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Abstract

House prices exhibit substantially more momentum, positive autocorrelation in price changes

over two to three years, than existing theories can explain. This paper introduces, empirically

grounds, and quantitatively analyzes an amplification mechanism for momentum that can rec-

oncile theory with the data. Sellers have an incentive not to set a unilaterally high or low

list price because the demand curve they face is concave in relative price: increasing the list

price of an above-averaged priced house rapidly reduces its probability of sale, while cutting the

price of a below-average-priced home reduces revenue but only slightly improves its chance of

selling. The resulting strategic complementarity amplifies frictions that generate sluggish price

adjustment because sellers adjust their price gradually to stay near the average. I provide new

micro-empirical evidence that the demand curve faced by sellers is concave and show using a

search model calibrated to the micro evidence that concave demand amplifies momentum by a

factor of two to three.
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1 Introduction

A puzzling and prominent feature of housing markets is that aggregate price changes are highly

positively autocorrelated (Case and Shiller, 1989).1 This price momentum lasts for two to three

years before prices mean revert, a time horizon far greater than most other asset markets. Sub-

stantial momentum is surprising both because most pricing frictions dissipate quickly and because

predictable price changes should be arbitraged away by households, either by altering their bidding

and bargaining or by re-timing their purchase or sale. Indeed, a literature that explains momentum

by introducing frictions including search (Head et al., 2014), Bayesian learning (Anenberg, 2014),

extrapolative expectations (Case and Shiller, 1987; Glaeser and Nathanson, 2017), and the gradual

spread of sentiment (Burnside et al., 2016) has been unable to quantitatively explain the degree of

momentum in the data.

This paper introduces, empirically grounds, and quantitatively analyzes an amplification mech-

anism for a broad class of underlying frictions that can reconcile existing theories with the data.

Intuitively, no seller wants to set a list price that “sticks out” from comparable houses on the

market. If the list price is too high, the house may sit on the market; if it is too low, the house will

not sell much more quickly but will garner a lower price. Momentum is amplified as prices adjust

sluggishly to changes in fundamentals because sellers who cannot coordinate find it costly to move

their price too far from the market average. This paper provides direct micro-empirical evidence

for this mechanism and shows that it amplifies momentum by a factor of two to three.

Formally, the amplification works through a strategic complementarity whereby the optimal

list price is increasing in the list price of other sellers (Cooper and John, 1988). The strategic

complementarity arises because sellers face a demand curve that is concave in relative price: the

probability a house sells is more sensitive to list price for houses priced above than below the market

average. This concavity implies that raising a house’s relative list price reduces the likelihood of sale

and expected revenue dramatically, while lowering its relative price only increases the probability of

sale slightly and leaves money on the table. This mechanism requires two key assumptions. First,

in setting a list price, sellers face a demand curve that trades o↵ price and probability of sale due

to search frictions, which are an important feature of housing markets. Second, the tradeo↵ must

be stronger for above-average priced houses.

I approach this second assumption as an empirical question, and turn to micro data on listings

for the San Francisco Bay, Los Angeles, and San Diego metropolitan areas from 2008 to 2013 to

assess the degree of concavity of the demand curve faced by sellers. As a first pass, I present a

simple ordinary least squares (OLS) specification, which reveals a concave relationship. OLS is,

however, unsuitable to quantitatively assess the degree of concavity because higher-priced houses

are of higher unobserved quality, which biases the estimated demand curve to be too inelastic. To

1See also Cutler et al. (1991), Cho (1996), Titman et al. (2014), Head et al. (2014), and Glaeser et al. (2014).
Cutler et al. (1991) and Moskowitz et al. (2012) describe how momentum di↵ers across assets. Appendix A shows
that momentum holds across metropolitan areas in the U.S., countries, time periods, and price index construction
methodologies.
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address this bias, I use an instrument that exploits variation in the incentives for individual sellers

to set a high list price that is independent of unobserved quality. The instrumental variable (IV)

estimates robustly show statistically and economically significant concavity.

In particular, I use variation induced by di↵erences in when contemporaneous sellers purchased

and instrument a house’s relative list price with the amount of local price appreciation since the

seller purchased. Sellers who have experienced less appreciation since purchase set a higher price

for two reasons. First, sellers often use the equity they extract from their current home to make a

down payment on their next home (Stein, 1995; Genesove and Mayer, 1997). When appreciation

since purchase is low, the amount of equity a seller can extract is low. Because such sellers are

likely to be on a down payment constraint, each dollar of equity extracted can be leveraged heavily,

and the seller’s marginal utility of cash on hand is high. Conversely, when sellers have more equity

to extract, the down payment constraint is less likely to be binding. Because each dollar extracted

is not leveraged to the same extent, the seller’s marginal utility of cash on hand is lower. Given

their higher marginal utility of cash on hand, sellers extracting less equity set a higher list price.

Second, home sellers exhibit nominal loss aversion (Genesove and Mayer, 2001). Local appreciation

since purchase is a noisy proxy for the exact appreciation of any given house, so there is a negative

relationship between appreciation since purchase and both the probability and size of a nominal

loss. For both reasons, all else equal, sellers with less appreciation since purchase set higher prices.

Because I compare listings within a ZIP code and quarter, the supply-side variation induced by

appreciation since purchase identifies the curvature of demand if unobserved quality is independent

of when a seller purchased their home. I evaluate this assumption and find that concavity is robust

to controls, sample restrictions, proxies for unobserved quality and date of purchase, and other

sources of relative price variation that are independent of appreciation since purchase.

To assess the amount of amplification generated by concave demand quantitatively, I embed

concave demand in a Diamond-Mortensen-Pissarides equilibrium search model of the housing mar-

ket. While concave demand may arise in housing markets for several reasons, I focus on the manner

in which asking prices direct buyer search. The intuition is summarized by an advice column for

sellers: “Put yourself in the shoes of buyers who are scanning the real estate ads...trying to decide

which houses to visit in person. If your house is overpriced, that will be an immediate turno↵. The

buyer will probably clue in pretty quickly to the fact that other houses look like better bargains and

move on.”2 In other words, concave demand arises because at high relative prices, buyers are on

the margin of whether they should even look at a house, which is sensitive to its list price. On the

other hand, at low relative prices, they are mostly on the margin of whether they should purchase,

which depends more on the buyer’s idiosyncratic taste for the particular house than the list price.

Concave demand incentivizes list-price-setting sellers—who have market power due to search

frictions—to set their list prices close to the mean list price. In a rational expectations equilibrium

with identical sellers, all sellers change their prices simultaneously and no gradual adjustment

2“Settling On The Right List Price for Your House,” Ilona Bray, http://www.nolo.com/legal-encyclopedia/listing-
house-what-price-should-set-32336-2.html.
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arises from the incentive to be close to the mean. However, frictions that generate di↵erential

insensitivities of prices to changes in fundamentals cause protracted price adjustments because

sellers optimally adjust their list price gradually so as to not stray too far from the market average.

Importantly, this strategic complementarity amplifies any friction that generates heterogeneity in

the speed of adjustment. This includes most frictions proposed by the literature, such as staggered

pricing, backward-looking expectations, learning, and the gradual spread of sentiment.

While I am agnostic as to which particular friction is at work in practice, I introduce two di↵erent

frictions from the literature into the model in order to evaluate the degree of amplification. First, I

consider staggered pricing, whereby overlapping groups of sellers set prices that are fixed for multiple

periods (Taylor, 1980). Concave demand induces sellers to only partially adjust their prices when

they have the opportunity to do so, and repeated partial adjustment manifests itself as momentum.

Second, I introduce a small fraction of backward-looking rule-of-thumb sellers as in Campbell

and Mankiw (1989) and Gali and Gertler (1999). Backward-looking expectations are frequently

discussed as a potential cause of momentum (e.g., Case and Shiller, 1987; Case et al. 2012),

but some observers have voiced skepticism about widespread non-rationality in housing markets

given the financial importance of housing transactions for most households. With a strategic

complementarity, far fewer backward-looking sellers are needed to explain momentum because the

majority of forward-looking sellers adjust their prices gradually so they do not deviate too much

from the backward-looking sellers (Haltiwanger and Waldman, 1989; Fehr and Tyran, 2005). This,

in turn, causes the backward-looking sellers to observe more gradual price growth and change their

price by less, creating a two-way feedback that amplifies momentum.

I calibrate the shape of the demand curve to match the micro empirical estimates. Across a

range of calibrations, a two-month staggered pricing friction without concavity is amplified into

four to six months of gradual adjustment, and between a half and a third as many backward-

looking sellers are needed to explain the momentum in the data with concavity relative to without

concavity. I conclude that concave demand amplifies momentum by a factor of two and three.

My findings have implications beyond the housing market. Strategic complementarities arising

from concave demand are frequently used in macroeconomic models,3 but there is limited empirical

evidence of their importance or strength.4 I use the rich data available in the housing market to

provide the first direct evidence for concave demand. While my findings do not imply that concave

demand is important for price stickiness outside the housing market, I show that concave demand

is not a theoretical curiosity and can substantially amplify price stickiness in practice.

The remainder of the paper proceeds as follows. Section 2 presents the micro data and a

3The concave demand curve is similar to “kinked” demand curves (Stiglitz, 1979) which, since Ball and Romer
(1990) has been frequently cited as a potential source of real rigidities. An extension of Dixit-Stiglitz preferences
proposed by Kimball (1995) that allows for concave demand is frequently used to tractably introduce real rigidities
through strategic complementarity in price setting.

4The empirical literature has assessed the importance of concave demand largely by assessing whether the ram-
ifications of strategic complementarities are borne out in micro data (Klenow and Willis, 2016) and by examining
examining exchange-rate pass through for imported goods (e.g., Gopinath and Itshoki, 2010; Nakamura and Zerom,
2010). The only other direct evidence for strategic complementarity is Amiti et al. (2017), who use exchange rate
variation to separately identify the response of firms’ pricing to their own costs and the prices of their competitors.
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preliminary OLS analysis. Section 3 presents the preferred estimates of the concavity of demand

that address bias in OLS using an instrument. Section 4 presents robustness checks for the empirical

results. Section 5 presents the model. Section 6 calibrates the model to the micro estimates and

assesses the degree to which strategic complementarity amplifies momentum. Section 7 concludes.

2 OLS Analysis of the Concavity of Housing Demand

I propose an amplification channel for momentum based on search and a concave demand curve in

relative price. Search is a natural assumption for housing markets, but the relevance of concave

demand requires further explanation.

A literature in macroeconomics argues that strategic complementarities among goods producers

can amplify small pricing frictions into substantial price sluggishness by incentivizing firms to set

prices close to one another. Because momentum is similar to price stickiness in goods markets, I

hypothesize that a similar strategic complementarity may amplify house price momentum.

There are several reasons why concave demand may arise in housing markets. First, buyers

may avoid visiting homes that appear to be overpriced. Second, buyers may infer that underpriced

homes are lemons. Third, a house’s relative list price may be a signal of seller type, such as an

unwillingness to negotiate (Albrecht et al., 2016). Fourth, homes with high list prices may be less

likely to sell quickly and may consequently be more exposed to the tail risk of becoming a “stale”

listing that sits unsold on the market (Taylor, 1999). Fifth, buyers may infer that underpriced

homes have a higher e↵ective price than their list price because their price is likely to be increased

in a bidding war (Han and Strange, 2016). Sixth, the law of one price—which would create step-

function demand—may be smoothed into a concave demand curve by uncertainty about a house’s

value.

Nonetheless, concrete evidence is needed for the existence of concave demand in housing mar-

kets before it is adopted as an explanation for momentum. Consequently, this section assesses

whether demand is concave by analyzing micro data on listings matched to sales outcomes for the

San Francisco Bay, Los Angeles, and San Diego metropolitan areas from April 2008 to February

2013.5 This section presents the data on home listings and transactions used in the analysis and

a simple first pass OLS analysis of the shape of the demand curve. OLS is, however, unsuitable

for a quantitative analysis of concave demand because it is biased by the conflation of price and

unobserved quality, which I address in subsequent sections.

2.1 Data

I combine data on listings with data on housing characteristics and transactions. The details of

data construction can be found in Appendix B. The listings data come from Altos Research, which

every Friday records a snapshot of homes listed for sale on multiple listing services (MLS) from

5These areas were selected because both the listings and transactions data providers are based in California, so
the matched dataset for these areas is of high quality and spans a long time period.
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several publicly available web sites and records the address, MLS identifier, and list price. The

housing characteristics and transactions data come from DataQuick, which collects and digitizes

public records from county register of deeds and assessor o�ces. This data provides a rich one-

time snapshot of housing characteristics from 2013 along with a detailed transaction history of

each property from 1988 to August 2013 that includes transaction prices, loans, buyer and seller

names and characteristics, and seller distress. I limit my analysis to non-partial transactions of

single-family existing homes as categorized by DataQuick.

