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Introduction
Assessing the feasibility of developing a strong biofuel industry around biomass feedstock requires a 
comprehensive evaluation of agronomic, environmental, social and economic factors. An encompassing 
assessment of the sustainability of biomass production as a feedstock for a developing bioenergy sector 
is complex due to the multiple dimensions involved in a complete evaluation of its social, technological 
and economic factors. The current trend of rising fossil fuel prices and observed climate change, 
and other adverse environmental and societal impacts of energy use make the exploration for more 
sustainable ways to use energy more important than ever (Kowalski et-al., 2009). According to Hill et-al. 
(2006) for biofuels derived from crops to be a viable alternative they should:

	 •	provide	a	net	energy	gain,
	 •	have	environmental	benefits,
	 •	be	economically	competitive,
	 •	be	producible	in	large	quantities	and	
	 •	do	not	reduce	food	supplies.

Incorporating these multiple objectives into a single framework is challenging and requires tools and 
strategies to support decisions of stakeholders and policymakers. A fundamental component of such 
comprehensive assessments is the evaluation of the potential and attainable productivity of biofuel 
crops	in	different	locations	and	growing	conditions.	Acquiring	this	type	of	information	through	field	
experimentation in herbaceous and woody crops, as well as in native forests and grasslands, is both 
expensive	and	time	consuming,	as	it	can	take	years	of	field	trials	to	provide	accurate	estimates	of	
potential production. An alternative science-based approach to estimate bioenergy crops productivity 
is to use biophysical or empirical simulation models. These models can provide estimates of average 
productivity and its inter-annual variability based on soil, weather, and bioenergy crops management 
databases that serve as inputs to the model. 

To	some	extent	the	future	of	biofuels	depends	on	technological	breakthroughs	which	are	difficult	to	
predict, as technological advances might give an edge to particular renewable energy alternatives. 
Nonetheless, the current understanding is that transportation will continue to rely on liquid fuels in 
the coming decades and that a fraction of the liquid fuel supply will be based on oil, starch, and in 
particular ligno-cellulosic crops (Richard, 2010). Establishing a large scale biofuel industry requires a 
careful assessment of resources, logistic capabilities, and potential bottlenecks in the production chain 
before	large	investments	are	deployed	in	the	field.	Crops	might	play	an	important	role	supplying	the	
feedstock for this demand of transportation fuels. Some of the more pressing questions are: Which crops 
to grow, where, and how to grow them? Also, what are the local and global consequences of growing 
crops for biofuel? 
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Approaching	these	questions	can	benefit	greatly	from	modeling	tools	such	as	databases,	computer	
simulation models and novel statistical approaches to integrate data and model inputs and outputs. 
Historically, crop research has focused on increasing seed yields of cereal and oilseed crops and much 
less attention has been given to improving yields of crops for total biomass. Recent interest in biomass 
crops has spurred research in developing annual grasses (e.g. sorghum), perennial rhizomatous grasses 
(e.g. switchgrass, Miscanthus, sugarcane, Spartina) and woody (e.g.willow, poplar) feedstocks that can 
be converted to liquid fuels using cellulose as the main substrate (Perlack et-al., 2005). In this chapter 
we	will	briefly	review	some	of	the	candidate	feedstocks	for	which	our	modeling	efforts	are	relevant,	
describe data requirements (databases), biophysical models, and statistical tools to connect data and 
models and assess model performance.

