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ABSTRACT

The potential for model–data synthesis is growing in impor-
tance as we enter an era of ‘big data’, greater connectivity and
faster computation. Realizing this potential requires that the
research community broaden its perspective about how and
why they interact with models. Models can be viewed as
scaffolds that allow data at different scales to inform each
other through our understanding of underlying processes.
Perceptions of relevance, accessibility and informatics are
presented as the primary barriers to broader adoption of
models by the community, while an inability to fully utilize
the breadth of expertise and data from the community is a
primary barrier to model improvement. Overall, we promote
a community-based paradigm to model–data synthesis and
highlight some of the tools and techniques that facilitate this
approach. Scientific workflows address critical informatics
issues in transparency, repeatability and automation, while
intuitive, flexible web-based interfaces make running and
visualizing models more accessible. Bayesian statistics pro-
vides powerful tools for assimilating a diversity of data types
and for the analysis of uncertainty. Uncertainty analyses
enable new measurements to target those processes most
limiting our predictive ability. Moving forward, tools for
information management and data assimilation need to be
improved and made more accessible.
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INTRODUCTION

Recent scientific advances, as well as the underlying currents
of technology in society, are changing the way that we think
about and interact with models and data. New technologies
such as smartphones and tablets, cellular data networks,
cloud computing and virtual machines are increasingly
making information available at our fingertips and moving
computing away from the desktop. Parallel computing, once
the territory of supercomputing centres, can now occur on a
handheld device, while the demands for faster graphics by
gamers have led to new approaches to graphics processing
unit (GPU)-based scientific computing. Data are increasingly
accessible and interconnected, and advances in scientific
technologies, from gene sequencing to satellite remote
sensing, have led to an explosion in data quantity (Baraniuk

2011). Some have argued that we are entering a fourth era of
data-intensive ‘eScience’ (Hey, Tansley & Tolle 2009), and
whether or not this is true it is clear that scientific synthesis is
more important and more attainable than ever before, and
that many researchers are shifting beyond the ‘my single data
set’ approach to science.

While other reviews in this special issue have highlighted
the state-of-the-art in plant models across a wide range of
disciplines, our objective is to discuss more generally new
approaches to how models interact with data and how
researchers interact with models. Our aim is to broaden the
perspective of the general research community about how
and why they interact with models, to promote the idea of a
community approach model–data synthesis, and to highlight
some of the tools and techniques that can make this happen.
We will be upfront that this is not meant to just be a review,
but also a call for a new way of viewing the interactions
between models and data, and between empiricists and mod-
ellers. We focus primarily on terrestrial ecosystem models,
crossing scales from individual-level ecophysiology to global
vegetation, as this is our area of expertise. However, most of
the model–data concepts presented translate across the dif-
ferent levels of biological organization. Because of the large
spatial and temporal scales involved, and the diversity of
biological, chemical and physical processes represented, eco-
system models represent a particularly complex class of
models and model/data issues (Dietze & Latimer 2011).
Therefore, ecosystem modellers have had to confront many
of these issues earlier than other subdisciplines. That said,
there are specific subtopics, such as the archiving and infor-
matics of genomic data, where other disciplines are more
advanced.

As mentioned earlier, one of the great opportunities in
modern science is the explosion in the volume and diversity
of data that are being generated and made available.
However, for many scientific questions no single data source
provides a complete picture of the processes we are inter-
ested in. For example, biometric inventory data, eddy-
covariance towers, soil respiration chambers and numerous
remote-sensing technologies each provide abundant but
partial information about the terrestrial carbon cycle. Tradi-
tional research focused on a small number of data types at
one site, but at present even large syntheses only make use of
a subset of the available data. For many critical global change
and carbon cycle questions, we are more limited by our
ability to use the data that have already been collected than
by the need for new data. Many modern data sources, from
next generation sequencing to remote sensing, are highly
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automated and generate unprecedented volumes of data.
Beyond automated data, there also exists critical information
scattered across smaller data sets, often in non-standardized
file formats and in the hands of individual investigators, that
make up the ‘long tail’ of data. These data represent the
majority of research effort but are near impossible to synthe-
size without a bottom-up ‘community’ effort. In addition to
synthesizing data, there is also growing recognition of the
importance of characterizing the uncertainties in our data
(Clark 2007). Not only do we need to be able to characterize
our confidence in models and data for them to be useful
(Clark et al. 2001), but how variance is partitioned can quali-
tatively change model predictions (Clark et al. 2007) and esti-
mates of model parameters (Trudinger et al. 2007). Finally,
data collection is currently driven largely by intuition (we
measure what we feel to be important) or by technology (we
measure what is easy to measure) rather than a quantitative
understanding of what data will most reduce uncertainties
and how much data are required to do so. In the following
sections, we will discuss the current state of approaches for
model–data synthesis and strategies for moving forward on
improving tools and the way that users interact with them.

