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Abstract
The paradox of biodiversity involves three elements, (i) mathematical models predict that

species must differ in specific ways in order to coexist as stable ecological communities,

(ii) such differences are difficult to identify, yet (iii) there is widespread evidence of

stability in natural communities. Debate has centred on two views. The first explanation

involves tradeoffs along a small number of axes, including !colonization-competition",
resource competition (light, water, nitrogen for plants, including the !successional
niche"), and life history (e.g. high-light growth vs. low-light survival and few large vs.

many small seeds). The second view is neutrality, which assumes that species differences

do not contribute to dynamics. Clark et al. (2004) presented a third explanation, that

coexistence is inherently high dimensional, but still depends on species differences. We

demonstrate that neither traditional low-dimensional tradeoffs nor neutrality can resolve

the biodiversity paradox, in part by showing that they do not properly interpret

stochasticity in statistical and in theoretical models. Unless sample sizes are small,

traditional data modelling assures that species will appear different in a few dimensions,

but those differences will rarely predict coexistence when parameter estimates are

plugged into theoretical models. Contrary to standard interpretations, neutral models do

not imply functional equivalence, but rather subsume species differences in stochastic

terms. New hierarchical modelling techniques for inference reveal high-dimensional

differences among species that can be quantified with random individual and temporal

effects (RITES), i.e. process-level variation that results from many causes. We show that

this variation is large, and that it stands in for species differences along unobserved

dimensions that do contribute to diversity. High dimensional coexistence contrasts with

the classical notions of tradeoffs along a few axes, which are often not found in data, and

with !neutral models", which mask, rather than eliminate, tradeoffs in stochastic terms.

This mechanism can explain coexistence of species that would not occur with simple,

low-dimensional tradeoff scenarios.
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!the prevailing notion is that stochastic forces exist on
one end of a continuum while deterministic forces
occupy the other. Finding any truth that lies between
is the challenge. It’s not niche or neutral…it’s determin-
ing the relative importance of the two." Gewin (2006)

I N TRODUCT ION

A half-century since Hutchison’s (1961) !Paradox of the
Plankton", the explanation for diversity is widely debated. To
obtain stable coexistence in models of competing species,

there must be tradeoffs to insure that the best competitors
do not drive others to extinction. This theoretical prediction
does not square with the widespread observation that many
coexisting species do not appear to possess clear differences
(Hubbell 1979, 2001; Clark et al. 2003, 2004; Chave 2004).
The two- to three-dimensional tradeoffs that are the subject
of nearly all theoretical and experimental studies of
coexistence mechanisms often fail to emerge in data. On
the other hand, species show consistent responses to
underlying hydrologic and resource gradients (Whittaker
1967; Pastor et al. 1984; Tilman 1988; Cavender-Bares et al.
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2004; Dijkstra et al. 2005), during succession (Bazzaz 1979;
Pacala et al. 1996; Rees et al. 2001), and with climate change
(Williams et al. 2004). Temperate forest tree populations
repeatedly expand from glacial refuges to occupy geographic
regions that differ among species (e.g. Prentice et al. 1991)
and return to previous abundances following disturbance
(Clark & McLachlan 2003).

!Neutral theory" is viewed as the alternative explanation
for diversity. Species are seen as functionally equivalent,
lacking niche differences, with slow drift to extinction offset
by speciation (Hubbell 1979, 2001; Bell 2000; Volkov et al.
2004). Empirical and model evidence is increasingly taken as
intermediate between the two, fostering a growing consen-
sus that there may be a continuum of causation from
neutrality to niche separation (e.g. Tilman 2004; Gewin
2006; Gravel et al. 2006; Holyoak et al. 2006).

Here we argue for a revised perspective on the
biodiversity paradox that involves an alternative interpret-
ation of both theory and data. First we show that, contrary
to the emerging consensus, while models do indeed
represent a continuum, there is no evidence for such a
continuum in the underlying causes. Moreover, the con-
tinuum in models is one of knowledge, not cause. The two
types of models in the debate are special cases, low-
dimensional tradeoffs and neutrality representing zero
uncertainty and complete uncertainty, respectively. The
confusion results from the ways in which unknowns enter
both data models (statistics) and process models (theory).
The ease with which coexistence can be obtained or
extinction forestalled in some types of neutral models
results from tradeoffs imposed by stochastic elements in
models. Our alternative explanation for causation lies along
a different continuum, one of dimensionality. Recognition
of the high-dimensionality of coexistence is importantly
different from the neutral interpretation, because it implies
that !sameness" is not the alternative to !lack of difference",
when those differences are evaluated along a few observ-
able axes (and they can only be evaluated along a few
observable axes). The more appropriate alternative to lack
of difference is more dimensions. Because of the high
dimensionality of nature (Frank & Amarasekare 1998;
Levin 1998; Kneitel & Chase 2003; Clark & Gelfand 2006),
we cannot expect to observe many of the forces that
structure communities. Moreover, high dimensionality is
consistent with the observation of substantial stability in
nature, whereas sameness is not. Our claim that high-
dimensionality is not appreciated by ecologists might seem
at odds with recognition of messy data and complex
interactions in the ecological literature. In the Synthesis
section of this paper we point out how its role in
biodiversity continues to be overlooked in favour of low-
dimensional alternatives, the niche/neutrality continuum
being the most recent.

