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Abstract

Differentiating C3 and C4 grass pollen in the paleorecord is difficult because of their morphological similarity. Using a
spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer, Single Pollen Isotope Ratio
AnaLysis (SPIRAL) enables classification of grass pollen as C3 or C4 based upon d13C values. To address several limitations
of this novel technique, we expanded an existing SPIRAL training dataset of pollen d13C data from 8 to 31 grass species. For
field validation, we analyzed d13C of individual grains of grass pollen from the surface sediments of 15 lakes in Africa and
Australia, added these results to a prior dataset of 10 lakes from North America, and compared C4-pollen abundance in sur-
face sediments with C4-grass abundance on the surrounding landscape. We also developed and tested a hierarchical Bayesian
model to estimate the relative abundance of C3- and C4-grass pollen in unknown samples, including an estimation of the like-
lihood that either pollen type is present in a sample. The mean (±SD) d13C values for the C3 and C4 grasses in the training
dataset were !29.6 ± 9.5& and !13.8 ± 9.5&, respectively. Across a range of % C4 in samples of known composition, the
average bias of the Bayesian model was <3% for C4 in samples of at least 50 grains, indicating that the model accurately
predicted the relative abundance of C4 grass pollen. The hierarchical framework of the model resulted in less bias than a
previous threshold-based C3/C4 classification method, especially near the high or low extremes of C4 abundance. In addition,
the percent of C4 grass pollen in surface-sediment samples estimated using the model was strongly related to the abundance of
C4 grasses on the landscape (n = 24, p < 0.001, r2 = 0.65). These results improve d13C-based quantitative reconstructions
of grass community composition in the paleorecord and demonstrate the utility of the Bayesian framework to aid the
interpretation of stable isotope data.
! 2013 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Knowledge of biotic responses to past climatic variabil-
ity is important for anticipating future change (Flessa et al.,

2005). Fossil pollen assemblages are a valuable indicator of
spatiotemporal variation in plant community composition
on the landscape (Williams et al., 2004). However, grass
(Poaceae) pollen is typically morphologically indistinct
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below the family level (F!gri et al., 1989), rendering pollen
analysis a blunt instrument for investigating past changes in
grassland ecosystems. This problem hampers our under-
standing of the ecology and evolution of grasslands, which
today cover a major portion of Earth’s land surface and reg-
ulate key biogeochemical cycles (Saugier and Roy, 2000).

Carbon isotopic analysis of grass pollen offers an impor-
tant tool for distinguishing C3 and C4 grasses in the paleo-
record (Amundson et al., 1997; Nelson et al., 2006;
Descolas-Gros and Scholzel, 2007). Recent technical ad-
vances include Single Pollen Isotope Ratio AnaLysis
(SPIRAL), which involves the use of a spooling-wire micro-
combustion device interfaced with an isotope-ratio mass
spectrometer (SWiM-IRMS) for the d13C analysis of indi-
vidual grass pollen grains (Nelson et al., 2007). Nelson
et al. (2007) showed that d13C values of pollen from known
C3 and C4 grasses could be distinguished based on their dis-
tribution around a threshold d13C value of !19.2&.
Although high variability and overlapping ranges of d13C
values for C3 and C4 grasses prevent perfect classification,
a significant correlation was found between d13C-based esti-
mates of % C4-grass pollen in surface-sediment samples and
the abundance of C4 grasses on the landscape at 10 sites in
North America (Nelson et al., 2008).

Despite the useful paleoenvironmental information ob-
tained from SPIRAL, the existing technique has several
limitations. First, SPIRAL was developed (Nelson et al.,
2007) and validated (Nelson et al., 2008) with a small
amount of data from North American grasses and grass-
lands. For example, only four C4 grasses and four C3

grasses were used to identify the threshold d13C value sep-
arating C3 and C4 (Nelson et al., 2007). Thus the applicabil-
ity of this technique to a broader range of grassland
ecosystems remains uncertain. Additionally, a fixed d13C
threshold was selected to differentiate C3 and C4 grasses,
which may be problematic because d13C values vary both
within and among species (Cerling, 1999). Finally, there is
no formal propagation of uncertainty for SPIRAL, which
means that the precision of the technique is not well con-
strained. In this study, we address these problems by (1)
expanding the reference d13C dataset for distinguishing
C3- from C4-grass pollen, (2) improving the validation data-
set from North America (Nelson et al., 2008) by adding new
surface-sediment samples from lakes in Africa and Austra-
lia, and (3) developing and evaluating a hierarchical Bayes-
ian model to estimate the percent of C3- and C4-grass pollen
based on SPIRAL d13C data.

