (15) that implicitly define the laws of motion
for homeowners and renters;

6. Buyers are indi↵erent across markets (16);

7. All agents have rational expectations that �rt evolves according to the AR(1) process (23).

The steady state is identical to the steady state in the backward-looking model because prices are
constant so all groups set the same price.
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Given this equilibrium, I now develop the full dynamic system that is put into Dynare as with
the backward-looking model. I do so for M = 2 both for simplicity of exposition and to match my
simulations.

There are two list prices: p0t with mass S
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1
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, so:
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The system is made up of G0
t , G

1
t , M

0
t , and M

1
t ,

d
0
t = d

0,f
t

+ d
0,d
t

d
1
t = d

1,f
t

+ d
1,d
t

d
0,f
t

= ⇠
f

0

@ Bt�t

St

h
S
0
t

St

�
1�G

0
t

�
+ S

1
t

St

�
1�G

1
t

�i

1

A
�

�
1�G

0
t

� "̄� "
⇤,0
t

+ �

⇣
"
⇤,0
t

� "

⌘

"̄� "

d
0,d
t

= ⇠
d

0

@ Bt (1� �t)

St

h
S
0
t

St

�
1�G

0
t

�
+ S

1
t

St

�
1�G

1
t

�i

1

A
�

G
0
t

"̄� "
⇤,0
t

+ �

⇣
"
⇤,0
t

� "

⌘

"̄� "

d
0,f
t

= ⇠
f

0

@ Bt�t

St

h
S
0
t

St

�
1�G

0
t

�
+ S

1
t

St

�
1�G

1
t

�i

1

A
�

�
1�G

1
t

� "̄� "
⇤,1
t

+ �

⇣
"
⇤,1
t

� "

⌘

"̄� "

d
1,d
t

= ⇠
d

0

@ Bt (1� �t)

St

h
S
0
t

St

�
1�G

0
t

�
+ S

1
t

St

�
1�G

1
t

�i

1

A
�

G
1
t

"̄� "
⇤,1
t

+ �

⇣
"
⇤,1
t

� "

⌘

"̄� "

Ht = 1� St

Rt = N �Bt �Ht

Bt =

✓
1� 1

✓t�1


S
0
t�1

St�1
d
0
t�1 +

S
1
t�1

St�1
d
1
t�1

�◆
Bt�1 + �

r

t�1Rt�1 + (1� L)�htHt�1

S
0
t =

⇣
1� d

⇣
p
1
t�1,⌦t�1, ✓̃t�1

⌘⌘
S
1
t�1 + ç
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plus the pricing rule. Since
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E.7 Non-Concave Model

For the non-concave model, I use a demand curve that uses the same distributional assumptions
but has a slope equal to the slope of the demand curve with concavity at the average price and
thus the same steady state markup as before. I set G (·) = 1 to eliminate concavity which implies
� = 1, and I keep "⇤ the same as my previous calibration, I set � = 0 to get as much room for "⇤

to fluctuate as possible,5 and choose " and "̄ to satisfy:
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"̄nc � "nc
= Pr [Sell] ,

where Markup and Pr [Sell] are the markup and probability of sale in the baseline calibration.
The other parameters are left unchanged.

5This does not a↵ect the results. It does, however, make it so that perturbation methods are usable as "̄ is virtually
never reached.
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The full system is then:
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The non-concave model with staggered pricing is similar, except for the altered law of motion and
optimal price setting for resetters. This follows the same formula as above, except the optimal price
and dd

dp
are changed to be the same as in this section. Consequently,
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E.8 Microfoundation For Backward-Looking Sellers

This appendix presents a microfoundation for the Backward looking sellers’ price setting equation
(20).

