
Scale dependence in the effects of leaf ecophysiological traits on
photosynthesis: Bayesian parameterization of photosynthesis
models

Xiaohui Feng1 and Michael Dietze2

1Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; 2Department of Earth and Environment, Boston University, Boston, MA 02215, USA

Author for correspondence:
Xiaohui Feng
Tel: +1 217 333 1632
Email: feng22@illinois.edu

Received: 26 April 2013
Accepted: 16 July 2013

New Phytologist (2013) 200: 1132–1144
doi: 10.1111/nph.12454

Key words: Amax, Bayesian model parame-
terization, chlorophyll, leaf ecophysiological
traits, leaf nitrogen, photosynthesis, specific
leaf area, Vcmax.

Summary

! Relationships between leaf traits and carbon assimilation rates are commonly used to pre-
dict primary productivity at scales from the leaf to the globe. We addressed how the shape
and magnitude of these relationships vary across temporal, spatial and taxonomic scales to
improve estimates of carbon dynamics.
! Photosynthetic CO2 and light response curves, leaf nitrogen (N), chlorophyll (Chl) concen-
tration and specific leaf area (SLA) of 25 grassland species were measured. In addition, C3 and
C4 photosynthesis models were parameterized using a novel hierarchical Bayesian approach
to quantify the effects of leaf traits on photosynthetic capacity and parameters at different
scales.
! The effects of plant physiological traits on photosynthetic capacity and parameters varied
among species, plant functional types and taxonomic scales. Relationships in the grassland
biome were significantly different from the global average. Within-species variability in photo-
synthetic parameters through the growing season could be attributed to the seasonal changes
of leaf traits, especially leaf N and Chl, but these responses followed qualitatively different
relationships from the across-species relationship.
! The results suggest that one broad-scale relationship is not sufficient to characterize ecosys-
tem condition and change at multiple scales. Applying trait relationships without articulating
the scales may cause substantial carbon flux estimation errors.

Introduction

It is well known that photosynthetic capacity varies widely
among plant species (Wullschleger, 1993). In the global plant
trait network (Glopnet), photosynthetic capacity (Amax) varied
130-fold when expressed on a dry mass basis, and 40-fold when
expressed on a leaf area basis (Wright et al., 2004). This global
survey showed that carbon (C) assimilation rate can be poten-
tially predicted by leaf ecophysiological traits, specifically leaf
nitrogen (N) and specific leaf area (SLA; Wright et al., 2004).
The correlation between photosynthesis and leaf ecophysiologi-
cal traits has attracted attention as we aim to improve our under-
standing of the inherent variation in photosynthetic capacity
and increase our capacity to predict variability in gross primary
production (GPP). However, existing studies have focused on
investigating the correlation across biomes and plant functional
types (PFTs) at broad scales or among species at a specific time
during the growing season (Poorter & Evans, 1998; Zheng &
Shangguan, 2007; Hikosaka & Shigeno, 2009; Archontoulis
et al., 2012). Seasonal changes of photosynthetic capacity within
a species, leaf-to-leaf variability and the causes for this variability
were not well accounted for in these studies. However, seasonal

changes can contribute significantly to variability in GPP (Peng
et al., 2011; Wang et al., 2012). More importantly, the differ-
ences in trait–photosynthesis relationships at different scales –
which drive total variability – have not been explicitly explored
(e.g. in case of taxonomic scales: leaf, species, PFT and biome
level).

Leaf physiological traits are key determinants of biogeochemi-
cal cycles (specifically CO2 fluxes) that link vegetation, soil and
atmosphere at every temporal and spatial scale (Reich et al.,
2007). Many studies have used general leaf trait correlations to
predict photosynthesis over scales ranging from the leaf to the
globe (Harley & Baldocchi, 1995; Larocque, 2002; M€uller et al.,
2005; Braune et al., 2009; Kattge et al., 2009; Ziehn et al., 2011).
Biophysical characteristics of vegetation related to photosynthesis
such as leaf N and Chlorophyll (Chl) have been used as proxies
in the determination of GPP in modeling and remote sensing
(Kattge et al., 2009; Peng et al., 2011; Gitelson et al., 2012).
Therefore, the scale dependence of these correlations needs to be
articulated to make reliable estimations of carbon gain at differ-
ent scales.

Enzyme kinetic models of leaf photosynthesis can be used
to elucidate fundamental biochemical processes and quantify

1132 New Phytologist (2013) 200: 1132–1144 ! 2013 The Authors
New Phytologist! 2013 New Phytologist Trustwww.newphytologist.com

Research



biochemical parameters (Von Caemmerer, 2000). Leaf traits play
an important role in determining photosynthetic rate and thus
should be incorporated in photosynthesis models for better C
flux estimation. Large amounts of total leaf N (15–35%) are allo-
cated to Rubisco protein in C3 higher plants (Evans, 1989). The
fraction of N invested in carboxylation enzymes depends on total
leaf N concentration (Sage et al., 1987). Therefore, leaf N con-
centration is directly correlated with Rubisco activity and maxi-
mum Rubisco carboxylation rate (Vcmax) (Cheng & Fuchigami,
2000). Some leaf photosynthesis models account for the effects
of leaf N on C assimilation rate (Wohlfahrt et al., 1998; M€uller
et al., 2005; Braune et al., 2009; Ziehn et al., 2011), but such
models are parameterized to capture responses at a single scale
(e.g. individual leaf-level, within-species responses to vertical light
profiles or fertilization, global scale). In addition, important leaf
characteristics such as Chl and SLA, which may substantially
affect light use efficiency, are rarely considered in these models.
Chlorophylls are responsible primarily for harvesting light energy
(Hopkins & H€uner, 2004), while leaf thickness affects light
absorption efficiency (Farquhar et al., 1980; Hopkins & H€uner,
2004). In addition, leaf thickness affects mesophyll conductance,
the conductance of CO2 from the intercellular space to the site of
carboxylation, and, hence, carboxylation efficiency (Hikosaka,
2004).