Second, we show that traditional treatment of data has
contributed to the confusion, and we argue that hierarchical
modelling provides an alternative. By ignoring process-level
variation, !statistical models" can suggest strong determinis-
tic differences between species, but not necessarily those
differences that would promote coexistence (e.g. tradeoffs).
Hierarchical models allow for complexity, by decomposing
interactions and structure into manageable units that can be
analysed with appropriate computation (Clark 2005; Clark &
Gelfand 2006). They accommodate high dimensionality at
the process stage, in the form of random individual and
temporal effects (RITEs). RITEs represent heterogeneity
that results from unknown causes. Moreover, by allowing
for inference on hidden variables, we demonstrate that
RITEs can indeed stand in for tradeoffs that promote
coexistence. By providing a coherent treatment of
unknowns from data to prediction, aided by hierarchical
modelling, we suggest a resolution to the biodiversity
paradox, showing why it may contribute more to stabilizing
biodiversity than traditional explanations, and why it can be
overlooked.

Our revised view of the biodiversity paradox is organized
in four sections. First, we highlight the contradictory
implications of theory and data. Subsequent sections each
address a critical element of the resolution to this paradox.
In the second section, we demonstrate how stochastic
process models cannot be used to evaluate the implications
of sameness, because they introduce species differences.
Third, we discuss how traditional statistical models can
imply !significant" differences among species, but typically
not ones that would allow for coexistence in models. These
confusing results come in large part from implicit treatment
of unknowns. The need for consistent treatment of
unknowns in both inference and prediction motivates
hierarchical modelling. In the fourth section, we demon-
strate how process-level variation can be included in
hierarchical models, how it is carried forward to evaluate
model behaviour, and how it stands in for underlying
(unobserved) species differences.

WHY B IOD IVERS I T Y PRESENTS A —PARADOX

Models of diversity, be they experimental or mathematical,
are low dimensional, because (i) they must be tractable, (ii)
only a few resources are perceived to be limiting in many
communities (e.g. light, water, nitrogen for plants), and (iii)
general mechanisms (ones that apply broadly) are believed
to be simple, examples being the successional niche (SN),
colonization-competition (CC), the storage effect (SE), and
tradeoffs involving physiology and/or life history (e.g. Rees
et al. 2001). Typically, tradeoffs along two or three dimen-
sions are considered in models, experiments and observa-
tional studies, rarely as many as five (e.g. Pacala et al. 1996;
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Wright et al. 2006). The tradeoff axes can be two or three
life history traits, such as birth rate vs. mortality rate (Warner
& Chesson 1985), mortality risk vs. growth rate (Condit et al.
2006), high-light growth vs. low-light survivorship (Kobe
et al. 1995; Walters & Reich 1996), perhaps including mean
dispersal distance (Pacala et al. 1996), or seed size vs. seed
number (Rees et al. 2001; Levine & Rees 2002). They can be
competitive abilities for resources (Tilman 1982; Gleeson &
Tilman 1990) or a combination of life history and
competition (Tilman 1994; Bonsall et al. 2004).

Stable coexistence in models demands that tradeoffs are
precisely related, in the form of a precise ordering of
parameter combinations. For example, the resource ratio
model of Tilman (1982) admits only two coexisting
species on two resources at equilibrium and does so only
if each consumes more of the resource that limits its own
growth rate. With fluctuating resources, we could conceive
of multiple coexisting species, but restrictions are still
severe: the covariation between resources must be
negative, the minimum resource levels needed to sustain
the population must trade off precisely, and the con-
sumption vectors for the two resources and minimal
resource requirements must be precisely arranged. In
models involving tradeoffs between life history and
competitive ability high diversity requires a precise
negative ordering of competitive abilities and colonization
rates (Tilman 1994; Bonsall et al. 2004). To raise the bar
further, models predict limiting similarity (Pacala &
Tilman 1994). Thus, even if the precise ordering of
relationships did exist in nature, models additionally
require separation of species along these axes.

Field studies often reveal some evidence of tradeoffs (e.g.
Wright et al. 2006), but not approaching the model
requirements for high diversity. Of course, where tradeoffs
are present they contribute to diversity. For example, well-
understood differences between early- and late-successional
species are consistent with SN and CC models (Tilman
1988; Pacala et al. 1996; Chesson 2000). Still, many species
live together without apparent tradeoffs (Bell 2000; Hubbell
2001; Ricklefs 2003). Whereas niche differences explain why
early successional species coexist with late successional
species and why species sort out along hydrologic gradients,
they do not tell us why dozens of late-successional species
coexist, with no obvious niche separation (Chave 2004). The
negative correlations tend to be weak or missing and
involve, at most, a few axes. Instead of limiting similarity,
there is broad overlap (Clark et al. 2003, 2004). For example,
Condit et al. (2006) did not even find that the ranges of
growth and mortality rates increase with diversity, as might
be expected from the limiting similarity demanded by
models.

The apparent lack of tradeoffs presents a paradox when
taken in light of the fact that dynamics involving the same

species are not neutral–abundances of many species do not
demonstrably !drift" (Clark & McLachlan 2003). Temperate
tree populations rapidly expand to similar abundances
following glaciations in North America and Europe, they
subsequently show decreasing variation among sites over
time and, following widespread decimation, return to similar
abundances (e.g. the hemlock decline of 5000 year BP).
Rather than slow drift, the fossil record shows that coherent
spatiotemporal patterns with respect to soils, climate and
disturbance sort out rapidly, often within a generation.

To demonstrate why neutral models neither assume
functional equivalence nor predict the observed patterns
requires a closer look at implied assumptions. Exposing
these assumptions represents an important step toward
resolving the biodiversity paradox.

I N T ERPRE TAT ION OF PRED I C T I V E MODEL L ING
AND ANALYS I S

Evidence in favour of neutral dynamics is interpreted from
patterns of distribution and abundance that are consistent
with a neutral model and from empirical studies that fail to
find tradeoffs among species (Hubbell 1979, 2001). Here we
address the models themselves, and demonstrate that such
models do not imply functional equivalence. The treatment
of empirical evidence is addressed in the next section.