The backward-looking sellers are near-rational sellers with limited information whose optimizing
behavior produces a price-setting rule of thumb based on the recent price path. They are not fully
rational in two ways. First, backward-looking sellers understand that a seller solves,
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pt
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with first order condition,
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However, they do not fully understand the laws of motion and how prices and the value of being
a seller evolve. Instead, they think the world is a function of a single state variable, the average
price E [pt], and can only make “simple” univariate forecasts that take the form of a first order
approximation of (A16) in average price and relative price:

pt = s+ �
�
V̄

s

t+1 + ⇡1E [pt]
�
+ M̄ + ⇡2E [pt � E [pt]] (A17)

= s+ �
�
V̄

s

t+1 + ⇡1E [pt]
�
+ M̄,

where V̄
s, M̄ , ⇡1, and ⇡2 are constants.6

Second, they mistakenly assume that price follows a random walk with drift with both the
innovations ' and the drift ⇣ drawn independently from mean zero normal distributions with
variances �2' and �

2
⇣
. They also have limited information and only see the transaction-weighted

average prices pt of houses that transact between two to four months ago p̄t�3 = pt�2+pt�3+pt�4

3

and between five to seven months ago p̄t�6 = pt�5+pt�6+pt�7

3 , corresponding to the lag with which
reliable house price indices are released. Through a standard signal extraction problem, they
expect that today’s price will be normally distributed with mean E [pt] = p̄t�3 + E [⇣], where
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2
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'
(p̄t�3 � p̄t�6). Given this normal posterior, backward-looking sellers follow an AR(1)

rule:
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where everything is lagged because where  =
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F Calibration

F.1 Calibration Targets

The aggregate moments and parameters chosen from other papers are:

• A long-run homeownership rate of 65 percent. The homeownership hovered between 64
percent and 66 percent from the 1970s until the late 1990s before rising in the boom of the
2000s and falling afterwards.

• � = 0.8 from the median specification of Genesove and Han (2012). Anenberg and Bayer
(2015) find a similar number.

• L = 0.7 from the approximate average internal mover share for Los Angeles of 0.3 from
Anenberg and Bayer (2015), which is also roughly consistent with Wheaton and Lee’s (2009)

6The second line follows from the second assumption, which implies a symmetric posterior for pt so pt = E [pt].
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analysis of the American Housing Survey and Table 3-10 of the American Housing survey,
which shows that under half of owners rented their previous housing unit.

• A median tenure for owner occupants of approximately nine years from American Housing
Survey 1997 to 2005 (Table 3-9).

• The approximately equal time for buyers and sellers is from National Association of Realtors
surveys (Head et al., 2014; Genesove and Han, 2012). This implies that a normal market is
defined by a buyer to seller ratio of ✓ = 1. I assume a time to sale in a normal market of
four months for both buyers and sellers. There is no definitive number for the time to sale,
and in the literature it is calibrated between 2.5 and six months. The lower numbers are
usually based on real estate agent surveys (e.g., Genesove and Han, 2012), which have low
response rates and are e↵ectively marketing tools for real estate agents. The higher numbers
are calibrated to match aggregate moments (Piazzesi and Schneider, 2009). I choose four
months, which is slightly higher than the realtor surveys but approximately average for the
literature.

• Price is equal to $760,000, roughly the average transaction price in the IV samples. IV Sample
1 corresponds is $758,803 and in IV sample 2 is $781,091. The results are not sensitive to
this calibration target.

• One in ten houses that are inspected are purchased. Genesove and Han (2012) show that in
National Association of Realtors surveys of buyers the mean buyer visits 9.96 homes. This
does lead to a ⇠ > 1, but this is standard for search models and not a practical issue for the
model.

• A monthly buyer search cost of of 0.75 of the average price per month, so that the average
buyer, who is in the market for four months, has total search costs equal to 3 percent of the
average home’s price as described in the main text. Since this target is somewhat speculative,
I vary it in robustness checks.

• A five percent annual discount rate, as is standard in the literature.

•  = 0.4.  is the AR(1) coe�cient in the backward-looking model and is set based evidence
from Case et al. (2012). Using surveys of home buyers, Case et al. (2012) show that regress-
ing realized annual house price appreciation on households’ ex-ante beliefs yields a regression
coe�cient of 2.34. I use this survey evidence to calibrate the beliefs of the backward-looking
sellers by dividing the approximate regression coe�cient one would obtain in quarterly simu-
lated data (approximately 0.94) by their coe�cient. Since this target is somewhat speculative,
I vary it in robustness checks.