Currently, terrestrial ecosystem models incorporate effects of
leaf traits by using general global leaf trait relationships (Bonan
et al., 2002, 2011, 2012; Kaplan et al., 2003; Thornton et al.,
2007; Kattge et al., 2009), yet often apply these relationships at a
different scale to predict within-canopy responses through time
or with canopy position.

In order to assess the scale-dependent effects of leaf ecophysio-
logical traits in enzyme kinetic models of photosynthesis, we
developed mixed-effect versions of the C3 Farquhar-von
Caemmerer-Berry (FvCB) model (Farquhar et al., 1980) and C4

intercellular transport (ICT) model (Collatz et al., 1992) that
include: (1) the effects of leaf N concentration on Vcmax (Vmax for
C4); (2) the effects of Chl and SLA (indicator of leaf thickness)
on quantum efficiency; (3) seasonal variability; and (4) leaf-
to-leaf variability. Because there is no explicit investigation at
the global scale for the variability in the relationships between leaf
traits and photosynthetic parameters, we also examined leaf trait–
Amax relationships and compared our results to the global analyses
(Wright et al., 2004). Leaf trait–Amax relationships at different
scales (within species, across species, across PFTs and global scale)
were explored. The objectives of our study are to: (1) determine
the correlations between Amax and leaf traits, both within and
across species, and compare these patterns to the among-biome
relationships from global-scale plant traits analyses (Wright et al.,
2004); and (2) parameterize C3 and C4 leaf photosynthesis mod-
els to partition model variability and determine the scale depen-
dence in effects of leaf traits on biochemical photosynthetic
parameters. We hypothesize that a large portion of the variation
in biochemical photosynthetic parameters can be ascribed to
changes in leaf traits because there is a general correlation
between photosynthetic capacity and leaf traits. We also hypothe-
size that the leaf trait–photosynthesis relationships should vary at

different scales due to different physiological attributes. Specifi-
cally, the effects of leaf traits on Amax and photosynthetic parame-
ters should vary among leaves of the same species, among species
within a functional group, across PFTs within a biome (C3 grass,
C4 grass, forb and legume within grasslands) and between bio-
mes.

Materials and Methods

Study site

Polycultures of 28 native grassland perennial species were planted
at the Energy Biosciences Institute’s Energy Farm in 2008. Seeds
for all species were planted evenly at 0.5 g m"2 and 25 species
established sufficiently to allow measurements (Table 1). The
farm is located in Urbana, IL, USA (40.05°N, 88.18°W) at an
elevation of 224 m. The experimental region has a mean annual
temperature of 10.7°C, and a mean annual precipitation of
1042 mm. The average growing season length is 172 d. The
experimental plot was in maize–soybean rotation before the
planting of the prairie. No water, fertilizers or herbicides were
applied after the prairie was planted. The grasses were mowed in
November every year. The prairie was 3 yr old and was well
established when this experiment began. The plant density in
2010 was c. 40 stems m"2.

Leaf gas exchange measurements

The photosynthetic measurements were made on 13 species in
2010 and extended to 25 species in 2011. A portable photosynthe-
sis system (LI-6400; LI-COR Inc., Lincoln, NE, USA) with a red/
blue light source and 2 cm2 leaf chamber was used to measure CO2

response (A/Ci) and light response (A/q) curves. The measure-
ments were taken on sun leaves that are newly formed and mature.
Measurement time was between 10:30 and 16:00 h (local time) in
the middle of each month, from June to October 2010 andMay to
October 2011. Three to six leaf replicates were measured for each
species in each month. When a leaf did not completely cover the
chamber, a picture was taken of the measured area with a known
length as reference and leaf area was then determined through
image analysis (ImageJ (http://rsbweb.nih.gov/ij/)) (Abramoff
et al., 2004).

For A/Ci curves, before the measurements, the leaf was accli-
mated to saturating irradiance (2000 lmol m"2 s"1) for a half
hour at a relative humidity of c. 70% and leaf temperature of
25°C. Without changing the above settings, photosynthetic rates
were measured at different chamber CO2 concentrations: 400,
300, 200, 125, 75, 50, 25, 400, 600, 900 and 1300 lmol mol"1.
Photosynthesis at 400 ppm CO2 in the A/Ci data was treated as
net carbon assimilation rate at ambient CO2 (i.e. Amax). Given
that information on high light-intensity photosynthesis can be
extracted from A/Ci curves, for efficiency the A/q curve was only
measured across a low light range on the same leaf on which the
A/Ci curve was taken; quantum flux densities were set as 200,
150, 100, 50 and 0 lmol m"2 s"1, with the CO2 concentration
of 400 lmol mol"1.
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Plant traits measurements

Immediately following gas exchange measurements, two 0.5 cm2

leaf discs were cut from the measured leaf using a hole-punch
and kept in 2 ml 95% ethyl alcohol for 10 d. Absorbance at 470,
649 and 664 nm was measured with a microplate luminometer
(Bio-Tek Instruments, Inc., Winooski, VT, USA) to calculate
Chl concentration. Total Chl (Chla +Chlb) concentration was
used in our analysis. Another 10 0.5-cm2 leaf discs were sampled
on the same leaf or leaves close by (when not enough samples
could be collected from the measured leaf). Discs were oven-
dried at 75°C to a constant mass and weighed to determine SLA.
When one leaf was not able to cover the punch hole (0.5 cm2),
several leaves were aligned and sampled for Chl measurements
and SLA was not measured. Species without SLA measurements
include Dalea purpureum, Pycnanthemum virginianum,
Schizachyrium scoparium, and Carex bicknellii. After SLA was
determined, samples were ground to a fine powder using a stain-
less steel pulverizer (Kleco Pulverizer; Kinetic Laboratory Equip-
ment Company, Visalia, CA, USA). A 2–4-mg sample was
weighed on an analytical balance (CPA2P Electronic Microbal-
ance; Sartorius AG, Goettingen, Germany) and encapsulated in
tin foil. C and N percentage was determined by combustion and
thermal conductivity separation using a combustive elemental
analyzer (Costech Analytical Technologies, Valencia, CA, USA),

calibrated with an acetanilide standard (C8H9NO; Costech Ana-
lytical Technologies).