Neutral models hide tradeoffs

Neutral models do not represent an alternative to tradeoffs.
Instead, they relate to knowledge. The confusion comes
from interpreting differences based on parameter values that
enter stochastic models. For sake of discussion, let x be a
predictor, and y a response. As background to the discussion
that follows, we let Ms represent a !statistical model", which
takes data (x,y) as inputs and produces parameter estimates
(b) as outputs, and Mp represent a !process model" that does
the opposite: Mp takes parameter estimates as inputs and
produces predictions of data (y "), and thus model behaviour,
as outputs (Clark 2007). To apply Ms we assume that (x,y)
are known (they are observed), and b are unknown (they are
represented by estimates-next section). Now if yk,t is a vital
rate for species k at time t, and it is drawn from a
distribution having parameters bk, it is not correct to say
that species having the same parameter values b1 ¼ b2 are
indeed the same. They are the same if the outputs are the
same, y1,t ¼ y2,t. The stochasticity stands in for all of the
ways in which y1,t and y2,t differ.

As a specific example, let bk be a mortality risk for two
species having identical estimates of b1 ¼ b2 ¼ 0.5. These
estimates are outputs of Ms and inputs to Mp. Estimates for
the two species could be the same, despite the fact that one
dies from starvation and the other from disease, both of
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which are unobserved. The estimates of 0.5 reflect the
susceptibility of both species to both risk factors and the
prevalence of those factors in the sample populations (Clark
2003). Consider the case of !maximum stochasticity"
corresponding to estimates of bk ¼ 0.5 and quantified by
the variance 0.52 ¼ 0.25. When these parameter values are
plugged into Mp, the behaviour may or may not be realistic,
depending on the differential susceptibilities to these risks,
the ways in which these risks covary (is disease more likely
where there is starvation?), and on whether or not the
random draws of outcomes from the joint density contained
in the Mp,

y1;t ; y2;t " pðb1; b2Þ ð1Þ

capture this covariance structure. There are two important
consequences of stochasticity. On the one hand, species
parameterized with the same values in Mp are actually dif-
ferent in nature. On the other hand, plugging the same
parameter values in Mp causes the species to respond dif-
ferently (depending, in part, on how we construct p[b1,b2)]
even if they are the same in nature. We elaborate on this
second point in the next section.

First, consider that additional knowledge would allow us
to model these risks deterministically. Then Ms would be
larger (higher dimensional), having more inputs x and
additional parameters associated with each risk. Ms would be
more deterministic, it would explain more of the variation,
and stochasticity would be reduced. Suppose species 1 has
an estimate of 0.05 when disease risk is low and 0.9 when
disease risk is high. Rather than the maximum uncertainty
associated with the same risks when they are hidden, i.e.
0.52 ¼ 0.25, knowledge of the risks reduces uncertainty to
variance 0.05(0.95) ¼ 0.0475 when this known risk is low
and 0.9(0.1) ¼ 0.09 when it is high. Because the second risk
factor is also known, uncertainty associated with that risk is
also reduced. With increasing knowledge of additional risks
we could continue to chip away at the residual uncertainty,
represented as a reduction in the variation associated with
stochastic elements. The shift from stochastic to determin-
istic involves knowledge, not cause. The causes in the first
example of limited knowledge are not !more neutral", they
are !more unknown".

A lottery example

Lottery models are often used to debate neutrality, and they
readily demonstrate how the assumption of identical
parameter values in an Mp does not mean that the species
are the same. Consider a landscape where two species
occupy different niches. For simplicity, we refer to them as
!low-light gaps" and !high-light gaps". The first species might
be more shade tolerant than the second. There might be
many other species occupying the background matrix, but,

for simplicity, we focus on these two. Gaps of different light
availabilities are created due to mortality, and they are
preferentially colonized by the species that is the best
competitor for that gap type. As long as some fraction of
both gap types continues to become available, both species
can persist, regardless of whether the gap-making process is
viewed as deterministic or stochastic. This is a niche model,
with each species winning where conditions are most
favourable (e.g. Hurtt & Pacala 1995).

Contrast this niche model with a !neutral" one, where sites
come available as before, but now occupancy of sites is
random, with some probability that either species could win
the patch. The model could involve drawing at random the
recruitment successes for the two species at each time step
or drawing an individual from a randomly chosen species.
Depending on specific assumptions, the two species might
coexist or not.

What is different about the two foregoing models? In
fact, there is no reason why the underlying process must
differ at all. The difference lies in how the same process is
treated in the Mp. Again, that difference is !information". In
the first case, we have knowledge of the underlying process.
Because we know what allows colonization of a gap (high
light or low light), we include it in the deterministic portion
of the model. Whether or not the gap-making process is
modelled stochastically, the mechanism for coexistence is
treated deterministically we assign each gap to the species
favoured there. In the second model, we had no information
about why sometimes one species obtained the gap and
sometimes the other obtained it. We use stochasticity
(a coin flip) to stand in for the lack of information on the
process.