MODELS AS A SCAFFOLD

The traditional approach to the interface between models
and data has focused on calibration and validation, and as
typified by the oft-repeated expression ‘confronting models
with data’ (Hilborn & Mangel 1997). However, societal
demands have driven a push for quantitative forecasts (Clark
et al. 2001) and for ecology to become a more predictive
science (Moorcroft 2006). Even outside concerns over global
change in ecology, the era of ‘big data’ opens up the possibil-
ity of syntheses that were not previously possible. One of the
major challenges of data synthesis and prediction is that data
sets that operate on different scales cannot ‘talk’ to one
another directly (e.g. leaf-level gas exchange, remote sensing
and palaeoecological proxies), but all provide us with partial
information about the underlying biological processes.
However, models can represent processes at a hierarchy of
spatial, temporal, phylogenetic and organizational scales, and
encapsulate our current understanding of a system. Here we
present the paradigm of using models as a scaffold for fusing
different data sets. In this context, our process understanding
provides the capacity to move across scales. Models thus
serve as the natural extension of synthetic efforts that have
evolved from qualitative reviews to numerical meta-analysis.

As an example, consider the terrestrial biosphere, which
remains one of the largest sources of uncertainty in climate
change projections (Friedlingstein et al. 2006; Purves &
Pacala 2008). Despite an abundance of data, no one data
source provides a complete picture of the carbon cycle, and
therefore multiple data sources must be integrated in a sen-
sible manner. Process-based ecosystem models represent an
ideal scaffold for integrating these data streams because they
represent multiple processes in ways that capture our current
understanding of the causal connections across scales and
among data types. However, current terrestrial ecosystem

models only make use of a subset of the available data and
remain inaccessible to much of the scientific community (see
Barriers to Modelling below). The lack of integration of data
in models is a major hindrance to reducing uncertainty in
climate change projections, and separates the information we
have gathered from the understanding required to inform
policy and management. Addressing this need requires the
development of tools able to accommodate a diverse array of
data operating across a large range of spatial and temporal
scales and with different levels of associated uncertainty.

There are a number of significant model–data challenges
associated with improving synthesis and prediction
(McMahon et al. 2009). Process models are complex, non-
linear and computationally demanding. They suffer from
issues of equifinality, whereby many combinations of param-
eters can predict the same net outcome (Luo et al. 2009;
Williams et al. 2009), and latent variables, where models infer
the dynamics of internal state variables and processes that
are not directly observable. Model–data synthesis requires
that we be able to combine multiple types of data operating
on different scales and of different types (literature versus
observation versus experiment). Both models and data
possess multiple types of error, and correct inference can
depend strongly on how errors are treated and partitioned
(Clark et al. 2007; Trudinger et al. 2007).

There are a number of statistical techniques available to
synthesize models and data, and to account for multiple types
of data and uncertainty. These methods are predominantly
Bayesian in their approach because the Bayesian perspective
offers a number of conceptual advantages over traditional
methods when it comes to fitting complex models (Clark
2005). Firstly, Bayesian methods provide probability distribu-
tions as their output, rather than point estimates, which
makes it straightforward to characterize uncertainty and
transfer it into further analyses and forecasts. Secondly,
because Bayesian analyses are based on conditional prob-
abilities, they provide a flexible framework for fitting
complex models with multiple data constraints and multiple
sources of uncertainty. Each small part of a complex analysis
is expressed as a probability conditioned on all other vari-
ables in the analysis, allowing complex analyses to be built up
by combining these conditional probabilities. Thirdly, Baye-
sian statistics is an inherently sequential approach to infer-
ence, whereby we are able to incorporate earlier information
and update estimates based on new information. Returning
to our analogy of model as scaffold, this means that as we
build up our analysis, adding new study sites, new experi-
ments, new types of data or even just the latest year of data
from a long-term study, we do not need to start our analysis
from scratch each time.

BARRIERS TO MODELLING

Given the importance of models to science, one could ask the
question, ‘Why don’t all researchers use models?’ In this
section, we will discuss some of the barriers to modelling and
how they might be reduced. In our experience, there are
three major barriers to modelling: accessibility, relevance and
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informatics (Table 1). By accessibility, we refer both to the
perception that models are too complicated or that they
require expert training to use. Many biologists believe that
models are too complicated, which may be related to more
general patterns of poor communication between theory and
experimentation in biology (Fawcett & Higginson 2012).
However, from our experience, once a model is explained to
a subject-matter expert they frequently assert that the same
model, which was previously perceived as too complicated, is
actually too simple. Indeed, we firmly believe that an expert’s
conceptual model of how their system works is much more
complicated and nuanced than most mathematical models.