Amax and leaf traits relationships

Amax, leaf N and Chl can be expressed on a leaf dry mass (Amass,
Nmass, Chlmass) or a leaf area (Aarea, Narea, Chlarea) basis. During
raw data collection, Amax (lmol m"2 s"1) and Chl (lg cm"2)
were area-based measurements; and leaf N (%) was a mass-based
measurement. Area- and mass-based traits were interconverted
via SLA (m2 kg"1) (e.g. Narea =Nmass/SLA). Both mass-based
and area-based relationships between Amax and leaf traits (leaf N,
SLA and Chl) were determined via standard major axis (SMA)
analysis using a linear bivariate regression model. Data were fitted
by species to determine the variability within and among species.
The 25 species were assigned to four PFTs: C3 grass, C4 grass,
forb and legume. Data for each PFT were fit simultaneously to
determine the variability among PFTs and at different taxonomic
scales. In addition, the regressions were compared to the Glopnet
analyses to examine the variability of Amax–trait relationships at
different taxonomic and spatial scales. The Glopnet analyses were
based on a dataset that represented 175 sites and contained 2548
species (Wright et al., 2004). The relationships between Amax and
leaf traits were also examined using the subset data of Glopnet
herbaceous species. Considering the wide range of data (leaf traits

No. PFT Scientific name Common name

Years
measured

2010 2011

1 C3 grass Carex bicknellii Britton Bicknell’s sedge Y
2 C3 grass Elymus canadensis L. Canada wildrye Y Y
3 C4 grass Andropogon gerardii Vitman Big bluestem Y Y
4 C4 grass Schizachyrium scoparium (Michx.) Nash Little bluestem Y
5 C4 grass Sorghastrum nutans (L.) Nash Indian grass Y Y
6 Forb Aster novae-angliae L. New England aster Y
7 Forb Coreopsis tripteris L. Tall tickseed Y Y
8 Forb Echinacea pallida (Nutt.) Nutt. Pale purple coneflower Y
9 Forb Helianthus grosseserratusM. Martens Sawtooth sunflower Y Y

10 Forb Heliopsis helianthoides (L.) Sweet Smooth oxeye Y Y
11 Forb Monarda fistulosa L. Wild bergamot Y Y
12 Forb Parthenium integrifolium L. Wild quinine Y
13 Forb Penstemon digitalis Nutt. ex Sims Foxglove beardtongue Y
14 Forb Pycnanthemum virginianum (L.) T. Dur.

& B.D. Jacks. ex B.L. Rob. & Fernald
Virginia mountainmint Y

15 Forb Ratibida pinnata (Vent.) Barnhart Pinnate prairie coneflower Y Y
16 Forb Rudbeckia subtomentosa Pursh Sweet coneflower Y Y
17 Forb Silphium integrifoliumMichx. Wholeleaf rosinweed Y Y
18 Forb Silphium laciniatum L. Compassplant Y
19 Forb Silphium perfoliatum L. Cup plant Y Y
20 Forb Silphium terebinthinaceum Jacq. Prairie dock Y
21 Forb Solidago rigida L. Stiff goldenrod Y Y
22 Legume Baptisia leucantha Torr. & A. Gray Largeleaf wild indigo Y
23 Legume Dalea purpurea Vent. Purple prairie clover Y
24 Legume Desmodium canadense (L.) DC. Showy ticktrefoil Y Y
25 Legume Lespedeza capitataMichx. Roundhead lespedeza Y

Photosynthetic measurements were performed on the 13 most abundant species in 2010 and extended to
25 species in 2011. The species measured in each year were indicated in the ‘Years Measured’ column. ‘Y’
indicates yes and means that photosynthetic measurements were performed on the given species. PFT,
plant functional type.

Table 1 Species list of leaf traits and
photosynthetic measurements
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varied by one to two orders of magnitude), the regressions were
performed on a log scale, as similarly done in Wright et al.
(2004). In the SMA analyses, a level of significance of 0.05 was
used to determine the statistical significance: if the P-value is
≤ 0.05 we reject the null hypothesis that SMA regression is not
significant. Akaike information criterion (AIC) scores of SMA
regressions were used in model selection (Supporting Informa-
tion Table S1).

Model fitting techniques and statistical analysis

Model fitting for A/Ci and A/q curves was carried out using a
Hierarchical Bayes approach (Clark, 2007). The major advanta-
ges of the Bayesian analysis include the following: (1) all A/Ci

and A/q data for each species from a whole growing season can be
fitted simultaneously, rather than fitting these models leaf-by-
leaf; (2) prior information for parameters can be assimilated into
models, which can improve model performance especially when
data are limited; (3) uncertainty and variability can be partitioned
into multiple processes, such as leaf-to-leaf variability vs observa-
tion error, rather than lumping all variability into a single resid-
ual error term; (4) the estimation of posterior probability
distributions for parameters, instead of single values, facilitates
the propagation of model uncertainty to other process models
(LeBauer et al., 2013). Traditional approaches, fitted on a leaf-
by-leaf basis, will overestimate the variability among leaves while
failing to account for leaf-level uncertainty in subsequent analy-
ses. When the 95% credible interval (CI) for an effect encom-
passed 0, the corresponding parameter was removed one at a
time from the full model and the deviance information criterion
(DIC) was used to confirm that the resulting model was a better
fitting model (model with lower DIC is better). We also tested
the default model, which excludes all the fixed and random
effects. The posterior distributions were obtained by fitting all
the A/Ci and A/q data for each species from the whole growing
season simultaneously. Priors and likelihoods are described in the
model description section below. The effects of SLA were not
modeled for Dalea purpureum, Pycnanthemum virginianum,
Schizachyrium scoparium and Carex bicknellii because SLA data
were not collected.

Model parameterization analyses were implemented in R
v2.14.1 (http://www.r-project.org/; R Development Core Team,
2011) and WinBUGS v1.4 (Lunn et al., 2000). Trace plots were
used to confirm convergence. Chains were run for 100 K steps,
discarding the first 50 K for burn-in, thinning to 1/25 to reduce
autocorrelation, resulting in a total number of 6 K samples per
species. Statistical significance was determined using 95% CI.

