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Abstract

We explore misallocation and welfare implications of a Roy model of entry into en-
trepreneurship at a given destination, extended to incorporate social network externalities.
These externalities take the form of productivity-enhancing and/or cost-reducing spillovers
which are restricted to agents belonging to a specific social network (in contrast to a pure
agglomeration model where all entering firms benefit equally from spillovers). The set of
agents is partitioned into multiple social networks with varying intra-network spillover inten-
sities. After entering, firms select capital size and produce a common good with downward
sloping market demand, taking industry price as given. If spillover intensities positively co-
vary with the population size of each network, equilibria feature productive misallocation:
networks with stronger spillovers are characterized by higher entry rates, lower marginal rev-
enue products, and lower TFP of marginal entrants. Factor allocation among entrants is
efficient, while entry rates are inefficiently low. First best aggregate surplus can be imple-
mented via network-specific entry subsidies, which may aggravate productive misallocation.
Consequently standard measures of productive misallocation based on across-firm dispersion
of marginal revenue products are not a reliable measure of welfare in this setting.

1 Introduction

A large literature on endogenous growth (Lucas (1988), Romer (1986)) and urban economics
(Henderson (1974)) is based on the existence of productivity or learning spillovers across firms.
Contemporary arguments for ‘soft industrial policy’ or ‘place-based policies’ are primarily based
on such agglomeration spillovers across entrepreneurs located in close physical proximity (Harrison
and Rodriguez-Clare (2010), Rodrik (2004), Stiglitz (2017)). Empirical evidence of such spillovers
has been provided by a number of authors, mainly in the context of developed countries (Bloom
et al. (2013), Combes et al. (2012), Greenstone et al. (2010), Moretti (2004)).

In the context of developing countries, the literature on industrial clusters and trading rela-
tionships stresses the importance of social networks which help overcome problems of trust and
cooperation faced by small and medium size entrepreneurs in accessing credit, insurance, knowhow
and reliable input supply in environments with weak market and state institutions (Casella and
Rauch (2002), Dai et al. (2021), Fafchamps (2001), Gupta et al. (2022), McMillan and Woodruff
(1999), Munshi (2011), Munshi (2014)). These network relationships generate inter-firm pro-
ductivity or cost-reducing spillovers whose domain is restricted to firms owned by entrepreneurs
belonging to a social network defined by ethnicity or social origin. The key distinction between
network and agglomeration effects is that the latter are location rather than network specific,
i.e., agglomeration effects represent spillovers that benefit all entrepreneurs at a common location,
irrespective of social identity/origin. Empirical evidence of network-specific spillovers is provided
for caste networks in India (Banerjee and Munshi (2004), Munshi (2011), Gupta et al. (2022)) and
hometown networks in China (Dai et al. (2023)).
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Despite growing evidence of inter-firm spillovers, their implications for productive misallocation
and welfare are not well understood. The existence of spillovers imply a departure from a first-
best environment where standard theorems of welfare economics do not apply. In this second-best
setting, productive misallocation may not be a reliable indicator of welfare effects of government
policies or external shocks. The purpose of this note is to study the implications of social-network-
based spillovers for misallocation and welfare.

The model (based on Munshi (2011) and Dai et al. (2023)) abstracts from other sources of
distortions such as scale economies or market power. It extends a static Roy occupation choice
model where agents of varying individual ability choose between becoming an entrepreneur in an
industry in a given location, and an alternative occupation which forms an outside option. The
set of agents is partitioned into different social networks of varying degrees of cohesiveness. More
cohesive networks exhibit higher rates of intra-group cooperation resulting in higher productivity
spillovers and/or cost reductions. Outside option payoffs depend only on individual ability. There
are no direct cross-network spillovers, and agents are price-takers. However the model incorpo-
rates a form of ‘congestion costs’ via price effects: entrepreneurs produce a common good for a
market with a downward sloping demand curve. Hence increased entry of entrepreneurs from a
given network lowers returns for all other entrepreneurs by lowering the product price. We study
noncooperative Nash equilibria of this static model where each agent decides whether to enter,
and capital size conditional on entering to maximize his own profit, taking as given the decisions
of all other agents.

The main results are the following. If the population size of each network covaries positively
with cohesiveness, equilibria exhibit productive misallocation. More cohesive networks exhibit:
(a) higher rates of entry, (b) lower TFP of marginal entrants and (c) lower (common value of)
marginal revenue product (MRP). This is because higher spillovers makes entry more attractive
for agents belonging to a more cohesive network, which lowers the entry threshold for ability,
representing a form of adverse selection. Despite the dispersion in MRP, capital allocation turns
out to be efficient.1 On the other hand, entry rates are inefficiently low owing to the externality
across agents in the same network which each individual agent ignores in the decentralized Nash
equilibrium. A first-best allocation can be achieved by a network-specific entry subsidy, which
is increasing in the cohesiveness of the subsidy (owing to the stronger externality in a more
cohesive network). Compared to the laissez faire equilibrium, such subsidies raise welfare as well
as the MRP-dispersion misallocation measure (since they raise inter-network dispersion of MRP).
Therefore the model provides a justification for industrial policies that aggravate adverse selection
(and inter-network inequality) by discriminating in favor of networks that are already advantaged
in the laissez faire equilibrium.