There are multiple reasons for the simplicity of models.
While simulation models are different from theoretical
models, in that they frequently seek predictability rather than
pure abstraction, they still require generality. The result of
this is that a novel finding, which is frequently first demon-
strated at one place in one system, is not easy to incorporate
into a model until sufficient data have accumulated to cali-
brate the process more generally. However, even after taking
this into account, models lag behind our current understand-
ing of a system for two important and interrelated reasons.
The first, which we dub the assimilation challenge, is that, as
stated earlier, models are not yet taking full advantage of the
available data and insight. The second, which we dub the
community challenge, is that in biology modellers are greatly
outnumbered by empiricists and lack the time and resources
to assimilate the vast array of current and historical experi-
ments and observations. Furthermore, the nature of synthetic
work requires that modellers be academic generalists rather
than the expert in any particular subdiscipline. These two
challenges overlap considerably in the ‘long tail’ data
problem, whereby modellers lack both the expert’s knowl-
edge and their data. We believe that solving these challenges
requires not only new tools to make models and data more
accessible, but a new interdisciplinary commitment to commu-
nity involvement in model–data synthesis and the evaluation
of models by subject-matter experts.

The second half of the accessibility problem is the percep-
tion that models require expert training to use. This percep-
tion is absolutely true. However, to make an analogy, driving
a car requires training and it is dangerous to drive without
experience or an understanding of the rules of the road. Still,

the training required to drive a car is very different from the
training required by a mechanic to repair a car or by an
engineer to design a car. Right now, the primary people
‘driving’ models are their mechanics and engineers. Part of
the solution lies in the need for more opportunities for multi-
disciplinary training that integrates data collection, statistics,
modelling and data assimilation. Successful examples of such
training are the ‘Summer Course in Flux Measurements and
Advanced Modeling’ (http://www.fluxcourse.org) and the
PalEON summer course ‘Assimilating long-term data into
ecosystem models’ (http://www.paleonproject.org), which
integrate modelling and data assimilation with carbon flux
and palaeoecological measurements, respectively (Fig. 1).
Another large part of the solution is the need to make mod-
elling tools more accessible – to make models easier to drive.

The second barrier to modelling is relevance. Many
researchers understand the importance of models but, given
the multitude of other demands on their time, do not see how
learning to use models helps them understand their system
better or how models can help them in the field or the labo-
ratory. Here it is useful to view models as working hypotheses
– as a quantitative expression of what we currently know
about how a system works. As such, models allow us to ask
non-trivial hypotheses (Hilborn & Mangel 1997; Anderson,
Burnham & Thompson 2000). For example, we know that net
primary production (NPP) responds positively to nitrogen
addition in almost all systems (LeBauer & Treseder 2008).
Yet, nitrogen addition experiments continue to use ‘no
response to N’ as a trivial null hypothesis. The interesting
question is not whether there is a response to N, but whether
the response is different from our expectation given our
current understanding of plant physiology and biogeochem-
istry. Not only can models provide sensible competing alter-
native hypotheses, but also Bayesian credible intervals on
model projections provide a means of formally testing these
hypotheses. In addition to testing hypotheses, uncertainty

Table 1. Barriers to modelling

Accessibility
Perceptions of model complexity
Need for more intuitive interfaces
Need for ‘driver’ training

Relevance
Ability to use models for non-trivial hypothesis

testing
Experimental design: what to measure, where,

when and how much
Informatics

Data to run models
Data to evaluate and improve models
Visualization and analysis of model outputs

Figure 1. Students at the PalEON summer course ‘Assimilating
long-term data into ecosystem models’ spend an intensive week
learning about palaeoecological data and measurements, Bayesian
statistics, ecosystem models and data assimilation. Photo credit by
John W. Williams.

Communication between models and data 1577

© 2013 John Wiley & Sons Ltd, Plant, Cell and Environment, 36, 1575–1585



analyses of models can be used to quantitatively determine
what processes drive system responses, where the gaps are in
our scientific knowledge of these processes, and how variable
these processes are and at what scale (LeBauer et al. 2012).
This information can be formally incorporated into power
analyses and economic design optimization to help inform
what measurements would most efficiently reduce overall
uncertainties about a process, what sample size is required,
and how the sampling should be done (e.g. how many study
sites versus how many samples per site) (M. Dietze et al.,
unpublished data).