C3 and C4 photosynthesis models

The hierarchical Bayesian parameterization of C3 and C4 photo-
synthesis models are depicted in Fig. 1. The data model is
assumed to be Normal (observed net photosynthesis (An) is nor-
mally distributed around modeled An):

AðoÞ
n %NðAðmÞ

n ; s2Þ Eqn 1

(AðoÞ
n , observed net photosynthesis; AðmÞ

n , modeled net photosyn-
thesis; s, the residual standard deviation). The FvCB model and
simplified ICT model were parameterized for C3 leaves and C4

leaves, respectively, and model details are summarized in the sec-
tions below. Fixed effects of leaf N, Chl, SLA and month on car-
bon assimilation rate were incorporated in the process model. A
random leaf effect was used to account for the variation among
individual leaves that plant physiological traits (leaf N, Chl, SLA)
and month could not explain. Plant trait data from a plant trait
database (Biofuel Ecophysiological Traits and Yields database
(https://www.betydb.org/); LeBauer et al., 2013) were used to
provide prior constraints on the model parameters. Priors
(Table 2) were derived at a broad taxonomic or functional level.
When insufficient prior information was available, an uninforma-
tive prior distribution was assigned to the parameter to reflect a
small contribution of information.

FvCB model for C3 leaves

The FvCB model of C3 plants (A/Ci and A/q curve analysis) was
described as (Farquhar et al., 1980; Sharkey, 1985; Harley &
Sharkey, 1991):

AðmÞ
n ¼ minfAv;Ajg" Rd Eqn 2

(An, net photosynthetic rate; Av, the rate when Rubisco carboxyl-
ation is limiting; Aj, electron transport-limited rate of carboxyla-
tion; Rd, the day (nonphotorespiratory) respiration rate). Triose
phosphate utilization (TPU) was not incorporated in the model
because signs of TPU limitation were not observed in the data.

Fig. 1 Bayesian parameterization of photosynthesis models. This figure
shows the parameterization processes of the C4 photosynthesis model.
The C3 model has a slightly different set of parameters with higher number
of parameters. However, the method and procedure for C3 model
parameterization are the same as for the C4 model. For simplicity, only the
C4 model is shown in the diagram. The data model defines that observed
net photosynthesis (An) is normally distributed around modeled An with a
variance s2 ðAðoÞ

n %NðAðmÞ
n ; s2ÞÞ. The process model simulates the

biochemical processes of photosynthetic carbon assimilation and predicts
the values of modeled An based on parameters (solid arrows), covariates
data (dashed arrows) and light and CO2 data (dotted arrows). The
parameter model assigns a prior distribution for each parameter used in
the process model. l, r, s and h are parameters that define the prior
distributions. Distributions with l and r indicate that the prior distribution
is a normal or log-normal distribution with a mean l and a standard
deviation r (e.g. dlnorm (l1, r1)). Distributions with s and h indicate that
the prior distribution is a gamma distribution with a shape parameter s and
a scale parameter h (e.g. dgamma (s1, h1)).
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Rubisco-limited photosynthesis is expressed as:

Av ¼ V 0
cmax

C i " C'

C i þ Kc

!
1þ O

KO

" Eqn 3

V 0
cmax ¼ Vcmax þ bNðN"NÞ þ bmon þ tleaf Eqn 4

(Ci and O, intercellular partial pressure (Pa) of CO2 and O2,
respectively; Kc and Ko, Michaelis-Menten coefficients of Rubisco
activity for CO2 and O2, respectively (Pa); Γ*, CO2 compensa-
tion point in the absence of Rd (Pa); Vcmax, maximum rate of car-
boxylation; bN, slope of the fixed effect of N concentration in
each individual leaf on Vcmax; N, mass-based N concentration in
leaves (%); N, average N concentration for one species through

the growing season; bmon, fixed effect of month on Vcmax used to
estimate the photosynthetic variation among different months
from May to October relative to a reference month (July); υleaf,
random individual-leaf effect on Vcmax).

The rate of photosynthesis when electron transport rate is lim-
iting is expressed as:

Aj ¼
J ðC i " C'Þ
4C i þ 8C' Eqn 5

where J is the rate of electron transport and can be described as:

J ¼ a0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a02q2

Jmax2

q Eqn 6

Table 2 Parameters, data and constants used in the C3 and C4 photosynthesis models

Symbol Biological interpretation Model Attribute Distribution/Value Source

Γ* CO2 compensation point (Pa) C3 Parameter dlnorm (1.4, 0.65) Based on Medlyn et al. (2002)
Jmax Maximum rate of electron transport (lmol m"2 s"1) C3 Parameter dlnorm (4.7, 0.67) Based on Wullschleger (1993),

Medlyn et al. (2002)
a Quantum efficiency of electron transport (C3, mol

electrons mol"1 photon; C4, mol CO2mol"1 photon)
C3/C4 Parameter dnorm (0.24, 0.1)/

dnorm (0.06, 0.025)
Based on Skillman (2008)

aleaf Random individual leaf effect on a C3/C4 Parameter dnorm (0, sðaleafÞ) Broad prior
sðaleafÞ Standard deviation of aleaf C3/C4 Parameter dgamma (0.01, 0.01) Broad prior
Vcmax, Vmax Maximum rubisco capacity (lmol m"2 s"1) C3/C4 Parameter dlnorm (4.2, 0.65)/

dlnorm (3.1, 0.59)
Based on Collatz et al. (1992),
Medlyn et al. (2002),
Kattge et al. (2009)

