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17.1 Introduction

Ecologists seek to understand how demographic rates contribute to species
diversity. Birth, growth, and survival together determine population growth.
Demographic rates are related to one another, and they depend in complex
ways on environmental variables. At a given age, an organism allocates energy
in ways that affects current and future growth, fecundity, and survival risk.
These relationships change through time as resource availability changes, and
organisms develop and age. For the population ecologist challenges include
inference not only on specific demographic rates, but also on how they combine
to determine population growth. In this chapter we discuss how hierarchical
Bayes analysis can help synthesize information from a range of sources o
understand how demographic rates rejate 1o one another and might contribute
to biodiversity.

The key challenges to demographic inference in ecology include the avail-
avility of many sources of incomplete information, often measured at different
scales, and the large number of interactions among demographic components.
Population growth depends on all demographic rates, birth, growth, death,
and migration. Each of these rates can respond to a fluctuating environment,
including other organisms. Many factors are observable or only wealdy related
to factors that can be measured. For example, rarely can the cause of death
be determined for organisms in the wild. Without knowledge of cause it is
difficult to isolate and model individual risk factors, let alone how they interact.
Even where cause might be identified, challenges remain. If death could be
attributed to, say, ‘drought’ (Condit et al. 1995, Suarez et al. 2004, Nepsted et al,
2007, van Mantgem and Stephenson 2007), a series of questions arise: s it
the daily, seasonal, or annual average soil moisture that is most important?
Is it duration or intensity®> Which interactions determine why only a fraction
of the population died? We rarely have the information to address such ques-
tions, and we often lack understanding of the important scales (e.g. weekly
or monthly drought?) These challenges have necessitated a superficial view
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of demography that is focused on annua! rates with limited connection to
covariates.

To motivate some of the complexity that follows, consider limitations of
current demographic models. Traditionally, most demographic analyses include
no predictors beyond age or size (i.e. the standard age-structured model (Leslie
matrix) or stage-structured model (sec the reviews of Caswell 2001, Gurevitch
et al. 2002)). Models involving covariates tend to include a demographic rate
as a response variable (offspring born per female per year, annual growth rate,
fraction of the population making a transition to a different stage of life, surviva
probability) and, perhaps, a small number of predictors. The conclusions that
can be drawn from such models are limited, because it is recognized that they
may not accommodate important {actors affecting the data, even for simple
experiments. For example, seed production of trees is rarely directly observed
in natural populations, because it cannot be quantified in forest canopies. The
covariates are often represented by crude indices. The standard assumption that
error should enter as a stochastic envelope around a deterministic function of
predictor variables, such as

yi=%B+e

implies that x; is known much better than y;. If x; is a GIS layer, an instrurent
that records with error, an incubation culture of biological activity, a classifi-
cation scheme based on unreliable detection, or the interpretation of a fuzzy
image, we might better represent the problem by including a model for x. If so,
we need to consider how to coherently connect a model for x and a model for y
and how to allow for uncertainty and still estimate everything. Growth rates are
usually measured with less error than are the environmental covariates used
as predictors, including such difficult-to-quantify resources as solar radiation
reaching the partially shaded crown, soil moisture, and nutrient supply, having
substantial spatiotemporal variation that is never well quantified (Beckage and
Clark 2003, Kobe et al. 2006, Mohan et al. 2007). If mortality is modelled as
a function of growth, and observations are not available until after death, the
growth rates are rarely available, requiring either annual measurements on
trees that both survive and die nup until the time of death or increment cores
of trees (which are too laborious to obtain on large numbers of individuals).
Either way, a model is needed to account for the way in which the covariate
data were collected (Kobe et al. 1995, Wyckoff and Clark 2000). Moreover,
we are now considering multiple demographic rates (growth and survival),
connected by virtue of the fact that individuals near death may allocate less to
growth.

As ecologists increasingly want comprehensive inference that derives from
raultiple underlying processes connecting inputs and responses, both of which
are partially known, the challenge comes in devising ways to synthesize the
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sources of information, allow for observation error and uncertainty in the
underlying model itself. How can we capture interactions between individual
models for growth, fecundity, and mortality risk? Doing so requires that they be
fitted simultaneously, as part of an integrated model of demographic change.
The model must reflect the uncertainties that enter through both process and
data at multiple stages. Useful inference requires that we exploit information
coming not only from data, but also from theory and previous observations and
experiments.

Multistage models provide a natural framework for organizing how ecolo-
gists think about inference. Bayesian techniques provide a natural approach for
analysis of such models. [mplementation requires that they can be structured to
provide transparency regarding assumptions, model behaviour, and parameter
cstimates. For example, does the process model capture the relationships in
realistic ways, and would we recognize failure to do so? Does the model make
realistic predictions at all levels, including for state variables and observations
at different scales? The application presented here highlights ways to integrate
information for demographic inference, connecting models for important com-
ponents of the problem, each allowing for uncertainty. We model fecundity,
dispersal, growth, and survival with covariates that include some of these demo-
graphic rates and light availability, a key resource that limits plant growth. We
show how the large number of estimates that come from the analysis can be
summarized synthetically to provide deeper insight about relationships among
demographic rates and how they respond to covariates.

17.2 Demographic data

We use data collected from tree plots j=1,.... J and covariates to infer
demographic rates. Data include observational studies and whole-stand manip-
ulations, which allow us to break up correlations in some of the important
covariates. Study areas include ] = 9 plots of mapped forest stands in the Pied-
mont (Duke Forest) and southern Appalachian Mountains (Coweeta) of North
Carolina, USA. The plots were selected to span a range of topographic, soil
moisture, soil types, and elevation characteristics (Table 17.1), supplemented
with experimental manipulations. In this study we report observational data
come from trees i =1, .... Iy on plots j in yearst C {t. &+ 1..... Ty}. Plots
were established in years t; € {1991..... 2000), when trees were first mapped,
identified to species, and measured for diameter. The first observation year
for individual i is the year when plot j was established, t;, or when the
ree grew to sufficient size (2m in height) to be measured, whichever came
first. The last observation year T < 2008 is the last year the individual was
nbserved, at which point it might still be alive or not. Species codes are listed
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Table 17.1 Plot characteristics and and number of trees by plot. Species codes are
listed in Table 17.3.

Plot C138 C218 (38 (C427 (€527 CLG CUG DBW DHW  Total
Elev (rn} 780 820 870 13110 410 030 140 70 70
Lat/Long 35°03'N. 83 27'W 35°58'36"N
795'48"W
Soil type Typic & humic hapludults, typic dystrochrepts. Typic & oxyaquic
typic haplumbrepis vertic hapludalfs

Firstyear 1992 1992 1992 1992 1992 2000 2000 2000 1999
Area (ha) 064  0.64  0.64 064 064 275 .45 4.11 2.40 1391

acru 496 136 211 257 14 982 608 2763 666 613l
acsa 0 2 1 0 K2 3s 0 13 0 133
acpe S 223 15 15 230 451 21 0 0 960
acha 0 0 0 0 0 0 [} 4 114 118
acun 0 0 0 0 0 13 0 2 0 15
beal 0 1 2 0 157 0 4} 0 0 160
bele S 38 12 4 66 8 1 0 Q 134
beun 0 ) 0 0 0 29 38 0 0 67
caca 0 0 0 0 0 0 0 146 439 585
cagl S6 33 41 15 S 36 10 15] 31 380
caov Q 0 2 0 0 0 8} 0 66 68
cato ] 0 0 0 0 48 3 395 S1 498
caun 1 0 1 2 0 162 5 77 73 321
ceca 0 0 0 0 0 0 0 282 39 321
cof} 45 78 27 10 3 118 14 1405 501 2201
fram 0 [} 1 4 63 46 4} 658 802 1574
list 0 0 0 0 0 0 0 1523 648 217}
Iitu 11 70 12 9 0 654 6 371 161 1294
nysy 103 30 3 117 0 282 335 361 457 1798
piri 36 0 0 0 0 0 0 0 0 36
pist 2 16 0 0 0 0 0 0 0 18
pita 0 0 0 0 0 0 0 391 175 566
piec 0 0 0 0 0 0 0 76 1 77
pivi 0 0 0 0 0 0 0 25 ] 26
qual 12 0 0 0 1 0 0 231 65 309
quco 25 7 1 14 0 St 44 0 0 142
qufa 0 0 0 0 0 0 0 21 S 26
quma 10 0O 0 0 0 0 0 20 0 30
quph (¢} 0 ] Q 0 0 0 18 73 91
qupr 91 34 102 101 0 180 173 0 0 681
quru 38 S 21 57 24 139 49 65 0 398
qust 4 0 0 0 0 0 0 41 41 82
quve 45 6 7 3 0 12 14 30 0 17
quun 0 0 0 0 0 18 18 4 0 40
©ops 24 6 4 12 0 95 30 1 0 172
tiarn 0 S 0 0 87 0 0 0 0 92
tsca 8 27 8 74 3 243 38 0 0 401
ulal %) 0 0 0 0 0 4} 719 558 1277
vlam 0 0 0 0 0 0 0 69 147 216
ulru 0 0 0 0 0 0 0 0 64 64
ulun 0 0 0 0 0 0 0 139 86 225
Total trees 1014 717 58} 694 735 3602 1407 10001 5264 24015
Seed traps 20 20 20 20 20 73 43 128 66 410

Total seeds (G413 46964 22685 13208 334374 20814 1080) 7548] 23487  S54337




Models for Demography of Plant Populations 435

Acer rniebrum

C118
"o tuo
. ]
max ave seed = 110 max aveln(fj; ll'.l nax ave selrj?z 2.8
. 100 m
DBW

max ave seed per trap =71 max ave In(f) per iree = 11.4 max ave se In () = 4.4
 oumann E—
100 m

Fig. 17.1 Examples of two mapped stands used for demographic inference, showing slems of a
single genus, Acer, represented by circles. Boxes are shown at seed trap localions with box size
proportional to average annual seed collection for the entire study penod. Plat C118 is small and
has nol been manipulated. Plot DBW is larger (note scale bars), with seed traps clustered in and
around the locations of eight canopy gaps created in 2002. From left the series of three raaps for
both locations have circle size scaled 1o (1} stern diameter, (2) mean estimate of tree fecundity, and
i3) standaxd crror of tree fecundity estimates (not to be confused with the standard deviation in
fecundity over time).

in Table 17.2. Example maps of two study plots are shown in Figure 17.1. Envi-
ronmental data include static variables (elevation, slope, aspect) and variables
that fluctuate over time, with additional variation among plots ({temperature)
and within plots (soil moisture, light penetration). This analysis focuses on how
iight availability and tree size affects demographic rates, including relationships
among them.

A subset of the mapped plots was used for canopy gap experiments. Follow-
ing collection of several years of pretreatment data, trees were removed from
the canopy in 20 m or 40 m wide patches to simulate the small and large treefall
gaps that occur when a single tree falls or when groups of trees fall, as during
storms. Canopy trees were pulled down using a skidder or bulldozer Jocated
sutside the plot and left in position, some having snapped, others uprooted.
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Table 17.2 Species codes used in other tables and figures.