2. METHODOLOGY

2.1. Herbarium and surface-sediment samples

We performed d13C analyses on pollen from herbarium
specimens of 28 grass species, including additional pollen
from five of the eight species previously analyzed in Nelson
et al. (2007) (Electronic Annex EA-1). Our expanded train-
ing dataset includes these new results and all of the d13C
data reported in Nelson et al. (2007). These specimens were
collected between 1927 and 1995 from Africa, Australia,
and North America.

As a step to develop a global relationship between C4

grass abundance and SPIRAL data, we performed d13C
analysis of pollen in surface sediments from Africa and
Australia to supplement the published d13C dataset from
North America (Nelson et al., 2008). All of the surface-sed-
iment samples from Africa and Australia come from lakes,
with the exception of Rumuiku Swamp in Africa (Elec-
tronic Annex EA-2). The samples typically represent the
upper "5 cm of sediment, which likely accumulated during
the past several decades. We do not have data on the com-
position and abundance of grasses around our African and
Australian sites. Therefore, we estimated the relative abun-
dance or productivity of C4 grasses around each site based
on the relationships of C4 grasses with various environmen-
tal factors reported in the literature (Electronic Annex
EA-2). In equatorial East Africa, C4-grass abundance
(Livingstone and Clayton, 1980) and productivity (Tieszen
et al., 1979) are negatively correlated with elevation, with
C4 grasses predominating below "1500 m. We used the
relationship in Tieszen et al. (1979) to estimate C4 grass
abundance around each of our African sites. In Australian
grasslands, minimum January temperatures (JANT; "C)
and median August rainfall (AURF; cm) are strong predic-
tors of C4 grass abundance in the regional grass flora
(Hattersley, 1983). We obtained JANT and AURF data
from the Australian Bureau of Meteorology (www.bom.
gov.au) and used the relationship in Hattersley (1983) to
calculate C4 grass abundance around each of our Australian
sites. For each North American site the percent contribution
of C4 grasses to the total potential production of grasses
was determined using the relationship between latitude and
C4-grass productivity (Tieszen et al., 1997).

2.2. Sample treatment and isotopic analysis

All samples were treated using standard pollen prepara-
tion techniques modified to exclude carbon-containing
compounds (Nelson et al., 2006), except that hydrofluoric
acid was not used for the herbarium specimens, which has
little influence on pollen d13C (Jahren, 2004). Grass pollen
grains were isolated in Nanopure water on a microscope
slide at 200# magnification using an Eppendorf Transfer-
man micromanipulation device. Individual grains were
transferred to "0.4 lL drops of Nanopure water and ap-
plied to a SWiM device interfaced with a ThermoFinnigan
Delta V IRMS using a steel and glass syringe (Nelson et al.,
2007, 2008). Sample data were normalized to VPDB using a
two-point normalization curve with in-house 2.5 nmol C
standards of leucine (true d13C = !32.1&), sorbitol (true
d13C = !16.2&), serine (true d13C = !25.7&), and/or gly-
cine (true d13C = !37.9&) that were calibrated against the
USGS40 and USGS41 glutamic acid standards.

The number of individual grains of grass pollen applied
to the SWiM device ranged from 88 to 239 per sample for
the herbarium and surface-sediment samples. We followed
Nelson et al. (2007, 2008) for the d13C analysis of individual
pollen grains. Briefly, along with each sample, we analyzed
blanks of Nanopure water to which a single pollen grain
was added and then removed. The mean plus 2 standard
deviations (2r) of blank CO2 yields was set as a minimum
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size threshold; grains below this threshold were excluded.
The final d13C data were corrected for blank 13C content
using isotopic mass balance. The d13C values of herbarium
specimens were corrected to a pre-industrial d13C value of
atmospheric CO2 (!6.3&; Friedli et al., 1986).