υleaf Random individual leaf effect on Vcmax and Vmax C3/C4 Parameter dnorm (0, sðtleafÞ) Broad prior
sðtleafÞ Standard deviation of υleaf C3/C4 Parameter dgamma (0.01, 0.01) Broad prior
Rd Leaf respiration (lmol m"2 s"1) C3/C4 Parameter dlnorm (0.75, 0.801)/

dlnorm ("0.1, 0.598)
Based on Farquhar et al. (1980),
Collatz et al. (1992)

bN Slope of fixed leaf N effect on Vcmax and Vmax C3/C4 Parameter dnorm (10, 10) Broad prior
bChl Slope of fixed chlorophyll effect on quantum efficiency C3/C4 Parameter dnorm (0, 0.1) Broad prior
bSLA Slope of fixed SLA effect on quantum efficiency C3/C4 Parameter dnorm (0, 0.1) Broad prior
bmon Fixed effect of month on Vcmax and Vmax C3/C4 Parameter dnorm (0, sðbmonÞ) Broad prior
sðbmonÞ Standard deviation of bmon C3/C4 Parameter dgamma (0.01, 0.01) Broad prior
s Model standard deviation C3/C4 Parameter dgamma (0.1, 0.1) Broad prior
k Initial slope of photosynthetic-CO2 response curve

(lmol m"2 s"1)
C4 Parameter dlnorm (11.5, 0.598) Based on Collatz et al. (1992)

kleaf Random individual leaf effect on k C4 Parameter dnorm (0, sðkleafÞ) Broad prior
sðkleafÞ Standard deviation of kleaf C4 Parameter dgamma (0.01, 0.01) Broad prior
AðmÞ
n Modeled photosynthetic rate (lmol m"2 s"1) C3/C4 Dependent

variable
Prediction

AðoÞ
n Observed photosynthetic rate (lmol m"2 s"1) C3/C4 Dependent

variable
Data

q Quantum flux density (lmol m"2 s"1) C3/C4 Independent
variable

Data

Ci Intercellular partial pressure of CO2 (Pa) C3/C4 Independent
variable

Data

N N concentration (%) C3/C4 Covariate Data
N Species average N concentration (%) C3/C4 Covariate Data
Chl Chl (lg cm"2) C3/C4 Covariate Data
Chl Species average Chl (lg cm"2) C3/C4 Covariate Data
SLA SLA (m2 kg"1) C3/C4 Covariate Data
SLA Species average SLA (m2 kg"1) C3/C4 Covariate Data
O Intercellular partial pressure of O2 (Pa) C3 Constant 21 000 Farquhar et al. (1980)
Kc Michaelis-Menten coefficient of Rubisco activity for

CO2 (Pa)
C3 Constant 40.4 Bernacchi et al. (2001)

Ko Michaelis-Menten coefficient of Rubisco activity for
O2 (Pa)

C3 Constant 27 800 Bernacchi et al. (2001)

P Atmospheric pressure (Pa) C4 Constant 105
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a0 ¼ aþ bChlðChl" ChlÞ þ bSLAðSLA " SLAÞ þ aleaf Eqn 7

(Jmax, maximum rate of electron transport; q, quantum flux den-
sity; a, quantum efficiency of electron transport (initial slope of
photosynthetic light response curve); bChl, slope of fixed effect of
chlorophyll concentration in leaves (Chl, lg cm"2) on a; Chl,
average chlorophyll concentration for one species through the
growing season; bSLA, slope of fixed effect of specific leaf area
(SLA, m2 kg"1) of each individual leaf on a; SLA, average SLA
for one species through the growing season; aleaf, random indi-
vidual-leaf effect on a after Chl and SLA are accounted for
(Table 2)). SLA could affect mesophyll conductance of CO2, and
hence Vcmax. However, in the present model discussed (Farquhar
et al., 1980), mesophyll conductance is considered infinite.
Therefore, the effect of SLA on Vcmax was not included in the
model.

Simplified ICT model for C4 leaves

In the C4 photosynthesis model (Collatz et al., 1992; Fig. 1), the
net CO2 assimilation rate (An) can be modeled as the minimum
of three limiting rates:

An ¼ minfAc;Al;Aeg" Rd Eqn 8

CO2-limited photosynthesis is expressed as:

Ac ¼
ðk þ kleaf ÞC i

P
Eqn 9

(k, initial slope of photosynthetic CO2 response curve; kleaf,
random leaf effect on k; P, atmospheric pressure, treated as con-
stant (105 Pa)). Light-limited photosynthesis is expressed as:

Al ¼ a0q Eqn 10

(a′, the same a′ as expressed in Eqn 8). Rubisco-limited photo-
synthesis is expressed as:

Ae ¼ Vmax þ bNðN"NÞ þ bmom þ tleaf Eqn 11

(Vmax, maximum Rubisco capacity of C4 species; bN, N, N,
bmon, and υleaf are the same as expressed in Eqn 4). In this case,
maximum Rubisco capacity of C4 species is referred to as Vmax

due to a different biological interpretation from Vcmax of C3 spe-
cies (Ripley et al., 2010). Given that uncertainty may be caused
during conversion between area- and mass-based units, the units
for An, N, Chl and SLA in models were consistent with the units
used during data collection (Table 2).

Results

Amax and leaf traits relationships

Area-based Amax of the 25 prairie species examined ranged from
1.15 to 39.39 lmol m"2 s"1. The within-species seasonal

variability of Amax was high for all species (Amax varied by 5- to
20-fold).

Within species through the growing season, in both mass-
based and area-based relationships, Amax was positively related to
leaf N for 19 species. The slopes of Amass–Nmass relationships
ranged from 1.35 (Elymus canadensis) to 3.31 (Lespedeza
capitata), while the slopes of Aarea–Narea had a range of 1.25–3.42
with the same two species having lowest and highest value,
respectively (Table S2). The pattern of Amax–Chl relationships
was similar to Amax–leaf N, with 18 and 20 species showing sig-
nificant positive mass- (slope range 0.75–2.15) and area-based
(slope range 0.76–2.57) relationships, respectively (Table S2).
The Aarea–SLA relationships were positively significant for six
species and nonsignificant for 15 species, while for the Amass–SLA
relationship 13 species were positively significant vs eight nonsig-
nificant. Most species that showed nonsignificant mass-based
relationships also had nonsignificant area-based relationships
(Table S2). The within-species Amax–trait relationships varied
considerably among species and most species were significantly
different from the global average (Table S2).