• h is set so that the present discounted value of the flow utility of living in a home is approx-
imately 2/3 of its value in steady state, which implies h = $6.78k per month for a $760,000
house. Since this target is somewhat speculative, I vary it in robustness checks to show it is
e↵ectively a normalization.

Two time series moments are used:

• The persistence of the shock ⇢ = 0.95 is chosen to match evidence on the persistence of
population growth from the corrigendum of Head et al. (2014). They report that the auto-
correlation of population growth is 0.62 at a one year horizon, 0.29 at a two year horizon, and
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0.06 at a three-year horizon. These imply monthly autocorrelations of 0.961, 0.950, and 0.925.
I choose the middle value. This moment controls when the shock begins to mean revert, and
all that matters for the results is that the shock does not mean revert before three years.

• A standard deviation of annual log price changes of 0.065 for the real CoreLogic national
house price index from 1976 to 2013. This is set to match the standard deviation of aggregate
prices for homes that transact collapsed to the quarterly level in stochastic simulations.

The seller search cost is pinned down by the shape of the demand curve, the steady state probability
of sale, and the target steady state price. This is the case because p = s + �V

s + Markup and
V

s = s+dMarkup

1��
together imply that:

s

p
= 1� � � (�d+ 1� �)

Markup

p
.

In the baseline calibration, the monthly seller search cost is 2.1 percent of the sale price.
The seller search cost is important as it controls the degree of search frictions sellers face.

Consequently, I introduce a procedure to adjust the binned scatter plot to match a target for
the monthly seller search cost as a fraction of the price in steady state. This requires changing
the demand curve so it is more elastic, which can either be done by shrinking the log relative
markup axis or by stretching the probability of sale axis. The former would add concavity, while
the later would reduce concavity. To err on the side of not adding concavity to the data, I use the
former procedure. Specifically, the new probability of sale probsell

0 is set according to probsell
0 =

stretch⇥ (probsell �median (probsell))+median (probsell), and the stretch parameter is selected
to hit a target s/p. I report results that target target monthly seller search costs of 1.0 percent,
1.5 percent, and 2.5 percent.

F.2 Estimation and Calibration Procedure

As described in the text, the estimation and calibration procedure proceeds in two steps. First, I
calibrate to the micro estimates. Then I match the aggregate and time series moments.

Approximation of d (p) in Equation (24)
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Because the estimated density 1��

"̄�"
is 0.0001, the last term is close to zero. I thus approximate

1� F ("⇤ (pt)) ⇡ 1� F ("⇤mean + pt � E⌦t [pt]) ,

where the approximation error is small.
I also approximate �t = �mean. The approximation error is small here as well because fluctua-

tions in � over the cycle are relatively small. Finally, for simplicity I approximate �mean and "⇤mean

by their steady state values, which are close to the mean values over the cycle given the mean zero
shocks and lack of a substantial asymmetry in the model.

Calculating d (pt) then takes two steps. First, I solve for � in steady state. The steady state
equilibrium condition is:
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I approximate � by assuming that E ["� "
⇤
t |" > "

⇤
t ] is the same for all bins, which is roughly the

case, and then solving for �. Second, I calculate d (pt) from (24) using "⇤ (p) = "
⇤,mean+pt�E⌦ [p].

Calibration To Micro Estimates

The procedure to calibrate to the micro estimates is largely described in the main text. I start
with the IV binned scatter plot (pb, db), which can be thought of as an approximation of the demand
curve by 25 indicator functions after the top and bottom 2.5 percent of the price distribution is
dropped. In Figure 2, the log relative markup p is in log deviations from the average, and I convert
it to a dollar amount using the average price of $760,000 in the IV sample. For each combination
of �, �, and the density of F (·), I use equation (24) to calculate the mean of squared error:

⌃b

⇣
db � d

3 month (pb)
⌘
/Nb.