I match homes in the listings data to a unique DataQuick property ID. To account for homes

being de-listed and re-listed, listings are counted as contiguous if the same house is re-listed within

90 days and there is not an intervening foreclosure. If a matched home sells within 12 months of

the final listing date, it is counted as a sale, and otherwise it is a withdrawal. The matched data

includes 78 percent of single-family transactions in the Los Angeles area and 68 percent in the San

Diego and San Francisco Bay areas. It does not account for all transactions due to three factors: a

small fraction of homes (under 10%) are not listed on the MLS, some homes that are listed in the

MLS contain typos or incomplete addresses that preclude matching to the transactions data, and

Altos Research’s coverage is incomplete in a few peripheral parts of each metropolitan area.

I limit the data to homes listed between April 2008 and February 2013.6 I drop cases in which

a home has been rebuilt or significantly improved since the transaction, the transaction price is

below $10,000, or a previous sale occurred within 90 days. I exclude ZIP codes with fewer than

500 repeat sales between 1988 and 2013 because my empirical approach requires that I estimate a

local house price index. These restrictions eliminate approximately five percent of listings.

The data set consists of 663,976 listings leading to 480,258 transactions. I focus on the 416,373

listings leading to 310,758 transactions with an observed prior transaction in the DataQuick prop-

erty history going back to 1988. Table 1 provides summary statistics for the listings successful

matched to a DataQuick property ID which constitute my analysis sample. It also provides sum-

mary statistics the two subsamples I use in my IV analysis, which are described in the next section.

2.2 Empirical Framework and Estimation

The unit of observation is a listing associated with an initial log list price, p, and the outcome

of interest is a summary statistic of the time to sale distribution, d. In the main text, d is an

indicator for whether the house sells within 13 weeks, with a withdrawal counting as a non-sale.

In robustness checks in the appendix, I vary the horizon and use time to sale for houses that sell.

The data consist of homes, denoted with a subscript h, listed in markets defined by a location ` (a

ZIP code in the data) and time period t (a quarter in the data).

6The Altos data begins in October 2007 and ends in May 2013. I allow a six month burn-in so I can properly
identify new listings, although the results are not substantially changed by including October 2007 to March 2008
listings. I drop listings that are still active on May 17, 2013, the last day for which I have data. I also drop listings
that begin less than 90 days before the listing data ends so I can properly identify whether a home is re-listed within
90 days and whether a home is sold within six months. The Altos data for San Diego is missing addresses until
August 2008, so listings that begin prior to that date are dropped. The match rate for the San Francisco Bay area
falls substantially beginning in June 2012, so I drop Bay area listings that begin subsequent to that point.
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Table 1: Summary Statistics For Listings Micro Data

Sample All Prior Trans IV IV2 All Prior Trans IV IV2

Only houses that sold? No No No No Yes Yes Yes Yes

Transaction 72.3% 74.6% 68.7% 62.7% 100% 100% 100% 100%

Prior Transaction 62.7% 100% 100% 100% 64.7% 100% 100% 100%

REO 22.4% 27.8% 0% 0% 28.7% 35.6% 0% 0%

Short Sale or 19.4% 23.6% 13.50% 0% 19.8% 24.3% 15.9% 0%

Subsequent Foreclosure

Estimated Equity < -10% 30.9% 49.3% 100% 88.4% 31% 47.9% 100% 94.2%

Initial List Price $644,556 $595,137 $859,648 $861,254 $580,150 $548,132 $824,239 $845,253

Transaction Price $532,838 $501,588 $758,803 $781,091

Weeks on Market 15.32 16.46 14.01 12.86

Sold Within 13 Wks 44.3% 42.9% 44.8% 42.9% 61.2% 57.5% 65.2% 68.5%

Beds 3.283 3.239 3.337 3.328 3.264 3.229 3.327 3.322

Baths 2.185 2.126 2.331 2.316 2.141 2.102 2.310 2.308

Square Feet 1,811 1,732 1,969 1,953 1,759 1,702 1943.6 1944.1

N 663,976 416,373 140,344 137,238 480,258 310,758 96,400 86,033

Notes: Each column shows summary statistics for a di↵erent sample of listings. The four samples used are the full sample

of listings matched to a transaction, houses with an observed prior transaction (or if the observed prior transaction is not

counted as a sales pair, for instance because there is evidence the house was substantially renovated), and the first and second

IV samples. The first set of four columns provides summary statistics for all listed homes regardless of whether they sell. The

second four columns limits the summary statistics to houses that sell. The data covers listings between April 2008 and February

2013 in the San Francisco Bay, Los Angeles, and San Diego areas as described in Appendix B. REOs are sales of foreclosed

homes and foreclosure auctions. Short sales and subsequent foreclosures include cases in which the transaction price is less than

the amount outstanding on the loan and withdrawals that are subsequently foreclosed on in the next two years. The estimation

procedure for equity is described in Appendix B, and a -10 percent threshold is chosen because the equity measure is noisy.

The relevant demand curve for list-price-setting sellers is the e↵ect of unilaterally changing a

house’s quality-adjusted list price relative to the average list price in the area on its probability of

sale. To simplify notation, I combine the average list price in location ` at time t and the quality-

adjustment for house h into a single “target” list price for house h, p̃h`t. p̃h`t has two additive

components: the average log list price in location ` at time t, represented by a fixed e↵ect ⇠`t, and

quality qh`t:

p̃h`t = ⇠`t + qh`t. (1)

In the main text, I assume that quality is a linear combination of observable measures of quality

�Xh`t.

I model the probability of sale dh`t as being a potentially nonlinear function of ph`t � p̃h`t:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t. (2)

The demand curve in relative price g (·) is assumed to be invariant across markets defined by a
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location and time net of an additive fixed e↵ect  `t that represents local market conditions. "h`t is

an error term that represents luck in finding a buyer independent of ph`t � p̃h`t.7 I call ph`t � p̃h`t

the seller’s log relative markup, as it represents the “markup” a seller is asking over the quality-

adjusted average list price for a house in location ` at time t. g (·) can then be estimated by first

estimating ph`t = ⇠`t + �Xh`t + ⌫h`t and plugging the estimated residual ⌫h`t = ph`t � p̃h`t into (2).

I use a linear combination of two observed measures of quality for Xh`t. First, I use a repeat-

sales predicted price p̂
repeat

h`t
= log

⇣
Ph`⌧

�`t
�`⌧

⌘
, where Ph`⌧ is the price at the previous sale date ⌧

and �`t is a ZIP code-level repeat-sales house price index index. Second, I use a hedonic predicted

price p̂
hedonic
t , which is the sum of the static value of a house’s hedonic characteristics and a date

of sale fixed e↵ect, both estimated within a ZIP code. The construction of both indices follows

standard practice and is detailed in Appendix B. For the OLS analysis, the fixed e↵ects ⇠`t and  `t

are at the ZIP ⇥ distress status level, where distress status is an indicator for whether the house is

a non-distressed sale, a bank sale of a foreclosure, or a short sale in order to absorb di↵erences in

the average price by distress category.

2.3 OLS Results and Limitations

Figure 1 shows the OLS estimate of g (·) non-parametrically using a binned scatter plot that

parameterizes g (·) using indicator variables for each of 25 quantiles of ph`t � p̃h`t as detailed in

Appendix C. The relationship is highly concave.

That being said, Figure 1 also highlights the limitations of OLS: quality unobserved to the

econometrician is likely positively correlated with price, but OLS assumes that there is no unob-

served quality. This biases the slope and potentially the shape of the demand curve. To assess the

direction of the bias, it is useful to consider an extreme example in which all of the variation in

price conditional on observed quality is due to unobserved quality. In this case, the estimated de-

mand curve would slope upward because higher quality homes that are priced the same sell faster.

Consequently, one would expect unobserved quality to lead to an estimated demand curve slope

that is upwardly biased (less negative), or equivalently a demand curve that is too inelastic. Such

bias is clearly evident in the upward slope at low relative prices in Figure 1. This same bias also

explains why the demand curve is so inelastic, with a house priced 40 percent above average only

having a 40 percent lower probability of sale.

The bias in the OLS estimates is important to address given that this paper’s goal is to quanti-

tatively assess the degree of amplification provided by concave demand. Furthermore, if unobserved

quality varied systematically with list price, the shape of the demand curve could also be biased.

7Traditionally, endogeneity stems from the correlation of the error term "h`t with price. This source of bias is
absent here as the e↵ect of demand shocks on average price levels is absorbed into ⇠`t and the e↵ect of prices on
aggregate demand is absorbed into  `t.
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Figure 1: Ordinary Least Squares Estimate of the E↵ect of List Price on Probability of Sale
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Notes: The figure shows a binned scatter plot of the probability of sale within 13 weeks against the log relative markup.

The OLS methodology assumes no unobserved quality. To create the figure, a first stage regression of log list price on fixed

e↵ects at the ZIP x first quarter of listing x seller distress status level and repeat sales and hedonic log predicted prices is

estimated by OLS. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed homes and foreclosure

auctions), and short sales (cases where the transaction price is less than the amount outstanding on the loan and withdrawals

that are subsequently foreclosed on in the next two years). The residual is used as the relative markup in equation (2), which

is estimated by OLS. The figure splits the data into 25 equally-sized bins of the estimated relative markup and plots the mean

of the estimated relative markup against the log of the mean of the probability of sale within 13 weeks net of fixed e↵ects for

each bin. Before binning, 0.5 percent of the sample is winsorized on each end of the distribution of the relative markup, and

any observations fully absorbed by fixed e↵ects are dropped. The entire procedure is weighted by the reciprocal of the standard

deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. The

sample consists of all listings with a prior observed sale, with 416,373 observations prior to dropping unique zip-quarter cells

and winsorizing.

3 Instrumental Variables Analysis of the Concavity of Demand

To estimate the concavity of demand in the presence of unobserved quality, this section uses a

non-linear instrumental variables approach that traces out the demand curve using supply-side

variation in seller pricing behavior that is independent of unobserved quality. I first present the

econometric approach and the identification condition that an instrument must satisfy. I then

present my instrument and results.

3.1 Instrumental Variables Empirical Framework and Estimation

I model quality as the sum of the same linear combination of observed quality �Xh`t as in Section

2 and quality unobserved by the econometrician uh`t:
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qh`t = �Xh`t + uh`t. (3)

Combining (1) and (3), the reference price p̃h`t can be written as:

p̃h`t = ⇠`t + �Xh`t + uh`t. (4)

I identify g (·) in the presence of unobserved quality by introducing an instrumental variable

zh`t that creates supply-side variation in ph`t � p̃h`t and that is independent of unobserved quality.

To allow for nonlinearity in the first stage, I let zh`t a↵ect price through a flexible function f (·).
Then g (·) is identified if:

Condition 1.

zh`t ? (uh`t, "h`t)

and

ph`t = f (zh`t) + p̃h`t = f (zh`t) + ⇠`t + �Xh`t + uh`t. (5)

The first half of Condition 1 is an exclusion restriction that requires zh`t have no direct e↵ect

on the outcome, either through fortune in finding a buyer "h`t or through unobserved quality uh`t.

The second part of Condition 1 requires that zh`t is the only reason for variation in ph`t � p̃h`t,

which is a no measurement error assumption. I defer discussion of whether these assumptions hold

in practice until after I introduce the instrument.

Under Condition 1, ph`t � p̃h`t = f (zh`t), and g (·) can be estimated by a two-step procedure

that first estimates equation (5) by OLS using a flexible polynomial for f (·) and then uses the

predicted f (zh`t) as ph`t � p̃h`t to estimate equation (2) by OLS.8

I assess the degree of concavity of g (·) in two ways. First, I use a quadratic g (·) and test whether

the quadratic term is statistically distinguishable from zero. To account for spatial correlation, I

calculate standard errors by block bootstrapping the entire procedure and clustering on 35 units

defined by the first three digits of the ZIP code (ZIP-3). The bootstrapped 95 percent confidence

interval is my preferred test for concavity. Second, to visualize the data, I construct a binned scatter

plot as in Section 2 and overlay a third-order polynomial fit with pointwise 95 percent confidence

bands, again clustering by ZIP-3.