Code Species Code Species
acru  Acer rubrum piri Pinus ngida

acsa  Acer saccharum pist Pinus strobus
acpe  Acer pensylvanicum pita  Pinustaeda

acba  Acer barbatum piec  Pinus echinata
acun  Acer unknown pivi Pinus virginigna
beal  Betula alleghanicnsis qual  Quercus alba

bele  Betula lenta quco  Quercus coccinea
beun Betula unknown qufa  Quercus falcata
caca  Carpinus caroliniana quma  Quercus marilandica
cagl  Carya glabra quph  Quercus phellos
caov  Carya ovata qupt  Quercus montana
cato  Carya tomentosa quru  Quercus rubra
caun  Carya unknown qust  Quercus stellata
ceca  Cercis canadensis quve  Quercus veluting
cofi  Cornus florida quun  Quercus unknown
fram  Fraxinus americana rops  Robinia pseudoacacia
ilde  [llex decidua tiamn  Tilia americana
ilop  Ilex opaca tsca Tsuga canadensis
list Liquidambar styraciflua ulal Ulmus alata

litu  Liriodendron tulipifera ulam  Ulmus americana
nysy  Nyssa sylvatica ulru  Ubmus rubra

oxar  Oxydendron arboreum ulun  Ulimus unknown

Damage to canopy trees and understory trees {snapped or bent by pulled trees)
was recorded as the basis for analysis of damage effects on growth (Dietze and
Clark 2008). For the analysis presented here, manipulation had the greatest
effect on light availability, represented by ‘exposed canopy area’.

To allow for inference on demographic interactions, we use a structure that
combines important relationships but is constrained by what can be observed or
inferred. An individual is characterized by several state variables, some of which
are constant, some change over time, some are continuous, and others discrete.
State variables differ in terms of how directly each can be observed. Trees are
classified according to genus (e.g. Quercus for oak) and species (Q, rubrum for
red oak). The genus to which a tree belongs is known. The species is also taken
to be known, in the sense that it will not be inferred, but seeds are confidently
identified only to genus. For this reason, trees of the same genus are modeled
together. The genera and species are summarized in Table 17.3. There is an
unknown species class for trees from several genera, where large individuals
could not be confidently ascribed to a particular species (Table 17.3). Because
many seeds can only be classified to the level of genus, we infer seed produc-
tion as the combined contributions from all trees in that genus. For example,
the analysis for Quercus includes 10 species, because not all acorns could be
identified to species level (Clark ¢t al. 1998, 2004), whereas the analysis of
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Table 17.3 Seed-trap years (same for all taxa) and tree years, grouped by plot and by
genus, as analysed here. Species codes are listed in Table 17.3.

Plot C118 (218 (318 (427 (€527 CLG CUG DBW DHW Total

Trap year 320 320 320 320 320 490 301 1016 342 3749
Acer

acra 8432 2312 3587 4369 238 8838 S472 24849 6660 64757

acsa 0 34 17 0 1394 315 0 117 0 1877

acpe 85 3791 255 255 3910 4059 189 0 0 12544

acba 0 0 0 0 0 0 0 36 1140 1176

acun 0 0 0 0 0 117 0 18 0 135
Betula

beal 0 17 34 0 2669 0 0 0 0 2720

bele 85 646 204 68 1122 72 9 0 0 2206

beun 0 0 0 0 0 261 342 0 0 603

Carpinus

caca 0 0 0 0 0 0 0 1314 4390 5704
Carya

cagl 952 561 697 255 8s 324 90 1377 310 4651

caov 0 0 34 0 0 0 0 0 660 694

cato 17 0 0 0 0 432 27 3555 510 4541

caun 17 0 17 34 0 1458 45 693 730 2994

Cercis canadensis
ceca 0 0 0 0 0 0 0 2538 390 2928
Cornus florida
cofl 765 1326 459 170 51 1062 126 12645  S010 21614
Fraxinus americana
fram 0 0 17 68 1071 414 0 5922 8020 15512
Liguidambar styracflua
list 0 0 0 0 0 0 0 13707 6480 20187
Liriodendron tulipyfera
litu 187 1190 204 153 0 S886 54 3339 1610 12623
Nyssa sylvatica

nysy 1751 510 1921 1989 0 2538 3015 3249 4570 19543
Pinus

pixi 612 0 0 0 0 0 0 0 0 612

pist 34 272 0 0 0 0 0 0 0 306

pita 0 0 0 0 0 0 0 3519 1750 5269

piec 0 0 0 0 0 0 0 684 10 (94

pivi 0 0 0 0 0 0 0 225 10 235

Quercus

qual 204 0 0 0 17 0 0 2079 650 2950

qQuco 425 119 17 238 0 459 396 0 0 1654

qufa 0 0 0 0 0 0 0 189 S0 239

quma 170 0 0 0 0 0 0 180 0 350

quph 0 0 0 0 0 0 0 162 730 892

qupr 1547 578 1734 1717 0 1620 1557 0 0 8753

quru 646 8s 357 969 408 1251 441 585 0 4742

qust 0 0 0 0 0 0 0 369 410 779

(cont.)
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Table 17.3 (Continued).
Plot ~ C118 (218 (318 (427 C527 CLG CUG DBW DHW Total

quve 765 102 119 51 0 108 126 270 0 1541
quun 0 0 0 0 0 162 162 36 0 360
Robinia pseudoacacia
T0PS 408 102 68 204 0 855 270 9 0 1916
Tilia americana
tiam 0 85 0 0 1479 0 0 0 0 1564
Tsuga canadensis
tsca 136 459 136 1258 51 2187 342 0 0 4569
Ulmus
ulal 0 0 0 0 0 0 0 6471 5580 12051
ulam 0 0 0 0 0 0 0 621 1470 2091
ulru 0 0 0 0 0 0 0 0 640 640
ulun 0 0 0 0 0 0 0 1251 860 2111

Carpinus includes a single species (Table 17.3). Trees retain the species identity,
having some parameters that are species-specific, whereas seeds are modelled
as being potentially produced by trees of the entire genus on a probabilistic
basis. This approach allows combination of observations at the scale of individ-
ual trees and at seed-trap scale (a seed traps accumulate seeds from all trees
simultaneously).

In addition to diameter and species, individual level observations include sur-
vival, canopy status, and reproductive maturation status. Canopy status involved
ordinal classes derived from standard classifications used in forestry. At one to
four year intervals, individuals were assigned to:

Class 1: suppressed in the understory, with access limited to sunflecks (e.g.
intermittent patches of direct sunlight);

Class 2: intermediate, with not more than 20% of the canopy exposed to
some direct sunlight;

Class 3: codominant, with > 20% of the canopy exposed to direct sunlight
during part of each day.

A suppressed individual in the understory would be assigned Class 1 status, but
could change to Class 3 status if it occupied a canopy gap following loss of the
overstory.

Additional information on canopy status comes from low-altitude aerial
photo coverage of plots, used to segment and measure canopy areas of trees
visible from above. The modelling of canopy exposure based on status and
remote sensing observations, combined with allometric models of canopy area
is described in Valle et al. (2009). Posterior means and variances from that
analysis are used as prior means and variances for the analysis presented here.
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Maturity status observations were made at irregular years during the flow-
ering season (taxa such as Ulmus and Acer rubrum have conspicuous flowers
before leaf-out in spring), the fruiting season (fruits often visible in the lower
canopy include Cornus florida, Cercis canadensis), and winter (lack of leaves
permits identification reproductive structures of Liriodendron tulipifera, Lig-
uidambar styraciflua). Classes of observations are:

uncertain: the largest class, because fruits and/or flowers are difficult to
observe;

not mature: if the entire canopy could be clearly observed to have no fruiting
structures during the known flowering and/or fruiting season;

flowering: establishes that the individual is mature;

seeds/fruits present: establishes maturity and, for dioecious species, female
status;

female or male flowers present: in rare cases individuals of a dioecious species
could be assigned gender on the basis of flower structure.

The observations are summarized by maturation status and gender status in
Table 17.4, where 0y, = p(Qj;; = 1) is the probability that individual i on plot
J is mature in year t, v = p(q;;; = 1/Qjj+ = 1) is the probability that a mature
individual will be identified as such, ¢ = p(H; = 1) is the fraction of individuals
that are female for the entire population. The probabilities of Q|q and H|h are
provided in Table 17.4 primarily for explanatory purposes, because data models
discussed in Section 17.3 involve multiple observations. Note that statuses
must be modeled only for Table 17.4 entries not containing a zero or a one.

Table 17.4 Indicators and probabilities of maturity and gender conditional
on observations.

Observation Maturity Maturity Gender Gender
indicator probability! indicator ~ probability!-2
Qs Pr(Qy = 11g5.) ha Pr(Hj = 11hy.)

no observation — 8;j.s — b

uncertain 0 (L= )by 0 é
1—uby, '

not mature -1 0 0 ¢

flowering 1 1 0 ¢

seeds/fruits 1 1 1 1

male or female flowers 1 1 Oorl Oorl

""The probabilities are shown for the special case that there is a single observation
per individual. In fact, there are multiple status observations, modelling of which is
discussed in Section 17.3.1. Symbols are § — probability of being in the mature state,
v — probability of detecting mature status, 4 — female fraction of the population.
?Gender status is assumed static (H has subscript ij), whereas there are multiple
observations of status for each individual (h has subscript ij,t).
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Unfortunately, most observations are ‘uncertain’, requiring that most statuses
must be modelled.

Seed trap data are the basis for fecundity estimates, and they further con-
tribute to estimates of maturation and gender statuses. Seeds cannot be counted
in the dense canopies characteristic of closed forests, but spatiotemporal seed
data can be used to model fecundity (Clark et al. 1998, 1999, 2004). Fecundity
is estimated from seed traps k=1...., K; using models of dispersal (Clark
et al. 1998, 1999, 2004), where K; ranged from 20 to 128 seed traps. Seed
traps were emptied from two—four times annually, seeds identified to genus
or species (some seeds can only be identified to the genus level), and counted.
For modelling purposes, seed data were accumulated to total per trap per year.
sy (Table 17.3).

Diameter measurements and increment cores provide information on indi-
vidual tree growth. Because diameter fluctuates with stem moisture content.
and diameter measurements have error, we measured diameters Dy, at 1-4
year intervals. In addition to diameter measurements, increment cores were
extracted from a subset of trees, providing a record of past growth d;, =
Djjva — Dy, for the individual up to the year in which the core was extracted.
Modeling of diameter-census and increment-core data are described by Clark
et al. (2007). Posterior means and variances for each tree year obtained from
that analysis are used as priors for the analysis presented here.

17.3 Models to synthesize data and previous knowledge

Consider a forest containing trees of different species, gender, age, and size,
each experiencing the local environment in ways that depend on some factors
that can be measured and others that cannot; here we focus on light availability.
The responses of interest include growth rate, gender ratio, maturation status,
fecundity, seed dispersal, and survival risk. Combinations of these demographic
rates within individuals determine the growth rates of populations and, thus,
community biodiversity.

An individual's response to the environment produces variation in demo-
graphic rates. Resource availability (here we consider light) contributes to
overall health. Resources vary at many scales, depending on supply and on
competition with neighbours. For example, light levels vary throughout the day
and seasonally, and they are reduced by nearby trees that shade one another.
Fine scale heterogeneity is most obvious where canopy gaps form, allowing
from 10 to 100% of full sunlight to penetrate to the forest floor, depending
on gap size. By contrast, the uninterrupted canopy intercepts 95 to 99% of
incoming radiation. Due to spatial heterogeneity, individual trees are exposed
to conditions that differ from their neighbors, and these differences can change
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over time with changes in canopy structure and as interannual climate vari-
ation moderates the impact of resource supply. Some of these factors can be
measured in the environment, but it is important to also allow for variation
that cannot be ascribed to measurable factors. Here we describe the model for
demographic rates.