The final barrier to modelling is informatics. Many models
require massive amounts of information about the systems
they describe in order to operate because computational
models, unlike theory, aim to describe real plants in a real
environment. For example, a terrestrial ecosystem model
might require that the user have information about a dozen
meteorological variables at an hourly time step, soil texture
profiles, soil carbon and nitrogen pools, vegetation composi-
tion and structure, topography, land use trajectories, nitrogen
deposition, ozone concentration and disturbance frequen-
cies. Each input may come from a different source, in a dif-
ferent file format, and may require gap filling, interpolation
or other forms of synthesis and processing so that the model
can read it. All these data and effort are required just to run
the model forward, and need to exist at whatever spatial
grain (pixel size) and extent the user is interested in. If one is
interested in model–data fusion, then in addition there may
be a score or more of different data types being assimilated,
each available at a specific spatial and temporal resolution
and in its own file format, as well as the need to run the model
anywhere from dozens to hundreds of thousands of times
depending upon what method is being used for data assimi-
lation. Each of these model simulations may generate dozens
of output variables, each written out numerous times a day
for each pixel across the whole spatial and temporal domain
of the run. These outputs need to be visualized, compared
with data, and otherwise interpreted. Trying to manage these
flows of information into and out of models is like drinking
from a fire hose. From our experience, of the three barriers to
modelling it is teaching students how to manage information
that is the major bottleneck for training and research. Fortu-
nately, thanks to advances in scientific workflow software,
data archiving and interoperability, this problem is surmount-
able. Even more progress is anticipated with future advances
in informatics and cyberinfrastructure. The remainder of this
review focuses on recent and ongoing work that addresses
these three barriers to modelling and the idea of a model as
a scaffold.

TRANSPARENCY, QUALITY ASSURANCE
AND REPEATABILITY

If there is one truth that came out of the 2009 University of
East Anglia Climatic Research Unit (CRU) email contro-
versy, also known as ‘Climategate’, it is that the bar has been
raised on the need for transparency and repeatability with
data processing and models. Unlike running an experiment in

the physical world, computer outputs should be easy to rec-
reate by any reasonably skilled user, allowing one to verify
results, check assumptions and build upon past research. In
practice, this is rarely the case. Even with a task as simple as
reporting a statistical test, the exact software used is often not
reported, the software is not always still available, and back-
ward compatibility is not always guaranteed (Ellison 2010).
For proprietary software, the exact computation being done
is typically inaccessible and unverifiable. Therefore, for more
complex models the archiving of computer codes is a neces-
sary condition for repeatability and transparency. However,
archiving code is not sufficient. The reason is that this does
not capture the informatics of where the inputs came from,
how they were processed, how sets of model runs were com-
pleted, and how the model output was post-processed and
visualized. In other words, transparency and repeatability in
data processing and modelling require that we capture the
full workflow. Fortunately, scientific workflow management
software has been an active area of development over recent
years and there are a number of options to choose from
(Curcin & Ghanem 2008). These systems generally give the
user the capacity to interact with workflows using graphical
analytic webs that depict different modules and actions, with
arrows between them representing flows of information
(Boose et al. 2007). Popular workflows in plant biology
include Kepler (https://kepler-project.org), SciWalker
(Ellison et al. 2006),Taverna (http://www.taverna.org.uk) and
Cyberintegrator (http://isda.ncsa.uiuc.edu/cyberintegrator/).
Kepler is particularly popular among ecologists since its
development originated at the National Center for Ecologi-
cal Analysis and Synthesis (NCEAS). Taverna is a UK
project that tends to be more widely used for bioinformatics.

Another critical function of workflows is provenance
tracking (Reichman, Jones & Schildhauer 2011). Data prov-
enance refers to the tracking of data from its origins through
all the processing steps and analyses. Part of provenance is
carrying the appropriate metadata forward with the data.
Another important part is knowing exactly which version of
a data set was used in an analysis or model. When data are
curated by hand it is extremely easy to end up with multiple
versions of files and analyses and it can be very difficult to
later reconstruct what precisely was done. These problems
are multiplied with models where larger volumes of outputs
can be generated quickly and generating numerous model
runs is frequently part of an analysis.

ACCESSIBILITY

The above discussion of workflows leads naturally into dis-
cussions of accessibility, as graphical workflows make data
and models more transparent and repeatable, and are gener-
ally more accessible to the non-expert than reams of compu-
ter code. They make it easier to see the ‘big picture’ and
compartmentalize a lot of the details of the model–data
process within modules. More generally, there is a clear need
for tools that make models more accessible. These tools need
to deal with the challenges in informatics and statistical infer-
ence surrounding models as much as they do with running
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the models themselves. One thing that has become apparent
from simple statistical software like JMP (http://
www.jmp.com) is that we make the most use of the tools
that are easy to use [e.g. analysis of variance (ANOVA)].
However, such tools need to accommodate the need for flex-
ibility that is part of doing novel science and the need for
automation required among expert users. Traditional soft-
ware engineering approaches of designing graphical user
interfaces (GUIs) may succeed in making models more
accessible at the cost of flexibility and automation. Indeed,
from personal experience, GUIs designed by biologists often
fail on all fronts, being hard to use by the novice, hard to
maintain by the developer, and perpetually lagging behind
the newest features in the model. Web-based interfaces, on
the other hand, are often more intuitive to current users,
easier to maintain, and require less modification of the under-
lying model. Overall, there is a need for modellers to be
conscious of design issues, and to work with those who have
greater expertise in making interfaces that are intuitive,
provide user feedback, and project the correct conceptual
model of how the system works (Norman 2002).