If the underlying process in the gap example is the same,
why is the second model termed !neutral". If we flip a coin
with the same underlying parameter value bk for recruitment
success of both species, ecologists view these species as
!ecologically equivalent". Such models are termed neutral if
they are assigned the same parameter values representing
!identical vital demographic rates" (Volkov et al. 2005), in
this case, identical success probabilities (see also Bell 2000;
Gravel et al. 2006). In fact, they are not identical, as
evidenced by the way in which we have treated the
unknowns, i.e. the structure of the model stochasticity.
Because we flipped the coin for each species, these random
trials are independent. This means that there will be times
and places where one species does well, !at random", when
the other does poorly, and vice-versa. We have represented
eqn 1 as p(b1,b2) ” p(b1)p(b2), ignoring the fact that species
will have similar niche requirements [i.e. for large values of
b1 and b2, p(b1|b2)%p(b1)], and both species will compete
strongly for the same sites. The zero correlation assumed by
the Mp [p(b1|b2)¼p(b1)] promotes coexistence, and it is one
way in which the hidden tradeoffs can be taken up in
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stochastic terms of models. Said another way, these species
are not the same–one is often doing well when the other is
not.

To understand how this process differs from one that
includes RITEs discussed in the next section, we introduce
some notation to describe the structure of stochasticity. Let
e represent a random variate in a model, being the stochastic
realization that contributes to a Mp of population growth yk,t

yk;t ¼ lðxt ; bkÞ þ ek;t ; ð2Þ

where l is the mean growth rate, which might depend on
densities of other species and on the environment, repre-
sented by state variables xt , and responses described by a
parameter vector bk (Fig. 1a). Any stochasticity in this first
term is assumed to come from stochastic xt. Other elements
of this term are deterministic. Low dimensional tradeoffs

(e.g. CC and SN) could be taken up by different responses
of species, represented here by a different value of bk for
each species. Species with high colonization potential win
over those with low potential, unless balanced by a com-
pensatory disadvantage in, say, competitive ability. If yk,t is
change in log density, then log-normal stochasticity implies
that ek,t is the zero-mean process, ek;t " N ð0; r2kÞ. The
independent variation for each species k implied by this
structure insures that species behave differently.

If fluctuations affect both species in a similar way (e.g.
drought is bad for both), fluctuations do not necessarily
provide an advantage to either. Consider the Gaussian for
the joint density in eqn 1,

y1t
y2t

! "
" N

b1
b2

! "
;

r21 cr1r2
cr1r2 r22

! "# $
; ð3Þ
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Dynamics
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(d) HB model of tree demography

Figure 1 Graphs of models having different
structures for stochasticity. Ecological
process models (a) focus on process and
typically admit independent random variates
for each species k and time step t. Tradi-
tional statistical models (b) admit stochas-
ticity at the data stage, assuming stochasticity
associated with each observation (each time
an individual is observed). Hierarchical
models (c) have data, process, and parameter
stages, admitting uncertainty and variability
at all stages. They allow for the complexity in
data and processes associated with tree
growth, fecundity, and mortality of trees (d).
Example estimates from (d) are included in
Fig. 4 and described in the Supplementary
material.

Idea and Perspective Resolving the biodiversity paradox 651

! 2007 Blackwell Publishing Ltd/CNRS



where c is the correlation between responses of species 1
and species 2. This example does not depend on the
assumption of normality, it just simplifies the discussion by
allowing us to decouple the means and variances in a one-
stage model. Zero correlation in lottery models means that
c ¼ 0, and we could simply draw independent random
variates from yk;t ¼ N bk; r

2
k

% &
, one for each species, at

each time step (i.e. c ¼ 0 in eqn 2). For complete correla-
tion (c ¼ 1) this process simplifies to a single coin flip that
applies to both species, yk,t ¼ bk+rk · et, where e " n(0,1)
is the zero-mean, unit-variance process. The subscript
t indicates that et is drawn once per time step and, thus,
applies to both species. Species have different levels of
variability (different rk), but the absolute correlation assures
that neither can exploit the especially favourable situation
that might arise if it had a good year while the other had a
bad year. With c ¼ 1, variability does not promote coex-
istence, because it does not affect the strength of compe-
tition (Chesson 2000). The degree to which species differ
depends on the value of )1 < c < 1, regardless of bk. The
high correlation that results if we assign the outcome of a
single coin flip to both species would represent the under-
lying lack of ecological differences, the fact that both species
require the same recruitment conditions and thus must be
exploiting the same types of gaps, the same favourable
moisture conditions, and so forth. We do not know what
those conditions are, but we can represent them in terms
of high correlation. Zero correlation assures species
differences.

How important is the distinction identified here between
identical parameters vs. identical response? In fact, it is huge.
It is the reason why it can be easy to obtain coexistence in a
lottery Mp, yet so hard to get coexistence in a deterministic
version with niche differences, even when multiple dimen-
sions are provided. It can slow the drift to extinction in
models that do not predict stable coexistence. The precise
parameter relationships needed to obtain coexistence in a
niche model are circumvented in a !neutral model" by assuring
low correlation, without saying what the differences are. This
is true whether the Mp is analytical, involving analysis of
probability distributions, or a numerical simulation.

Not surprisingly, Mp"s having parameter values construc-
ted from a combination of stochastic and deterministic
elements (e.g. Tilman 2004, Gravel et al. 2006) seem to
suggest that coexistence derives from the combination of
neutrality and niche differences. There is indeed a combi-
nation, but it is a combination of how both deterministic
and stochastic elements contribute to species differences.
Whether or not species differences are taken up by the
deterministic or stochastic components of the model
depends on knowledge. Despite identical parameters
plugged into a stochastic model, influences that enter
between the probability of an event (e.g. birth, growth,

dispersal and death parameter values), which is evaluated on
the basis of incomplete knowledge, and the event itself
include everything that is unknown about the process,
including species differences.