17.3.1 Gender and maturation

The gender of a tree remains constant, whereas maturation status changes from
immature to mature over time. Maturation status and gender can be confirmed
for some trees (Table 17.4). Presence of seeds indicates maturity and (for dioe-
cious species) female status. The presence of flowers indicates maturity, but it
does not mean that an individual belonging to a dioecious species is female,
unless it can be identified as a female flower. When the entire crown can be
observed, lack of flowers or fruits during the flowering/fruiting season is taken
to indicate immaturity. In crowded stands, absence of reproductive effort can
rarely be confirmed by such observations, so detection is uncertain.

The transition from immature to mature is treated as a hidden Markov
process. Modelling of gender and maturation is complicated by the fact
that probabilities depend on the entire history of observations on individual
jj. Consider an individual that is observed once. If maturation status is
uncertain (g, = 0 in Table 17.4), then the individual is mature with probability
(1 —v)6;.,/(1 — v8;,). But additional observations complicate the model. For
example, mature status is more likely for an individual last known to be
immature 10 year ago than it is for an individual last known to be immature
one year ago. Likewise, an individual is more likely to be mature in year ¢t if it
is first known to be mature in year ¢ + 1 than if it is first known to be mature in
year t + 10. Furthermore, an individual observed to be of unknown status once
is more likely to be mature than is an individual observed to be of unknown
status 10 times. In other words, modelling of status must accommodate
not only the probabilities contained in Table 17.4, but also how they must
be combined to accommodate the differing observation histories of each
individual. Here we discuss these probabilities. We first discuss conditioning
on observations listed in Table 17 .4, followed by seed data.

The unconditional probability that individual i on plot j is female is termed
the female fraction Pr(H; = 1) = ¢, (Table 17.2) and the probability of being
male Pr(Hy; = 0) = 1 — ¢. Observations of gender status were obtained at irreg-
ular intervals hyj;. If the individual is observed to be female h, = 1 or male
hijs = 0 then

Pr(Hj=1|hj =1)=1
Pr(Hj=0|hj: =0)=1.
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In other words, gender is only assigned if it is certain. If there are no observa-
tions for gender, information enters solely though seed rain data. If seed density
near an individual is high, then the probability that it is female is large, and vice
versa. Thus, fecundity and maturation must be modeled together.

The unconditional probability that the individual is in the mature state
Pr(Q i = 1) = 8, increases with tree size and canopy exposure (access to
sunlight). The probability is parameterized as a logit link to diameter D and
€anopy exposure A

exp (B + B Dy + B5Xii)
L= : :
T 1rexp(By+ Bl Dyt + BAi1)
For computation we require conditional probabilities that derive from this
relationship. Two simple examples we detail in the appendix include the prob-

ability of making the transition in year ¢, given previous immaturity and future
maturity

(17.1)

o dby,
daij_t + dﬁjjJ;_]

Bij.e = Pl’(Qij,: =1 !Qij\l—l =0, Qi1 = 1)

where

A = Bldi. 0. (1 — 6;,) dt
and the probability that the transition year =; occurred in year ¢
_ dby,

(B‘f'f.‘i - B‘J"- ’3)

where the lower limit represents that last year the individual was known to
be immature and the upper limit represents the first year the individual was
known to be mature. These two fundamental relationships are the basis for
models that incorporate observations for dioecious and monoecious species.
respectively (Appendix: Computation). The first is a Bernoulli probability for
each year t; there is a probability for every tree year. The second is a probabil-
ity associated with an individual and depends on when the maturation event
occurred for that individual.

For monoecious species the joint distribution of maturation and fecundity is
represented by a discrete mixture that is conditional on the full history of status

8= Pr(ry =

0 1
TU' < TU‘ < Tl) =

observations on the individual, a vector gy = {gy., t = (ti. ... T))
p(Qin fialqy -t Qi1 Qijren) .
=Qj / I jia 1d it
= (I - 39‘_1) [89‘_1 NUI‘I ﬁJ‘JIPiJj.r s Vij.ft ):| (172‘

where the probability 8;, = p(Qi. = 1gij. Qui—1 =0, Qi1 = 1) is based on
the history of observations on ij, and the parameters for the log norma:




Models for Demography of Plant Populations 443

distribution are conditional, coming from a bivariate state-space model for
fecundity (Appendix: Computation).

For dioecious species, we require gender and the probability for the entire
history of maturation Q; and the probability associated with it, ;. This distrib-
ution is given by

p(Hi Qi fi |25, %41) p
—(1-4 wwqusﬁ[ (In fys e g*i"v,ﬂ")]g’“] . (1733)

[f an observation establishes an individual as male we have the probability for a
maturation history during which no reproduction occurred

p(Qy, fis = 0lgy. %1, Hy = 0) = & (17.3b)

and for a female during which reproduction may or may not have occurred

i Qu
p( Qi fiilgy, .01, Hj=1) —Svl—[[ (ln ut#,{fj‘vg{}d)] Y (17309

Thus far, we have conditional relationships involving fecundity and maturation.
The conditional dependence on seed rain data is discussed in the next section.

17.3.2 Seed data and fecundity

Fecundity (seed production per individual per year) is not directly observed,
because seeds cannot be counted in crowded canopies. Like gender and matu-
ration status, indirect information comes from seed trap data, linked by way of
a transport model. Individuals that are mature and female can produce seeds.
Fecundity is thus zero for immature individuals and all male trees. For mature
females fecundity is taken as a continuous, positive variable.

Seeds accumulating in traps located throughout cach stand j provide a basis
for inverse modeling of fecundity. The likelihood for seeds collected in trap k in
stand j in year t is taken to be Poisson

Po(sje.c | Apgye(fi 1)) (17.4)

where Ay is the area of the seed trap (0.16 m? or 0.125m?), and gt is the
expected density of seed (m™?%), including a parameter u. The expected seed
density depends on fecundities of all trees in stand k and a dispersal kernel K,
added to a crude estimate of small background density of seed that might enter
the plot from outside the mapped boundaries, proportional to basal area of the
species in stand j, or BAj ,.

gﬂ'(_f:) l) =C- -BAJ t + Zﬁ)t Tiks U)- (175)
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The dispersal kerne] is taken to be a two-dimensional Student's ¢, previously
found to fit seed dispersal data well,

b (17.6)

ru(l + r}k/u)2

K(rg:u) =

containing the scale parameter u (Clark et al. 1999, 2004). The term in equa-
tion (17.5) that includes basal area BA allows for the fact that some smali
fraction of seed can detive from outside the plot. roughly proportional to the
basal area of the species.

In addition to seed data, fecundity depends on covariates. In the appendix we
discuss conditional relationships involving the likelthood for seed data (equa-
tion 17.3) and a multivaniate regression for growth and fecundity, influenced
by covariates. We include as covariates tree diameter and light availability.
summavized by exposed canopy area. The relationship between covariates and
fecundity is described by a bivariate state-space model that additionally includes
growth (diameter increment) as a response variable. This bivariate model is
described with diameter growth in the next section.

17.3.3 Diameter growth and fecundity

Diameter growth (cm per year) 1s informed by two sparse data sets and by the
state-space model that incJudes fecundity. Censuses conducted at two to four
year intervals, which include measurements of diameter on all trees, provide
observanons of diameter change over the measurement interval. Incremer
cores are obtained for some individuals and provide annual rates of growin
up until the year in which the core was extracted. Because they are lavorious =

obtain and they can damage trees, increment cores are not available for man~ -
trees. Thus, both types of data are sparse, but in different ways; census dats .
exist for all individuals, but only in a few years, and increment cores wers: |
taken from a subset of individuals, but cover al) years up until the year the co:

was collected. In consideration of the multiple data types and sparsity of bo:-.
diametey growth was modeled in a two-step process, the first step being a moc-.
that assimilates the different types of data and generates posterior estimar--
of growth for each tree year. This analysis is described in Clark et al. (20¢7.
and Metcalf et al. (2009). Products of this analysis include estimated mea: -
and standard deviations for diameter and diameter increment in each e

year {Figure 17.2). These are used as priors for the second step, the analis .-

described here.

The state-space model for growth and fecundity was developed to al: -
for measurable covariates known to affect demography, random effects at = -
individual level, year effects, and error. Random effects are included, beca . -
many factors could affect individual health that cannot be assigned to obser- .

L
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Ceunsus data Increment core data

(a) First census 1992,
increment core in 2006

s3 IS 1, 44, 44 )
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{b) First census 1992,
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Fig. 17.2 Posteriors for diameter at left and diameter increment at right, represented by median
(solid) and 95% CI (dashed) compared with observations (dots). Series vary in length, depending
on when observations began and tree survival. Posteriors are generally narrow where increment
core data are available, and vice versa. At left are shown corresponding intervals for tree diameter
with diameter census data (dots), Numbers at right indicate (individual i, plot j, and a unique order
number in the data base). This example is for Quercus.

variables. These factors are related to genotype and spatial variation in resources
and factors that limit growth. Year effects are included because year-to-year
variation in climate is difficult to quantify in ways that might be important for
trees. Year effects allow for variation in time that is shared across the entire
population. The growth-fecundity submodel is

YUi = xlj\t_.lA'f' bt + bl_} + f;j[
bU ~ Nz(O. Vb)
g0 ~ Np(0. T) (17.7)

with a response vector that includes diameter growth and fecundity

yie = [In(dse) In(fe) ] (17.8)



446 The Oxford Handbook of Applied Bayesian Analysis

covariates
Xiji-1= l.l’ h‘l(D,’j{l_]) . an(Dg,tw,l) s hl(/\zj.t—l) , h’l(dlj\t»—l)J ; (17.9)

parameters for fixed covariate effects A, fixed year effects b,, random individual

effects by, and error g;,. If the genus includes multiple species, the vector
%, includes a fixed effect for each species of the genus. Priors for regression
parameters are specified such that In(D) term takes up allometric effects of
size on fecundity when trees are small, and In*( D) takes up senescence effects
on growth and fecundity when trees are large. Growth and fecundity rates are
both affected by individual size and by abiotic covariates in any given year. By
including allometric relationships in the In( D) term, the exposed canopy area A
term estimates the effect of light availability (as opposed to size) on growth and
fecundity (Section 17.4).