In addition to designing better interfaces, there is often a
significant challenge to novice modellers in learning how to
compile and install software, and porting code from one
system to another can challenge even expert users. These
challenges are multiplied when one is dealing not just with a
model, but with the workflows for analysis and data assimi-
lation being advocated here. Virtualization provides the
potential to share not just software with users, but whole
integrated and fully functional systems of models, data, work-
flows and databases. Because a virtual machine brings its
operating system with it, the user sees the exact same envi-
ronment regardless of the host operating system. Finally, a
number of cloud-computing services, such as Amazon EC2
and Google Compute Engine, let you run virtual applications
in a scalable environment without having to invest in the
hardware or information technology (IT) of running your
own compute cluster.

DATA ASSIMILATION

The relationship between models and data in biology is
changing rapidly as the statistical methods for data assimila-
tion, which have been commonplace in other scientific disci-
plines such as numerical weather prediction, are being picked
up by biologists and adapted to deal with the differences
between the physical and natural sciences. Past approaches
to model parameterization (the process of putting hard
numbers on all the coefficients in a model) at times lacked
transparency. The process of model tuning and informal cali-
bration based on the literature and expert opinion gave rise
to inverse modelling approaches and numerical optimization
(e.g. Medvigy et al. 2009). These approaches have been fol-
lowed by Bayesian approaches to model–data fusion capable
of a richer accounting of uncertainties in model parameters
and data. Interestingly, Bayesian approaches have now come
full circle in acknowledging the importance of the scientific
literature and expert opinion, but now formalize the process

through meta-analysis and expert elicitation for defining
priors (LeBauer et al. 2012).

From the perspective of ecosystem models, there have
been a number of recent reviews and perspectives published
on data assimilation techniques and their potential (Luo et al.
2009, 2011; Williams et al. 2009; Keenan et al. 2011; Peng et al.
2011; Zobitz et al. 2011; Hartig et al. 2012). These techniques
can be broadly grouped into two approaches: batch methods
that assimilate a whole data set at once, and sequential
methods that assimilate time series data in chronological
order.The most common batch method is to employ the same
Markov Chain Monte Carlo (MCMC) techniques that are
used in fitting Bayesian statistical models, only treating the
computer model as a ‘black box’ (Braswell et al. 2005; Sacks
et al. 2006; Xu et al. 2006; Zobitz et al. 2008; Keenan et al.
2012).The general approach here involves iteratively propos-
ing a new set of model parameters, running the model with
those parameters and comparing model output to data. The
algorithm then accepts or rejects the new parameters with
some probability that depends upon the likelihood of gener-
ating the observed data under these parameters and the prior
probability that those parameters are biologically realistic. In
this way, the MCMC algorithm generates random samples
from the parameter distributions that can be used to approxi-
mate the full distribution.

Applications of the sequential approach to data assimila-
tion generally employ some flavours of Kalman Filter, most
commonly the ensemble Kalman filter (EnKF) (Williams
et al. 2005; Gove & Hollinger 2006; Quaife et al. 2008; Gao
et al. 2011). With sequential approaches, the probability dis-
tribution of model predictions from the previous time point
to the current one is treated as the prior distribution. The
prior distribution is then updated based on the likelihood of
generating the observed data, and the resulting posterior
distribution serves as the initial conditions for the next
forecast step.

For those seeking greater technical detail beyond the
aforementioned ecological reviews, there are a number of
more general reviews (Wikle & Berliner 2007; Evensen
2009a) and textbooks (Lewis, Lakshmivarahan & Dhall 2006;
Evensen 2009b) on the subject; however, there are not yet
any detailed texts that take a biological perspective. This is
significant because there are some non-trivial differences
between the data assimilation in the physical and natural
sciences. Foremost is that data assimilation in the physical
sciences benefits from models that encapsulate physical laws
where the equations and parameters are known, but where
the predictions may be highly divergent with time, or even
chaotic, such as with weather forecasting. By contrast, most
biological systems appear to have stabilizing feedbacks that
make them predictable at certain scales in space and time
(e.g. succession). In the physical sciences, data assimilation is
primarily focused on estimating the state of the system, in
essence nudging models to keep on track with observations.
This state-variable data assimilation problem is different
from the typical biological application, where the equations
and parameters are statistical approximations of diverse,
complex phenomena, and the most common concern is
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reducing parameter uncertainty. That said, there is a large
potential utility for state-variable data assimilation in biology
for those problems where the primary interest lies in estimat-
ing the state of a system subject to multiple or indirect data
constraints (Fig. 2). Overall, while the physical data assimila-
tion literature is an invaluable starting point, and there are
excellent tools available to assist with the process, such as the
NCAR DART (Data Assimilation Research Testbed, http://
www.image.ucar.edu/DAReS/DART), there remain signifi-
cant data assimilation challenges that are unique to biology.