2 Model

The set of agents (which has an aggregate measure normalized to 1) is partitioned into I distinct
networks. Let βi ∈ (0, 1) denote the measure of network i = 1, . . . , I. Agents in each network are
distinguished by their individual ability ω, distributed according to a common (strictly increas-
ing and smooth) cdf F over support [ω, ω̄]. An agent of ability ω decides between a traditional
occupation which generates a return of ωσ, σ ∈ (0, 1), and becoming an entrepreneur by setting
up a firm that produces a homogenous good according to a Cobb-Douglas production function
T1iω

1−α[ 1
αK

α] where α ∈ (0, 1) and K denotes scale of production. This entrepreneur incurs pro-
duction cost r

T2i
K. T1i, T2i denote productivity-enhancing and cost-reducing spillovers respectively

in network i. Both types of spillovers are smoothly increasing in βini the number of firms that en-
ter from network i (where ni denotes the fraction of network i agents that become entrepreneurs),
and in θi the (exogenous) cohesiveness of the network:

Tji = Tj(βini, θi), j = 1, 2. (1)

1This owes to differences in underlying assumptions between this model and Hsieh and Klenow (2009): here the
aggregate amount of capital or the set of firms is not fixed.
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Examples of spillover functions are Tj [1 + βini]
θi or Tjgj(θiβini) where gj is strictly increasing

and gj(0) > 0. In these examples spillovers are strictly increasing in each argument (size βni or
cohesiveness θi) provided the other argument is strictly positive, so we assume the same is true
for the more general specification (1).

If there is just a single network, the model reduces to one of pure agglomeration. We are
interested in the case of multiple networks with varying cohesiveness. Note that we place no
restrictions on the functional forms of the spillover functions or the ability distribution. However,
to highlight the role of differences in cohesiveness of different networks per se, we have assumed
this is the sole parameter that distinguishes one network from another. In particular, different
networks have the same ability distribution and outside options.

The good is sold on a market with a downward sloping demand curve, represented by a smooth
strictly decreasing price function p(Q) satisfying p(0) > 0, where Q denotes aggregate quantity
of the good produced. Each agent is infinitesimal, so ignores the effects of his own decisions on
the market price. Price effects represent the sole source of a congestion (or negative cross-agent)
effect in the model. Additional sources of congestion effects operating via factor prices that rise
with factor demand can be added to the model, but these would not alter any of the results.

Each agent decides independently whether or not to become an entrepreneur, and on the scale
of production conditional on entry. We study Nash equilibria of this static model.2

Conditional on becoming an entrepreneur, anticipating market price P and network spillovers
T1i, T2i, an agent in network i with ability ω would select production scale K = K(ω;P, T1i, T2i)
to maximize

PT1iω
1−α 1

α
Kα − r

T2i
K (2)

It is evident that

K(ω;P, T1i, T2i) = ω[
PT ∗i
r

]
1

1−α (3)

and the resulting payoff would be

Πe
i (ω;P, T1i, T2i) = ωTiP

1
1−α ζ (4)

where

T ∗i ≡ T1iT2i, Ti ≡ T
1

1−α
1i T

α
1−α

2i , ζ ≡ r−
α

1−α [
1− α
α

] (5)

Consequently, the agent would decide to enter if (4) exceeds the outside option ωσ, which
reduces to the condition that

ω ≥ ω∗(P, Ti) ≡ [ζP
1

1−αTi]
− 1

1−σ (6)

This implies an entry rate of
ni(P, Ti) = 1− F (ω∗(P, Ti)) (7)

and aggregate output produced by network i agents of

Qi(P, Ti) = [
P

r
]
α

1−αTi

∫ ω̄

ω∗(P,Ti)

ωdF (ω) (8)

A Nash equilibrium is thus represented by entry rates (n1, . . . , nI) and price P satisfying

ni = 1− F (ω∗(P, T (βini, θi)) (9)

P = p(
∑
i

βiQi(P, T (βini, θi)) (10)

where T (βini, θi) ≡ [T1(βini, θi)]
1

1−α [T2(βini, θi)]
α

1−α .