In addition to the regression for growth and fecundity, both variables condi-
tionally depend on data. For fecundity, conditional dependence for fj;, includes
all seed traps on plot j in year ¢. Because seed trap count s, depends, in turn,
on all trees on plot j, the conditional dependence for all trees on plot j in year
tis fj, > 0 involves equations (17.2) and (17.3),

p(fialsjes ) o [T Po(sies| Angie (frsw)) T ] p(fie Qi 4o %i0-1)-
k i
(17.10)
The second factor on the right hand side comes from equation (17.2). The
conditional means and variances for equation (17.2) are

pa_ o Eulindg, — )
Hi. =l T

Viﬁd =% — 55,/%n (17.11)

X is the ijth element of ¥, and unconditional means are

pd = Xij—10ed + by + by

Bf=Xje-18e +bpet by

The terms on the right hand side include the columns of A, i.e. A= [a. a. ],
and the year and individual effects associated with growth and fecundity. For
growth, we have the conditional dependence

p(di.) oc Nln(dy,)|pars . Varr)
N(in(dyo)|in (1) v ) 1((4f) = vo7) < n(d)

< (déol + . Uij,t)) Bernoulli(z;, \gij_t) {17.12)
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where z, , is the event that the individual survived interval (t_y, t), dfjoz and vy,
are the prior mean and variance for log growth rate from the analysis of Clark
et al. (2007)(Figure 17.2), and conditional means and variances are

L Eulfin —ny)
PSP
4
Vj.y =Tn - %4 /5n.

di
uj,,f = pa

Note that the prior for the growth data is truncated to a width of two standard
deviations. The standard deviations are large for tree years in which there are
census data but no increment data (Figure 17.2). For years lacking increment
core data, estimates are more heavily influenced by random effects for
individuals and fixed effects for years, thus borrowing information from within
the individual over time and from year-to-year variation that is shared by the
entire population. The last factor in equation (17.12) comes from survival
(Section 17.3.5). The survival probability enters the conditional probability,
because it depends on growth rate, through the binned diameter classes
(Section 17.3.5).

In addition to equation (17.7) that applies to mature individuals, we fitted
an additional model for growth using all trees, regardless of maturation sta-
tus. This model is vnivariate, but includes the same covariates as used for
mature trees,

Indy, = x—1a+b+by+eij (17.13)
by ~ N(0, V(1)
g0 ~ N(0, w)

where a is the parameter vector (the first column of A in equation 17.7), b, is the
first element of b, in equation (17.7), and Vy y is the random eftects variance
for diameter growth (element 1,1 of covariance matrix V;) from equation (17.7).

17.3.4 Exposed canopy area

Light availability is included as a predictor of growth and fecundity. It is summa-
rized by an index, the area of the crown potentially exposed to sunlight, Ay ;. This
index has non-zero values, but can be small, such as for the case of a suppressed
individual in the understory. [t is estimated on the basis of three sources of
information in a separate analysis (Wolosin et al., in review). These data sources
are (i) low-altitude imagery on which crown area can be measured, (if) ordinal
status classes assigned on the basis of ground observations, and allometric
measurements combined with models of solar geometry that yield calculations
of light availability throughout the day and over the growing season. A model
combines these sources of information. Posterior means and variances enter
this analysis as priors, just as described for diameter growth (Section 17.3.3).
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17.3.5 Survival

Survival probability is typically modeled as a function of growth rate {see the
appendix), which integrates many aspects of tree health (Kobe et al. 1995, Clark
and Clark 1996, Wyckoff and Clark 2000, Bigler and Bugmann 2004) and of size
(Clark and Clark 1996, King et al. 2006, Coomes and Allen 2007). A number of
functional forms have been used to relate survival to growth rate. The problem
with any functional form comes from the facts that (i) this relationship can be
strongly nonlinear, changing abruptly at growth rate values close to the lowest
range of values typically observed, and (ii) the distribution of data has a large
impact on estimates, and individuals close to death may be poorly represented
in data sets, because such individuals died disproportionately before the study
began. We have developed or modified nonparametric approaches (Wyckoff
et al. 2000, 2000, Clark et al. 2007, Metcalf et al., in review) to describe this
relationship and apply one that combines not only growth rate, but also tree size
effects on mortality risk (Clark et al., 2007). We include tree size as a predictor of
survival, because mortality risk may increase as trees become large and senesce
or become susceptible to high winds (Batista et al. 1998, Uriarte et al. 2004,
Rich et al. 2007).

Let z;, be the event that an individual ij is alive in year ¢, in which case it
survived from year ¢t to t + 1 with probability

Ljo =1 —(ttdyoy + LDy, ) = My KBy )- (17.14)

There are discrete bins for both growth rate and diameter. In vear ¢ — 1 indi-
vidual ij’s growth rate bin is indicated by pg4 , , and its diameter bin is indi-
cated by up,,_,. There are monotonicity priors for both sequences, decreasing
for growth rate and increasing for diameter (Section 17.4). The likelihood is
Bernoulli(z;11{;.;). In the next section we specify priors.

17.4 Prior distributions

The model includes both informative and non-informative prior distributions.
Due to the size and complexity of the model, where possible, we used informa-
tive priors that are flat but truncated in some fashion, to maximize transparency,
i.e. for identification of the contributions of prior versus likelihood. Here we
summarize priors and how they were selected to balance information.

The fixed effects in the state-space model (17.7) have flat priors bounded by
values either having theoretical justification or sufficiently wide to not impact
estimates,

vec(A) ~ I{a; < vec(A) < ay) {(17.15)



Models for Demography of Plant Populations 449

where ay and a, are vectors of minimum and maximum values, respectively. We
describe prior values for specific elements of A, using indexing for elements
of A that assume a single intercept. Recall that there are separate intercepts
for each species included in a given genus (Table 17.3). The actual number
of rows of Ais p = number of species + 4 (there are four covariates). The
first subscript indicates the covariate (equation 17.9) and the second subscript
indicates the response {equation 17.8). Truncation points that affect estimates
include:

Ay — diameter effect on diameter growth increment constrained to be near zero:
Diameter is included as a predictor, because we expect it to directly affect
fecundity - large trees are capable of high seed production. We expect it to
also be correlated with the other response variable, diameter growth incre-
ment. Because that correlation should be taken up by canopy exposure,
rather than by tree diameter directly, we constrain this parameter value to
be near zero. From open-grown trees there is no clear evidence for a direct
size effect on diameter increment. The correlation between tree size and
diameter growth increment is expected to result from the fact that large
trees are more likely to have higher light exposure. Because there is no
theoretical justification for non-zero values, limits on this parameter are
(—0.02, 0.02).

Ay, — diameter effect on fecundity constrained between 1.5 and 2.5: Allometric
arguments and empirical evidence suggest that potential fruiting yield
should scale with canopy width, which, in turn is roughly proportional to
diameter. In fact, this potential should not be realized for trees crowded by
neighbours. We allow for this effect of size on potential yield effect due to
size with the constraints (1.5, 2.5), as modified by competition, which is
reflected in exposed canopy area, i.e. the term including A.

(As1, Asp) — large diameter effect is negative: The squared diameter term in
equation (17.9) is included to allow for potential senescence, a decline in
physiological function with age. Tree data sets rarely have sufficient large
(potentially old) individuals to estimate these effects, but we can allow
that senescence does eventually occur by specifying that this effect only
has impact for especially large individuals. This term is constrained to be
negative.

(As1. Ag) — lag-1 effect of growth rate on growth rate and fecundity: This
effect was constrained to be effectively zero for growth rate (As) but
unconstrained for fecundity (A4;). We wanted to parametrize the effect on
fecundity, so it could be used for predictive modeling of potential tradeoffs
in time between growth and fecundity.

The estimates of growth and fecundity represent a balance between contri-
butions from the regression (i.e. the size and light covariates in equation 17.7)
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and data models for growth rates and seed data. It is not necessarily ‘objective’ to
use a non-informative prior for the state-space error covariance matrix, because
there is no objective criterion for balancing information that enters from mul-
tiple data types. Data are known to be noisy, particularly seed rain. We used
an informative prior on the error covariance matrix ¥ to represent a level of
variation expected after that taken up by covariates, random effects, and year
effects and to assure that covariates were not overwhelmed by noise. The values
used for variances on the log growth (cm) and log fecundity (seeds per tree)
were 0.05 and 0.2, respectively. These allow for realistic levels of variation on
the non-log scale. We used the prior

-1
0.05 0
Wishart| 7! ., nyr (17.16)
0 0.2 J ’

where nyr =3, (Tj — t;) is the number of tree-years in the study. Through
extensive sensitivity analysis, this prior was found to provide an acceptable
balance of data and regression model, contributing to the conditional posterior
approximately twice the weight coming from the regression.

By contrast, priors on random effects and year effects were weak — we wanted
data to dominate these estimates. The prior for random effects is

020

Wishart [ V™ [0 )

-1
} ,  max (3, ny/100) (17.17)

where ny =3, I; is the number of trees. The second parameter in equa-
tion (17.17) is rounded to an integer value and ranged from 3 to 60 for different
species. The contribution to the conditional posterior ranged from about 1/10
to 1/50 of the weight coming from the regression.

The prior for fixed year effects is

N, (bt

[00]", diag(100, 100)) (17.18)

and includes a sum-to-zero constraint (intercepts are included in A), imple-
mented directly in the Gibbs sampler.

Because many individuals are not mature, a separate univariate regression
is fitted to all tree years, regardless of maturation status (equation 17.13). The
covariates are the same as those listed for the multivariate regression given
above, and sampling makes use of the univariate distributions corresponding to
each of the foregoing multivariate ones. These are Gaussian for fixed (including
years) and random effects, and inverse Gamma for variances.
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Diameter growth increments have a prior for each tree year taken from the
posterior from the analysis of Clark et al. (2007) and shown in equation (17.12).
Because there are thousands of such densities, the truncation of this posterior
at a width of two standard deviations was based on a prior belief that true
increments should be within this range. Diagnostics showed that posterior
estimates from this analysis did not tend to acccumulate at these truncation
values.

As with diameter increment, the Gaussian prior for canopy values is trun-
cated to two standard deviations in width,

g~ NGy ) (e = /Coe) < ) < () + JCun)) (1719)
where cfjo)t and Cj;; are the prior mean and variance (log scale), taken from the
posterior for the analysis of canopy area (Wolosin et al., in review).

Priors for fecundity, maturation, gender, and missing seed data were either
non-informative or derived from previous observation. A flat prior was used for
fecundity, truncated at the smallest number of seeds observed for a tree and at
values much larger than implied by observation of seed densities,

fij‘t ~ unif(fmim fmax)- (17.20)

For instance, when defining fui,, we did not expect that a mature individual
would produce less seeds than typically contained in a single fruiting structure
{e.g. Pinus, Liriodendron, Liquidambar). For maximum values, we used parame-
ter estimates similar to those obtained in a simpler model (Clark et al. 1999) to
‘invert’ seed density observations and thus approximate what might constitute
unrealistically high seed production for an individual of a given species and
size. The model for seed dispersal provides an expected seed density given the
spatial locations of trees of different sizes. For example, Acer rubrum seeds have
been observed at average densities of 102 seeds m~? beneath mature trees but
not at average densities of 10° seeds m™2. This inversion was used not only
to set limits on fecundities for individual trees, but also to define the (prior)
Poisson means for missing seed data.

The maturation diameter for an individual was assigned a prior that was trun-
cated at values below which we believed that no individuals could be mature and
above which we believed all individuals would be mature. These beliefs came
from independent observations of trees in similar settings. These limits on mat-
uration diameters translate to limits on maturation year (see appendix). There
are prior minimum and maximum diameters, which differ among species. The
female fraction was given the prior Be(é|hy, h,) with by = h; = 4, having a mean
0f 0.5 and being dominated by the data. The probability of recognizing a mature
individual was assigned the prior Be(v|vy, v;) with vy = v, = 0.002ny;, which has
a mean of 0.5 and is dominated by the data.
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Parameters for the logit function of maturation equation (17.1) were assigned
the prior

N(B? b V'Y I(B), > 0) (17.21)

a truncated normal prior with mean vector b” = [—3. 0.1. 0.1" and covariance
VY = diag[10, 10, 10’. The positivity constraint on the second aud third ele-
ments of the vector comes from the prior belief that the relationship between
maturation and diameter and light availability is non-negative.