When the relationships between Amax and leaf traits were
tested across species, both 95% CI of SMA analyses and AIC
scores suggested separate regression models for different grass-
land PFTs (Fig. 2, Table S1). For the Amass–Nmass relationship
(Fig. 2a), the regression lines of C4 grasses, legumes and forbs
had similar slopes (1.91–2.46) but different intercepts with
legumes lowest (1.24), forbs in the middle (1.81), and C4

grasses highest (2.15) (Table S1). Values of Nmass for legumes
were concentrated on the higher end, while those for C4

grasses were distributed mainly at the lower end, suggesting a
high photosynthetic N use efficiency for C4 grasses and low
efficiency for legumes. The Amass–SLA slopes of grasses (3.52–
3.57) were significantly higher than forbs and legumes (2.52–
2.71); nonetheless all PFTs had higher slope values
(2.52–3.57) than the global average (1.33) (Fig. 2b, Table S1).
In Amass–Chlmass relationships, although statistical tests sug-
gested separate fit for each PFT, the regressions of C3 grasses,
C4 grasses and forbs were very close. However, the intercept
for legumes (1.69) was significantly lower than these three
PFTs (1.83–2.05) (Fig. 2c, Table S1). In area-based relation-
ships, the Aarea–Narea and Aarea–Chlarea relationships showed
the same pattern as shown in mass-based relationships. How-
ever, Aarea–SLA relationships were only significant for C4 grass
(Fig. S1, Table S1).

Across all PFTs, both mass- and area-based regressions
between Amax and leaf traits for grassland species were different
from the global average (Figs 2, S1). Grassland species had sub-
stantially higher slopes in Amass–Nmass and Aarea–Narea relation-
ships than the global average, which indicates higher N use
efficiency in grasslands. In addition, the Amass–SLA relationship
across grassland species also had significantly higher slope
(mean = 2.65) than the global mean of 1.33. Such differences also
exist in the Glopnet dataset, where the available data of herba-
ceous plants similarly showed higher Amax–leaf N and Amass–SLA
slopes when compared to the global average (Fig. S2). In the
grassland studied, although the Aarea–SLA relationships were not
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significant for three out of four individual PFTs (C3 grasses,
forbs and legumes), when data from all PFTs were fit simulta-
neously, the correlation between Aarea and SLA was significant
across grassland species. However, global analysis showed a non-
significant Aarea–SLA relationship (Fig. S1).

Partitioning variability in enzyme kinetic models

The default models of C3 and C4 photosynthesis without mixed
effects did not capture the fluctuations in assimilation from leaf
to leaf through the growing season (Fig. 3). Adding a random leaf
effect improved model performance tremendously but left the
variability among individuals unexplained. When the best fit
model was parameterized for each of the 25 species, the effects of
leaf N and Chl were significant for most species but SLA was sig-
nificant only for four species (Table S3). The parameter means
and 95% credible intervals are summarized in Table 3.

Photosynthetic responses to CO2 and light were dependent on
both species and month (Fig. S3). Within species, Vcmax, Vmax

and quantum efficiency declined late in the growing season for
most species. However, model results showed that, within a

species through the growing season, month effects were not sig-
nificant for any species if leaf traits were also included. When July
was set as the reference month, 95% CI of bmon posterior distri-
butions for all species encompassed 0; that is, month was not the
factor that affects photosynthesis. Instead, changes in Vcmax, Vmax

and quantum efficiency through the growing season could be
explained by the seasonal changes of leaf traits, especially leaf N
and Chl (Fig. 4). Within species, after the effects of leaf N, Chl
and SLA were accounted for, part of the variation in Vcmax, Vmax

and quantum efficiency among different leaf replicates still could
not be explained. This part of the variation was represented by
random leaf effects (υleaf for Vcmax and Vmax, aleaf for quantum
efficiency) (Table 2). Although the proportion of variation
explained by random leaf effects was generally smaller than the
fixed effects, it was substantial and could not be neglected. For
17 out of 25 species, more than half of the within-species vari-
ability of Vcmax and Vmax was caused by variation in leaf N; and
for 16 out of 25 species, more than half of the within-species vari-
ability of quantum efficiency was due to changes in Chl and SLA
(Fig. 4, Table S3). However, the proportions of fixed effects of
quantum efficiency were concentrated on the end with higher
values (0.6–0.8) compared to Vcmax and Vmax (Fig. 4). Model
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Fig. 2 Relationships between mass-based
Amax and leaf traits. (a–c) 95% confidence
intervals of standard major axis (SMA)
analyses and Akaike information criterion
(AIC) scores suggested separate regression
models for grassland plant functional types
(PFTs). (d–f) The regressions between Amass

and leaf traits for grassland species were
different from global average. Lines were
drawn for significant relationships. Further
details about slope and intercept values,
95% confidence intervals and AICs are given
in Supporting Information Table S1.
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residual errors were very small compared to fixed effects and
random effects (Table S3). Low model residuals indicate low
deviation of predictions from their observed values.

Across species, photosynthetic parameters such as Vcmax, Vmax,
Jmax, a, and Rd varied considerably among different species
(Table 3). Vmax ranged from 15.22 to 25.57 lmol m"2 s"1 for
C4 species while the range of Vcmax for C3 species was 43.21–
130.48 lmol m"2 s"1. Jmax ranged from 60.93 to
197.14 lmol m"2 s"1 and had a strong positive relationship with
Vcmax (Fig. S4). Values of Vcmax and Jmax for legumes were gener-
ally high, and associated with high leaf N, Chl and SLA. The
quantum efficiency (a) of C3 and C4 species ranged from 0.17 to
0.35 mol electrons mol"1 photon and 0.16 to 0.22 mol elec-
trons mol"1 photon, respectively. In contrast to previous findings
by Skillman (2008), the range of quantum efficiencies of C4 spe-
cies was narrow and had large deviations from values of C3 spe-
cies. These large deviations may be caused by the limited number
of C4 species. Only three C4 species were included in the analyses
and one of them consistently showed up in the lower canopy.