One of the major strengths of formal data assimilation
techniques is that multiple data types can be assimilated
simultaneously. Indeed, because of issues of parameter iden-
tifiability and equifinality (many parameter combinations
giving the same net prediction), the assimilation of multiple
data sets is often necessary to ensure that models are not
getting the right answer for the wrong reasons (Luo et al.
2009;Williams et al. 2009).There are a number of examples of
recent work with ecosystem models that have assimilated
some combination of field measurements, eddy covariance
and remote sensing (Xu et al. 2006; Quaife et al. 2008; Gao
et al. 2011;Weng & Luo 2011; Keenan et al. 2012), although to
our knowledge, a robust synthesis across all three data types
has not yet occurred. It is also noteworthy that the majority
of data assimilation work with ecosystem models occurs
using simple models, as data assimilation with larger and
more complex terrestrial biosphere models presents non-
trivial computational challenges. Another challenge when
synthesizing multiple data streams is how to prevent abun-
dant, automated data sources from swamping out the signal
from other less abundant, but often very valuable, data
sources. We suggest elsewhere (M. Dietze, unpublished data)
that much of the solution lies in the details of how variance is
partitioned. For example, many automated data streams such
as eddy covariance are highly autocorrelated on multiple

temporal scales. Failure to account for this can also lead to
qualitative mistakes in identifying the processes that drive
model error (Dietze et al. 2011). Indeed, even when just
assimilating a single data stream, the partitioning of variance
has a larger impact on data assimilation than the choice of
assimilation method (Trudinger et al. 2007). Finally, it is
important to take to heart the warning that ‘data-model inte-
gration is not magic’ (Classen & Langley 2005), but just one
tool that needs to be part of the larger process of evaluating
models and bringing modellers and experimentalists closer
together.

REPRESENTATION OF UNCERTAINTY

As discussed in the Data Assimilation and Models as a Scaf-
fold sections, the way that uncertainty is represented in
models can have a large impact on inference and prediction.
There are numerous sources of uncertainty in process-based
models and to date most modelling exercises only accom-
modate a small fraction of these processes, if incorporating
any at all. It is still not uncommon to see model projections
that lack any confidence interval or standard error around
the model output. However, it is easy to be fooled into
believing that an accurate model is a precise one. We have
generated model predictions that passed beautifully through
both calibration and validation data, only to be disappointed
when further computation revealed a confidence interval
that spanned two orders of magnitude. Complex models
often contain numerous parameters – many more than typi-
cally used in statistical models such as multiple regressions –
and thus parameter uncertainty is frequently the dominant
source of uncertainty. Because Bayesian approaches to data
assimilation generate posterior parameter distributions as
their output, it is conceptually straightforward to propagate
parameter error by sampling many sets of parameter values

Figure 2. Conceptual example of state-variable data assimilation. Imagine an ensemble of model runs that predict the ecosystem dynamics
for time t and incorporate uncertainty in drivers, state variables and model parameters. Panel (a) gives a hypothetical scatter plot of such an
ensemble containing one output variable that maps to an observable quantity (e.g. fraction of the community that is conifer) and one that is
unobservable (carbon flux). In data assimilation, the model output is treated as the prior and panels (b) and (c) give the model-ensemble
priors for the two variables (dashed lines) that are just the marginal distributions from panel (a). Consider now the case where observations
suggest a higher conifer abundance than the model (panel b solid line) but there is still uncertainty in this estimate. The data assimilation
posterior estimate of conifer abundance (panel b, red) combines both the model and the data. Furthermore, because of the covariance
between composition and carbon flux the composition data also constrain the carbon flux estimate (panel c, red). The posterior distributions
from this time step then serve to generate the ensemble of model inputs for the next time step.
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from their joint posterior distribution, running the model
many times with these parameter sets, and then using the
distribution of model outputs to estimate the mean, confi-
dence interval, variance, etc. This ensemble approach to
error propagation is a simple and statistically valid approxi-
mation to the transformation of parameter error into model
output, with the only real cost being computation, as the
accuracy of the approximation clearly increases with the size
of the ensemble. Alternatively, there are analytical methods
for doing these transformations – these in fact are the origin
of the error estimates and confidence intervals in classical
statistical models such as regression – but they require the
ability to calculate the full Jacobian matrix (the matrix of
derivatives between every model parameter and every
model output), which are not generally available or easy to
generate for complex computer models (Casella & Berger
2001).