3.2 Instrument

Due to search frictions, home sellers face a trade-o↵ between selling at a higher price and selling

faster. Sellers with a higher marginal utility of cash on hand will choose a higher list price and

8All estimates are weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013 to account for the reduced precision of the predicted
prices in areas with fewer transactions.
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longer time on the market for an identical house. My instrument takes advantage of two sources

of variation in the marginal utility of cash on hand that are independent of unobserved quality.

The first source of variation is that sellers with less equity to extract upon sale on average have

a higher marginal utility of cash on hand. This is the case because many sellers use the equity

they extract from sale for the down payment on their next home (Stein, 1995). Households with

little equity to extract are more likely to be on a down payment constraint. Because each dollar

of equity extracted is used towards the next down payment and leveraged, the marginal utility of

cash on hand high. By contrast, sellers with significant equity to extract may have enough cash on

hand that they no longer face a binding down payment constraint. Because they do not leverage

each additional dollar of equity they extract, their marginal utility of cash on hand is lower. While

the presence of a binding down payment constraint depends on an individual seller’s liquid asset

position and access to credit, on average sellers that extract more equity have a less binding down

payment constraint, lower marginal utility of cash on hand, and set lower list prices.9

The second source of variation is loss aversion. Using data on condominiums in Boston in the

1990s, Genesove and Mayer (2001) show that sellers experiencing a nominal loss set higher list

prices, attain a higher selling price, and take longer to sell. A subsequent literature has confirmed

the importance of loss aversion in housing markets.

I use one instrument to capture the e↵ect of both of these sources of variation: the log of

appreciation in the ZIP code repeat-sales house price index since purchase zh`t = log
⇣
�`t
�`⌧

⌘
, where

� is the repeat-sales house price index, t is the period of listing, and ⌧ is the period of previous sale.

In the case of equity extraction, financing and refinancing decisions make seller equity endogenous.

zh`t isolates the exogenous component of equity as it is isomorphic to equity if all homeowners

take out an identical mortgage and do not refinance. For loss aversion, zh`t is a proxy for whether

the seller is facing a nominal loss and how large the loss will be because it measures average

appreciation in the local area rather than the appreciation of any particular house. I am agnostic

as to the importance of each source of variation in the first stage relationship.

For the instrument to be relevant, f (zh`t) must be have a significant e↵ect on ph`t in the first

stage equation (5). I show below that the first stage is strong and has the predicted e↵ect of

lowering the list price when appreciation since purchase is high.10 Importantly, it is smooth and

monotonic, so nonlinearity in f (zh`t) does not drive the results on g (·).
The exclusion restriction for the instrument to be valid is zh`t ? (uh`t, "h`t) in Condition 1,

which requires that appreciation since purchase zh`t have no direct e↵ect on the probability of sale

9See Head et al. (2018) for a model consistent with this story and Anenberg (2011) for empirical evidence on both
sources of variation.

10In the first stage, appreciation since purchase enters both through zh`t = log
⇣

�`t
�`⌧

⌘
and through Xh`t, which

includes p̂repeath`t = log
⇣
Ph`⌧

�`t
�`⌧

⌘
= log (Ph`⌧ ) + zh`t. The coe�cients on log (Ph`⌧ ) and zh`⌧ entering through p̂repeath`t

are restricted to be the same due to the definition of a predicted price using a repeat sales house price index. f (zh`t)
is identified in the first stage through the di↵erential coe�cient on zh`t and log (Ph`⌧ ). I address concerns that
the identification of f (zh`t) is coming from introducing p̂repeath`t linearly but zh`t nonlinearly in the first stage by
introducing p̂repeath`t with a polynomial of the same order as f (·) in robustness tests in Appendix C, and the results
are virtually unchanged.
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dh`t, either through the error term "h`t or through unobserved quality uh`t. If this is the case, zh`t

only a↵ects probability of sale through the relative markup ph`t� p̃h`t. Because I use ZIP ⇥ quarter

of listing fixed e↵ects ⇠`t, the variation in zh`t comes from sellers who sell at the same time in the

same market but purchase at di↵erent points in the cycle. Condition 1 can thus be interpreted in

the context of my instrument as requiring that unobserved quality for sellers contemporaneously in

the same market be independent of when the seller purchased. I test this assumption in Section 4.

3.3 Instrumental Variables Subsamples

I focus on sellers for whom the exogenous variation is cleanest and the exclusion restriction is most

plausible and consequently exclude four groups from the main analysis sample. I relax these sample

restrictions in robustness tests described in Section 4.

First, I drop houses sold by banks after a foreclosure (often called REO sales), as the equity of

the foreclosed-upon homeowner should not a↵ect the bank’s list price.

Second, investors who purchase, improve, and flip homes typically have a low appreciation in

their ZIP code since purchase but improve the quality of the house in unobservable ways, violating

the exclusion restriction. To minimize the e↵ect of investors, I exclude sellers who previously

purchased with all cash, a hallmark of investors.

Third, many individuals who have had negative appreciation since purchase are not the claimant

on the residual equity in their homes—their mortgage lender is. For these individuals, appreciation

since purchase is directly related to their degree of negative equity, which in turn a↵ects the fore-

closure and short sale processes of the mortgage lender or servicer. Because I am interested in time

to sale as determined by the market rather than how long a mortgage servicer takes to approve a

sale, I exclude these individuals based on two di↵erent proxies for equity, creating two di↵erent IV

subsamples. First, I create a proxy for the equity of sellers at listing using DataQuick data on the

history of mortgage liens against each property along with the loan amount, loan type (fixed or

adjustable rate), and an estimate of the interest rate based on loan and property characteristics.

The data does not indicate when mortgages are prepaid and omits several features of the payment

schedule. Consequently, I follow DeFusco (2018) and create a “debt history” for each listed property

that estimates the outstanding mortgage debt by making assumptions about unobserved mortgage

characteristics and when liens are paid o↵ as detailed in Appendix B. Because the resulting proxy

for seller equity is noisy, in the first IV sample I exclude sellers with less than -10 percent estimated

equity, and I vary this cuto↵ in robustness tests. I create a second IV sample using an alternate

proxy for equity by excluding listings in which DataQuick has flagged the sale as a likely short sale

or withdrawn listings that are subsequently foreclosed upon in the next two years.

Fourth, I drop sellers who experience extreme price drops since purchase (over 20 percent).

Such sellers only have positive equity if they took out a very unusual initial mortgage.

The two IV samples are substantially smaller than the full sample of listings with an observed

prior transaction because of the large number of REO sales and listings by negative equity sellers

from 2008 to 2013. Roughly 28 percent of listings with an observed prior transaction sample are
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REO sales, and dropping these leads to approximately 300,000 listings. Another 34,000 sales by

likely investors who initially purchased with all cash. Of the remaining 266,000 listings, roughly

126,000 have estimated equity at listing under -10% or appreciation since purchase under -20%, so

the first IV sample consists of 140,344 listings leading to 96,400 transactions. Roughly 129,000 of

the 266,000 listings are flagged as a short sale by DataQuick, subsequently foreclosed upon, or have

appreciation since purchase under -20%. The second IV sample thus has 137,238 listings leading

to 86,033 transactions. Table 1 provides summary statistics for these samples and compares them

to the samples used in the OLS analysis. I defer discussion of concerns about sample selection to

Section 4.

3.4 Instrumental Variables Results

Figure 2 shows first and second stage binned scatter plots for both IV samples: IV sample one

which excludes extreme negative equity sellers, and IV sample two which excludes short sales and

withdrawals that are subsequently foreclosed upon. The results are similar. As shown in panel A,

the first stage is strong, smooth, and monotonic, with a joint F statistic of 206 for IV sample one.

The y-axis of this panel shows the variation induced by the instrument that identifies the shape of

demand and makes up the x-axis of the second stage in panel B. Panel B shows the demand curve

and is the IV analogue of Figure 1. Relative to Figure 1, the relative markups are compressed,

which reflects that much of the OLS variation in the relative markup is due to unobserved quality.

Panel B shows a clear concave relationship in the second stage, with very inelastic demand for

relatively low priced homes and elastic demand for relatively high priced homes. This curvature is

also visible in the cubic polynomial fit.

Table 2 displays regression results when g (·) is approximated by quadratic polynomial. Columns

3 and 5 show the IV results for each IV sample. In both cases, there is clear concavity: the quadratic

term is negative and highly significant, and the bootstrapped 95 percent confidence interval for the

quadratic term is bounded well away from zero.

Relative to the OLS results in Figure 1, the bias is eliminated, and the elasticity of demand is

far more plausible. At the mean price, the IV sample one estimates imply that raising the list price

by one percent reduces the probability of sale within 13 weeks by approximately 2.7 percentage

points. Given the base of 48 percentage points, this amounts to a reduction in the probability of sale

within 13 weeks of 5.6 percent or equivalently an increase in time on the market of five to six days.

By contrast, increasing the list price by five percent reduces the probability of sale within 13 weeks

by 21.5 percentage points, a reduction of 45 percent. These figures are slightly smaller than those

found by Carrillo (2012), who estimates a structural search model of the steady state of the housing

market with multiple dimensions of heterogeneity using data from Charlottesville, Virginia from

2000 to 2002. Although we use very di↵erent empirical approaches, in a counterfactual simulation,

he finds that a one percent list price increase increases time on the market by a week, while a five

percent list price increase increases time on the market by nearly a year. Carrillo also finds small

reductions in time on the market from underpricing, consistent with concavity.
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Figure 2: Instrumental Variable Estimates of the E↵ect of List Price on Probability of Sale

IV Sample 1: Excluding Low Estimated Equity
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IV Sample 2: Excluding Short Sales and Subsequent Foreclosures

−
.0

4
−

.0
2

0
.0

2
.0

4
L

o
g

 I
n

iti
a

l L
is

t 
P

ri
ce

 R
e

la
tiv

e
 t

o
 M

e
a

n

−.5 0 .5 1
Log Appreciation Since Purchase

A. First Stage

.3
2

.3
4

.3
6

.3
8

.4
.4

2
.4

4
.4

6
.4

8
.5

.5
2

P
ro

b
 S

e
ll 

in
 1

3
 W

e
e

ks

−.04 −.02 0 .02 .04
Log Relative Markup

B. Second Stage

Notes: For both samples, Panel B shows a binned scatter plot of the probability of sale within 13 weeks net of ZIP ⇥ first
quarter of listing fixed e↵ects (with the average probability of sale within 13 weeks added in) against the estimated log relative
markup p� p̃. It also shows an overlaid cubic fit of the relationship, as in equation (2). To create the figure, a first stage
regression of the log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x first quarter of listing
level, and repeat sales and hedonic log predicted prices, as in (5), is estimated by OLS. The predicted value of the polynomial
of the instrument is used as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative
markup and plots the mean of the estimated relative markup against the mean of the probability of sale within 13 weeks net
of fixed e↵ects for each bin, as detailed in Appendix C. Before binning, the top and bottom 0.5 percent of the log sale price
residual and any observations fully absorbed by fixed e↵ects are dropped. The entire procedure is weighted by the reciprocal
of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988
to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,
sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2
does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings
that are foreclosed upon in the subsequent year. The grey bands indicate a pointwise 95-percent confidence interval for the
cubic fit created by block bootstrapping the entire procedure on 35 ZIP-3 clusters. Panel A shows the first stage relationship
between the instrument and log initial list price in equation (5) by residualizing the instrument and the log initial list price
against the two predicted prices and fixed e↵ects, binning the data into 25 equally-sized bins of the instrument residual, and
plotting the mean of the instrument residual against the mean of the log initial list price residual for each bin. The first-stage
fit is overlaid. N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to dropping unique
zip-quarter cells and winsorizing.
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Table 2: The E↵ect of List Price on Probability of Sale: IV Regression Results

Dependent Variable: Sell Within 13 Weeks
(1) (2) (3) (4) (5)

Estimator OLS OLS IV OLS IV
Sample IV Sample 1: IV Sample 2:

All With Prior Obs Excluding Prior Obs Excluding
Prior Obs REO, Investors, REO, Investors,

< -10 % Estimated Equity Short Sales
> 20% Depreciation > 20% Depreciation

Controls ZIP⇥ Quarter FE ZIP X Quarter FE ZIP X Quarter FE
Repeat and Hedonic Repeat and Hedonic Repeat and Hedonic
Predicted Price, Predicted Price Predicted Price
Distress FE

Constant 0.461*** 0.496*** 0.480*** 0.475*** 0.461***
(0.005) (0.009) (0.008) (0.011) (0.009)

Linear -0.216*** -0.293*** -2.259*** -0.295*** -1.932***
(0.016) (0.021) (0.346) (0.034) (0.291)