Because the data is in terms of probability of sale within 13 weeks, d
3 month (pb) = d (pb) +

(1� d (pb)) d (pb)+(1� d (pb))
2
d (pb) is the simulated probability a house sells within three months.

I also need to set t, the multiplicative constant. I do so by minimizing the same sum of squared
errors for a given vector of the parameters (�, µ, density).

⇣ could also be chosen using this method, but doing so obtains a very large ⇣ that introduces
numerical error into the dynamic model solution. Consequently, I choose ⇣ = 8, which gives most
of the improvement in mean squared error from choosing ⇣ optimally relative to using a normal
distribution with ⇣ = 2 while reducing numerical error. The results are not sensitive to this
normalization.
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Additionally, The seller search cost s is pinned down by the elasticity of demand at the zero
point, and using the zero point estimated from the data leads to a very large s because the zero
point is slightly on the inelastic side of the kink. Because the zero point corresponding to the
average price is not precisely estimated and depends on the deadline used for a listing to count as a
sale, I shifting the zero point by up to one percent to to obtain a more plausible seller search cost.

At each step of the optimization, for a given value of the density I find "̄, ", and � to match

targets for 1�F ("⇤) = "̄�"
⇤+�("⇤�")
"̄�"

and E ["� "
⇤|" > "
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�"̄("̄�")+ 1��

2 ("̄+"
⇤)("̄�"

⇤)
"̄�"⇤+�("⇤�") �"⇤. The target

for E ["� "
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mean] is chosen to match a target value of b assuming V 0 ⇡ V

h. This is done by matching
the aggregate targets below through the calibration system below and choosing E ["� "

⇤|" > "
⇤] to

match the target b.

Matching the Aggregate Targets

To match the aggregate targets in Table 4, I invert the steady state so that the remaining param-
eters can be solved for in terms of the target moments conditional on

�
�, ⇣, µ, "̄, ",�, ⇠

d
/⇠

f
, and "⇤mean

�
.

I solve this system, defined below, conditional on the steady-state targets described in Table 4 in
the main text. I then select a value for the standard deviation of innovations to the AR(1) shock
�⌘, run 25 random simulations on 500 years of data, and calculate the standard deviation of annual
log price changes. I adjust the target value for �⌘ and recalibrate the remainder of the moments
until I match the two time series moments. I repeat this procedure altering ↵ until the impulse
response to the renter flow utility shock in the backward-looking model peaks after 36 months.

The Calibration System

Many variables can be found from just a few target values, and I reduce the unknowns to a four
equation and four unknown system. The system is defined by:

• �, L, and �, are set to their assumed monthly values.

• b and h are set to their assumed values.

• ✓ = 1 from the equality of buyer and seller time on the market.

• d = 1/4 together with indi↵erence in steady state imply:

⇠
f =

d

✓
d

✓����1(1�G)1��(1�F )

,

where and 1� F ("⇤) 1�G (�µ)1�� can be found from the first stage of the calibration.

• �
h is set to match the frequency with which homeowners move.

• The homeownership rate in the model, H

H+B+R
, is matched to the target moment. Plugging

in steady-state values gives:
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+ L�h
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This is solved for �̄r:
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Figure A16: Impulse Response Functions: Downward Shock

A: Rule of Thumb Model B: Staggered Pricing Model
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Notes: The left panel shows a downward shock in the rule of thumb model, while the right panel shows a downward shock in

the staggered model.. Simulated impulse responses are calculated by di↵erencing two simulations of the model from periods

100 to 150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is

added to the random sequence, and then computing the average di↵erence over 100 simulations.

• The population N can then be solved for from N = H +B +R

N =
d

d+ �h

✓
1 +

�
h
✓

d
+

L�
h

�̄r

◆
.