I N T ERPRE TAT ION OF DATA MODEL L I NG

In view of the fact that there will always be unknowns,
models used to understand biodiversity should include
stochastic elements. But if simply allowing for unexplained
variation in models introduces potential for differences,
then how do we develop an understanding of diversity
mechanisms that addresses !important" species differences?
We argue that the only operational approach involves
assimilation of data, where the different sources of
uncertainty are treated as realistically as possible, i.e. at the
!process level" (Clark et al. 2004; Clark 2005). Then both
knowns and unknowns can be carried forward in models
that are directly linked to data. Unfortunately, traditional
data modelling tools are not well suited to this task. We
point out why and demonstrate why new hierarchical
modelling techniques offer an alternative.

In the foregoing section, we point out that unstated
assumptions that enter through stochastic elements can
affect model behaviour. Thus, it is imperative to first
recognize that the treatment of stochasticity in ecological
process models (Mp"s) is, in fact, different from that applied
to estimate these relationships (Ms"s). A standard !statistical
model" (Ms) for a data set about the relationship in eqn 2
could look like this:

yki;t ¼ l xki;t ; bk
% &

þ eki;t ð4Þ

with unknown bk to be estimated and stochastic eki,t, for
individual i at time t. The subtle distinction between the Ms

(eqn 4) and Mp (eqn 2) is more important than it appears.
The estimate of growth responses using model 4 assumes
that each observation departs from the mean, taken over
individuals and over time. [There are also i and t subscripts
on xki,t, because each response observation yki,t is paired
with an observation of environmental predictor(s).] Equa-
tion 4 suggests the concept of !signal" and !noise". Individual
variability, if it exists, is treated the same as temporal vari-
ability; both enter at the data stage, in the error term
(Fig. 2b). Thus, it is not surprising that ecologists discard
this noise term, and carry forward the signal for use in Mp"s.
By contrast, the vast majority of Mp"s (eqn 2) only allow
that the full population varies in time. This variation ek,t is
not the eik,t stochasticity estimated with a Ms in eqn 4
(Clark et al. 2003, 2004).

To add to the confusion, not only are the models
traditionally used for analysis (the Mp eqn 2) and inference
(the Ms eqn 4) different from each other, they both miss
the important variation among individuals. In both models,
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variation among individuals is restricted to their predictor x.
These deterministic differences taken up by x are necessarily
low-dimensional, because only those found to be !signifi-
cant" will be retained. Taken together, we have traditional
Ms"s that only admit low-dimensional, deterministic rela-
tionships, with everything else in the data take to be noise,
and contrasting Mp"s that assume variation is global,
applying identically to the entire population(s).

Neither the Mp (eqn 2) nor the Ms (eqn 4) is consistent
with the wide variability in real populations that is packaged
in the form of individuals (Clark et al. 2003, 2004; Clark
2003). Neither the Mp"s, which draw random variates at each
time step, nor the Ms"s, which treat each observation as
independent, allow for persistent differences among indi-
viduals, beyond being exposed to different levels of x.
Ecologists tend to think about populations more like this:

Yki;t ¼ l xki;t ; bk
% &

þ eki;t ð5Þ

(Figure 1c). With addition of the subscript and stochastic
specification of bki, we allow for individual differences that
persist over time, in addition to those that can be ascribed to

covariates x. Equation 5 says that the population is hetero-
geneous, with different fecundities, growth rates and so on.

The heterogeneity admitted by eqn 5 can be accommo-
dated at both the inference stage (Ms) and the prediction
stage (Mp). In statistical terminology, eqn 5 has random
individual effects, and is most flexibly accommodated with a
hierarchicalMs (Clark et al. 2003, 2004; Clark 2003). Random
individual effects are accommodated at the inference stage
using a Mp that follows individuals over time, allowing for
the variation among individuals that is not taken up by
covariates: a value of bki is assigned at birth of individual i,
say bki " n 0; s2k

% &
, which determines the fecundity or

growth schedules for that individual thereafter. There are
now !high fecundity" and !low fecundity" individuals. It is the
stochastic specification of bki that adds an additional stage to
the model and makes it hierarchical (Clark 2005).

The implications for inference

What are the implications of the stochastic treatment in
equation 5? If only observed along two axes, a traditional Ms

(a) (b)

Figure 2 Contrasting inference for aspects
of colonization (seeds dispersed from parent
trees) and competition (growth rates at
different availabilities of the limiting re-
source light) using (a) classical and (b)
hierarchical Bayes analysis. Classical approa-
ches focus on point estimates with noise at
the data stage; there is no distinction of
process-level variation, suggesting that tulip
poplar is deterministically the better colo-
nizer and competitor. The broad predictive
envelopes in (b) are dominated by individual
differences within the population. Clark et al.
(2004) hypothesized that this heterogeneity
harbours high dimensional variation that can
promote coexistence along many unmeas-
ured axes.
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for two forest tree species suggests a deterministic winner
and loser, with tulip poplar growing faster at all light levels,
and colonizing new sites everywhere except directly below
red maple trees (Fig. 2a). We show in the next section that
these differences are not ones that should lead to
coexistence (there is no !tradeoff "), although there are
tradeoffs involving survival. The traditional approach to
inference that leads to Fig. 2a assumes all variation enters at
the data stage (eqn 4). Clark et al. (2004) hypothesized that
allowing for variation in the underlying process (Fig. 1d)
could have dynamic consequences, contributing to coexist-
ence. Using hierarchical Bayes to allow for variability within
populations, they estimated RITES, finding species overlap
(Fig. 2b), in the sense that each population can have
individuals with higher reproductive capacities and compet-
itive ability than individuals of the other species (eqn 4).
Random individual effects, estimated as the bki, allow for
population variability that cannot be attributed to determin-
istic causes, because relationships are not observable, not
measurable, or not even identified. They can be genetic, but
need not be; heterogeneity results from the large number of
unmeasured factors that vary on many scales. They can be as
large as the deterministic relationships used to infer species
differences. In fact, the evidence suggests that circumstances
that could make RITEs important dominate: mean differ-
ences among species are swamped by variability within
populations that cannot be ascribed to specific causes. The
differences among individuals that result in broad overlap
on Fig. 2b were hypothesized to result from the high-
dimensionality of species differences (Clark et al. 2004).
After illustrating the dynamic consequences in simulation,
we demonstrate that this variation does indeed come from
species differences along unobserved axes. First we point
out how the structure of stochasticity is just as important for
RITEs as it is for other sources of stochasticity.