Quadratic -0.634*** -1.062*** -40.955*** -0.802*** -29.208***
(0.088) (0.188) (10.271) (0.227) (7.206)

Quadratic [-0.832, [-1.518, [-69.168, [-1.319, [-48.241,
Bootstrapped 95% CI -0.498] -0.825] -28.758] -0.490] -20.496]

N 416,373 140,344 140,344 137,238 137,238
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coe�cients when g(·) in equation (2) is approximated
using a quadratic polynomial. This relationship represents the e↵ect of the log relative markup on the probability of sale within
13 weeks. For IV, a first stage regression of log list price on a fifth-order polynomial in the instrument, fixed e↵ects at the ZIP x
first quarter of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (5), is estimated
by OLS. The predicted value of the polynomial of the instrument is used as the relative markup in equation (2), which is
estimated by OLS. For OLS, quality is assumed to be perfectly measured by the hedonic and repeat-sales predicted prices and
have no unobserved component. Consequently, the log list price is regressed on fixed e↵ects and the predicted prices and uses
the residual as the estimated relative markup into equation (2), as described in Appendix C. Both procedures are weighted
by the reciprocal of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s
ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent of the sample is winsorized on each end
of the distribution of the relative markup, and any observations fully absorbed by fixed e↵ects are dropped. Standard errors
and the 95 percent confidence interval for the quadratic term are computed by block bootstrapping the entire procedure on
35 ZIP-3 clusters. For column 1, the full set of listings with a previous observed transaction are used. To prevent distressed
sales from biasing the results, the fixed e↵ects are at the quarter of initial listing x ZIP x distress status level. Distress status
corresponds to three groups: normal sales, REOs (sales of foreclosed homes and foreclosure auctions), and short sales (cases
where the transaction price is less than the amount outstanding on the loan and withdrawals that are subsequently foreclosed on
in the next two years). IV sample 1 drops sales of foreclosures, sales of homes with more than a 20 negative appreciation since
purchase, sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV
sample 2 does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn
listings that are foreclosed upon in the subsequent year. The number of observations listed is prior to dropping observations
that are unique to a ZIP-quarter cell and winsorizing.
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4 Robustness of Instrumental Variables Results

This section describes tests that address the robustness of the results and concerns about the

exclusion restriction and measurement error in Condition 1. For parsimony, most of the robustness

tests are relegated to Appendix C.

4.1 Selection of the IV Samples

To assuage concerns about selection of the IV samples, Column 1 of Table 2 shows OLS results

for the full set of listings with a observed prior transaction as in Figure 1 while columns 2 and 4

show OLS results for IV sample one and IV sample two. In all three samples, OLS displays clear

and significant concavity and the 95 percent confidence intervals on the quadratic terms overlap.

Binned scatter plots in Appendix C show that most of the di↵erence across samples is from extreme

quantiles that do not drive concavity in the IV specification.

4.2 Exclusion Restriction

The exclusion restriction, which is part one of Condition 1, is that unobserved quality is independent

of when a seller purchased. One potential concern is that sellers with higher appreciation since

purchase improve their house in unobservable ways with their home equity. However, this implies a

positive first stage relationship between price and appreciation since purchase while I find a strong

negative relationship.11 Beyond this, the exclusion restriction is di�cult to test because I only

have a few years of listings data. Flexibly controlling for when a seller bought weakens the e↵ect of

the instrument on price in equation (5) and widens the confidence intervals to the point that any

curvature is not statistically significant.

Nonetheless, I evaluate the identification assumption that date of purchase is independent of

unobserved quality as best I can in five sets of robustness tests in Appendix C. First, I include

various additional observable measures of quality in Xh`t and find the results do not substantially

change. Second, I show that the observable measures of quality are either uncorrelated with the

date of purchase (bedrooms and bathrooms) or roughly linear in date of purchase (age, rooms,

lot size) and do not appear to vary systematically with the housing cycle. This implies that any

unobservables sorted in the same way as these observables would be captured by a linear time

trend. This motivates my third test, which controls for unobserved quality that varies linearly in

date of purchase or in time since purchase by adding a linear time trend for the entire sample, at

the MSA level, and at the ZIP-3 level to the quality index. Fourth, to control for unobservables

correlated with date of purchase or time since purchase more non-parametrically, I include fixed

e↵ects for quintiles date of purchase and time since purchase for each ZIP code in Xh`t. Fifth,

one might be concerned that households that purchased near the house price peak or in the bust

11My identification strategy would find extra concavity if sellers with high appreciation since purchase improve
their house with their equity but sellers who have experienced low appreciation since purchase do not. This seems
unlikely, as sellers with low appreciation since purchase are more likely to be liquidity constrained and improve their
house if they gain equity. Furthermore, this e↵ect would have to be extreme in order to generate significant concavity.
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are di↵erent. To address this concern, I limit the sample to sellers who purchased prior to 2004

and again include a linear time trend. In all of these tests, concavity remains a robust finding,

although the standard errors widen to the point that concavity is no longer significant—although

importantly point estimates are little changed—when a separate linear time trend is used for each

ZIP-3.

If in spite of these robustness tests, homes with very low appreciation since purchase are of

substantially lower unobserved quality despite their higher average list price, my identification

strategy would overestimate the amount of curvature in the data.

4.3 Measurement Error

Beyond the positive relationship between unobserved quality and price, unobserved quality creates

a second, more subtle econometric issue: measurement error in p̃h`t because the true p̃h`t is not

observable. This can be seen in the second part of Condition 1, which requires that zh`t is the only

reason for variation in ph`t� p̃h`t. This is a strong assumption because there may be components of

liquidity that are unobserved or other reasons that homeowners list their house at a price di↵erent

from p̃h`t, such as heterogeneity in discount rates. If the second part of Condition 1 did not hold,

my estimates would be biased because the true ph`t � p̃h`t would equal f (zh`t) + ⇣h`t, and the

unobserved measurement error ⇣h`t enters g (·) nonlinearly.
The instrument does not address measurement error in this context because the measurement

error is non-classical. In equation (5), unobserved quality is a residual that is independent of

observed quality �Xh`t, and so the measurement error induced by uh`t is Berkson measurement

error, in which the measurement error is independent of the observed component. By contrast,

for classical measurement error, the error is independent of the true p̃h`t. An instrument such as

zh`t can address classical measurement error in a non-linear setting, but it cannot address Berkson

measurement error. This is why an additional assumption is necessary.

I use two strategies to show that the bias created by other sources of markup variation that

induce measurement error does not cause significant spurious concavity. First, I show that if

the measurement error created by other sources of variation in the relative markup ph`t � p̃h`t is

independent of the variation induced by the instrument, the measurement error would not cause

spurious concavity. Intuitively, noise in ph`t � p̃h`t would cause the probability of sale at each

observed ph`t � p̃h`t to be an average of the probabilities of sale at true ph`t � p̃h`ts that are on

average evenly scrambled. Consequently, the curvature of a monotonically-decreasing demand curve

is preserved. An analytical result can be obtained if the true g (·) is a polynomial regression function

as in Hausman et al. (1991):

Lemma 1. Consider the econometric model described by (2) and (4) and suppose that:

zh`t ? (uh`t, "h`t) , (6)

ph`t = f (zh`t) + ⇣h`t + p̃h`t, (7)
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⇣h`t ? f (zh`t), and the true regression function g (·) is a third-order polynomial. Then estimating

g (·) assuming that ph`t = f (zh`t) + p̃h`t yields the true coe�cients of the second- and third-order

terms in g (·). If g (·) is a second-order polynomial, the same procedure yields the true coe�cients

of the first- and second-order terms.

Proof. See Appendix C.

While a special case, Lemma 1 makes clear that the bias in the estimated concavity is minimal if

⇣h`t ? f (zh`t).

Second, while spurious concavity is a possibility if the measurement error created by other

sources of variation in the relative markup were correlated with the instrument, the amount of

concavity generated would be far smaller than the concavity I observe in the data. Appendix C

presents Monte Carlo simulations that show that if the instrument captures most of the variation

in the relative markup ph`t � p̃h`t at low levels of appreciation since purchase but very little of the

variation at high levels of appreciation since purchase, spurious concavity arises because the slope of

g (·) is attenuated for low relative markups but not high relative markups. However, to spuriously

generate a statistically-significant amount of concavity, one would need a perfect instrument at low

levels of appreciation since purchase and all of the variation in price at high levels of appreciation

since purchase to be measurement error. Because this is implausible, I conclude that spurious

concavity due to measurement error is not driving my findings.

4.4 Other Robustness Tests

In both samples, the results are robust across geographies, time periods, and specifications, although

in a handful of cases restricting to a smaller sample leads to insignificant results. In addition to

the robustness checks described as tests of the exclusion restriction, the results are robust to

controlling for nearby foreclosures, using di↵erent functional forms for f (·) and for the observables

Xh`t, allowing for di↵erential sorting by letting � vary across time and space, accounting for the

uniqueness of a house in its neighborhood, and accounting for di↵erent price tiers within ZIP

codes. Using alternate measures of whether a house sells quickly does not alter the results, nor

does relaxing the criteria for inclusion in each IV sample. Robust concavity remains if transaction

prices are used rather than list prices, which assuages concerns that bargaining or price wars undo

the concavity in list price. Finally, concavity is clearly visible in the reduced-form relationship

between the instrument and probability of sale, providing further reassurance that the concavity is

not being driven by the first stage.

Overall, the instrumental variable results provide robust evidence of demand concave in relative

price for these three MSAs from 2008 to 2013.12

12Aside from the tail end of my sample, this period was a depressed market. The similarity between my results
and Carrillo’s (2012) provide some reassurance that the results I find are not specific to the time period, but I cannot
rule out that the nonlinearity would look di↵erent in a booming market.
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5 A Search Model of House Price Momentum

The remainder of the paper quantitatively assesses the extent to which the concavity in the micro-

data amplifies frictions that cause momentum.

Momentum, which refers to autocorrelation in price changes, is a puzzle because forward-looking

models have a strong arbitrage force that eliminates momentum, even with short sale constraints.

Furthermore, momentum cannot be empirically explained by serially correlated changes in funda-

mentals (Case and Shiller, 1989; Capozza et al. 2004). Glaeser et al. (2014) conclude that in a

frictionless model, “there is no reasonable parameter set” consistent with short-run momentum.

Five main types of frictions have been introduced to explain momentum. First, gradual learning

about market conditions can create momentum. Anenberg (2014) structurally estimates Bayesian

learning model and explains a quarter of the momentum in the data.13 With a realistic frequency

of observation, learning happens too quickly to fully explain momentum.

Second, Head et al. (2014) demonstrate that search frictions can generate momentum by making

the adjustment of market tightness, and thus a house’s liquidity, gradual in response to shocks to

fundamentals. Their calibrated model explains 40 percent of the autocorrelation in price changes

in the data over one year and no momentum over two years. Indeed, over 85 percent of the price

impulse response occurs in the first quarter after a shock, while in the data analyzed in Appendix

A, roughly 25 percent occurs in the first quarter.

Third, a behavioral finance literature hypothesizes that investors under-react to news due to

behavioral biases (Barberis et al., 1998, Hong and Stein, 1999) or loss aversion (Frazzini, 2006) and

then “chase returns” due to extrapolative expectations about price appreciation. Recently, Glaeser

and Nathanson (2017) have provided a behavioral theory of momentum in which agents neglect to

account for the fact that previous buyers were learning from prices and instead take past prices as

direct measures of demand. Their calibrated model can quantitatively explain momentum when

all agents follow their behavioral theory and observe prices with a six-month lag. However, their

model can only explain a third of momentum when under half of sellers are rational, as suggested

by recent experimental evidence (Kuchler and Zafar, 2017; Armona et al. 2018).

Fourth, Burnside et al. (2016) show that in a model with belief heterogeneity, momentum

could result from optimism and pessimism that gradually spreads through social interactions, akin

to epidemiological models of the spread of disease.14

Fifth and finally, standard nominal rigidities such as adjustment costs for list prices or staggered

list price setting can cause a small amount of momentum.

Concave demand amplifies any source of momentum that creates heterogeneity in the speed

of adjustment by inducing all sellers to not stray too far from the slowest adjusters. Instead of

13Anenberg finds an annual AR(1) coe�cient of 0.165. By contrast, Appendix A reports a coe�cients of 0.65 to
0.70 for repeat sales price indices and 0.45 to 0.50 for median price measures.