In addition to photosynthetic parameters, the effects of leaf
traits on parameters also varied tremendously across species
(Fig. 4). The proportion of variation in quantum efficiency that
can be explained by fixed Chl and SLA effects ranged from 0.24
to 0.72 (Table S3). The Chl effect was not significant for four
species while the SLA effect was only significant for four species
(Fig. 4, Table S3). The proportion of variation in Vcmax contrib-
uted by fixed leaf N effects was as high as 0.75 for Lespedeza
capitata and as low as 0.20 for Silphium laciniatum. Three species
did not show significant effects of leaf N on Vcmax (Fig. 4, Table
S3). The effects of leaf N on Vcmax and Vmax depended largely on
the taxonomic scale (Fig. 5). In the case of legumes, the within-
species relationships were consistent with the within-PFT
across-species relationship. The slope values of within-species
relationships for legumes ranged from 7.22 to 17.72 (Table S3)
and the across-species relationship had a slope of 12.07. For for-
bs, the across-species relationship was notably steeper (slope was
72.05) than the within-species relationships (slopes ranged 4.67–
18.95). The across-species trends within the C3 grass and C4

grass PFTs were difficult to ascertain, due to the limited number
of species available for analyses (Fig. 5). The within-PFT but
across-species slope for legumes was lower than the across-PFT
slope, while the within-PFT slope of forbs was higher than the

across-PFT slope. In general, effects of leaf traits on Amax and
photosynthetic parameters varied within-species, among species,
and across PFTs.

Discussion

Amax and leaf traits relationships

In mass- and area-based relationships, Amax was positively related
with leaf traits, especially leaf N and Chl within and across spe-
cies. However, the variation of within- and across-species rela-
tionships suggests that relationships between photosynthesis and
leaf traits are not consistent. The within-species relationships var-
ied markedly from species to species. Model selection suggested
separate regressions for different PFTs, which indicates that the
PFT-to-PFT variability is also significant. Furthermore, the
relationships across grassland species are different from Glopnet
relationships, most notably suggesting higher SLA range, Amax–
SLA slope and photosynthetic N use efficiency in grasslands. The
available herbaceous plant data of Glopnet also showed higher
Amax–leaf N and Aarea–SLA slopes when compared to the global
average, which is consistent with our findings (Fig. S2). More-
over, in the study conducted by Marino et al. (2010), the Amass–
Nmass and Amass–SLA relationships displayed by 25 herbaceous
species also showed higher slope values than the global average
which further confirms our results. The difference is that, due to
controlled growth conditions and indoor measurements, relation-
ships displayed by Marino et al. (2010) were much tighter than
the relationships shown in our data and the Glopnet herbaceous
subset. In addition, we also found a pattern in the Aarea–Narea

relationship similar to that found by Evans (1989) with herba-
ceous plants tending to have higher CO2 assimilation rates than
other plant groups for a given N content. In all the aforemen-
tioned studies, the area-based relationships were not as strong as
mass-based relationships. Indeed, some nonsignificant area-based
relationships showed statistically strong mass-based relationships
(Figs 2, S1, S2). However, recently it has been argued that the
strong correlations between mass-based measures of photosynthe-
sis, N and other traits may be a statistical artifact and area-based
measurements are more physiologically meaningful as photosyn-
thesis occurs as a flux per unit leaf surface area (Lloyd et al., 2013;
Osnas et al., 2013). Nevertheless, grassland species have different
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relationships from global average across a range of taxonomic
scales regardless of whether the parameters were expressed on a
mass basis or an area basis. Moreover, confirmation from other
studies demonstrates that this discrepancy is not site-specific.

The variation in Amax–leaf traits relationships is related to
physiological traits of plants. Higher Amax–leaf N and Amax–Chl
slopes tend to be observed in C4 species as C4 metabolism
involves CO2 concentrating mechanisms (Sage & Pearcy, 1987).
Among C3 species, nitrogen allocation between photosynthetic
and nonphotosynthetic apparatus, stomatal and mesophyll con-
ductance, kinetics of photosynthetic enzymes, dark respiration
and light absorption are important contributors to the variations
in Amax–leaf traits relationships among leaves, species and PFTs
(Hikosaka, 2004). A large fraction of leaf N is allocated to the
photosynthetic apparatus in herbaceous plants, which causes
grassland species to have higher photosynthetic nitrogen use effi-
ciency compared to other biomes.

To summarize, the relationships between Amax and leaf traits
are not the same at all scales, and the total variability may be
introduced by the variability from each scale (leaf, species, PFT
and biome). Comparison between our study, global analyses and
other studies demonstrates that scale is an important factor that
affects the relationships. The variation at different scales needs to
be considered when modeling GPP, as simply knowing leaf traits
is not sufficient to constrain photosynthetic rates. Applying trait
relationships without articulating the scales may cause substantial
carbon flux estimation errors. This indicates relationships at one
scale cannot be applied to all scales.

Bayesian model parameterization

In traditional A/Ci and A/q curve analysis, leaves are fitted inde-
pendently and the number of data points from one curve is usu-
ally limited and model performance is therefore poorly
constrained. A/q data help to inform the biochemical processes
regulating photosynthesis and are often collected in conjunction
with A/Ci curves. However, these data are rarely incorporated
into the fitting procedure (Patrick et al., 2009). Although mea-
surement noise is relatively small, it is inevitable in realistic test-
ing conditions and even small amounts of variability can cause
significant estimation errors when fitting small data sets on a leaf-
by-leaf basis with leaf photosynthesis models. Segmented fitting
methods amplify these limitations even more due to fewer data
being available in each segmented fit (Zhu et al., 2010). This con-
straint makes it hard to partition uncertainty and to attribute var-
iability to specific drivers. In analyses across multiple leaves it is
not uncommon to ignore this uncertainty altogether and treat
parameter estimates as ‘data’ in subsequent analyses. Patrick et al.
(2009) presented a hierarchical Bayesian approach to estimate
leaf- and species-level photosynthetic parameters simultaneously
using both A/Ci and A/q data of C3 desert shrubs, which mini-
mized the limitation of available data. This nested sampling
design (leaf replicates nested in species) allowed the modeling of
photosynthetic parameters hierarchically. The failure to include
this hierarchical within-species constraint would have resulted in
an overestimation of parameter uncertainty and leaf-to-leaf vari-
ability. In addition to fitting A/Ci and A/q data simultaneously
using a hierarchical design, our analyses also incorporated the
fixed effects of leaf traits, month effects and random effects in
order to explicitly partition variability and reduce model
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uncertainty. This is a novel approach to assimilate whole A/Ci