Priors for the seed data model in equation (17.3), including the dispersal
parameter and the seed fraction originating outside the map, were

plu.c) = N{ulug. Vi) N(c ley. Vo) I(u, ¢ > 0) (17.22)

where parameter values were chosen to be informative. For w they differ among
species; we used ¢y = 0.02 and V; = 0.01. There is a positivity constraint on u
and c.

The monotonicity priors on the parameter sequences pg and pp in equa-
tion (17.14) were designed to allow for uneven distribution of data and strong
nonlinearities. Because slow growth is associated with death, the observations
of growth rate below a certain threshold are rarely observed. However, this lack
of slow growth observationg results from the fact that mortality risk increases
sharply at slow growth rates. For this reason, our sequence of p4 values has
an intercept at 1. Although zero growth rates do occur in particular years, we
used this assumption as a way of approxirating the sharp increase in risk that
can occur at low growth. This assumption is obviously flexible. In addition to
monotonicity, there was an informative prior for values within the sequence 4 p.
which was Be(ay. by}, where a;, is 0.001 fork =1,2,3and a;, =10 fork =4, 5,6,

1
bk = A (“T:)- — l)
My
ity =[0.00001. 0.00002, 0.00003. 0.00004. 0.00005) . (17.23)

This prior assures essentially zero values for juvenile trees (bins 1, 2, 3}, but
is non-informative (but monotonically increasing) for large irees. Thus, the
diameter effect only affects large trees. Although small trees grow slowly and
thus are at higher mortality risk, this is a growth effect, not 2 diameter effect.
This informative prior allows us to separate the effect of slow growth from that
of large size, which could indicate senescence.

17.5 Computation

The posterior was simulated with Gibbs sampling, based on conditional poste-
riors that are discussed in the appendix, some of the ernbedded steps being
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Metropolis. The simulation was initialized at prior mean parameter values
(diameter increments and crown areas), random draws from priors, or MLEs
based on simpler models (fecundities for trees were initially estimated without
vear ot individual effects using the approach of Clark et al. 1999).

Due to the size of the model, efforts were made to optimize code. Despite
the large number of years across many individuals within multiple plots, the
main Gibbs loop contains only three loops over years (including one to update
maturation/fecundity, one for missing seed data, and another for dispersal and
Poisson parameters), and no loops over individuals or plots. Data structures
that include pointer arrays were used to rebuild (reorder and restack) matrices
of state variables based on the changing gender and maturation statuses of trees
and tree-years, respectively.

Convergence was achieved with 10,000 iterations for species with moderate
numbers of individuals, but required up to 200,000 iterations for trees with
many individuals. There are a large number of parameters, not all of which
could be sampled efficiently. The Jowest updating rates and highest auto-
correlations were obtained for fecundities of dioecious species (Acer rubrum,
A. pennsylvatica, Fraxinus americana, and Nyssa sylvatica), due to the discrete
nature of Q;, and Hy, and the blocking over all tree-years within a plot. Thus,
for fecundity/maturation/gender of dioecious species, we selected for updating
at random 30% of the trees for a given iteration and embedded five such
‘terations within each Gibbs step.

17.6 Diagnostics

From 50,000 to 1,000,000 Gibbs steps were discarded, followed by 50,000 to
100,000 iterations that were retained for analysis. We inspected Gibbs chains for
all parameters as well as for samples of individual effects. Experiments involved
many parameter initializations; however, results presented here come from
single long runs for each taxon group. Acceptance rates for Metropolis steps
were generally above 0.2. The exception was for dioecious species, where low
acceptance rates were addressed by embedding multiple iterations per Gibbs
step (Section 17.5). To help evaluate results we compared priors and posteriors,
we considered predictive capacity, in terms of data used to the fit model, and
we compared predictive intervals from the model with estimates of latent states
that could not be directly observed. Here we discuss some comparisons.

17.6.1 Some prior/posterior comparisons

Some of the estimates for parameters from an example taxon, Quercus, are
shown in Table 17.5. Estimates for marginal posteriors are accompanied by
fited truncated normal distributions, which would be used in the event that it
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Liquidambar styraciflua (monoecious) Acer (2 spp monoecious, 2 spp dioecious)
{a) Data and predictions
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Fig. 17.3 (a) Data and fitted models for maturation and gender. Liguidambar (left) is monoecious.
Acer (right) includes both monoecious and dioecious species. Lower histograms show the faction
of observations in diameter bins for which g, = 1. Upper histograms show the fraction for which
the estimates Q. = 1. The function @ is shown for prior (dashed) and posterior (solid) values of 5.
Horizontal dashed lines are 95% Cls for v¢. (b} Posteriors for 8 for Liguidambar compared with
priors (flat lines). (c) Posterior means for gender plotted against maturation status.

was desirable to draw samples from it, for purposes of prediction. This would be
necessary if one did not have access to the full Gibbs chains. There are two such
distributions, one for the parameters of A and second for those of a. The full
covariances are not included for space considerations; we have included only
standard deviations in Table 17.5. We consider aspects of data, priors, and pos-
teriors, beginning with gender and maturation, followed by growth/fecundity,
then survival.

Figure 17.3 provides perspective on how data, priors, and posteriors relate for
a monoecious species (Liquidambar styraciflua on the left side of Figure 17.3)
and the genus Acer, which includes both monoecious (A. barbatum, A. sac-
charum) and dioecious (A. rubrum, A. pensylvanicum) species (right side of
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Figure 17.3). In fact, A. rubrum is palygamo-dioecious, having some individuals
that are male, some female, and some supporting both male and female flowers.
Our ferale fraction for this species includes both female and monoecious indi-
viduals. For the monoecious Liquidambar, all mature individuals have female
function, so ¢ = 1. With increasing diameter and canopy area, larger numbers
of individuals are observed to be mature (grey histogram in Figure 17.3a) and
still more are estimated to be mature (black histogram), because detection prob-
ability v < 1 (horizontal dashed grey linesj. Note that the posterior 95% credible
interval for the cstimate of v roughly averages the red histogram {observations)
at sizes where maturation is reached, whereas the black histogram (estimates)
approaches 1. This is the expected relationship between observations, detection
probability, and the true states. The values approach zero for small diameters,
because small trees cannot reproduce. However, values do not approach zero
for small exposed canopy areas, because it is possible for trees that are highly
shaded to produce at least some fruit.

The estimates for the population-level relationship are given by predictions
of 8, shown in Figure 17.3 as predictive means only. These are plotted against
exposed canopy area A (for two values of diameter) and against diameter D (for
the mean canopy area). We show prior and posterior means for 8. The estimates
of %, which are the basis for predictions of 8, are well resolved (Figure 17.3b).
They predict maturation at smaller sizes and at lower canopy exposure for
Acer than they do for Liguidambar. The population level predictions (smooth
lines) do not appear to run precisely through the histograms of individual level
predictions, because the individual level predictions effectively marginalize over
diameter and canopy distributions for the entire population, whereas the pre-
dictive mean curves are conditional on specific diarmeter and canopy values.

Capacity to predict gender increases with tree size, because large trees are
more likely to be reproductive, and reproduction is the only evidence for gender.
The probability of being female tends to zero or one with increasing diameter
(Figure 17.3c). As probability of being mature increases, so too does predictabil-
ity of gender. If data were static, at small diameters, the probability that any
individual is female would tend 1o the posterior estimate of ¢. This does not
occur in Figure 17.3c, because small diameter individuals may Jater become
mature, thus providing evidence of their gender even at small size, i.e. before
they were mature. With increasing confidence in maturation status, we see a
greater tendency to be female than male. This tendency results from the fact
that two of the species in Acer are modeled as monoecious and thus will always
be counted in the female class.

The influence of truncated priors (equation 17.15) is evident in posteriors for
parameters from the growth/tecundity state-space model (Figure 17.4). Due to
the size and complexity of the model the flexibility to assign hard boundaries
to one or both hmits for these parameters and the transparency of prior effects
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Fig. 17.4 Comparison of priots (flat grey lines) and posteriors (black) for the fixed effects in the
matrix A for the state space model (Equation 17.7) for two genera, Betula and Cornus. Betuia has two
inlercepts, one for each of twa species. The honzontal axis bounds the prior.

on posteriors was deemed an advantage. We include in this example two shade-
tolerant taxa (the canopy exposure effects X are near zero for both diameter
growth and fecundity), one having high fecundity (Betula) and another low
fecundity (Cornus). The fit for Betula includes two sets of intercepts, one for
the higher fecundity and faster growing B. alleghaniensis and one for the lower
fecundity and slower growing B. lenta (lower panels of Figure 17.4). For this
particular fit, we held the diameter effect D on growth rate d to be near zero
(there is no prior knowledge to suggest growth rate should respond directly to
size until trees become large), but assumed that the effect of D on fecundity
should fall between 1.5 and 2.5. Together these assumptions allow for a direct
size effect on fecundity that accords with allometric theory, thus allowing that
effects of canopy exposure, which can be correlated with size, are more realistic.
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Nyssa sylvatica Fraximus americana
(a) Drameter increment
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Fig. 17.5 Posterior medians and 95% Cls for year effects b, for two species. Separate year cffects
were used for southern Appalachian plots and for Piedmont plots. Solid thin lines in lower panels
are proportional to log seed rain averaged over both sites.

To allow for declining physiological function with size, we included the
(in D)? term in the model and constrained it to be negative. This term will have
increasing influence with size. We did not have large enough trees in these
data sets to show clear effects on growth (posteriors clumped at the upper zero
boundary), but there was evidence {or this negative effect on fecundity for a
number of species. Canopy exposure 2 has a positive effect on both growth and
fecundity. For these shade tolerant species, these estimates were close to zero
for both growth and fecundity.

The lagged growth rate effect was constrained to be near zero for growth,
because we wanted long-term trends in growth to be taken up by year effects.
The tendency for positive correlation was constrained by the upper boundary at
0.01. However, we wanted to explicitly parameterize the lag-1 effect of growth
on fecundity, because this could be important for demographic prediction. We
obtained a range of values from strongly positive to strongly negative for the
lag-1 effect of growth on fecundity.

The different intercepts for genera having more than one species (e.g. Betula)
allowed us to model fecundities for groups of species having indistinct seeds.
Although B. alleghaniensis and B. lenta have similar life histories, we found
substantially higher fecundity for B. alleghaniensis (recall that intercepts are on
a log scale).

Two sets of fixed year effects b, were used, one for each of the two regions
and shown in Figure 17.5 as longer curves for Coweeta (back to 1992) and
shorter curves for Duke Forest (beginning in 1999), both having a sum to zero
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Fig. 17.6 (a) Survival data, (b) relative frequency of deaths (histogram) and posterior median and
95% Cl for ug, (c) relative frequency of deaths (histogram) and posterior median and 95% CI for pp.

constraint. Those for growth show increasing rates in recent years, which could
result from several mechanisms. Those for fecundity show a tendency for
two-year cycles in Nyssa. Note that year effects need not strictly track seed rain
trends (solid thin line in Figure 17.5), because other covariates vary from year
to year.