14In the Burnside et al. model, agents with tighter priors are more likely to convert others to their beliefs, and
in order to generate su�cient momentum, the relative confidence of optimists and pessimists must be extremely
close so that the relative number of optimists grows gradually over the course of a decade instead of suddenly in an
“epidemic.” This tight parameter restriction could be relaxed with the amplification mechanism presented here.
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introducing a laundry list of frictions in this mold, my approach is to introduce two prominent

and tractable frictions—extrapolative expectations and staggered pricing—and show that they are

amplified by a similar amount.

Doing so requires a search model in which sellers have a tradeo↵ between price and time on

the market. This section adapts a standard search model in the mold of Wheaton (1990), Krainer

(2001), Novy-Marx (2009), Piazzesi and Schneider (2009), Genesove and Han (2012), Ngai and

Tenreyro (2013), and Head et al. (2014) to include concave demand. I first introduce a model of

a metropolitan area, describe the housing market, and show how sellers set list prices. I then add

the two frictions and define equilibrium. Table 3 summarizes the notation.

5.1 Setting

Time is discrete and all agents are risk neutral. Agents have a discount factor of �. There is a fixed

housing stock of mass one, no construction, and a fixed population of size N .15

There are four types of homogenous agents: a mass Bt of buyers, St of sellers, Ht of homeowners,

and Rt of renters. Buyers, sellers, and homeowners have flow utilities (inclusive of search costs)

b, s, and h and value functions V
b
t , V

s
t , and V

h
t , respectively. Buyers and sellers are active in

the housing market, which is described in the next section. The rental market, which serves as a

reservoir of potential buyers, is unmodeled. Each agent can own only one home, which precludes

short sales and investor-owners. Sellers and buyers are homogenous.

Each period with probability �h and �
r
t , respectively, homeowners and renters receive shocks

that cause them to separate from their current house or apartment, as in Wheaton (1990). A renter

who gets a shock enters the market as a homogenous buyer. Homeowners who get a shock leave

the MSA with probability L, in which case they become a seller and receive a present discounted

value of V 0 for leaving. With probability 1�L, homeowners remain in the city and simultaneously

become a buyer and a homogenous seller. Buyers and sellers are assumed to be quasi-independent

so that the value functions do not interact and no structure is put on whether agents buy or sell

first, as in Ngai and Tenreyro (2013) and Guren and McQuade (2018). Because the population is

constant, every time a seller leaves the city she is replaced by a new renter.

I defer the laws of motion that formalize the system until after I have defined the probabilities

of purchase and sale. The value function of the homeowner is:

V
h

t = h+ �Et

h
�
h

⇣
V

s

t+1 + LV
0 + (1� L)V b

t+1

⌘
+
⇣
1� �

h

⌘
V

h

t+1

i
. (8)

5.2 The Housing Market

The search process occurs at the beginning of each period and unfolds in three stages. First, sellers

post list prices p̂t. Second, buyers observe a noisy binary signal about each house’s quality relative

to its price that can be thought of as an initial impression as to whether a house is worth visiting.

15Construction is omitted for parsimony, as it would work against momentum with or without concavity, leaving
the relative amount of amplification roughly unchanged. See Head et al. (2014) for a model with construction.
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Table 3: Notation in the Model

Variable Description Note

Masses

N Total Population (Housing Stock Mass One)

Bt Endogenous Mass of Buyers Value Fn V
b
t

St Endogenous Mass of Sellers Value Fn V
s
t

Rt Endogenous Mass of Renters

Ht Endogenous Mass of Homeowners Value Fn V
h
t

Flow Utilities

b Flow Utility of Buyer (Includes search cost)

s Flow Utility of Seller (includes search cost)

h Flow Utility of Homeowner

Moving Shock Probabilities

�
h Prob Homeowner Gets Shock

�
r
t Prob Renter Gets Shock Exogenous Driving Process

Other Fixed Parameters

� Discount Factor

L Probability Seller Leaves Metro Area

V
0 PDV of Exiting Metro Area

Utilities

" Match-Specific One-Time Utility Benefit ⇠ F (")

�h Permanent House Quality Mean Zero

Stochastic Draws

⌘h,t Noise in �h in Binary Signal About Quality, ⇠ G (⌘)

IID Common to All Buyers in Period t

Parameters / Values

✓
m
t Market Tightness = B/S in Submarket m = {f, d} Endogenous

✓̃t Vector of ✓m s Endogenous

q
m (✓mt ) Prob. Seller Meets Buyer in m (Matching Fn) Endogenous

⇠
m Constant in Matching Function in m

� Matching Function Elasticity in all ms

pt List Price Adjusted for Permanent Quality Endogenous

⌦t Distribution of Prices Endogenous

"
⇤
t Threshold " for Purchase Endogenous

µ Threshold for Binary Signal

Distribution Parameters

", "̄ Bounds of Dist of F ("), Uniform With Mass Point

� Size of Mass Point of Uniform Dist at "̄

� Generalized Normal Variance Parameter

⇣ Generalized Normal Shape Parameter
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Buyers direct their search either towards houses that appear reasonably-priced for their quality or

towards houses that appear to be overpriced for their quality, which defines two sub-markets: follow

the signal (submarket f) or do not follow the signal (submarket d). After choosing a submarket,

buyers search randomly within the submarket an stochastically find a house to inspect. Third,

matched buyers inspect the house and decide whether to purchase it.

At the inspection stage, buyers observe their idiosyncratic valuation for the house ", which

is match-specific, drawn from F (") at inspection, and realized as utility at purchase. They also

observe the house’s permanent quality �h, which is common to all buyers, mean-zero, gained by a

buyer at purchase, and lost by a seller at sale. I assume all sales occur at list price,16 or equivalently

that risk neutral buyers and sellers expect that the average sale price will be an a�ne function of

the list price.17 Letting pt ⌘ p̂t� �h be the quality-adjusted list price, the buyer purchases if his or

her surplus from doing so V
h
t + "� pt � b� �V

b
t is positive. This leads to a threshold rule to buy

if " > pt + b+ �V
b

t+1 � V
h
t ⌘ "

⇤
t (pt) and a probability of purchase given inspection of 1� F ("⇤t ).

At the signal stage, buyers observe a binary signal from their real estate agent or from adver-

tisements that reveals whether each house’s quality-adjusted price relative to the market average

quality-adjusted price is above a threshold µ. However, quality �h (or equivalently the observation

of the average price) is subject to mean zero noise ⌘h,t ⇠ G (·), where G (·) is assumed to be a

fixed distribution.18 This noise, which represents how well a house is marketed in a given period, is

common to all buyers but independent and identically distributed across periods. The signal thus

indicates a house is reasonably priced if,

pt � E⌦t [pt]� ⌘h,t  µ,

where ⌦t is the cumulative distribution function of list prices and E⌦t [·] represents an expectation

with respect to the distribution of prices ⌦t rather than an intertemporal expectation. Conse-

quently, a house with quality-adjusted price pt appears reasonably priced and is searched by buyers

in submarket f with probability 1 � G (pt � E⌦t [pt]� µ) and is searched by buyers in submarket

d with probability G (pt � E⌦t [pt]� µ). I assume that search is more e�cient if buyers follow the

signal than if they do not because they have the help of a realtor or are looking at better-marketed

homes. In equilibrium, buyers follow a mixed strategy and randomize whether they search sub-

16The assumption that houses sell at list price is a reasonable approximation in two ways. First, for average
and median prices it is realistic: Appendix D shows that in the merged Altos-DataQuick micro data, the modal
transaction price is the list price, and the average and median di↵erences between the list and transaction price
are less than 0.03 log points and do not vary much across years. Second, conditional on unobserved quality, the
di↵erence between initial list and transaction prices does not vary with the initial list price. Appendix D uses the
IV procedure in Section 3 replacing dh`t with the di↵erence between list and transaction prices and finds no strong
relationship between list and transaction prices. If anything, setting an average price results in a slightly higher
transaction price. Consequently, the list price is the best predictor of the transaction price from the perspective of a
list-price-setting seller. Since utility is linear, adding adding empirically-realistic ex-post bargaining that maintains
the mean transaction price as the list price would not alter the seller’s list price setting incentives.

17Most house list price changes are decreases. I abstract from such duration dependence to maintain a tractable
state space.

18Because the signal reveals no information about the house’s permanent quality �h, posted price p̂t, or match
quality "m, the search and inspection stages are independent.
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market f or d so that the value of following the signal is equal to the value of not following it. I

consider an equilibrium in which all buyers choose the same symmetric strategy with a probability

of following the signal of �t.

After choosing a submarket, buyers search randomly within that sub-market. The probability

a house in submarket m meets a buyer is determined according to a constant returns to scale

matching function, qm (✓mt ), where ✓mt is the ratio of buyers to sellers in submarket m = {f, d},
✓t = Bt/St is aggregate market tightness, and ✓̃t =

n
✓
d
t , ✓

f

t
, ✓t

o
. The probability a buyer meets a

seller is then q
m (✓mt ) /✓mt . The matching function captures frictions in the search process within

a submarket. For instance, buyers randomly allocating themselves across houses may miss a few

houses, or there may not be a mutually-agreeable time for a buyer to visit a house in a given period.

Appendix E derives the market tightness in each submarket, and ex ante probability of purchase

conditional on following or not following the signal. It shows that the probability that a seller sells,

which constitutes the demand curve she faces, can be written as:

d

⇣
pt,⌦t, ✓̃t

⌘
= d

f

⇣
pt,⌦t, ✓̃t

⌘
+ d

d

⇣
pt,⌦t,✓̃t

⌘
, (9)

where,

d
f

⇣
pt,⌦t, ✓̃t

⌘
= q

f

⇣
✓
f

t

⌘
(1�G (pt � E⌦t [pt]� µ)) (1� F ("⇤t (pt))) (10)

is the demand curve faced by a seller in the f submarket and,

d
d

⇣
pt,⌦t, ✓̃t

⌘
= q

d

⇣
✓
d

t

⌘
G (pt � E⌦t [pt]� µ) (1� F ("⇤t (pt))) (11)

is the demand curve faced by a seller in the d submarket. The appendix also shows that the

probability a buyer buys given the �t randomization strategy is 1
✓ t
E⌦t

h
d

⇣
pt,⌦t,✓̃t

⌘i
.

Given these probabilities of purchase and sale, the stock of buyers is equal to the stock of buyers

who failed to buy last period plus the stock of renters and flow of new entrants who decide to buy.

The stock of sellers is equal to those sellers who failed to sell last period plus homeowners who put

their house up for sale. These are formalized by:

Bt =

✓
1� 1

✓t�1
E⌦t�1

h
d

⇣
pt�1,⌦t�1, ✓̃t�1

⌘i◆
Bt�1 + �

r

t�1Rt�1 + (1� L)�hHt�1 (12)

St =
⇣
1� E⌦t�1

h
d

⇣
pt�1,⌦t�1, ✓̃t�1

⌘i⌘
St�1 + �

h
Ht�1. (13)

There are mass one of homes that can either be owned by a homeowner or up for sale and mass N

of agents who can either be renters, homeowners, or buyers:

1 = Ht + St (14)

N = Rt +Bt +Ht. (15)

When a buyer buys, she receives the expected surplus E ["� "
⇤
t |" > "

⇤
t ] where "

⇤
t is a function
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of pt. The value function of a buyer who follows, V b,f

t
, and a buyer who does not follow, V b,d

t
,

are defined in Appendix E, and the value of a buyer prior to choosing a submarket V
b
t is V

b
t =

max
n
V

b,f

t
, V

b,d

t

o
. In equilibrium, buyers are indi↵erent between f and d and can choose either

submarket next period, so the ratio of expected surpluses in each market is equal to the ratio of

the randomization probabilities:

E⌦t

h
d
f

⇣
pt,⌦t, ✓̃t

⌘
E ["� "

⇤
t |" > "

⇤
t ]
i

E⌦t

h
dd

⇣
pt,⌦t, ✓̃t

⌘
E ["� "

⇤
t
|" > "

⇤
t
]
i =

�t

1� �t
. (16)

This pins down the fraction of buyers who go to submarket f , �t. Because V
b,f

t
= V

b,d

t
, V b

t can

then be rewritten as the sum of the outside option of being a buyer next period and the expected

surplus of following the signal:

V
b

t = b+ �EtV
b

t+1 +
1

�t✓t
E⌦t

h
d
f

⇣
pt,⌦t, ✓̃t

⌘
E ["� "

⇤
t |" > "

⇤
t ]
i
. (17)

Sellers have rational expectations but set their list price before ⌘h,t is realized and without

knowing the valuation of the particular buyer who visits their house. The demand curve they face

is d
⇣
pt,⌦t, ✓̃t

⌘
, so the seller value function is:

V
s

t = s+ �EtV
s

t+1 +max
pt

n
d

⇣
pt,⌦t, ✓̃t

⌘ ⇥
pt � s� �EtV

s

t+1

⇤o
. (18)

I solve for the seller’s optimal price in the next subsection.