and A/q datasets into C3 or C4 leaf photosynthesis models while
simultaneously considering fixed effects, such as leaf N, Chl, and
SLA and accommodating the unexplained variability among indi-
vidual leaves. This Bayesian parameterization method overcomes
the data limitation problem of the single-curve fitting method. In
addition, the parameter estimates are probability distributions
instead of single data point estimates. Therefore, the uncertainty
in parameter estimates can be included appropriately in
subsequent analyses (Dietze et al., 2013; LeBauer et al., 2013).
For example, the application of the photosynthetic model with-
out accounting for leaf-to-leaf variability can introduce a large
and persistent bias to projections that would be missed if this var-
iability were misattributed to measurement error. Most impor-
tantly, this approach allows the partitioning of uncertainty into
multiple processes, and thus clarifies quantitative contributions
of each plant physiological attribute to the total variation,
improves mechanistic understanding, and provides guidelines for
future data collection.

Variability partition in photosynthesis models

Within species, photosynthetic parameters varied considerably
through the growing season. This confirmed the nontrivial
amount of leaf-level variation reported by Marino et al. (2010)
and Blonder et al. (2013), though as discussed above previous
approaches likely overestimated leaf-level variability. Much of
this variability can be ascribed to leaf traits such as leaf N, Chl
and SLA. This suggests that incorporating leaf traits can reduce
model uncertainty caused by the variation in photosynthetic
parameters through the growing season. Nonetheless some traits
(leaf N and Chl) are more important than others (SLA).
Although leaf traits can explain a large part of the variability in
photosynthetic capacity, there is still a significant part of the
uncertainty that cannot be explained. Further investigation is
needed to ascertain other possible physiological or environmental
factors to reduce the uncertainty. For instance, in addition to leaf
N, other nutrients such as phosphorus also limit photosynthetic
rates (Reich & Schoettle, 1988; Warren, 2011). Previous studies
(Raviv & Blom, 2001; Kitajima et al., 2002) have also shown that
leaf age and environmental factors such as light and water avail-
ability could have significant impact on photosynthetic parame-
ters. During data collection and documentation, A/Ci, A/q and
associated trait and environmental data should be documented
with species, leaf replicate, location and date information if possi-
ble, thereby expanding the potential of quantifying photosyn-
thetic variation and the relative importance of different factors in
contributing to this variation at different scales (Dietze, 2013).

Across species, both photosynthetic parameters and the effects
of leaf traits on the parameters varied substantially from species
to species. This indicates that, relationships between leaf traits
and photosynthesis established at broad scales, such as across-
biome relationships, do not capture the patterns observed at finer
scales. Therefore the application of across-PFT relationships to
explain species-to-species differences within a PFT is liable to fail.
Within a PFT, the application of across-species relationships to

explain within-species responses to trait variability is also liable to
fail. However, this failure to account for scale is quite common,
as current ecosystem models and remote sensing techniques gen-
erally employ broad-scale relationships in order to predict how
leaves in a single location will change over time, with canopy
position or soil resources in response to changes in leaf traits.
Indeed, our analyses suggest that these models are consistently
overestimating plant sensitivities to changes in leaf N.

However, all hope is not lost! The rejection of a month effect,
which was found across all species, suggests that within a species
there is some commonality to the response across leaves and the
response through time. In addition, if we look at the within-spe-
cies responses to leaf N, the slopes of these relationships are
remarkably conserved among species (Fig. 5), suggesting that it is
the intercepts that vary most from species to species. In addition,
the across-species but within-PFT relationships also show a
degree of predictability in how intercepts vary as a function of
species average N content. Therefore, over short timescales, mod-
eled responses to changes in leaf traits should follow this relatively
conserved within-species slope. By contrast, long-term plant
responses to N-addition in a mixed grassland ecosystem should
respond along the across-species curve due to shifts in species
composition. Interestingly, the across-species slope found in our
study is consistent with the average aboveground net primary
production (ANPP) response ratio (ANPPN/ANPPctrl = 1.53) in
fertilized treatments to control treatments of 32 studies reported
by LeBauer & Treseder (2008). Finally, the patterns across PFTs
are also sensible and respond to average leaf N contents, with
legumes having lower N-use efficiency and C4 grasses being
higher. All in all, these patterns make sense and are consistent
with our well-established concepts of functional trade-offs, but
they do demonstrate that there is not one single, all encompass-
ing, trade-off curve. Instead, these trade-offs vary with taxonomic
scales, which makes sense as these are fundamentally different
trade-offs (physiological plasticity vs successional niches and evo-
lutionary divergence).

In addition to modeling GPP, our results also have implica-
tions for attempts to infer canopy function from remote sensing.
Environmental variables of great interest, such as GPP, cannot be
described directly by radiation measurements of optical reflec-
tance (Kerr & Ostrovsky, 2003). The ability of remotely sensed
variables to act as surrogates for important ecological characteris-
tics (e.g. productivity) is a function of the closeness of the rela-
tionship between the measured radiation and the environmental
variable of interest. In other words, remote sensing is trying to
infer physiology from optical traits, which covary with both leaf
ecophysiological traits and photosynthetic capacity. Indeed, the
three traits examined here (leaf N, SLA, Chl) are all the ones that
remote sensing is routinely used to infer. Because relationships
between biophysical properties (e.g. leaf N, Chl) and GPP are
scale-dependent, the relationships between optical traits and pro-
ductivity are also likely sensitive to the scales examined. This
implies that one broad-scale relationship is not sufficient to char-
acterize ecosystem condition and change at multiple scales.
Potential biases or errors of the relationships between leaf traits
and photosynthetic parameters may be exacerbated when the
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estimation is scaled up from a single leaf to a canopy level, even
to an ecosystem level.
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