2.3. Statistical model

We chose a Bayesian approach for our statistical analy-
sis. Bayesian methods differ theoretically from more widely-
used frequentist approaches primarily in that Bayesian
methods include prior distributions for all unknown param-
eters to be estimated. Following a fundamental theorem of
probability known as Bayes’ theorem, prior distributions
can be combined with the likelihood of a given dataset
(i.e. the probability of observing the dataset, given as a
function of unknown parameters) to yield posterior param-
eter distributions. Formally and conceptually, a posterior
distribution represents a prior notion of an unknown
parameter value, updated with available data according to
the proposed model. In many cases (e.g. linear regression),
Bayesian and frequentist approaches yield essentially equiv-
alent results when the prior distributions selected are unin-
formative (i.e. provide little constraint on the unknown
parameters), and/or when the dataset is sufficiently large
to overwhelm the priors. In other cases, however, the choice
of priors can be influential, and the inherent subjectivity in
assigning priors has been central to arguments for and
against the use of Bayesian methods. For a summary of
these theoretical considerations, see Savage (1962).

From a pragmatic standpoint, advances in computa-
tional methods have provided a consistent and convenient
framework for fitting complex models from a Bayesian per-
spective, where a frequentist approach would be infeasible
or impossible. This practical advantage is the motivation
for our Bayesian model. The model we propose below is rel-
atively straightforward, and is closely related to model-
based clustering methods (Fraley and Raftery, 2002). Nev-
ertheless, the exact model structure is specific to our context
and goals, i.e. estimating C4 grass abundance in unknown
samples and the likelihood that they contain C4 grass pol-
len. We know of no frequentist approach that would suffice
to fit such a model, whereas in a Bayesian context it can be
solved using generic numerical methods. For a practical
introduction to such methods, we recommend Clark
(2007) and Hoff (2009).

We designed a hierarchical Bayesian model to predict
the percent of C4 grains in samples of unknown composi-
tion based on the d13C values of individual grass pollen
grains (Fig. 1). At the basis of the model is the likelihood
function.

yi "
NðlC3

; r2
C3
Þ; xi ¼ 0

NðlC4
; r2

C4
Þ; xi ¼ 1

(

in which, for the ith grain in the sample, yi is the measured
d13C of the grain, xi is a binary variable identifying the
grain as C3 (xi = 0) or C4 (xi = 1), l and r2 represent the
population means and variances (respectively) for C3 and
C4 grains as indicated by subscripts, and N(l,r2) denotes

the normal (Gaussian) distribution with mean l and vari-
ance r2. In other words, the likelihood is the conditional
probability of observing the d13C value of an individual
grain, given the classification of the grain and assuming
normally-distributed d13C values for both C3 and C4. We
calculated lC3

; lC4
; r2

C3
; and r2

C4
from the herbarium data-

set described above, and subsequently treated these vari-
ables as fixed in our predictive model.

Because the C3/C4 identity of the pollen grains in sedi-
ment samples is unknown, we added a second hierarchical
level to model x, the indicator variable for C4 presence,
based on the unknown proportion of C4 grains in the pop-
ulation, h:

xi " Bernoulli ðhÞ

i.e.

xi ¼
1 with probability h

0 with probability ð1! hÞ

!

The unknown parameter h requires a prior distribution
as well. In defining this prior, we introduced a final hierar-
chical level in the model to accommodate samples com-
posed of (1) purely C3, (2) purely C4, or (3) both C3 and
C4 pollen grains. We refer to these sample types as
“C3-only”, “C4-only”, and “mixed”, respectively, and
define the prior distribution of h separately for each:

h "
0 for C3-only samples

Uniform ð0; 1Þ for mixed samples

1 for C4-only samples

8
><

>:

In other words, if a sample is identified as C3-only or
C4-only, then h is assigned a constant value of 0 or 1
(respectively). For mixed samples, h must be estimated
based on the data. In this case, the uniform prior represents
our lack of knowledge of the true proportion of C4 in the sam-
ple by assuming a priori that all values of h are equally likely.

The compound prior on h effectively defines three dis-
tinct sub-models. In a Bayesian framework, these models

Fig. 1. Conceptual diagram of the hierarchical Bayesian model
used in this study. The likelihood function describes the probability
distribution of d13C values for each pollen grain in a sample (yi),
given its classification as C3 or C4 (xi = 0 or xi = 1, respectively).
The distribution of xi in turn depends on h, the proportion of C4

grains in the population. Finally, the prior distribution of h varies
among sub-models representing three possible sample types (C3-
only, mixed, C4-only). See Section 2.3 for details.