I parameterize the model by assuming flexible distributions for F (·), the distribution of idiosyn-

cratic match quality, and G (·), the noise in the signal, that allow me to closely fit the microdata.

I assume that F ("m) is a uniform distribution on [", "̄] with a mass point of mass � at "̄.19 For

G (·) I use a type 1 generalized normal distribution with mean µ, variance parameter �, and shape

parameter ⇣, which has a probability density function (PDF) of g (x) = ⇣

2��(1/⇣)e
�(|x�µ|/�)⇣ . 20

I also assume that the matching function is Cobb-Douglas q
m (✓) = ⇠

m
✓
� , as is standard in the

housing search literature.

The model generates a locally concave demand curve in the neighborhood of the average price.

At below average prices, the house receives a good signal with near certainty and the demand curve

is dominated by the trade-o↵ between idiosyncratic match quality "m and price, so demand is less

elastic. At above average prices, the demand curve is dominated by the fact that perturbing the

19In Figure 2, the demand curve for below average priced homes is very flat, which implies a very low density of
F (·) at the margin. If there were not a mass point at the top of F (·), the low density would imply a very large upper
tail conditional expectation E ["� "⇤|" > "⇤], which in turn implies a very high value of future search to buyers.
Adding a mass point allows me to control the value of future search and target a realistic buyer search cost. In
practice, this means that there are many buyers who like the property, many who do not, and a few in between.

20This is the same as a normal if the shape parameter ⇣ is equal to two. When ⇣ > 2, the PDF is more “flat
topped” which results in a cumulative density function (CDF) that is more kinked rather than smoothly s-shaped.
This allows me to capture a feature of Figure 2: the demand curve, which inherits the properties of the CDF G (·),
is somewhat kinked.
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Figure 3: The Concave Demand Curve in the Model
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Notes: The figures are generated using the baseline calibration described in Section 6. All probabilities are calculated assuming

all other sellers are setting the steady state price and considering the e↵ect of a unilateral deviation. The first panel shows the

total probability of inspection and the components coming form the f and d submarkets, with the f submarket almost entirely

overlapping the total and the d submarket essentially zero because few buyers are in the d submarket. The second panel shows

the probability of purchasing given inspection. The third panel shows the demand curve, which is the product of the two.

Again, the f submarket demand curve d
f is essentially on top of the total demand curve d, and the d submarket demand curve

d
d is near zero. Note that the axes are swapped from the traditional Marshallian supply and demand diagram in order to be

consistent with the empirical analysis in Section 2.

price a↵ects whether the house gets a good signal, in which case it attracts a lot of buyers, or a

bad signal, in which case it ends up in a market with few buyers. To illustrate how the demand

curve is built up from its various components, Figure 3 shows the shapes of the probability of in-

spection q

⇣
✓
f

t

⌘
(1�G (pt � E⌦t [pt]� µ))+q

�
✓
d
t

�
G (pt � E⌦t [pt]� µ), the probability of purchase

conditional on inspection 1 � F ("⇤ (pt)), and their product, the overall demand curve faced by

sellers d

⇣
pt,⌦t, ✓̃t

⌘
. The probability of inspection and overall demand curve are split into the f

and d submarket components, revealing that the d submarket has a negligible e↵ect on the overall

demand curve because it has few buyers in equilibrium. Note that the axes are switched from a

standard Marshallian supply and demand diagram to be consistent with the empirical estimates.

5.3 Price Setting

The strategic complementarity enters through the seller’s optimal price. Sellers have monopoly

power due to costly search, and the optimal pricing problem they solve in equation (18) is the same

as that of a monopolist facing the demand curve d except that the marginal cost is replaced by the

seller’s outside option of searching again next period s + �EtV
s

t+1. The optimal pricing strategy

is a markup over this outside option s + �V
s

t+1. This markup varies inversely with relative price,

creating a strategic complementarity. With an initial friction that generates some heterogeneity in

the speed of adjustment, the strategic complementarity causes quick adjusters to adjust their price
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more gradually when fundamentals change: s+�V s

t+1 jumps upon the change in fundamentals, but

raising the list price above the market average erodes the markup, so the optimal price does not

change much on impact.

To formalize these intuitions in my model, I focus on a symmetric equilibrium.21 Sellers do

not internalize that their choice of pt a↵ects the average price, which they treat as given. Seller

optimization implies:

Lemma 2. The seller’s optimal list price at the interior optimum is:

pt = s+ �EtV
s

t+1 + Et

2

4
�d

⇣
pt,⌦t,✓̃t

⌘

@d(pt,⌦t,✓̃t)
@pt

3

5

= s+ �EtV
s

t+1 +
1

f("⇤t )
1�F ("⇤t )

+
g(pt�E⌦t [pt]�µ)

1�G(pt�E⌦t [pt]�µ)


1� 1

G(pt�E⌦t [pt]�µ)
dd(pt,⌦t,✓̃t)
d(pt,⌦t,✓̃t)

� , (19)

where d
d
is defined by (11) and d is defined by (9).

Proof. See Appendix E.

In equation (19), the seller markup is an additive markup equal to the reciprocal of the semi-

elasticity of demand, �d(pt,⌦t,✓t)
@d(pt,⌦t,✓t)

@pt

. The semi-elasticity, in turn, is equal to the sum of the hazard rates

of the idiosyncratic preference distribution F (·) and the distribution of signal noise G (·) adjusted
for the share of sales that occur in the d submarket, the term in square brackets. This creates a

local strategic complementarity because the elasticity of demand rises as relative price increases,

causing the optimal additive markup to fall and pushing sellers to set prices close to those of others.

Mathematically, this works through relative price pt�E⌦t [pt] entering the hazard rate of the signal

G (·), which is rising in relative price so the additive markup is falling in relative price.22

However, in a rational expectations equilibrium in which all sellers can set their price flexibly,

all sellers choose the same list price, pt = E⌦t [pt], and there is no heterogeneity in relative prices

to a↵ect the markup. A shock to home values thus causes list price to jump proportionally to

the seller’s outside option, and there is no momentum. In the terminology of Ball and Romer

(1990), concave demand is a real rigidity that only amplifies nominal rigidities. Consequently, I

separately introduce two two tractable and transparent frictions that generate some heterogeneity

in the insensitivity of prices to fundamentals: a small fraction of rule-of-thumb sellers and staggered

pricing. I call these the “rule of thumb model” and the “staggered pricing model” and define their

equilibria separately.

21Although the seller’s problem may not be globally concave, I focus on an interior optimum and later check that
the interior optimum is the global optimum. This turns out not to be a concern as the mass point in the idiosyncratic
taste distribution occurs before the probability of inspection curve flattens.

22Because few buyers are endogenously in the d submarket, the term in square brackets is near unity.
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5.4 Source of Insensitivity 1: A Small Fraction of Rule-of-Thumb Sellers

Since Case and Shiller (1987), sellers with backward-looking expectations have been thought to

play an important role in housing markets. Previous models assume that all agents have backward-

looking beliefs (e.g., Berkovec and Goodman, 1996), but recent evidence from surveys and experi-

ments finds significant heterogeneity in the degree to which expectations are backward-looking. For

instance, Kuchler and Zafar (2017) analyze survey expectations and find significant extrapolation

by lower-educated households that make up 44 percent of the sample but minimal extrapolation by

higher-educated households. Similarly, Armona et al. (2018) use an experiment to estimate that

41 percent of households are extrapolators. Consequently, I introduce a small number of rule-of-

thumb sellers, as in Campbell and Mankiw (1989), and assess quantitatively what fraction of sellers

is needed to be non-rational to explain the momentum in data, similar to Gali and Gertler (1999).

I assume that at all times a fraction 1 � ↵ of sellers are of type R (rational) and set their

list price p
R
t rationally according to Lemma 2 and (19) but a fraction ↵ of sellers are of type E

(extrapolator) and use a backward-looking rule of thumb to set their list price p
E
t . Specifically,

they set their price equal to the most recently observed price plus a fraction of the most recently

observed inflation:

p
E

t =
pt�2 + pt�3 + pt�4

3
+  

✓
pt�2 + pt�3 + pt�4

3
� pt�5 + pt�6 + pt�7

3

◆
, (20)

where pt is the transaction-weighted average price at time t:

pt =
↵d

E
t p

E
t + (1� ↵) dRt p

R
t

↵d
E
t
+ (1� ↵) dR

t

. (21)

Such a rule is a common assumption in models with backward-looking expectations and in the

New Keynesian literature and is frequently motivated by limited knowledge, information costs, and

extrapolative biases (e.g., Hong and Stein, 1999; Fuster et al. 2010).23 24

5.5 Source of Insensitivity 2: Staggered Price Setting

Prices in housing markets are adjusted only infrequently, with the median price lasting two months

in the Altos listings data as shown in Appendix D. This is the case because it takes time to market

a house and collect o↵ers and because lowering the price frequently can signal that the house is of

poor quality. While likely not the most important pricing friction in housing markets, infrequent

23I use three-month lag to match the lag with which house price indices are released. I use three-month averages to
correspond to how major house price indices are constructed and to smooth out saw-tooth patterns that emerge with
non-averaged multi-period lags. I microfound such a rule using a model of limited information and near rationality
in Appendix E.

24I assume that regardless of whether rational or backward-looking sellers sell faster, inflows adjust so that ↵ of
the active listings are houses owned by backward-looking sellers at all times. To conserve notation, in the model with
rule of thumb sellers, St refers to the total number of sellers, but V s

t is now the value function for the rational sellers.
V s
t remains as in equation (18), and the value function of a buyer remains (17), but there are now two prices pEt and

pRt .
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price adjustment has the virtue of being familiar and tractable. I introduce it into the baseline

model by assuming that groups of sellers set prices in a staggered fashion as in Taylor (1980).

In particular, I assume there are M groups of sellers that set prices every M periods, typically

using M = 2 in monthly simulations. Denote the prices pt, value functions V
s
t , seller masses St,

and purchase thresholds "t of a vintage of sellers that set prices ⌧ = {0, ...,M � 1} periods ago by ⌧

superscripts. Buyers receive the same signals, and the buyer’s problem and value function remain

the same. The seller’s value function is as in (18), except the value function for V s,⌧

t
has V s

t+1 terms

replaced by V
s,⌧+1
t+1 for ⌧ = {0,M � 2} and by V

s,0
t+1 for ⌧ = M � 1.

Seller optimization implies an optimal list price that is reminiscent of Taylor or Calvo pricing:

Lemma 3. If posted prices last M periods, the seller’s optimal reset price p
0
t is:

p
0
t =

P
M�1
⌧=0 �

⌧
D
⌧
t

�
p
0
t

�
 ⌧t'

⌧
tP

M�1
⌧=0 �⌧D

⌧
t

�
p
0
t

�
 ⌧

t

(22)

where D
j

t
(p) = Et

hQ
j�1
⌧=0

⇣
1� d

⌧

⇣
p,⌦t+⌧ , ✓̃t+⌧

⌘⌘i
d

⇣
p,⌦t+j + ✓̃t+j

⌘
is the expected probability the

house is sold exactly j periods after the price is set,  ⌧t = Et

"
�@d(pt,⌦t+⌧ ,✓̃t+⌧ )

@pt

d(pt,⌦t+⌧ ,✓̃t+⌧)

#
is the expected semi-

elasticity of demand with respect to price after ⌧ periods from Lemma 2, '
⌧
t = s + EtV

s,⌧+1
t+⌧+1 +

1
 ⌧

t

is the expected optimal flexible reset price ⌧ periods after the price is set, and V
s,M

t+M
= V

s,0
t+M

.

Proof. See Appendix E.

The optimal price is a weighted average of the optimal flexible prices that are expected to prevail

on the equilibrium path until the seller can reset his or her price. The weight put on the optimal

flexible price in period t + ⌧ is equal to the discounted probability of sale in period t + ⌧ times

the semi-elasticity of demand in period t + ⌧ . Intuitively, the seller cares more about periods in

which probability of sale is higher but also about periods in which demand is more elastic because

perturbing price has a larger e↵ect on profit.25

5.6 Equilibrium

I add stochastic shocks to the model by assuming that the entry rate of renters �rt follows an AR(1):

�
r

t = �̄
r + ⇢

�
�
r

t�1 � �̄
r
�
+ ut with ut ⇠ N

�
0,�2⌘

�
and iid. (23)

A positive shock thus causes the entry of potential buyers into the market, which increases demand

and pushes up prices.26 The results do not depend qualitatively or quantitatively depend on this

shock.
25In addition to the new price setting rule, the law of motion for sellers (13) needs to be altered to M di↵erent

laws of motion for each of the the M groups of sellers each with separate prices. These modifications are relegated
to Appendix E.