What random individual effects are not

Random individual effects can be confusing at both the
inference and prediction stage. At the inference stage, there
is not much point to an Ms with random individual effects
where there is a single observation per individual – inference
will be dominated by the prior, not the data. Moreover,
random individual effects are not estimated for events that
occur once during the lifetime, e.g. mortality or germination.
In both cases, the random effect is redundant with other
model elements, and (barring informative priors) we expect
identifiablility issues. For the latter, population heterogeneity
can be estimated by including covariates or with random
effects at the group level (Clark et al. 2005; Clark 2007).
Both approaches borrow information across the population.
Finally, random effects are not used to substitute for fixed
effects; there is no reason to ignore information. Random

effects allow for heterogeneity that cannot be linked to
observable causes.

Likewise at prediction, including an additional random
individual effect in an Mp having a single stochastic stage is
redundant with any stochasticity that already enters at that
stage. It increases the dispersion at that stage, but it does not
have any persistent effect over the life of the individual
beyond the stochasticity already present. An example would
be to include a random draw for individual recruitment
success, when recruitment is already random (e.g. a lottery
with individual variation in !seed production" or, equival-
ently, !juvenile survival"). In eqn 5, this would amount to
drawing error eki,t and bki,t, i.e. both entering the model in
the same way. A random individual effect that is distinct
from !error" involves traits that persist, such as annual
fecundity rates and annual growth rates that stay with an
individual throughout its lifetime.

IMP L I CAT IONS OF PROCESS - L EVE L VAR IA T ION
FOR PRED I C T ION

RITEs have dynamic consequences

Figure 3 illustrates the effect for two identical species using
a spatially explicit, individual-based stand simulator des-
cribed by Govindarajan et al. (2004). The two !species" differ
only in terms of regeneration. One species has the fecundity
schedule, seed viability, seed bank and early seedling growth
and survival of red maple (Acer rubrum), or !red". The second
species has those of tulip poplar (Liriodendron tulipifera), or
!green". In all other respects, species are identical. Green has

(a) (b)

Figure 3 The impact of random individual effects (RITEs) on
coexistence of two competing species. Two spatiotemporal and
individual-based simulations were run using recruitment processes
that are parameterized with data, summarized in Fig. 1. Panel (a) is
the traditional approach having deterministic species differences and
stochasticity in time, but no within-population heterogeneity,
reflecting that fact the green species is the deterministic winner
(Fig. 1a). Population heterogeneity in (b) means that green is not
the deterministic winner, but rather both species win with some
probability.
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a strong deterministic advantage due to high fecundity, and
it has especially rapid growth. Red has a slight advantage in
higher seed bank survival, and higher survival at low light
levels (not shown). In this particular simulation, these
advantages are not sufficient to save red (Fig. 3a). In
simulation, it rapidly goes extinct. Random individual effects
admitted in only two short life history stages (Fig. 2b) are
enough to stabilize the interaction (Fig. 3b).

Hierarchical modelling identifies underlying differences

Clark et al. (2004) emphasize that the spread in Fig. 2b
represents underlying high-dimensional variation that can
stand in for species differences. The question is, do they in
fact represent such differences, and, if so, could they
promote diversity? We extended the hierarchical modelling
approaches of Clark et al. (2003, 2004) to include the full life
history and demonstrate that this is the case. At sites in the
south-eastern USA, we jointly estimated all demographic
rates in response to key environmental variables (Fig. 1D).
The hierarchical Bayes model consists of data, process, and
parameter stages, assuming that only the data stage can be
observed. Although the model contains many parameters
and states that are not observable, we can admit far more

information to anchor all parts of the model, because the
underlying process is modelled stochastically. The hierar-
chical treatment allows for full assimilation of information,
both theoretical and empirical, at many scales. It allows us to
explicitly model variation at the process stage, including
species difference that would otherwise be hidden and seem
to support the view that coexistence is !neutral". A full
description of hierarchical modelling is beyond the scope of
this paper (Clark 2005, 2007). Here we simply point out
examples of the types of unobservable differences that can
dramatically influence the perception of species differences
(see on-line supplement).

Figure 4 shows large, but hidden differences between the
two species from Fig. 2 that will allow each to dominate in
different situations. The demographic rates depicted in
Fig. 4 are not fitted functional forms, but rather are latent
variables, underlying individual traits that are estimated from
data as diverse as measurements on small plots, to landscape
scale experiments, to remote sensing. None of these
relationships are observable, but they can be estimated.
For example, the light available to a large tree cannot be
measured, but it is related to information that can be
obtained from remote sensing, ground observations, and
models of solar geometry (M. Wolosin et al., unpublished

(a)

(b)

Figure 4 Estimates of state variables from the model in Fig. 1d, showing unobservable differences in species that will allow each the
advantage in different settings. Although there are thousands of estimates (Clark et al. 2004), there are many different types of information
that enter at all scales (Fig. 1d). The estimates reveal that red maple survives better, but produces less seed at low growth rates, whereas tulip
poplar does the opposite (a). Red maple produces more seed at low light, and tulip poplar produces more seed at high light (b). None of the
state variables shown here are directly observable.
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data), and it is embedded within a model that can allow for
many known relationships to other variables (Fig. 1d).
Estimates for all trees in all years clearly show that red maple
has the fecundity advantage in shady sites, while tulip poplar
produces more seed with access to more radiation. Likewise,
the more rapid increase in mortality risk and decline in
fecundity with plant stress, related to diameter growth, are
unobservable (Fig. 4b). Tulip poplar has the fecundity
advantage at high growth rates, but red maple has the
fecundity advantage and an especially strong survival
advantage at low growth rates.