170 M.A. Urban et al. /Geochimica et Cosmochimica Acta 121 (2013) 168–176



can be fit simultaneously to formally compare their ability
to describe a given dataset. This simple form of Bayesian
model selection (Dellaportas et al., 2002) treats the choice
of model itself as an unknown parameter, which therefore
requires its own prior distribution. We assumed that the
sub-models were equally likely a priori, and thus assigned
each a prior probability of 1/3. The posterior estimate of
the model-selection parameter then yields “posterior model
probabilities” representing the relative probability that each
candidate model is the true model. This allows for hypoth-
esis testing analogous to the use of p-values (e.g. rejecting a
candidate model if it has a posterior probability <0.05;
Marden, 2000).

The division of the main hierarchy into three possible
submodels serves two purposes. First, for samples that truly
contain only one pollen type, the corresponding monotypic
model is conceptually correct, and generally provides a bet-
ter fit than if only the “mixed” model is allowed (data not
shown). Second, fitting this model produces a posterior esti-
mate of h while simultaneously calculating the posterior
probability of each sample type. In applications aimed pri-
marily at assessing the relative abundance of C4 grains in a
sample (e.g. to compare C4 abundance across space or
time), h will be of primary interest. However, in some cases
the goal of SPIRAL may be to identify whether one pollen
type is present or absent in a sample (e.g. Urban et al.,
2010). For that purpose, the posterior model probabilities
allow explicit quantification of the probability that either
or both types are present.

We fit the model by Markov Chain Monte Carlo
(MCMC) sampling using the software package JAGS (ver-
sion 3.1.0; Plummer, 2011) interfaced through (R Develop-
ment Core Team, 2010) with the library rjags (Plummer,
2012). Briefly, the software uses a variety of MCMC algo-
rithms to sample over possible values of the unknown
parameters. For each parameter, the resulting posterior dis-
tribution (i.e. histogram of all values sampled during the
MCMC sequence) is an approximation of the true proba-
bility density function of the parameter given the dataset
of observations. Any population statistic of interest can
then be estimated from the corresponding sample statistic
for the MCMC sample. For example, we summarize h by
its posterior median, calculated as the sample median
across the entire MCMC sequence.

We used pseudodata from the herbarium samples to ver-
ify the model. We produced samples with known composi-
tion of 0–100% C4 in 10% increments, and sample sizes of
50, 100, and 150 grains. We randomly generated 1000 rep-
licates of each % C4 # sample-size combination, and fit the
model to each replicate sample to generate posterior esti-
mates of h and posterior probabilities for each sample type
(C3-only, C4-only, or mixed). For comparison, we also esti-
mated % C4 for each sample using the threshold-based clas-
sification method (i.e. Nelson et al., 2007), but with the
threshold value (the midpoint between lC3

and lC4
) up-

dated to reflect the expanded herbarium dataset. Finally,
we used the model to estimate the percent of C4 grains in
the surface sediments of sites in Africa, Australia, and
North America. For comparison of these estimates with
the relative abundance of C4 grasses on the landscape, we

used reduced major axis regression because of symmetry
in the variables on the x and y axes (Smith, 2009), and be-
cause both the x and y variables contain uncertainty
(McArdle, 1988). The fit of this regression was compared
with a 1:1 relationship following equations outlined in
McArdle (1988). These regression analyses were performed
in R (R Development Core Team, 2010).

3. RESULTS AND DISCUSSION

3.1. d13C of C3 and C4 grass pollen: an expanded training set

The expanded training set is based on pollen from 31
herbarium specimens. The number of grass pollen grains
applied to the moving wire with peak areas exceeding the
2r threshold of blanks ranges between 21 and 130 grains
per sample, with an average of 62 grains per sample (Elec-
tronic Annex EA-1). The expanded training set therefore
includes 1,921 d13C values, 1,402 of which were obtained
as part of the present study. An average of 32% of applica-
tions of pollen from herbarium samples yield a peak area
above the blank threshold, which is lower than results from
surface-sediment samples from North American lakes
(47%, Nelson et al., 2008) and Miocene/Oligocene sediment
samples (45%, Urban et al., 2010). The mean d13C values of
grass pollen range between !42.7& and !24.0& for C3

species and between !17.2& and !10.5& for C4 species
(Electronic Annex EA-1). A majority of the pollen d13C val-
ues fall within the typical d13C ranges for C3 (!34& to
!22&) and C4 (!15& to !10&) plants (Fig. 2; Electronic
Annex EA-1). However, similar to previous results, the
d13C variation is large, with many individual data points
exceeding these ranges, likely because of variability in the
magnitude and composition of the analytical blank (Nelson
et al., 2007).