The posterior estimates for effects of diameter increment ;4 and diameter pp
on survival show the effects of the monotonicity assumptions (Figure 17.6). The
relationship between growth increment and mortality risk is highly nonlinear
close to the limit of increment core data (Figure 17.6a, b). Apparently, trees
reach a threshold of low growth, below which mortality risk rises substantially.
The histogram of observations in Figure 17.6(c) shows modes not only at the
largest sizes, but also the smallest. The latter mode results from the slow growth
that results from low light levels in the forest understory. The priors help to
discriminate the growth from size effects, by recognizing that mortality risk
declines with growth rate, but increases with size. Beyond this relationship
already known from previous studies, the prior is weak as to the shapes of these
relationships. The prior from equation 17.23 allows the assumption that death
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Fig.17.7 Coraparison of increment data from tree ring data not used in fitting the mode] (thin lines)
and predictive distributions of tree diameter from the model (Section 17.6.2).

of these small individuals is not due directly to size, but rather indirectly, due to
low growth rates.

17.6.2 Data prediction

To provide further insight into model behaviour we predicted data and latent
states. Here we describe some of these predictions and how they compare to
data or estimates of latent states,

Predictions of diameter growth were evaluated against an independent data
set of growth, obtained from measurements of increment cores spanning
decades. The example in Figure 17.7 is typical — we obtain good coverage of size
distributions for decade-ahead prediction. It is worth mention that the model
contains no explicit age information. And there is no attractor in the model that
would necessarily make it converge to a particular diameter value. Moreover,
these are not one-step ahead predictions, as is often used to evaluate fits of
time series models, but rather 200 year ahead predictions. Here we simply
initialized the model and incremented year-by-year predictive distributions,
approximating

p(dia, fin X X) = f Py | X7 7) pl=lX)dn

where X is taken to be all data and priors entering the model, = is a vector
of parameters, X; is taken to be the current covariates, which include the
previously predicted diameter and increment, and a random draw from the
distribution of canopy exposure values ); ; contained in the data. The integrand
includes the state-space structure of the model (equation 17.7) and the posterior.
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The integral is approximated by drawing at random a row from the iteration-
by-parameter matrix of Gibbs sampler output. The tree is initially immature
(1 cm diameter) and subject to growth rate in equation (17.13), risk of matura-
tion from equation (17.2), and risk of death from equation (17.14). A draw from
V, determines its random individual effect. If it does not survive an iteration.
it is pronounced dead and removed from the simulation. The next growth
rate is drawn from a univariate or bivariate normal, depending on maturation
status.

A similar approach to prediction was used to evaluate other aspects of the
model. We do not observe fecundity, so we cannot compare direct observations
of fecundity against model predictions. However, we can check predictions of
seed rain. We did this in two ways. Consider that seed rain can be predicted
from different levels in the model. The model generates estimates of latent
states f;;,. Based on these latent states for all trees on plot j in year ¢, there
is a likelihood for seed rain data at location k in year t. Thus we can consider
how well the expected seed rain for all trees at j in year ¢t predict seed rain data
atk in year t, or

plsii|E[fin Q] X) = / p(5es |E[fine Qia]. m) plm |1X) dem

where X represents all data and priors, and the vector 7 = (u, §). Alternatively,
we could predict from a lower level to include the uncertainty in f;; itself

p(sk.c (E [in'*l] . X) = / p(sk.c lfjt Qjesm) p(fius Qs !E [Xj,t—-~1] )
X p(fj,:. Qj,tqﬂ’lgﬂ'ﬂx)d(fj‘t- Qj.t,mﬂfz)

where the vector =, = (8%, A, a, by, {bi}, £). Figure 17.8 compares predictions
from these two levels with data (black) and priors for missing data (grey). As
expected, the predictions conditional on mean estimates of fecundity (right)
have narrow predictive intervals - they include only a subset of the uncertainty,
i.e. that contributed by the seed data model assuming known fecundity. Predic-
tions that incorporate the uncertainty in the state-space model itself (left) have
broader predictive intervals and provide a more realistic prediction.

We constructed predictive intervals for a population and for individuals
within the population, the latter conditioning on known covariates or estimated
latent states associated with that individual. In principle, the predictive intervals
obtained by methods discussed above should agree with the distributions not
only of data (e.g. Figure 17.8), but also of latent states being estimated in
the model. To illustrate that this is the case, Figure 17.9 provides an example
that includes predictive intervals for growth, fecundity, and survival of Quercus
where the latent states are represented as grey dots and predictive intervals
are in black (a dark understory with A = 0.1), grey (an intermediate exposure
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Liguidambar styraciflua
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Fig. 17.8 Predictions for seed data conditioned on posterior mean estimates of fecundity (right)
and on mean estimates of covariates (left). Predictive intervals are broader on the left, because they
integrate not only uncertainty associated with dispersal and sampling, but also in the state-space
model of fecundity.

level of X = 40), and, for fecundity, dark grey (intermediate exposure, conditional
on being mature). For black the sources of uncertainty, from the predictive
mean outward are in order: parameter uncertainty (dashed - hardly visible),
random individual effects (dotted — in this case small), year-to-year variation
(dashed — in this case large), and process error (in this case small). In general
we find agreement between estimates of latent states and the predicted variation
from the model. The latent states for fecund individuals are covered by the
predictive distributions conditional on being mature. The centre plot includes
a large number of dots along the bottom of the plot, indicating immature
individuals. The black, unconditional fecundity prediction marginalizes over
the probability of being mature.

17.7 Summarizing the complexity

The large number of estimates generated by this analysis satisfies the need for
a detailed representation of how demographic rates relate to one another, but it
produces a new challenge: How do we summarize these results in meaningful
ways? Despite the effort needed to simulate the distribution, obtaining the
posterior is only the beginning. These results are now the basis for forward
simulation experiments to determine how changing environments affect pre-
dictions of biodiversity. Here we simply point out the rich set of products that
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Fig. 17.9 Posterior mean estimates of latent states {dots) and predictive intervals for low (A = 0.1;
lower set of solid mean and dashed 95%) and high () = 40; upper sct of solid mean and dashed 95%)
canopy exposure. included in (b) are predictive intervals for fecundity conditioncd on mature status
and high canopy exposure (Q = 1); zero values are jittered and plotted as onc’s to make them visible
on this log scale.

can be derived from such results. For example, the predictive distributions
provide a basis for simulation of interacting populations, a requirement for
understanding how competition contributes to species diversity. The simu-
lations in Figure 17.10 are conditioned on a particular assumption of light
availability (in this case, a random draw from the data). Competition models
generate the light availability based on shading from neighbours (e.g. Pacala
et al. 1996, Govindarajan et al. 2004).

Despite the complexity of this analysis and the Jarge numbers of estimates,
predictions can be simple and valuable. For example, the decline in pre-
dictive intervals with increasing elevation for fecundity and growth rates in
Figure 17.11 can help to explain mechanisms behind species range limits. Cor-
relations among series of rates predicted from the model can be used to identify
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Fig. 17.10 Predictive simulations of demographic rates based on naive scenarios for light availability.
showing inherent differences among species. In each case are shown 95% predictive intervals, which
include all sources of uncertainty in the model. For fecundity 30 individual simulations show the
range of variability. Note that fecundity has a different scale for each species. For diameter, data are

also shown (thin lines).

how lags in growth may affect fecundity (Figure 17.12, left side) and how and
when rates of growth and fecundity deteriorate prior to death (Figure 17.12,
centre and left). Predictive intervals for specific combinations of demographic
rates (Figure 17.13) can be used to test hypotheses about the types of tradeoffs
that might be needed for species to coexist. In each of these cases a seemingly
ncomprehensive number of estimates has been synthesized in ways that allow

clear consideration of basic ecological relationships.
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Fig. 17.11 Predictive intervals for demographic rates at different elevations. The predictive densities
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Fig. 17.13 Relationship among species in terms of capacity to grow fast at high light versus survival
probability at low light. Predictive intervals are 95% and include only parameter error and variation
among individuals.
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17.8 Potential

Hierarchical modelling provides a mechanism for synthesis of complex infor-
mation and interactions. The Bayesian framework is important for incorpo-
ration of prior knowledge, the strength of which differs for all parts of the
model, including data and theoretical understanding. The advantage it provides
for admitting the complexity unavoidable in the real world brings with it the
challenge of understanding complex models. Once a large posterior is in hand,
predictive distributions of key relationships can help to elucidate patterns of
special interest.

Appendix

A. Broader context and background
A.1 Demographic models

Demographic modelling of natural populations has progressed substantially in
recent years. Until a decade ago, models for inference on species in the wild
involved a single stage, something like response = f (known inputs, stochastic
error). The response could be growth rate or fecundity, the inputs being aspects
of the individual's state, resources, or other factors that affect health. In fact,
the most widely applied methods for inference involved a single predictor, the
individual's stage in life, and it assumed that the response was linear. The
approach owed its popularity to limited availability of covariate data and to
readily available software. For a single response variable, such as fecundity f;
of tree i, linear models dominated. One might apply an allometric function of
tree diameter D;,

Infi = ag+apln D; + &
&~ N(O, 02).

Likewise, tree growth d; might be modelled as a function of covariates x;, such
as light availability,

di = f(x;)+€i
g ~ N(O, UZ).

As maximum likelihood has increased in popularity, nonlinear models have
been more widely applied. For example, a growth rate might saturate with
increasing resource availability. Ecologists have increasing developed code to
perform optimizations (e.g. to obtain MLEs) and to simulate distributions (e.g.
using a Metropolis algorithm). Mortality risk might be modelled as a function
of past annual diameter increment d;, because growth rate provides some
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indication of overall tree health,

z ~ Bernoulli({;)
Li= fldi)

using a standard GLM or some alternative form (Kobe et al. 1995, Yao et al.
2001). Such applications have been tremendously valuable and predispose
ecologists to more advanced techniques, such as hierarchical modelling (Clark
2005, Latimer et al. 2006, Carlin et al. 2007).

The hierarchical application described in this chapter provides examples of
many distributional forms and opportunity to mention some background for
the hierarchical context. Hierarchical models are now being applied in ways
that synthesize complex data to better understand species distributions (Latimer
et al. 2006), migration (Wikle 2003, Hooten et al. 2003), mortality (Metcalf et al..
in review), disease spread (LaDeau et al. 2007) and environmental variation
(Ibanez et al. 2007, Ogle et al. 2006, Dietze et al. 2008), growth (Clark et al. 2003,
Mohan et al. 2007, Ibanez et al. 2007), and fecundity and dispersal (Clark et al.
2004, HilleRisLambers et al. 2006). Our chapter involves a specific application,
emphasizing techniques that could be adapted for multiple applications, in part
because it models demographic rates together.

A.2 GLMs in g hierarchical setting

Componerits of our model involve generalized linear models (GLMs) for mat-
uration (Section 17.3.1) and seed data. GLMs involve an underlying linear
predictor that is linked to a data distribution, typically binomial or Poisson, by
a function that translates the predictor from the real line (~o00. o) to (0,1) for
a binomial or (0. o¢) for Poisson by way of a link function. As an example, the
Bernoulli example in equation (17.1) shows 8;; . as an inverse logit function of
the linear predictor ) + 8 Djj., + B5A;.+. A large literature on GLMs dates at least
to Nelder and Wedderburn (1972) with applications described for classical and
Bayesian settings in many recent texts, including Gelman and Hill (2007). In
the Bayesian context, parameters for fixed effects might have Gaussian priors.
Our truncated normal priors (equation 17.21) do not importantly complicate
the computation.