A second major source of uncertainty is the choice of
model structure. The typical way of estimating this error is to
use an ensemble of different models to make predictions. A
very common phenomenon with multi-model ensembles is
for the mean across models to provide a more accurate pre-
diction than most, if not all, of the individual models
(Schwalm et al. 2010; Dietze et al. 2011). In some sense, the
errors in modelling assumptions tend to cancel each other
out; however, one thing that is generally not accounted for is
the fact that models are frequently not independent of one
another and therefore multi-model ensembles likely under-
estimate the true structural uncertainty. This lack of inde-
pendence arises from the fact that modellers clearly learn
from the successes and failures of one another, borrowing
approaches and sometimes even large chunks of code. From
a scientific perspective this is a good thing, even if it makes
the statistics a bit more complicated.

Parameter and structural errors are the most common
sources of errors currently being addressed, but by no means
the only sources (McMahon et al. 2009). In addition, there is
process error in the models and measurement error in the
data. With classical methods these are often lumped together
into a ‘residual’ error, but it is important to distinguish them
because process error propagates forward into predictions
while measurement error should not. The incorporation of
process error is currently rare in models, but in a regression
context this is analogous to the distinction between a confi-
dence interval, which accounts for parameter uncertainty,
and a predictive interval, which includes parameter and
residual error. This distinction is important because as the
volume of data increases the width of the confidence interval
goes to zero but the predictive interval does not. In addition,
model parameters may vary with space, time, plot, taxa, indi-
vidual, etc. in a consistent fashion – what in a regression
context would be either correlated or uncorrelated random
effects. Accounting for these sources of variability, which are
quite different from random noise in the process, can quali-
tatively change the outcome of a model prediction. For
example, within a forest community model accounting for
random effects in time and at the individual tree level
changed the coexistence dynamics of two species from

competitive exclusion to coexistence with the previously
excluded species becoming the more dominant (Clark et al.
2007). In addition to uncertainty in the model itself, there can
also be considerable uncertainties in the inputs to the models.
Here we need to distinguish between uncertainties in the
initial conditions, which are often large but typically diminish
in influence over time, from uncertainties in the model
drivers, such at the meteorology driving an ecosystem model.
For drivers, it is important to get not just the mean, but also
the variance structure, correct as the variability can have as
much impact on model projections as the mean (Medvigy
et al. 2010). The uncertainty in meteorology increases when
moving from a study site, where the main source of error is
gaps in the data, to regional scales where one has to work
with derived data products (Spadavecchia & Williams 2011).
It also increases when one moves back in time before instru-
mental records or forward with different climate change
scenarios.

In addition to propagating uncertainty through models, it is
important to understand and explain the sources of error and
variability in models. This helps us better understand where
errors can be reduced, which sources of error need to be
propagated into predictions, and where systems are unpre-
dictable. Unpredictability can arise in situations where sto-
chasticity dominates the process, such as long-distance seed
dispersal (Clark et al. 2003), or it can arise if the dominant
source of variability is one that we have no capacity to
reduce. Some systems can also be inherently unpredictable
due to the chaotic nature of the system, or computationally
irreducible, whereby the dynamics of the system needs to be
represented with great detail and cannot be approximated
with simple models (Beckage, Gross & Kauffman 2011).

For those problems that do have some degree of predict-
ability, attributing uncertainty to specific processes is a
critical part of the feedback loop between models and meas-
urements. Uncertainty analyses identify which processes
need further study or additional data constraints, and can be
used to prioritize field and laboratory work (LeBauer et al.
2012). The information from uncertainty analyses can be for-
mally incorporated into experimental design in order to
determine what sample sizes and sampling designs would
most efficiently reduce uncertainty. There are a suite of
methods that can be used for sensitivity and uncertainty
analyses (Saltelli et al. 2008). One common approach is the
use of Monte Carlo sensitivity analyses that are very similar
to ensemble approaches to error propagation discussed
earlier. Specific methods vary based on whether parameters
are varied individually or all at once. In the latter, variance is
usually partitioned statistically, such as with an ANOVA
approach or by using flexible statistical models such as
splines, GAMS, or Gaussian process models to estimate the
response surface (Petropoulos et al. 2009). For the former, the
uncertainty contribution is assessed by the incremental
change in either the model output (for a sensitivity analysis)
or the model predictive uncertainty (for an uncertainty
analysis) as each term is varied either individually (holding
all others constant) or sequentially (incrementally adding
a new term). In all cases, the bottleneck for uncertainty
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Figure 3. Sample screenshots of the PEcAn interface. The upper panel demonstrates map-based tools for setting up a model run, while the
lower panel shows tools for visualization and evaluation of model performance. In this figure, the annual cycle of gross primary productivity
is plotted with the grey interval showing the diurnal range and the black points the daily mean.
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analyses is generally in knowing the probability distributions
associated with each source of uncertainty (Verbeeck et al.
2006).