This leaves s and V
0, which are solved for jointly to match the target price and satisfy three
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G Additional Simulation Results

G.1 Downward Shocks

Figure A16 shows the impulse response to a downward shock directly analogous to Figure 5. As
in the data, there is very little detectable asymmetry between an upward and downward shock
because the semi-elasticity of demand is locally smooth. Across all 14 calibrations, the impulse
response is 36 months for both a downward and upward shock. However, for a very large shock,
downward may show slightly more concavity because the elasticity of demand rises sharply when
relative price is extremely low.

G.2 Deterministic, Non approximated Shock

To ensure that the impulse response is not being driven by the third order perturbation solution
method, I solve a deterministic version of the model by Newton’s method. The model starts
in steady state and at time zero is it with a surprise one-time shock to ⌘ of size �⌘ and then
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Figure A17: Impulse Response Functions: Deterministic Shock in Rule of Thumb Model
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Notes: This figure shows impulse responses analogous to Panel A of Figure 5 with an exactly-solved deterministic model. The

impulse responses are created by running a simulation with a surprise one-time shock to ⌘ of size �⌘ at time zero.

deterministically returns to steady state as xt reverts back to zero. I then plot deterministic
impulse responses for a variable X as log (Xt/Xss) where Xss is its steady state value. This results
in the IRFs in Figure A17, which are comparable to Figure 5. Across all 14 calibrations, the
maximum period of the deterministic one time shock IRF and the stochastic IRF are within one
month of each other. The perturbation solution thus seems quite accurate.

G.3 Detailed Intuition For Staggered Pricing Model

The full dynamic intuition with staggered pricing is more nuanced than the static intuition presented
above because the seller has to weigh the costs and benefits of perturbing price across multiple
periods. The intuition is clearest when one considers why a seller does not find it optimal to
deviate from a slowly-adjusting price path by listing his or her house at a level closer to the new
long-run price after a one-time permanent shock to fundamentals.

After a positive shock to prices, if prices are rising slowly why do sellers not list at a high price,
sell at that high price in the o↵ chance that a buyer really likes their house, and otherwise wait
until prices are higher? Search is costly, so sellers do not want to set a very high price and sit on
the market for a very long time. Over a shorter time horizon, the probability of sale and profit are
very sensitive to perturbing price when a house’s price is relatively high but relatively insensitive
to perturbing price when a house’s price is relatively low. This is the case for two reasons. First,
despite the fact that the probability of sale is lower when a house’s price is relatively high, demand
is much more elastic and so a seller weights that period’s low optimal price more heavily. Second,
on the equilibrium path, prices converge to steady state at a decreasing rate, so the sellers lose
more buyers today by setting a high price than they gain when they have a relatively low price
tomorrow. Consequently, in a rising market sellers care about not having too high of a price when
their price is high and do not deviate by raising prices when others are stuck at lower prices.

After a negative shock to prices, if prices are falling slowly and search is costly, why do sellers
not deviate and cut their price today to raise their probability of sale and avoid search costs if
selling tomorrow means selling at a lower price? Although the fact that the elasticity of demand
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is higher when relative price is higher makes the seller care more about not having too high of a
relative price when their price is higher, there is a stronger countervailing e↵ect. Because prices
converge to steady state at a decreasing rate on the equilibrium path, sellers setting their price
today will undercut sellers with fixed prices more than the sellers are undercut in the future. They
thus gain relatively fewer buyers by having a low price when their price is relatively high and leave
a considerable amount of money on the table by having a low price when their price is relatively
low. On net, sellers care about not having too low of a price when they have the lower price and
do not deviate from a path with slowly falling prices.

Another way of putting these intuitions is that the model features a trade-o↵ between leaving
money on the table when a seller has the relatively low price and gaining more buyers when a seller
has the relatively high price. On the upside, since price resetters raise prices more than future
price setters and since they care more about states with more elastic demand, the loss from losing
buyers when a resetters have the relatively high price is stronger. On the downside, since price
resetters cut prices more than future price resetters, the money left on the table by having a lower
price when their prices are relatively low is stronger.
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