Hierarchically structured GLMs (or Generalized Linear Mixed Models) typ-
ically involve a stochastic specification of one or more terms in the linear
predictor. Ecological applications often include random effects associated with
location. For example, Latimer et al. (2006) include fixed effects as predictors
of species occurrence at a geographic location, with a spatial random effect
that introduces dependence based on proximity. The prior on this random
effect depends on the value for neighbouring cells. This dependence introduces
spatial smoothing. Ibanez et al. (2008) use random etfects for location to absorb
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some of the differences among stands not accounted for by covariates, in an
application where stands are distant from one another. In both of these cases,
the variance for random effects requires a prior, introducing an additional stage
to the model.

Our application to the binary maturation process in equation (17.1) is applied
to a time series for each individual tree, conditionally dependent on previous
and future states. However, the underlying predictor is linear, with a logit link.
Our approach differs from previous ones in placing the stochasticity not on the
coefficients, but rather on the covariates. This structure (parameters as fixed
effects assigned to random predictors) was motivated by the fact that tree size is
estimated, and canopy exposure estirnates are especially crude. The problem
is constrained by informative priors on the predictor variables, particularly
knowledge that they are bounded within a known range. This range enters as
a truncated normal distribution (equations 17.12 and 17.19). Thus, the added
stage involves sampling the covariates, rather than the coefficients.

The Poisson distribution for seed density (equation 17.4) differs from a
standard GLM in that the expectation is a transport model for seed dispersal.
More typically, applications would involve a linear predictor with a log link. Like
the binomial, it may have a hierarchical specification. The inclusion of trap area
as a coefficient in the Poisson piece of equation (17.3) is standard, accounting
for the fact that collecting areas of traps differ.

Related to both the binomial and Poisson is the Zero-Inflated Poisson (Z1Po)
model, a binomial-Poisson mixture, where the binomial piece can be inter-
preted as the probability that the Poisson-generating process exists (Lambert
1992, Hall 2000). For example, our fecundity model can be simplified to a
simple probability of being mature given tree size (binary) and the expected
fecundity, given that the individual is mature (LaDeau and Clark 2001),

p(f 16, y) =[1 =0+ 8Po(0|y) ]V [8Po(f |y /0

where f is seed production by a tree, 1() is the indicator function, ¢ is the
probability of being mature, and y is the fecundity given that an individual
is mature. Marginally we expect E(f) = fy. Note that the binary part, assigned
probability 6, and the conditional Poisson fecundity with mean f are interpreted
as different processes. We might include different predictors for § and f or not
(e.g. both depend on tree size and resources). This is a standard interpretation
of a ZIPo model (e.g. Hall 2000, LaDeau and Clark 2001).

B. Models and computations

Gibbs sampling (Gelfand and Smith 1990) is widely used to simulate posteriors
and is described in a number of recent texts (e.g. Carlin and Louis 2000, Gelman
et al. 1995). In brief, one factors a high-dimensional posterior into a collection of
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lower-dimensional densities that can be sampled successively, each conditional
on others already updated. Conditionals may be sampled directly or indirectly
using, for example, a Metropolis step. Here we describe conditional posteriors
used for our Gibbs sampling algorithm. The general idea was to embed within
the Gibbs sampler Metropolis steps, where direct sampling was not an option,
with attention to blocking for efficiency.

B.1 State-space model

For the state space model {(equation 17.7), all sampling was direct. The condi-
tional posterior for fixed effect parameters is

vec(A)| XY, T, ...~ Ny (Vo (2 + V) @ V) I(ay < vec(A) < ay)

where V™1 = XT X, v=XT Z X is the stacked matrix of (Tj; — t;) by p X;;
matrices, one for each tree, Z=[Z;; Zy...] is the stacked matrix Z;=Y; —
14be, where 1j is the length (T; — t;) vector of 1’s, and b, are taken for the
appropriate years in X and Z. The truncated multivariate normal is sampled
from the conditional univariate truncated normals.

The error covariance matrix was sampled from an inverse Wishart condi-
tional posterior. Let Vy be the parameter matrix for this prior. Then the condi-
tional posterior for -1 is

AW Z Qijit()’ij,m - Xt A— b, — bij),())ij.tﬂ - xij.tAH b, — bij)
L.t

~1
+nyr Vs , E Qi + 1yt
ij.t

where 1y is the total number of tree years (equation 17.16 of the text). The
conditional posterior for the random effects variance is
-1

Vi~ W Zmaxg(QgJ) bibj + 15 Ry ,Zmaxt(Qg;L) +7
i i

Note that individual ij contributes to the conditional posterior only if it
is imputed to be mature at some point during the study, in which case
max; Q) = 1. The random effects are sampled from

by ~ Nz(VU. V),
where

Ty
V() B G- B (s - A b))

f=7
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mj and T are the first and last years during the study in which individual ij
is imputed to be mature, and T; — 7 is the number of years mature that ij is
mature during the study.

The fixed year effects are sampled from a conditional normal. Let V; be the
covariance matrix for the prior. The conditional posterior is b, ~ Ny(Vv, V),
where V'1=37! ZI-J Qi+ VL andv=x"1 Zi‘j Qe (Vij.er1 — %50 A — by).
This draw was followed by subtraction of the mean for year effect for both
Ind and Inf. Of course b, and A could be sampled with a single draw from
a multivariate normal. A separate step was used due to the large number of b,
and the fact that each tree could have a different subset of total years.

B.2 Diameter growth

Diameter growth increments were updated from the conditional posterior given
in equation (17.12) using a Gaussian approximation for the third factor, i.e.
that corresponding to survival probability. That probability is approximated
as L+ &~ 1 — pg,,, where the {+d,, Sequence contains probabilities for discrete
diameter increment bins. The contribution of diameter is omitted, because its
contribution to survival probability is small relative to that of growth rate. Then
the conditional distribution for the k bins is

_ p(z|lndy) p(indy)
> p(z‘lndk) pilnd)

where p(z=1|Indy) =1 — 1 and p(z=0|Indy) = . z being survival (1) or
death (0) in the subsequent year, and p(ln d;) the distribution of log growth
rates. The conditional expectations and variances are

Pdizg i = E(Ind|zj1) = Zk Indip(indy |z;4.1)

p(Ind,] 2)

and

iz, = Var(Ind| zj,.,) = Zk(ln di)* p(Indy |20 ) — [E(Ind| z.-j,m)]z :
There is a conditional mean and variance for z= 0 and z = 1. The log growth
rates are sampled from Indy;; ~ N(Vv, V), where

-1 -1 -1 -1 —1 0)) = -1 —1
Vo= Vi gy Vi 0 V=l Vg + 1“(%::) Vi ¥ Pz iz

with conditional means and variances contributed by survival are for z=0 or

z =1, depending on whether or not the individual survived until the next year.

B.3 Canopy exposure

Canopy values are sampled from a conditional posterior that depends on the
prior means and variances coming from the analysis that assimilates data and
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from the state-space model. If the individual is mature in year t, then canopy
area is sampled from

InXj¢ | ~ N(Vv.V) I((cfjo)t - \/a) <In(Aq) < (cfjo)t + ﬁ))

where V7' = A 2" 1A+ C; |, and v = AL "y, — x;;’\)A(,,,,/\.) — by — by) +

i’
1(}01 /Cjj.i. Notation for the first factor follows that from the previous section. If

immature in year t. In A, is sampled from a normal distribution having

c

-1 2 1
Vi =aj/w+ Céi-t

- 0
(n(ds) = 5 oy = b = by) @) . et
V= I

w Cljt

where a_) is the vector a from equation (17.13), but lacking the coefficient for
In A, a, is the coefficient for In A. w is the currently imputed error variance for
growth rate regression, having an IG prior.

B.4 Fecundity, maturation, gender

Due to their conditional dependence structure, fecundity, maturation, and (for
dioecious species) gender are sampled together in a Metropolis step. Here
we describe sampling. The basic factoring used for maturation, gender, and
fecundity is

p(fir Qi Hyosje |5 Bijo dyom1 Do M) = plsje | firr Quier Hy)
< p( firs Qiis Hj |y hig. dize—1 Dy Ay

where g;; and hy; represent the history of observations on individual ij, both past
(before t) and future (after t). The first distribution on the right-hand side is the
likelihood for seed trap data, indicating that all seed traps on plot j in year ¢
conditionally depend on every tree i on plot j. The second factor on the right-
hand side is the probability of being mature (Q = 1), female (H = 1), and having
fecundity f.

For monoecious species, we use a Metropolis step where maturation status
and fecundity are jointly proposed and rejected for all trees in a given stand j in
a given year t. For dioecious species we must further sample gender. Because
gender applies to an individual across all years, dioecious species are sampled
in a different way and are discussed after monoecious species. The blocking
differs between these two data types, which we describe here.

Efficient Gibbs sampling requires blocking of variables to facilitate mixing,
which is challenging given the ways in which latent variables are linked with
the unknown year in which an individual becomes mature r;. These linkages
include:
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(i) the Q. and f;, are inherently linked, by virtue of the fact that non-zero
fecundity is defined only for mature individuals,

fia(Qie=0) =0
finl(Qis=1) > 0;

(ii) maturation statuses for an individual over time are mutually dependent
according to the one-way transition to maturity in year ;;;

(iif) gender is considered to be fixed; and

(iv) seed trap data conditionally depend on all trees in the plotin a given year.

In light of the conditional relationships involving status and seed production,
the choices for blocking are to (1) sample individually every year for every tree
(conditioned on other trees for that year and other years for that individual), (2)
sample as a block all individuals within a plot for a given year, and (3) sample as
a block all trees and years within a plot. The first option has the advantage that
high acceptance rates can be achieved, but is computationally slow, entailing
loops over plots, individuals, and years, e.g. a Metropolis step for every tree-
year in the data set. The third option necessarily results in a high rejection
rate, each proposal consisting of "%, (T — t;) values. The binary nature of Q
and H proposals can make acceptance rates low. Nonetheless, because gender
Hj; applies to an individual across all years, we use a modification of option
3 for dioecious species. We begin with a description for monoecious species,
followed by the description for dioecious species.

Monoecious species — We use the second option for monoecious species, blocking
on time and modelling each year successively. The factoring is

P(fj‘t-, Qj.t qu.lﬂ Xji—1+ Xj1s Qj.r—l- Q,ji—i—ls Sj.!) & P(Sj«z |fj.te QJL:)
P(Qj‘t, fjJ |qj.£<, Xjt—1, Qj.t~-~ 1 Qjtets xj.t)-

We propose all values of { Q. f};, together and accept or reject them as a block.
The Markov transition probabilities from ¢ to t + 1 are conditioned on obser-
vations of status, and they must be combined with probabilities for fecundities
and seed trap data. The transition from immature to mature is a hidden Markov
process, but only for tree-years in which status is unknown, which is the case
after the last year in which immaturity is certain, and before reproduction has
been observed. If the status is known through past observations (if previously
observed to be mature, then still mature), a current observation (mature or
Immature), or future observations (if later known to be immature, then imma-
ture now), then status Qj, is known. This is also the case for imputed statuses.
If unknown, status must be modeled as the conditional probability of being in
state Q;;; = Oor 1 given Qy;_1 and Q;; 1,1. These probabilities involve the age-
specific rates of making the transition from immature to mature states and can
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be derived from the cumulative logit probability of being mature given diameter
Dy, and canopy status A;; (equation 17.2a). Because blocking is year-by-year,
we condition the transition probability on both the foregoing and the following
years. Then the trivial probabilities are

p(Qia=1[Qgi1) =1
p(Qii=1{Q4u=0) = 0.