The updated herbarium dataset yields somewhat
different parameter estimates than those reported by Nelson
et al. (2007). Estimates of lC3

¼ !29:6& and
lC4

¼ !13:8& are more negative than previously

Fig. 2. Histograms of d13C values from individual grains of grass
pollen (1& bins). The dashed grey line represents data from C3

grasses and the black line data from C4 grasses (y-axis on left). The
solid grey line represents the calculated probability of individual
grains being classified as C4 as a function of d13C (y-axis on right).
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determined values (–26.9& and –11.5&, respectively), lead-
ing to an estimated threshold value of –21.7& that is also
more negative than the original value (–19.2&). Variability
of d13C in the new dataset is similar between C3 and C4

grains (standard deviation = 9.5& for each), which is great-
er than previously determined for C3 (6.3&), but similar for
C4 (9.6&). Based on the updated values, the probability of
an individual grain being identified as C4 by the Bayesian
model varies smoothly over the range of possible d13C val-
ues (Fig. 2).

In terms of estimating the overall composition of un-
known samples, the pseudodata experiments show a strik-
ing improvement of the Bayesian approach. Overall,
results from samples of pseudodata randomly generated
from the herbarium dataset illustrate that Bayesian esti-
mates of % C4 grass pollen are highly accurate (Fig. 3).
For all sample sizes tested, bias (i.e. the mean deviation be-
tween the estimated and true % C4) is 65.5%, with largest
biases when true C4 composition is 80% (n = 50) or 10%
(nP 100). Average biases across all true % C4 values are
only 2.9% for sample size n = 50, and 2.4% for n = 100
and n = 150. By contrast, the original threshold-based
methodology of Nelson et al. (2007) produces accurate esti-
mates of sample composition when true composition is near
50%, but becomes increasingly biased towards underestima-
tion (overestimation) as true % C4 increases (decreases).

Maximum bias of "16% for the threshold-based approach
occurs for purely C3 or C4 samples, and average bias across
all true % C4 values is 8.2%.

The improved accuracy of the Bayesian model for sam-
ples with low and high abundances of C4 grass pollen is a
function of its hierarchical structure. The model explicitly
incorporates h, the estimated relative abundance of C4

grains in the population, as well as a model-selection
parameter representing the possibility that either C3 or C4

can be entirely absent from a sample. The MCMC ap-
proach then solves for these parameters simultaneously
while accounting for the fact that they both influence the
likelihood of an individual grain being identified as C3 or
C4. By contrast, the threshold method relies on a fixed
threshold value with classification accuracies for C3 and
C4 grains that are independent of sample composition. In
practice, the threshold method misclassifies approximately
the same percent C3 and C4 grains. Thus, near 50% true
C4 abundance, the number of misclassification errors for
C3 and C4 are similar, which results in offsetting effects on
estimated % C4 and small net bias. However, when % C4

is far from 50% the misclassification errors are imbalanced,
which results in a biased estimate of % C4.

To illustrate how the hierarchical Bayesian model over-
comes this limitation, here we consider a hypothetical sam-
ple with low (<50%) C4 abundance, and we note that the

Fig. 3. Estimated vs. true % of C4 grains in samples of pseudodata derived from the herbarium training dataset. Columns correspond to three
sample sizes (n = 50, 100, and 150 grains). Rows correspond to results from Bayesian (top) and threshold (bottom) methods. For each panel,
the mean (thick black line) and 95% confidence intervals (thin black lines) of estimates from 1000 random samples are plotted. The solid grey
lines represent 1:1 relationships.
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opposite rationale applies for samples with high C4 abun-
dance. For a low-C4 sample, the data favor a correspond-
ingly low estimate of h. Consequently, the likelihood of
any grain being identified as C4 in the model is diminished,
reflecting the reduced probability of a C4 grain being found
in a sample when the true abundance of C4 grains is low.
This in turn causes fewer C3 grains with ambiguous d13C
values to be misclassified as C4. As the true percent of C4

in the hypothetical sample approaches 0, the data will begin
to favor selection of the C3-only model, which prevents mis-
identification of C3 grains. These same mechanisms lead to
an increased proportion of C4 grains misclassified as C3 in
low-C4 samples. However, since a sample with low C4

abundance has fewer C4 than C3 grains by definition, the
net effect is an improvement in accuracy relative to the
threshold-based method.