26See Guren (2015), a previous working paper version of this paper, for a model with an endogenous entry decision
whereby agents who receive shocks have the opportunity to pay a randomly-drawn fixed cost to avoid entry. The
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An equilibrium with a fraction ↵ of backward-looking sellers is defined as:27

Definition 1. Equilibrium with a fraction ↵ of backward-looking sellers is a set of prices p
i
t,

demands d

⇣
p
i
t,⌦t, ✓̃t

⌘
, and purchase cuto↵s "⇤,i

t
for each type of seller i 2 {E,R}, a transaction-

weighted average price pt, rational seller, buyer, and homeowner value functions V
s
t , V

b
t , V

h
t , a

probability that buyers follow the signal �t, stocks of each type of agent Bt, St, Ht, and Rt, and a

process for the entry rate of renters �rt satisfying:

1. Optimal pricing for rational sellers (19) and the pricing rule (20) for backward-looking sellers,

which depends on lagged transaction-weighted average prices (21);

2. Optimal purchasing decisions by buyers: "⇤,i
t

= p
i
t + b+ �V

b

t+1 � V
h
t ;

3. The demand curve for each type of seller i 2 {E,R} in the f submarket (10), the d submarket,

(11), and the aggregate (9), all of which result from buyer search behavior;

4. The value functions for buyers (17), rational sellers (18), and homeowners (8);

5. The laws of motion for buyers (12) and sellers (13) and the closed system conditions for homes

(14) and agents (15) that implicitly define the laws of motion for homeowners and renters;

6. The indi↵erence of buyers across markets (16);

7. Rational expectations that �rt evolves according the AR(1) process (23).

The model cannot be solved analytically, so I simulate it numerically in Dynare (Adjemian et

al., 2013) using a log-quadratic approximation pruning higher-order terms as in Kim et al. (2008)

around a steady state described in Appendix E in which ut = 0 8 t.28 Appendix G shows that the

impulse responses are almost identical in an exactly-solved deterministic model with an unexpected

permanent shock, so approximation error is minimal.

6 Amplification of Momentum in the Calibrated Model

6.1 Calibration

To assess the degree to which concave demand curves amplify house price momentum, this section

calibrates the model to the empirical findings presented in Section 2 and aggregate moments.

working paper shows how momentum interacts with endogenous entry to explain the relationships between price,
volume, and inventory in the data, in particular the strong “housing Phillips curve” relationship between price changes
and inventory levels.

27An analogous equilibrium with M groups of staggered sellers is defined in Appendix E. Aside from switching
i 2 {E,R} for ⌧ = {0, ...,M � 1}, it di↵ers from the above definition of an equilibrium with backward-looking sellers
in three key ways. First, prices are (22) for sellers that can reset their prices and fixed for sellers that cannot. Second,
the laws of motion for each vintage of sellers in the Appendix replace the laws of motion in the text. Third, the value
functions for each vintage of sellers are similarly altered.

28Because of the mass point in the F (·) distribution, the model is not smooth. However, a perturbation approach
is appropriate because the mass point at "̄ is virtually never reached (less than 0.1 percent of the time in simulations).
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Figure 4: Model Fit Relative to Instrumental Variable Estimates
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Notes: The Xs are the binned scatter plot from the IV specification with 2.5 percent of the data from each end winsorized to

reduce the e↵ects of outliers. The dots are the simulated probabilities of sale in three months at each price calculated using

(24) and approximating �t by its steady state value using (16) as described in the text.

In order to simulate the model, 22 parameters listed in Table 5 must be set. This section

describes the calibration procedure and targets, with details in Appendix F. Because a few pa-

rameters are based on limited data and subject to uncertainty, I use the baseline calibration for

exposition and use an additional 13 alternate parameterizations to determine a plausible range for

the degree of amplification.

Three components of the calibration control the shape of the demand curve and thus have a

first-order impact on momentum: the local density of the idiosyncratic quality distribution F (·)
controls the elasticity of demand for low-priced homes that are certain to be visited; � and ⇣,

the variance and shape parameters of the signal distribution, control how much the elasticity of

demand changes as relative price increases; and µ, the threshold for being overpriced, controls

where on the curve the average price lies. The other parameters have a second order e↵ect on

momentum. Consequently, the first step of the calibration sets these three components to match

the instrumental variable binned scatter plot from Figure 2. The second step calibrates the rest of

the model to match steady state and time series moments.

For the first step, I approximate the probability of sale as a function of a few key parameters,

the relative list price I observe in the data, and a fixed e↵ect that absorbs the aggregate market

conditions as in my empirical specification. This allows me to approximate the model demand

curve out of steady state with the heterogeneity in the data for the purposes of calibration and

then conduct dynamic simulations with the heterogeneity suppressed to maintain a tractable state

space. Appendix E shows that the probability of sale at the time the list price is posted can be
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approximated as:

d (pt � E⌦t [pt]) ⇡ t (1� F ("⇤mean + pt � E⌦t [pt]))⇥ (24)2

664

✓
�mean

E⌦t [1�G(pt�E⌦t [pt]�µ)]

◆
�

[1�G (pt � E⌦t [pt]� µ)]

+ ⇠
d

⇠f

✓
(1��mean)

E⌦t [G(pt�E⌦t [pt]�µ)]

◆
�

G (pt � E⌦t [pt]� µ)

3

775 ,

where t is a fixed e↵ect and "⇤mean and �mean are the mean values of these variables over the cycle.

For a given set of parameters, I solve for �mean using a steady-state version of (16) and use (24) to

simulate the probability of sale in three months for each p � E⌦ [pt]. I then find the values of the

density of F (·), µ, and � that minimize the mean squared error between the simulated demand

curve and the IV binned-scatter plot, with t chosen match the average probability of sale.29 30 31

Figure 4 shows the IV binned scatter plot for the first IV sample alongside the model’s predicted

three-month probability of sale for the parameters that minimize the distance between the model

and the data. The demand curve in the calibrated model captures the curvature in the data well.

The second step in the calibration sets the remaining parameters to match steady state moments

listed in the first three panels of Table 4 as detailed in Appendix F. These targets are either from

other papers or are long-run averages for the U.S. housing market, such as the homeownership

rate, the average amount of time between moves, and the average time on the market. The more

speculative targets are varied in calibrations that I use to determine the plausible range for the

degree of amplification.

The final step of the calibration is to choose both ↵ and a driving shock process to match the

time series features of house prices indicated in the bottom panel of Table 4. For the backward-

looking model, I adjust ↵ and recalibrate the model until the impulse response to the renter entry

reaches its peak at 36 months to match an impulse response estimated from the CoreLogic national

house price index in Appendix A.1. Table 5 summarizes the baseline calibrated parameter values

29Evaluating (24) requires values for ⇠d

⇠f
, "⇤mean, and a parametrization of F (·) given its density. I describe the

baseline values here. Because these calibration targets are uncertain, I alter these values in Table 6. I assume
"⇤mean = $100k, which is a normalization that has no impact on the economics of the model. I assume ⇠d/⇠f = 1/2.
This has no analog in the data, and I show in robustness checks that it is of minimal importance for my quantitative
results. If ⇠d is high enough relative to ⇠f , sellers may have an incentive to deviate and set a price of "̄ when
prices are rising and buyers visit rarely. I rule out a substantially higher ⇠d/⇠f because the stronger incentive to
deviate would generate asymmetries in house prices not present in the data. To parameterize F (·), I introduce two
additional moments that along with the assumed "⇤mean and density pin down ", "̄, and �: the average fraction of
home inspections that lead to a purchase 1�F ("⇤mean) and the average mean excess function E ["� "⇤mean|" > "⇤mean].
The mean excess function is selected to match a reasonable target for the buyer search cost of 0.75 percent of the
purchase cost of the house per month and varied in robustness tests.

30The optimal ⇣ is very large and leads to numerical error in simulations. Consequently, I set ⇣ = 8, which gets
nearly all the way to the improvement in mean squared error from the optimal ⇣ while reducing numerical error. The
results are not sensitive to this choice of ⇣.

31Through equations (18) and (19), the seller search cost is determined by the elasticity of demand given the
steady state price and probability of sale. In Figure 2, the zero point is just on the inelastic side of the demand
curve, yielding an extremely high seller search cost. Because the zero point corresponding to the average price is not
precisely estimated and depends on the deadline used for a listing to count as a sale, I use a zero point within one
percent of the estimated zero point that gives a more plausible demand elasticity and seller search cost.
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Table 4: Calibration Targets For Baseline Calibration

Steady State Parameter or Moment Value Source / Justification

Parameters

� (Matching Function Elasticity) 0.8 Genesove and Han (2012)

L (Prob. Stay in MSA) 0.7 Anenberg and Bayer (2015)

Aggregate Targets

Annual Discount Rate 5%

Time on Market for Sellers 4 Months Approx average parameter value in literature

Time on Market for Buyers 4 Months ⇡ Time to sell (Genesove and Han, 2012)

Homeownership Rate 65% Long run average, 1970s-1990s

Time in House For Owner Occupants 9 Years American Housing Survey, 1997-2005

Prob Purchase | Inspect 0.1 Mean buyer visits 10 homes (Genesove and Han, 2012)

Assumed Values

Steady State Price $760k Average transaction price in IV sample

h (Flow Utility of Homeowner) $6.78k 2/3 of House Value From Flow Util (Normalization)

⇠
d
/⇠

f 0.5 Limited Incentive to “Fish”

"
⇤ in steady state $100k Normalization

b/P (Flow Utility of Buyer Rel To Price) .75% of Price Average total buyer search costs 3% of price

 0.4 Based on Case et al. (2012)

Time Series Moments

SD of Annual Log Price Changes 0.065 CoreLogic national HPI adjusted for CPI, 1976-2013

⇢ (Monthly Persistence of AR1 Shock) 0.950 Head et al. (2014, 2016) Autocorr of Local Pop Growth

Table 5: Calibrated Parameter Values for Baseline Rule of Thumb Model

Parameter Interpretation Value Parameter Interpretation Value

� Monthly Discount Factor 0.996 -b/P Flow Util of B (search cost)/Price 0.75%

� Matching Fn Elasticity 0.8 -s/P Flow Util of S (search cost)/Price 2.1%

⇠
f Matching Fn E�ciency, Follow 2.540 "̄ Upper Bound of F Dist $ 161 k

⇠
d Matching Fn E�ciency, Defy 1.270 " Lower Bound of F Dist -$5,516 k

�
h Monthly Prob H Moving Shock 0.009 � Weight of Mass Point at "̄ 0.090

�̄
r Ave Monthly Prob R Moving Shock 0.013 � Variance Param in G (·) 39.676

N Population 1.484 ⇣ Shape Param in G (·) 8

L Prob Leave MSA 0.7 µ Threshold for Signal 39.676

 AR(1) Param in Rule of Thumb 0.4 �⌘ SD of Innovations to AR(1) shock 0.00004

V
0 PDV of Leaving MSA $2,776 k ⇢ Persistence of AR(1) shock 0.950

h Flow Util of H $6.783 k ↵ Fraction Backward Looking 0.299

Notes: These parameters are for the baseline calibration. The calibration is monthly.
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for the backwards-looking model. For the staggered pricing model, I use M = 2 groups in a

monthly calibration to match a median price duration of 9 weeks in the Altos data as described in

Appendix D. Because I cannot generate enough momentum to match the data using the staggered

pricing model, I use the backward-looking calibration procedure and report results that take out

backward-looking sellers and add staggering.

6.2 Quantitative Results on Amplification

Figure 5 shows impulse response of prices to a shock to fundamentals in models with and without

concavity under the baseline calibration.32

Panel A shows these impulse responses for the rule of thumb model. The solid line shows the

model impulse response with 30 percent backward looking sellers, the ↵ that generates a 36-month

impulse response.33 The dotted line shows an impulse response from an autoregression on the

CoreLogic national repeat sales house price index described in Appendix A with the 95 percent

confidence interval shown as thin grey lines. The two impulse responses match closely: they both

jump very little on impact and rise smoothly before flattening out at 36 months. The dashed

line shows the model without backward-looking sellers but with concave demand. In this case,

the optimal price jumps nearly all the way to its peak level immediately. There is essentially no

momentum because there is no initial stickiness for the strategic complementarity to amplify. The

dash-dotted line shows the non-concave demand impulse response. Prices jump over half of the

way to their peak value upon the impact of the shock and continue to rise for seven months, at

which point they begin to mean revert. Generating a 36 month impulse response without concave

demand requires 74 percent of sellers to be backward looking, indicating that concave demand more

than doubles momentum in the baseline calibration.