2Most empirical papers (e.g., Munshi (2011), Gupta et al. (2022), Dai et al. (2023)) studying network effects
estimate dynamic versions of this model with multiple cohorts of agents making entry decisions at different dates,
with spillovers depending on lagged size of networks). The results derived here would extend to the dynamic setting
as well.
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3 Nash Equilibrium

A Nash equilibrium can be solved sequentially in the following two steps. At the first step, fix any
price P and derive the equilibrium entry rate ni(P ; θi) for each network conditional on that price,
which solves the single equation (9). Given P , the right hand side (RHS) of (9) is smooth and
increasing in ni, mapping the unit interval to itself. So equilibrium entry rates always exist for
any given P , but there may be multiple equilibria.3 In that case select a locally stable equilibrium
entry rate ni(P ; θi), i.e., where the slope of the RHS of (9) with respect to ni is smaller than one.4

It is evident that the selected equilibrium entry rate is increasing in both P and θi, since the RHS
of (9) is increasing in either of these variables for any fixed ni.

Given the selected equilibrium entry rate function ni(P ; θi) for each network, at the second
step we can derive the equilibrium price by solving the single equation

P = p(
∑
i

βiQi(P, T (βini(P ; θi), θi)) (11)

Note that the RHS of (11) is decreasing in P , since Qi is increasing in P and Ti, and the latter is
increasing in ni which is turn is increasing in P . Hence (11) has a unique fixed point.5

Most results of interest can be derived from studying equilibrium entry rates conditional on a
price P (at which entry rates are positive). Our first result concerns productive misallocation in
the case where cohesiveness and population size positively co-vary across networks.

Proposition 1 Consider two networks i, k with

βi ≥ βk, θi ≥ θk (12)

and at least one of these inequalities is strict. Consider any price P satisfying ω∗(P, T (0, θk)) < ω̄,
at which network k has a positive entry rate. Then at this price, network i has:

(a) a lower entry threshold for ability, and a higher entry rate

ω∗(P, θi) < ω∗(P, θk) (13)

ni(P, θi) > nk(P, θk) (14)

(b) a lower TFP for the marginal entrant, and

(c) a lower (common) MRP.

Proof: If n∗k denotes nk(P, θk) which is positive by assumption, (12) implies

1− F (ω∗(P, T (βin
∗
k, θi)) > n∗k = 1− F (ω∗(P, T (βkn

∗
k, θk)) (15)

Since the equilibrium selection is locally stable, it follows that n∗i ≡ ni(P, θi) > n∗k. Hence (14)
follows. Moreover βin

∗
i > βkn

∗
k, which implies Ti > Tk. (13) then follows from (6), thereby

establishing (a).
Let TFPmi = [ω∗i ]1−αT1i denote the TFP of the marginal entrant in network i, where ω∗i =

ω∗(P, θi) and T1i = T1(βin
∗
i , θi). Since the marginal entrant is indifferent between entering and

not, the profit of the marginal entrant in network i equals [ω∗i ]σ. Since ω∗i < ω∗k, the profit of the
marginal entrant in network i is smaller. From (4) it follows that

ω∗i Ti = [TFPmi ]
1

1−αT
α

1−α
2i < [TFPmk ]

1
1−αT

α
1−α

2k (16)

3The equilibrium is unique if ability follows a log-uniform distribution, which is assumed in many empirical
applications.

4By standard arguments, such a locally stable equilibrium function exists generically.
5A fixed point exists for the following reason. Let P(P ) denote the RHS of (11) for a given set of (θ1, . . . , θI).

Entry and hence supply would be zero at a zero price. So P(0) = p(0) > 0 while P(∞) < P(0) = p(0) <∞.
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Since T2i > T2k it follows that TFPmi < TFPmk .
Finally (c) follows from the fact that the MRP of all firms in network i equals the marginal

cost r
T2i

of firm scale.

This result focuses on the case where more cohesive networks have a larger population size.6

A special case is where all networks have the same population size but vary in cohesiveness.
More cohesive networks are characterized by larger spillovers, resulting in higher TFP and lower
cost for their members. This implies higher rates of entry into entrepreneurship and a lower
ability threshold for entry. Marginal entrants from such networks have lower individual ability
but benefit from larger productivity spillovers. Part (b) of Proposition 1 shows that the former
effect dominates: the marginal entrant has lower TFP overall. This is a form of adverse selection,
suggesting productive misallocation insofar as replacing a marginal entrant from a more cohesive
network by a marginal non-entrant from a less cohesive one might raise aggregate productivity.
Such an assessment is flawed because it ignores the spillover effects on intra-marginal entrants.
The next section carries out an explicit welfare analysis of policies that affect entry rates.

Part (c) examines implications for the Hsieh and Klenow (2009) measure of misallocation: the
dispersion of marginal revenue product (MRP) across firms. Since all firms in the same network
face the same cost of expanding scale, MRP is equalized within the network. However more
cohesive networks achieve larger cost-reducing spillovers and therefore end up with a lower MRP.
So MRP varies across networks of varying cohesiveness, suggesting a misallocation of factors across
firms belonging to different networks.