Our Bayesian model can also be used to assess the pres-
ence or absence of C4 grasses on the landscape (Fig. 4). For
example, for pseudodata samples containing 0% C4, the
posterior probability of the C3-only model [P(C3-only)]
has a median value of >0.95, indicating strong preference
for the correct model most of the time. Similarly, for

pseudodata samples containing 100% C4, median
P(C4-only) is "0.94 indicating strong preference for the
C4-only model. Furthermore, our results suggest that the
method has substantial power to reject the C3-only model
when C4 grains are in fact present. For example, with a
sample size of 100 grains, median P(C3-only) is <0.01 for
samples with only 20% C4. Samples with C4 present in
lower abundance are more ambiguous. Among samples
with 10% C4, for instance, median P(C3-only) of a 100-grain
sample is 0.54. The ability to identify C4 presence improves
with sample size. For example, for a sample with 10% C4,
median P(C3-only) is 0.23 with n = 150 grains, compared
to 0.73 with n = 50 grains. Thus, for samples of relatively
large size (P100 grains) the practical detection limit for
reliably identifying the presence of C4 grains in a sample
is between 10% and 20% C4.

3.2. Field validation of grass-pollen d13C as a proxy indicator
of C3/C4 abundance

For the surface-sediment samples from Africa and
Australia, the number of grass pollen grains with peak

Fig. 4. Probability that each candidate model (rows: C3-only, mixed, and C4-only) is the true model for pseudodata samples of known size
(columns: 50, 100, or 150 grains) and composition (x-axis: 0–100% C4). The dashed grey horizontal lines represent p = 0.05. For each set of
pseudodata samples, the box represents the 25–75th percentiles of posterior probabilities, with median indicated by a heavy black line. The
whiskers encompass all remaining points within 1.5 times the interquartile range of the box, and points outside this range are plotted
individually.
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areas exceeding the 2r threshold of blanks ranges between
30 and 142 grains per sample, with an average of 52 grains
per sample (Electronic Annex EA-2). The total surface-sed-
iment dataset therefore includes 1,522 d13C values, 773 of
which were obtained as part of the present study. On aver-
age, 48% of applications of pollen from sediment samples
yield a peak area above the blank threshold. A majority
of the pollen d13C values fall within or between typical
d13C ranges for C3 and C4 plants (Electronic Annex EA-
2, EA-3, and EA-4). However, as with the expanded herbar-
ium dataset, the d13C variation is large.

Bayesian estimates of the median % C4 grass pollen from
the surface-sediment samples range between 0% and 99%
(Fig 5; Electronic Annex EA-2). Across the large spatial
and environmental gradients represented by our surface-
sediment sites, we expected that the abundance of C3 and
C4 grass pollen in surface sediments would be overall simi-
lar to the abundance of C3 and C4 grasses on the landscape.
Consistent with this expectation, there was a significant
relationship between the Bayesian estimates of % C4 grass
pollen in the surface-sediment samples from Africa, Austra-
lia, and North America and C4-grass abundance around
these sites (Fig. 5; n = 24, p < 0.001, r2 = 0.65). Further-
more, this relationship does not differ from a 1:1 relation-
ship (p = 0.45), indicating no consistent bias in the
representation of C3 and C4 grasses that may be associated
with factors such as pollen productivities or preservation in
sediments. We excluded one site, Rumuiku Swamp, from
the regression because it had unusually low % C4 grass pol-
len for its elevation, probably because the local swamp
environment supported a greater abundance of C3 grasses.
However, the regression remains significant even if

Rumuiku swamp is included (n = 25, p < 0.001, r2 = 0.54).
Nelson et al. (2008) found a similar relationship in North
America using the original (!19.2&) threshold method,
but lacked data from sites with <20% C4 grass abundance
on the landscape. The additional data in the present study
help to extend this range and further validate SPIRAL as
a tool for paleoenvironmental reconstruction.