For failure to recognize the reproductive state, we need the additional factor

P(qij.t=0{Qg¢ =1)=1-v.

For Gibbs sampling, we need the year-by-year transition probabilities from
immature to mature between ¢ — 1 and ¢ given that the transition was made
between t —1 and t+1. Let 3;; be the probability of being in the mature
state conditional on states in years t — 1, t + 1, and on observations. Ignoring
observations for the moment, we have

8= p(Qiu=1]Qyur =0, Qiir = 1)
_ P(Qir=1]Qye1=0) P(Qi1 = 1] Qi =1)
k§1 p(Qir =k [Qye-1 = O) p(Qij-tH =1 'Qij.z =k)

Aty /1 0y00)

T A0 J(1 = 0 —1) + [1— a6y J(1 = 050 1)] X dBy01 /(1 = 041)

1=8,, 1—d8,,
d@ijt + (——.’1'_?‘7—]') dg,‘jﬂu.]

déy,
deij.t + d@i}’.£+1

dﬁi‘; dDi'i, de"t
FT T ks LAV [ WP TR (it SN IR W 1)
o= (o < ) (g )

= Bgdij.tetj,z (1~ 8;.)dt.

where

Because );; changes much slower than Dj, we do not include it in the chain
rule calculation for the derivative. Because dt is always equal to 1 year, we
hereafter omit it.

Observations change the transition probabilities. The previous equation for
dy; describes the probability of transition in the absence of an observation. If
there is an observation in year t and it is ‘uncertain’ {g;; = 0: see Table 17.4),
then the observer did not identify the tree as mature, and the probability




Models for Demography of Plant Populations 475

becomes

Sg‘l = PI’(Q;‘J‘,: =1 \Qij,:—l =0, Qij,lﬂ =1, dijt = 0)
d@y‘t(l — U)
A8 (1 - v) +dbyg

For the first study year, in the absence of an observation (maturation statuses
were not obtained on all individuals the first year of the study), we have

Hyf

8js = p(Qye =1 ‘Q"J‘"” = 1) - m

If there was an observation and that observation was g;;; = 0 (Table 17.4), this
becomes
i1 (1 — v)
Bij (1 — v) + d()ij‘ul‘

For the last observation year, absent observation,

abyr
bi.r=p(Qir=1|Qyr1=0)= m
ij,
If there was an observation, we have
5 ddyr(1 —v)
GT = —— .
T (1-yr)

The Metropolis steps entail a loop over time (17 year), at each time step propos-
ing values for Q; and f;, with the constraints on Q discussed above and f;;; = 0
for all imputed Q;;, = 0. For those imputed to be immature at t — 1, candidate
values come from QF, ~ Bernoulli(0.5). All others remain mature. For indi-
viduals previously imputed to be mature, we propose In f, ~ N(ln fy(g:) 0.1),
where (g) denotes the current Gibbs step, prior to updating. For individ-
uals previously imputed to be immature, but now mature, we propose
rom f7,1(Qy.—1 =0) ~ N(ln f;,. 0.1), where f;;, is an auxiliary variable hav-
ing the value retained from the most recent iteration of the Gibbs sam-
pler in which Qj, = 1. The acceptance criterion involves the products from
equation (17.2a),

d d

Q,j_z, fj.t !Qj.f*l\ Qj,t+11 GjesSjas #Jf‘lt ; ijti
— Qi Qe
o [ J(1 = 8y.)" 7 [%.:N(ln(fij,r) sy e >] '

Fije o Vi
x | T Polsjee | Angie (S w))-
k=1
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Note that all individuals imputed to be mature have a conditional density asso-
ciated with the state-space model. The 5, are different for each individual and
year, as discussed above. All trees contribute to the likelihood for the seed data
for plot j in year t, in that by producing seed or not, they affect the parameters
of the Poisson sampling distribution for seed. Of course, the set of proposals is
accepted or rejected as a block. The sampler is more efficient than it appears,
because we can propose statuses and fecundities for all plots simultaneously,
and accept/reject them on a plot by plot basis, without actually looping over
plots. Once states are updated for time t, we move to t + 1.

Dioecious species — For dioecious species gender is unchanging over time, so
we evaluate the full history of observations for each tree, but still avoiding
loops over individual trees. It is efficient to factor the conditional somewhat
differently, taking together all trees on plot j over all years,

p(fi- Qi Hilaj, by, Xjusj) o plsi|fy. Qs Hi) p(fi- Q) Hylaj hj. Xj).

Because maturation is no longer modeled year-by-year, we require the proba-
bility for a history of maturation status, conditioned on observations obtained
sporadically over individuals and years.

Let 7; be the year in which an individual becomes mature, 78. =
max;(qij; = —1) be the last year an individual is known to have been immature,
and Tb = min, (g, = 1) be the first year an individual is known to have been
mature. Thus, we have the constraint 78. <7< r; The probability assigned to

an individual that became mature in year ¢ is,

ng = p('r,:/‘ =1 '72 <7y < 73[-) = dl‘)ij\, (Hij.r; — ng?;)

_ B?d;jygg.t(l - HUL)

(9;;.73, - 913:7::) |

For individuals imputed to be still immature at the end of the observation period
at Tj;, the probability is

A 0 ‘ 0 ;
bij=p(ﬂj>’l’ljwrg>7g)=1ﬁp(7ii§ﬂ 'rg>7‘--)=¥7-7.
¢ - H‘Tii

For individuals imputed to be already mature before observations began at tij,
the probability is

N 1 9'1}‘
ojj = P\ 7ij < kj |5 <Tg) o
il

We now have a probability for the history of an individual that became mature
at time 7;; or remained immature throughout. Qur prior specification allows for
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a minimum and maximum maturation diameter, in which case 6;; 2 and 6; 1 :
are the values of § taken at these prior maturation diameter values.

The probability for maturation is combined with observations of status
between those years that established it as immature and mature and for gender.
Thus far, we have considered observations that definitively establish maturity or
immaturity (g;, = —1 or 1in Table 17.4). For g;;, = 0, status is uncertain. Status
detection is defined as p(gy;: = 1/ Q4. = 0) = 0and p(qij: = 11 Q. = 1) = v. The
individual has unknown gender if the gender is not observed, the observation is
uncertain, or if flowers are observed but not identified to sex, and no observation
is available from the fruiting season (Table 17.4). Considering both observations

and gender, the probability for individual §j becomes

p (e H [ < 7 < rhoay ) = 801 — )51 — @)’ Py

where n}; is defined to be the number of times mature status was ‘undetected
during the interval (7. 7, ) i.e. the number of times that an individual imputed
to be mature in year 7; was not identified as such. If gender is known, the
third factor disappears. The full reproductive history on all individuals has

conditional probability

p(Qj’Hj'ferJ" j»Sis lL ) nbul~v (1 -t~

TR Gnts0 b i) 1 [T Posc A )

For each individual a maturation diameter is proposed from a uniform distrib-

ution
unif ( ])
R )}

min _0
max(tij =7';j)

1 : max _1
tij mm(tg “U)'

The bounds for minimum and maximum maturation diameters are not sooner
than the first year in which ij reached the minimum prior diameter for matu-
ration £ = max(t|( Dy > Dmin)) OF it was last known to be immature rj and
not later than the last year in which ij had not yet reached the prior diameter for
certain maturation t;’“" =min{t|{Dj;; < Dnax)) o1 it was known to be mature

2
"I

i

T;. There are prior minimum and maximum diameters, which differ among
species. The fecundity for an individual proposed to be immature is zero. For
individuals currently imputed to be mature, the proposed fecundity is a trun-
cated normal on ( fmin. fmex) centered on the current estimate. The conditional
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densities are then the product of Poisson seed data, Gaussian fecundity, and the
probability associated with maturation in year ¢. Because the probability of seed
data conditionaﬂy depends on all trees in the stand in all years, the ensemble of
(fj» Qj, Hj) is accepted or rejected as a block.

Recognmon error is sampled from

Bm( ;1) ]U(O) + U(1 ) BC(U lvl Uz) e(v gvl + U(l), vy + U(o))

where the two arguments are sums of prior values and numbers of currently
imputed mature individuals for which maturation was recognized as such or
not, i.e.

v = 1450 =0, Q. = 1)
it
v =3 I(g50 =1, Qe = 1).
ij.t
For the female fraction we sample from the conditional posterior

Bin(h" |h + b 4) Be(¢ |hy. hy) = Be(d |y + b, hy + hO)

where the two arguments are sums of prior and currently imputed numbers of
the females and males, respectively,

Prior values are hy = h; = 4, which has a mean of 0.5 and is dominated by
the data.

Parameters for the logit function of maturation equation (17.1) are sampled
with Metropolis step. Conditionally we have

[18(r) N(8" b V") 1(85.5 > 0)
iJj
where the first product is the probability associated with maturation years,
which depend on p?, and the truncated normal prior. A proposal is generated
from a multivariate normal truncated at zero for these two parameters.
Parameters for the seed data model are sampled in a single Metropolis step.
Conditionally,

K,

T,
n Po(sj.: | Ajgi ([ w. c)) N(uluo, Vi) Nic lco, Vi) I{u.c > 0).

b=t k=1
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Values are proposed from a normal distribution. In the case of missing data,
seed counts were replaced with the currently imputed seed value.

Imputation of missing data involved a Metropolis step with proposals of plus
or minus 1 from the current value with probability 0.5. The conditional poste-
rior includes a Poisson prior with a mean density as discussed in Section 17.4
multiplied by Poisson density for sample jk,t. Proposals were accepted as a block
for s; ;.

A Metropolis step is used to simultaneously update all of the diameter growth
and diameter bins for the nonparametric survival relationship. The growth
rates and diameters of all individuals are binned in the sequences pg and up
are for the all years. For diameter increment there are 31 bins equally spaced
with width 0.1 on the log,, scale. For diameter there are six bins, also equally
spaced on the log, , scale, with the maximum value chosen to exceed that largest
diameter in the data set. Survival from year t to t + 1 is the event z;, = 1 and
death in the subsequent year is z;, = 0. At each Gibbs step new sequences
of pua and pp are proposed each being Gaussian and centred on the currently
imputed values, but truncated midway between the current values. For diameter
increment the proposal distribution is

N(wi |pa V) T((#d-1 — pa) /2 < g < (a — pas1) /2)

where V is a small value (0.1 in this case). In other words, if the currently
imputed value for py  was 0.5 and those for bins k — 1 and k + 1 were 0.6 and
0.48, then the proposal would come from the normal centred at 0.5, truncated
at 0.55 and 0.49. This procedure allows for any shape subject to monotonic
decline. The proposals for the diameter values are done in the same way,
with the constraint being monotonic increase and with an informative prior
Be(ag, by). All values (both growth rate and diameter) are proposed together and
accepted as a block.
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