PUTTING THINGS TOGETHER: THE PREDICTIVE
ECOSYSTEM ANALYSER (PEcAn)

To conclude, we will consider a case study that provides an
example of how the various threads of discussion can be
pulled together within an integrated system.

Understanding climate change responses requires tighter
integration between modelling and data collection. However,
achieving this integration requires the development of acces-
sible tools that put the power of models in the hands of the
broader research community.We initiated the PEcAn project
(http://pecanproject.org) to meet the need for ecosystem
modelling in general, and data assimilation in particular, to
be more accessible, transparent and repeatable. PEcAn is
also an attempt to begin to address and automate many of the
informatics challenges that slow or impede synthesis and
prediction. PEcAn is not a model itself, it is instead an ecoin-
formatics toolbox and a set of workflows that wrap around an
ecosystem model and manage the flow of information in and
out of regional-scale terrestrial biosphere models (LeBauer
et al. 2012). PEcAn provides the user with intuitive web-
based interfaces that run multiple ecosystem models, visual-
ize model–data comparisons and interact with databases and
workflows (Fig. 3). The system employs an iterative Bayesian
approach to model calibration that updates prior distribu-
tions with a meta-analysis of compiled trait data. These dis-
tributions are further updated through multiple rounds of
parameter data assimilation against observational data, such
as eddy-covariance fluxes of carbon and water, soil respira-
tion and forest inventories (Davidson 2012; Wang, LeBauer
& Dietze 2012). PEcAn automates analyses aimed at under-
standing and propagating uncertainties through these
models. Ensemble forecasts propagate parameter uncertain-
ties, while sensitivity analyses and variance decomposition
attribute the sources of model uncertainty to specific model
processes and parameters. Power analyses and optimal
design tools formally estimate the quantity and types of new
data that need to be collected to most efficiently achieve a
given reduction in uncertainty, including within- versus
across-site sample sizes. These tools enable more effective
feedbacks between models and field research. In addition to
making the PEcAn source code open source, the system is
also available as a fully functional virtual application that
runs on a wide range of operating systems, meaning users can
be up on running quickly and whole projects with their full
provenance can easily be moved around, shared with col-
leagues and archived. The system can also interact with
remote high-performance computing environments, allowing
model runs to be done in parallel on remote clusters.

Looking forward, the ongoing development of PEcAn
seeks to build upon the iterative nature of the Bayesian
approach, and combine it with distributed computing
approaches, in order to create an interconnected environ-
ment that ‘learns’ each time an individual user uses PEcAn to

make a comparison between models and data. In keeping
with the idea of model as scaffold, there has been a steady
increase in the diversity of data types that can be assimilated,
and moving forward there is a particular focus on remotely
sensed data and the ‘long tail’ data provided by individual
researchers. We are also steadily increasing the number of
model inputs and data constraints that are managed auto-
matically, pulling in and processing resources off the web.
More ecosystem models are slowly but steadily being added
to the list of models supported by the system. Ultimately,
PEcAn aims to make ecosystem modelling and data assimi-
lation routine tools for answering scientific questions and
informing policy and management.

DIRECTIONS AND CONCLUSIONS

As stated in the Introduction, the goal in reviewing recent
advances in model–data informatics and assimilation was to
present a new perspective about how researchers are inter-
acting with models, and how and why we as a research com-
munity could further reimagine this relationship. A lot of
nitty-gritty work remains to be done in the process of build-
ing tools that are more accessible and capable of assimilating
a wider range of data and broader range of uncertainties.
There are also conceptual advances that need to occur in the
repurposing of data assimilation techniques for biological
problems. However, perhaps the most essential part of the
work to be done is building a community approach to model–
data synthesis. Biologists have long been more sceptical of
models than their physical science peers, but model-driven
synthesis is a critical component of conducting science and
applying science to real-world problems. To build a commu-
nity approach requires that empiricists play a more active
role in confronting models with data, but this new role has
multiple benefits in helping to refine hypotheses, support
experimental design, and shorten the loop between measure-
ment and synthesis. For this to occur, there will be a need for
significant changes in how all students are trained in infor-
matics, statistics and modelling (Fig. 1). However, it bears
repeating that the training required to use these tools is
different from that required for those who build them.
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