3.3. Application to the paleorecord: interpreting SPIRAL
d13C data in the Bayesian framework

The improved estimates of C4-grass abundance from
incorporation of SPIRAL data into the Bayesian model
can help to assess factors (e.g. atmospheric CO2 concentra-
tions) controlling the origin, expansion, and variations in
abundance of C4 grasses in Earth’s history. To demonstrate
the application of the model to the paleorecord, we reeval-
uated a published SPIRAL dataset (Urban et al., 2010).
Briefly, Urban et al. (2010) measured d13C of grass pollen
grains in sediments spanning the early-Oligocene to mid-
dle-Miocene from sites in southwestern Europe and used
a threshold value of !19.2& (before modification for vari-
ations in d13C of atmospheric CO2 and aridity) to detect the
presence of pollen from C4 grasses. The samples in that
study contained between 63 and 100 grains. Results indi-
cated that C4 grasses appeared on the landscape of south-
western Europe no later than the early Oligocene, which
suggests that low pCO2 may not have been the main driver
and/or precondition for the development of C4 photosyn-
thesis in the grass family.

We evaluated the probability that the d13C data in sam-
ples from Urban et al. (2010) support the C3-only model in
our Bayesian analysis. We adjusted the d13C values of the
Urban et al. (2010) samples to that of pre-industrial d13C
of atmospheric CO2 (!6.3&) using estimated values of
d13C of atmospheric CO2 during the Cenozoic based on
benthic foraminifera d13C data (Tipple et al., 2010). The
probability of a C3-only model was <0.01 (indicating
>99% probability that at least some C4 grains were present)
for all samples (Electronic Annex EA-5). However, low
water availability may have caused the d13C values of C3

plants to shift in the positive direction (Ehleringer and Coo-
per, 1988). To account for the potential influence of aridity
we shifted the mean d13C value of our C3 training set by
1–3& in the positive direction, as in Urban et al. (2010).
All but one sample had a P(C3-only) of <0.01 after addition
of 1& to the mean d13C value of the C3 training dataset. Six
of the eight samples, including the oldest two, had a
P(C3-only) of <0.05 after addition of 3& to the mean
d13C value of the C3 training dataset (Electronic Annex
EA-5). The mean Bayesian estimates of % C4 grass pollen
are particularly high in the oldest two samples, consistent
with the identification of plant communities in regions
where today C4 grasses are dominant as the closest analogs
for the corresponding pollen assemblages (Suc, 1984).
Therefore, our Bayesian estimates of % C4 grass pollen con-
firm the prior conclusion of Urban et al. (2010) that C4

grasses occurred on the landscape of southwestern Europe
by at least the early Oligocene. The main advantage of
the Bayesian model over the threshold approach used the

Fig. 5. Estimated C4 coverage (%) on the landscape around lakes
in Africa (diamonds), Australia (X symbol), and North America
(triangles), compared to the abundance of C4 grass pollen (%) in
the surface-sediments of these sites, as estimated from d13C of
individual grains of grass pollen using the Bayesian model. The
major axis slope is 0.97 and the 95% confidence interval of the slope
is 0.75–1.24. The data point with an asterisk is excluded from the
regression, as explained in Section 3.2. The 1:1 line is the solid grey
line; the regression line is represented by the black dashed line.
Error bars on each data point represent 95% confidence intervals.
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context of the Urban et al. (2010) study is that the former
allows for an explicit estimate of the probability of C4

grasses being present on the landscape, which is essential
for quantitatively assessing the timing of C4-grass origin
in geological history.

Overall, our new d13C data along with the Bayesian
framework improve quantitative reconstructions of varia-
tion in the relative abundance of C3 and C4 grasses in re-
sponse to environmental changes in the paleorecord. The
flexible and hierarchical nature of the Bayesian model yields
more accurate estimation of the abundance of C4 grass pol-
len than the simpler, but biased, threshold approach, and
also provides posterior model probabilities that enable
hypothesis testing. Thus we recommend that future esti-
mates of C3 and C4 grass abundances should, when possi-
ble, be made using Bayesian methods rather than
threshold-based counting approaches. Bayesian analyses
have begun to have important applications in the interpre-
tations of geochemical isotope data. For example, recent
studies have used Bayesian analysis to develop probabilistic
region-of-origin assignments in wildlife and human foren-
sics (Wunder, 2010; Kennedy et al., 2011), enhance radio-
carbon-age modeling for sediment records (Blaauw et al.,
2007; Blaauw and Christen, 2011), and enable detection
of climate-related shifts in elemental and isotopic abun-
dances in peat cores (Gallagher et al., 2011). The increased
use of Bayesian approaches promises to transform the envi-
ronmental interpretations of geochemical data, especially in
cases where small samples are involved. We expect that
Bayesian analyses will become a mainstay of geochemistry.
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