Far fewer backward-looking sellers are needed to match the data with concave demand in the

rule-of-thumb model because the strategic complementarity creates a two-way feedback. When a

shock occurs, the backward-looking sellers are not aware of it for several months, and the rational

sellers only slightly increase their prices so that they do not dramatically reduce their chances of

attracting a buyer. When the backward-looking sellers do observe increasing prices, they observe a

much small increase than in the non-concave case and gradually adjust their price according to their

32The simulations without concavity use a demand curve with the same steady state probability of sale and additive
markup for the average house as the concave model, but the markup is constant regardless of the relative price as
detailed in Appendix E. The impulse response is computed as the average di↵erence between two sets of simulations
that use the same sequence of random shocks except for one period in which an additional standard deviation shock
is added. Impulse responses for downward shocks are approximately symmetric and shown in Appendix G. Adding
rule of thumb sellers increases the size of the impulse response to an identical shock. Rather than altering the shock
in each case, the impulse responses for the nonconcave and flexible cases are scaled to have the same maximum value
as the rule of thumb impulse response in panel A and the staggered and concave impulse response in panel B.

33The 30 percent backward-looking sellers I find are necessary to explain the data is slightly below the 40 to 50
percent of the population that is significantly extrapolative found by Kuchler and Zafar (2017) and Armona et al.
(2018). This is likely the case because the model excludes several strong arbitrage forces that work against momentum
such as construction and endogenous entry, which would increase the necessary fraction of backward-looking sellers.
30 percent is also of the same order of magnitude as Gali and Gertler (1999), who find find that 26 percent of firms
are backward looking in a structurally estimated New Keynesian model.
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Figure 5: Price Impulse Response Functions: Model and Data

A: Rule of Thumb Model B: Staggered Pricing Model
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Notes: Panel A shows impulse responses to a one standard deviation shock to the renter probability of becoming a buyer in the

rule of thumb model with and without concavity as well as a fully-flexible model (↵ = 0). The nonconcave calibration maintains

the steady state markup and probability of sale as described in Appendix E. The nonconcave and fully-flexible IRFs are scaled

to have the same maximum value as the backward-looking and concave IRF. Also shown on the right vertical axis in the dotted

black line and with grey 95% confidence intervals is the impulse response to a one standard deviation price shock estimated

from a quarterly AR(5) for the seasonally and CPI adjusted CoreLogic national house price index for 1976-2013 described

in Appendix A. The vertical axes of the model and AR(5) are di↵erent because the AR(5) shows the impulse response to a

quarterly standard deviation shock, while the model impulse response is to a monthly standard deviation shock. Panel B shows

impulse responses to a one standard deviation shock to the renter probability of becoming a buyer in the staggered pricing

model as well as a model with no staggering and a model with no concavity. The no staggering and no concavity IRFs are

scaled to have the same maximum value as the staggered and concave IRF. Simulated IRFs are calculated by di↵erencing two

simulations of the model from periods 100 to 150, both of which use identical random shocks except in period 101 in which a

one standard deviation negative draw is added to the random sequence, and then computing the average di↵erence over 100

simulations.

AR(1) rule, reinforcing the incentives of the rational sellers not to raise their prices too quickly.

Panel B shows similar impulse responses for the staggered model. The solid line shows the

model with concave demand, the dashed line shows the model with flexible prices, and the dash-

dotted line shows the model without concavity. Without both concave demand and staggering,

reset prices jump on impact and reach a convergent path to the stochastic steady state as soon

as all sellers have reset their prices, as indicated by the dotted red line and the dashed green line.

In combination, however, the two-month staggered pricing friction is amplified into seven months

of autocorrelated price changes, although almost all of the autocorrelation is within the first five

months. The baseline calibration of the staggered pricing model also reveals that concave demand

amplifies frictions by a factor of 2.5.

The gradual impulse response results from sellers only partially adjusting their list prices when

they have the opportunity to do so in order to not ruin their chances of attracting a buyer by being

substantially overpriced. Repeated partial adjustment results in serially correlated price changes
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Table 6: Summary Statistics for Amplification of Momentum Across Di↵erent Calibrations
Rule of Thumb Model Staggered Pricing Model

↵ ↵ Ampli- Max Ampli- 99% of Max Ampli-

Concave Nonconcave fication Period fication Period fication

IV Sample 1 (Baseline) 0.2988 0.7406 2.479 7 3.5 5 2.5

IV Sample 2 0.2637 0.7188 2.726 8 4 6 3

-b/P of 0.25% 0.2988 0.7422 2.484 7 3.5 5 2.5

-b/P of 1.25% 0.2988 0.7375 2.468 7 3.5 5 2.5

-s/P of 1.0% 0.4062 0.7664 1.887 6 3 4 2

-s/P of 1.5% 0.3496 0.757 2.165 6 3 5 2.5

-s/P of 2.5% 0.2715 0.7188 2.648 7 3.5 6 3

"⇤ = $50k 0.2988 0.7375 2.468 7 3.5 5 2.5

"⇤ = $150k 0.2988 0.7375 2.468 7 3.5 5 2.5

h 1/2 of Flow Util 0.2988 0.7406 2.479 7 3.5 5 2.5

h 4/5 of Flow Util 0.2988 0.7375 2.468 7 3.5 5 2.5

⇠d/⇠f = 0.75 0.3145 0.7453 2.370 7 3.5 5 2.5

 = 0.3 0.2617 0.7008 2.678

 = 0.5 0.3457 0.7852 2.271

Notes: Each row shows a di↵erent robustness check. The entire model is recalibrated given the indicated parameter change.

The first column shows ↵, the share of backward-looking sellers necessary for a 36-month price impulse response in the rule

of thumb model, and the second column shows the required ↵ in a model with no concavity. For the no concavity case, the

demand cure is calibrated to maintain the steady state markup and probability of sale as described in Appendix E. The third

column shows the amplification, calculated as the ratio of the first to the second column. The fourth and sixth columns show

the period in which the maximum price and 99% of the maximum price are reached in the staggered pricing model with the

same calibration. The fifth and seventh columns report the ratio of the maximum and 99% of the maximum period in the

staggered model to the model without concavity, which results in a two-month impulse response as prices fully adjust once all

sellers have the opportunity to do so. Because the seller search cost is pinned down by the elasticity of demand along with the

probability of sale and price, the robustness checks that vary s/p alter the binned scatter plot that is used for the calibration by

slightly scaling the probability of sale relative to its median value to obtain a more or less elastic demand curve, as described

in Appendix F. This approach was chosen because it errs on the side of reducing the amount of concavity.

that last far beyond the point that all sellers have reset their price.34

To determine a plausible range for the amplification of momentum across a range of calibration

assumptions, Table 6 shows summary statistics for the amplification of momentum under 14 di↵er-

ent calibrations. For the rule of thumb model, amplification is measured as the ratio of the fraction

of backward-looking sellers ↵ without concavity to ↵ with concavity. For the staggered pricing

model, amplification is measured as the ratio of the maximum period of the impulse response

with concavity to the maximum period without concavity, which is always two periods because

prices fully adjust once all sellers have had the opportunity to change their price. To capture the

number of periods with nontrivial autocorrelation, my preferred measure of amplification replaces

the number of periods to reach the maximum with number of periods to reach 99 percent of the

34With staggered pricing there are further dynamic incentives because price resetters leapfrog sellers with fixed
prices and are subsequently leapfrogged themselves. The interested reader is referred to Appendix G.3 for a detailed
discussion of the dynamic intuition with staggered pricing.
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maximum.

Table 6 reveals that the degree of amplification in the baseline calibration discussed above is

a robust finding. Across a broad range of calibrations and for both frictions, concave demand

robustly amplifies momentum by a factor of two to three. Reassuringly, altering the parameters

with somewhat speculative calibration targets has little to no e↵ect on the factor of amplification.

The parameter that largest e↵ect on the degree of amplification is the seller’s search cost. This

is the case because search costs create market power for list-price-setting sellers. As search costs

fall, the market power of these sellers is eroded, and the strategic complementarity that enters

through the additive markup in equation (19) is weakened. The seller search cost is pinned down

by the elasticity of demand at the average price and is 2.1 percent of the average sale price per

month. The average seller, who is on the market for four months, thus incurs search costs equal

to 8.4 percent of the transaction price. This is a plausible figure given six-percent realtor fees,

maintenance and staging costs to get the house into condition for listing, the nuisance of listing

ones house, and the fact that many sellers need to sell quickly due to the high costs of holding

multiple houses. Nonetheless, because a 2.1 percent monthly seller search cost may be considered

high, I vary it in robustness tests.35 When I do so, I find that the factor of amplification falls to

1.89 (2.0 for staggered) for a monthly search cost of 1.0 percent of the purchase price and rises to

2.65 (3.0 for staggered) when I raise the seller search cost to 2.5 percent of the purchase price.

6.3 Amplification of Other Frictions

Because concave demand induces sellers to set their list price close to the market average, it

amplifies any friction that creates heterogeneity in the speed of adjustment by list-price-setting

sellers. Beyond the two frictions I assess in my model, concave demand would amplify momentum

created by learning in a model with incomplete information or by the gradual spread of sentiment

in a model with belief disagreement. Although formally modeling these channels is beyond the

scope of this paper, it is worth briefly discussing why each of these frictions would be amplified.

In Burnside et al.’s (2016) model of gradually-spreading sentiment, momentum arrises from

the gradual conversion of pessimists to optimists through social interactions. With a strategic

complementarity, the optimistic agents would not want to raise their price too much relative to

pessimists, creating the same amount of momentum with more rapid social dynamics.

With incomplete information and learning, strategic complementarities can cause very gradual

price adjustment even if first-order learning occurs rapidly because the motive to price close to others

makes higher order beliefs matter. Learning about higher order beliefs is more gradual—which in

turn makes price adjustment more gradual—because agents must learn not only about fundamentals

but also about what everyone else has learned as in a Keynesian beauty contest. Anenberg (2014)

35Because the seller search cost is pinned down by the elasticity of demand, in order to vary it I must alter the
binned-scatter plot to which I calibrate to obtain a more elastic demand curve. To do so, I stretch the probability of
sale around its median value. I take this approach as opposed to compressing the relative list price because it reduces
the concavity slightly while compressing the relative list price increases concavity, and I do not want to artificially
increase concavity.
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obtains about a quarter of the momentum in the data from first-order learning. When amplified

by a factor of two to three, learning could come close to fully explaining momentum.

7 Conclusion

The degree and persistence of autocorrelation in house price changes is one of the housing market’s

most distinctive features and greatest puzzles, and existing explanations cannot quantitatively

explain momentum. This paper introduces a mechanism that amplifies many proposed frictions

into substantial momentum to fill the gap between theory and data. Search and concave demand in

relative price together imply that increasing one’s list price above the market average is costly, while

lowering one’s list price below the market average has little benefit. This strategic complementarity

induces sellers to set their list prices close to the market average. Consequently, frictions that cause

heterogenous insensitivity to changes in fundamentals can lead to prolonged autocorrelated price

changes as sellers slowly adjust their list price to remain close to the mean.

I provide evidence for concave demand in micro data and introduce an equilibrium search

model with concave demand that is calibrated to match the amount of concavity in the micro data.

Quantitatively, concave demand amplifies momentum created by staggered pricing and a fraction

of backward-looking rule of thumb sellers by a factor of two to three. Importantly, concave demand

amplifies any pricing friction that creates heterogeneity in the speed of price adjustment because

the incentive to price close to the average makes sellers who would change their price quickly instead

respond sluggishly. Assessing which frictions are relevant is an important path for future research.

Beyond the housing market, this paper shows how a central idea in macroeconomics—that

strategic complementarities can greatly amplify modest frictions—can be applied in new contexts.

These contexts can, in turn, serve as empirical laboratories to study macroeconomic phenomena for

which micro evidence has proven elusive. In particular, many models with real rigidities often use a

concave demand curve. This paper provides new evidence that a concave demand curve in relative

price is more than a theoretical construct and can have a significant e↵ect on market dynamics.
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