We emphasize that realistic correlations in how species
respond to the environment does not require fitting the
model to all species simultaneously. Although species
influence resources in our model, their responses are
conditionally independent of one another – if we know
the resource level, no new information comes from
knowledge of the response of the other species. But
marginally, the responses are highly correlated, due to the
fact that they are all responding to resources.

In the absence of these estimates ecologists would have
no basis for arguing one species or the other has a fecundity
advantage, let alone knowing how it shifts with light
availability. An ecologist faced with the traditional results of
Fig. 2a might say that there are differences, but not
tradeoffs. An ecologist confronted with Fig. 2b might say
that species overlap and, thus, are the same. As hypothes-
ized by Clark et al. (2004), the overlapping intervals of
Fig. 2b summarize individual differences in many dimen-
sions. By allowing for process level variation, hierarchical
modelling identifies clear differences (Fig. 4). The advan-
tages are capacity to fully exploit information and allowance
for unknowns at all stages.

SYNTHES I S

The paradox represented by strict requirements for trade-
offs in models, the difficulty finding enough tradeoffs in
data, and the dynamic patterns that implicate stabilizing
forces, suggests that a new perspective is needed to
understand how species interactions might be stabilized, a
mechanism more general than traditional tradeoff argu-
ments and neutrality. We are not the first to suggest that
high-dimensionality might resolve this paradox (Hutchison
1961). Rather we show that it probably does resolve the
paradox, showing why other explanations do not, and why
this explanation has, for the most part, been ignored.

The stabilizing force represented by high-dimensional
variation has been overlooked in both process (theoretical)
models and in statistical models. In both cases, the oversight
comes from inadequate treatment of stochasticity, but in
different ways. On the theoretical side, !stochastic regula-
tion" seems to provide a simple mechanism alternative to

niche differences. Stochasticity can promote coexistence or
forestall competitive exclusion in models (Chesson 2000),
but it does so by hiding species differences, rather than by
removing them. Traditional stochastic process models do
not allow for heterogeneity in populations, only fluctuations
over time and, more recently, space. Even individual-based
models (typically, the most stochastic of ecological models)
do not contain random individual effects.

The role of high-dimensionality has also been overlooked
when it comes to inference. The traditional practice of
applying statistical models with deterministic relationships
and residual noise not only ignores process level variation,
but it also assures that relationships will appear low
dimensional. Simple model selection criteria emphasize
parsimony, discarding all effects that do not emerge as
significant. Strict application of model selection indices and
use of inferential models that lack process-level variation
makes species differences appear more important than they
are (Clark et al. 2003), but these differences will typically not
be those that promote coexistence in models. For example,
process-level variation is ignored in Fig. 2a. Plugging
parameter estimates from this example in to a deterministic
process model would assure rapid exclusion, because there
is no tradeoff.

The stability conferred by high dimensionality, summar-
ized by RITEs, is distinct from neutral dynamics. There is
no evidence to suggest that this overlap is neutral. It is high-
dimensional variation resulting from many unmeasured and
unmeasurable factors (Clark et al. 2004). Neutral models are
not !tradeoff-free", they are !knowledge-free". Stochasticity is
not an explanation for diversity – it is a way to allow for
unknown mechanisms that may or may not promote
coexistence. As we increase our knowledge of the process,
tradeoffs can emerge (Fig. 4). In models, the structure of
stochasticity is critical, but for nonlinear models, effects are
rarely generalizable.

If high-dimensionality has been recognized at least since
Gleason (1926) and Hutchison (1961), and it is commonly
mentioned in reference to the scatter in ecological data, then
why do we argue for a reassessment of its consequences for
diversity? The emerging consensus that biodiversity main-
tenance results from a continuum from niche differences to
!neutral forces" or !stochastic regulation" may not be the first
time ecologists have appealed to a seemingly simple
alternative when crude models fail. Despite widespread
paleo and contemporary evidence showing populations
remaining at relatively constant densities for dozens of
generations, responding to climate change in predictable
ways, and returning to similar abundances following
disturbance, notions of stabilizing forces, such as climax,
equilibrium, and niche differences have long been contro-
versial (e.g. Gleason 1926; Whittaker 1953; Botkin 1990).
The rejection of stabilizing forces in favour of !disequilib-
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rium" or !stochastic regulation" could be the wrong solution
to a misidentified problem. Simple models can fail because
they omit so many mechanisms that profoundly impact
species interactions, regardless of whether or not those
models include stabilizing forces. There is a reticence to
engage the daunting complexity; the emerging continuum
consensus includes no serious discussion of high-dimen-
sional niche differences as the basis for biodiversity
maintenance. !Stochastic regulation" is preferred to high-
dimensionality, become it is easier to think about (an
apparent one-dimensional alternative to niche differences)
and easier to study (coin-flipping in models). Stochasticity
seems to be a simple mechanism, approachable by anyone
with access to a random number generator. We fully
endorse the value of stochastic models, but for a different
reason. They do not constitute a new mechanism, but rather
substitute for limited knowledge of actual mechanisms. We
do not claim that complexity is a new idea in community
ecology, only that there are both modelling and empirical
reasons why it has not been part of the dialogue.