4 Welfare Analysis

We turn now to a welfare analysis, by studying the first-best allocation problem for a benevolent
social planner that directly controls entry and firm scale decisions to maximize social welfare.
Specifically, the planner selects an ability threshold ω̂i ∈ [ω, ω̄] for network i agents and firm scale
K̂i(ω) ≥ 0 for those who enter, to maximize aggregate surplus (which ignores payments between
firms and consumers as these neutralize each other):

U ≡
∑
i

βi

[∫ ω̂i

ω

ωσdF (ω)− r

T̂2i

∫ ω̄

ω̂i

K̂i(ω)dF (ω)

]
+ V (Q) (17)

where V denotes consumer utility from consuming the good produced by firms, Q denotes aggre-
gate quantity of the good produced which is given by:

Q =
∑
i

βi
T̂1i

α

∫ ω̄

ω̂i

ω1−αK̂i(ω)αdF (ω) (18)

and
T̂ji = Tj(βi[1− F (ω̂i)], θi), j = 1, 2 (19)

This welfare optimization problem can be broken down into two steps. First, given entry
thresholds ω̂i for different networks i = 1, . . . , I select firm scale optimally for entrants. Letting P
denote V ′ the marginal utility of the good, this requires K = K̂i(ω) be chosen to maximize

PT̂1iω
1−α 1

α
Kα − r

T̂2i

K (20)

implying

K̂i(ω) = ω[
PT̂ ∗i
r

]
1

1−α (21)

6Dai et al. (2023) provide empirical evidence from China that rural areas with higher population density are
characterized by higher levels of local trust and social interaction. Moreover firms owned by entrepreneurs from
higher population density rural hometowns exhibit higher TFP spillovers and revenue growth resulting from entry
of new firms from the same origin.
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where T̂ ∗i ≡ T̂1iT̂2i. This takes the same form as firm scales in the decentralized market equilibrium
(3), with the productivity and cost spillovers corresponding to the entry thresholds chosen by the
planner. It follows that factor allocation in the market equilibrium conditional on the set of active
firms is efficient. In this sense there is no factor misallocation from a welfare standpoint. Owing
to the presence of cost-reducing spillovers the social cost of expanding firm scale is lower in more
cohesive networks: hence welfare optimality requires these firms to expand to a point where their
MRPs are smaller.

At the second stage entry thresholds are chosen for each network, with firm scales adjusted
according to (21). The first-order condition for ω̂i yields:

ω̂σi − [PT̂1iω̂
1−α
i

1

α
K̂i(ω̂i)−

r

T̂2i

K̂i(ω̂i)] = si (22)

where

si ≡
P

α

∂T̂1i

∂ni

∫ ω̄

ω̂i

ω1−αK̂α
i (ω)dF (ω) +

r

T̂ 2
2i

∂T̂2i

∂ni

∫ ω̄

ω̂i

K̂α
i (ω)dF (ω) (23)

which is strictly positive as long as ω̂i < ω̄, i.e., there is a positive entry rate for network i. In
a market equilibrium the left-hand-side of (22) equals zero, as the marginal entrant is indifferent
between entering and not, from the standpoint of own-profit. However, entrants ignore the spillover
benefits generated by their entry on other entrants from their own network, represented by the
term si. Hence the market equilibrium is characterized by too little entry. The first-best welfare
optimum can be achieved with an entry subsidy si for network i. It follows that the welfare
optimal entry threshold ω̂i will be smaller than in the market equilibrium. A sufficient (but not
necessary) condition for the optimal entry subsidy to be positive for network i is that the entry
rate for this network is positive in the market equilibrium. We summarize these results in the
following Proposition.

Proposition 2 The first-best welfare optimum can be achieved with entry subsidies that are pos-
itive for any network with a positive entry rate and positive spillovers. Hence entry rates are
inefficiently low in laissez faire Nash equilibrium if there exists at least one network with a positive
entry rate and positive spillovers. Factor allocation among active firms is efficient.

Observe that optimal entry subsidies which raise welfare may at the same time aggravate
commonly used measures of productive misallocation. To see this, consider an example where
there are two groups of agents of equal size (β1 = β2 = 1

2 ), and only group 1 constitutes a social
network featuring spillovers. Specifically, network 1 has θ1 > 0 and T11, T21 are increasing in
n1, while θ2 = 0 and T21, T22 are independent of n2 and lower than T11, T21 respectively for any
n1 > 0. Also suppose the market equilibrium involves positive entry rates for both groups. From
Proposition 1, group 1 features a higher entry rate and a lower MRP. The optimal subsidy for
group 1 is positive, while it is zero for group 2. The subsidies will raise entry from group 1 and
lower entry from group 2 (owing to a drop in P ), and will increase the gap in MRP as well as
TFP of the marginal entrant between the two groups.
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