Neither of our arguments: (i) that !neutral models" do not
assume sameness; and (ii) that high dimensional variation is
pervasive, by itself, rules out the neutral hypothesis.
However, other observations make it implausible. First,
species are different, and it would be remarkable if those
differences did not confer relative advantages and dis-
advantages in a high-dimensional world. Second, neutrality
is not consistent with widespread stability in nature.
Moreover, there is no evidence that coexistence mechanisms
lie along a continuum between neutral and niche. This is the
case at both the inference and prediction stage. At the
inference stage, the broad overlap along observable niche
axes (Fig. 2b) is more consistent with higher dimensionality
than sameness. At the prediction stage, stochastic models
necessarily impart species differences. Because reasonable
models must be stochastic (much is unknown), few are
appropriate for identifying consequences of sameness.

Then is the neutral model a useful null hypothesis for
evaluating the efficacy of niche differences? This is doubtful,
because failure to identify differences along observable axes
is not evidence in favour of the null of no difference. In a
high dimensional world, negative evidence is uninformative.

If not a useful null, perhaps the neutral model adds to
understanding in other ways. Possibly, but it may also
contribute confusion. For example, the interpretation that
limited dispersal distance makes a model !more neutral"
(Gravel et al. 2006) is difficult to evaluate. Alternatively, the
traditional interpretation of this result, that limited dispersal
decreases interspecific competition (most offspring compete
with siblings), clearly indicates why competitive exclusion
could be slowed (e.g. Neuhauser & Pacala 1999; Holyoak &
Loreau 2006). Moreover, the interpretation of causes as a
continuum between niche and neutral seems unenlightening.

A niche axis can contribute to coexistence, or not. If it does,
we might attempt to quantify it. Whether or not this requires
a new continuum view of !something" vs. !nothing" is
unclear.

The third alternative to traditional niche differences and
neutrality, high-dimensional coexistence, is distinct from
both and not somewhere between. It joins the observations
of species overlap along a few axes with the observation of
stability during succession, following glaciations, and along
resource and climate gradients. Neither low-dimensional
tradeoffs nor neutrality can accommodate these observa-
tions. The large variability within populations can stabilize
dynamics of species lacking low-dimensional tradeoffs and
having, instead, what appear to be broad overlap in
responses to resources and life history when considered
along only a few axes.

Random individual effects in hierarchical models provide
a structure for process-level unknowns that can more
appropriately be carried forward in models for prediction
and understanding. Such differences result both from
genetic variation and from environmental heterogeneity at
all scales, from sun flecks to microsites to microclimatic
variability, and they involve response scales in space and
time. Random individual effects can be stabilizing, because
they stand in for high-dimensional variation that persists
within populations over time. More importantly, hierarchical
models provide for much stronger inference on the hidden
processes that do distinguish species (Fig. 4).

The RITE view of biodiversity leads us to draw
conclusions that diverge from the mainstream concerning
the value of hypothesis tests for species differences. Species
are different, and those differences confer advantages and
disadvantages in a high-dimensional word. The huge
number of trait differences among species (e.g. Marks &
Lechowicz 2006) will confer advantages and disadvantages
sporadically in space and time (Hutchison 1961; Frank &
Amarasekare 1998; Kneitel & Chase 2003). Proper inferen-
tial modelling should recognize them with stochastic
elements in stochastic models, but interpret the conse-
quences of model stochasticity appropriately.
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COMMENTARY ON CLARK ET A L . ( 2 0 07 ) :
R E SOLV ING THE B IOD I V ERS I T Y PARADOX

Clark et al. take on the dual questions of how not to
misidentify neutrality in community ecology, and how to
avoid the consequences misidentifying neutrality. These
tasks require a clear definition of neutrality. In our view,
neutrality is defined by symmetry properties. The basic idea,
as epitomized by Hubbell’s (2001) models, is that the species
identity of an individual does not matter: it has no effect on
individual’s predicted fate or the fates of its offspring, nor
does it have any influence on the fates of others. Crucially,
this idea applies simultaneously to any number of individuals
from any set of species: all individual-level properties are
symmetric with respect to species identity. Most important,
models can be symmetric at the species level without being
symmetric at the individual level, i.e. without being neutral.
For example, consider Lotka-Volterra competition in which
all species have the same parameters but intraspecific
competition is greater than interspecific competition.
Population dynamics would be completely unchanged by
permuting the identities of the species. However, this model
would not be neutral: an individual’s future improves when

it is switched from a species at high density to a species at
low density because the reduced intraspecific competition
that it experiences is not balanced by the increased
interspecific competition. In a neutral model, there is no
such effect, because an individual is unaffected by the
distinction between conspecifics and heterospecifics. Provi-
ded the total number individuals interacting with a given
individual does not change, there is no change in its fate.

Species-level symmetry is fully compatible with niche
differences that stabilize coexistence, i.e. lead to a tendency
for a species to recover from low density whenever it is
perturbed there. Of necessity, symmetry at the individual level
is lacking (hence neutrality is lacking), because coexistence can
only be stabilized if individuals from rare species have
consistent advantages (Chesson 1991). Species-level sym-
metry is sometimes mistaken for neutrality, but in fact is very
different. Similarly, Clark et al. argue cogently that species
stably coexisting might be assumed to have neutral dynamics
(and thus not stably coexisting) because they might have
similar values for estimates of population parameters. This is
especially so when the coexistence mechanism involves vital
rates that fluctuate over time. The means of the vital rates
might have similar values and give the appearance of
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