Food-Based Biofuels
Currently,	food	crops	are	the	main	source	of	feedstock	for	biofuel.	Grain	maize	is	the	main	source	of	
ethanol used mostly as an additive to conventional gasoline. However, it has been criticized mainly for 
competing	with	food	production	and	having	a	low	conversion	efficiency	to	ethanol.	This	low	conversion	
efficiency	is	in	part	a	result	of	the	large	amounts	of	nitrogen	(N)	fertilizer	needed	to	achieve	high	yields	
(Shapouri et al. 2002). Soybean oil is used for the production of biodiesel which seems to have a more 
favorable	conversion	efficiency	and	emissions	reduction	than	ethanol	production	from	maize	grain	
(Hill	et	al.,	2006).	In	addition	to	being	food	crops	and	having	relatively	low	conversion	efficiencies,	the	
conversion of all U.S. maize grain and soybean oil into biofuels would only contribute to 12% and 6% of 
the U.S. gasoline and diesel demands, respectively, having even in that extreme case a low impact in the 
development	of	a	significant	alternative	renewable	energy	(Hill	et	al.,	2006).

Perennial Grasses
Perennial rhizomatous grasses have been put forward as dedicated biomass crops because of their many 
benefits	which	include	high	productivity,	high	water	and	nutrient	use	efficiency,	nutrient	recycling,	long	
canopy duration and reduced agronomic inputs (e.g. fertilization and tillage) (Heaton et al., 2004b). 
These characteristics make them more suited for sustainable production of biomass than traditional 
crops grown for food production. Some of the species with great potential as biomass producers 
are: switchgrass (Panicum virgatum), Miscanthus × giganteus, and energycane (sugarcane bred for 
biomass production) (Somerville et al., 2010). Sugarcane is currently successfully used in Brazil for the 
production of ethanol (Nass et al., 2007) but there are concerns about its sustainability and the impact on 
deforestation	of	the	Amazon	and	the	Cerrado	regions	(Sawyer,	2008).

Woody Biomass
Worldwide 75% of current biofuel use is derived from wood and wood by-products (Food and 
Agriculture Organization (FAO), 2007). In many ways woody biomass is the oldest biofuel, having been 
burned directly or converted to charcoal for millennia. In more industrialized settings woody biomass 
is also utilized as a solid fuel for both on-site energy generation using from industrial waste (e.g. at 
sawmills and pulp plants) and in larger scale “cogeneration” electrical plants that use a mix of wood 
and fossil fuels.
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The use of wood as a liquid biofuel feedstock is currently limited, yet wood has advantages as feedstock 
for cellulosic ethanol production due to its higher density than grass crops which can lead to greater 
transportation	efficiency.	Woody	biofuels	are	also	less	sensitive	to	harvest	time,	potentially	allowing	
a more stable fuel production that would buffer both the annual cycle of crop harvests and the inter-
annual variability in crop yields. Worldwide there are large areas of marginal agricultural land that has 
been abandoned and allowed to regrow as forest. There are also large afforested areas where markets 
may favor liquid fuel production. Existing native and plantation forests could both be harvested directly 
for biofuel production and either regrown under their current land-use or converted to short-rotation 
coppice	forestry.	Coppice	forestry	is	based	on	frequent	harvesting	and	rapid	regeneration	by	stump	
re-sprouting. Most research has focused on hybrid varieties of poplar (Populus) and willow (Salix) that 
have	been	selected	for	rapid	regeneration.	A	survey	of	the	scientific	literature	across	all	climates	and	
clones	suggests	that	poplar	and	willow	can	deliver	mean	annual	yields	in	the	range	of	7.5	and	8.9	Mg	
ha−1	respectively	with	maximum	reported	annual	yields	of	40	and	38	Mg	ha−1 respectively (Wang and 
Dietze unpublished data).

Biophysical Models
Computer	simulation	models	play	a	critical	role	in	the	evaluation	of	potential	biofuel	crops.	Unlike	
first	generation	biofuel	crops,	such	as	maize	and	soybean,	which	have	been	planted	over	large	areas	for	
many	decades,	most	second	generation	crops	have	only	been	evaluated	in	a	handful	of	field	trials	and	
in a comparatively short time span. This leads to a number of questions about how different crops will 
yield in different areas and what the long-term impacts on ecosystem services will be that can only be 
answered through the use of models.

Process-based simulation models are a cost-effective tool to assess the productivity and environmental 
benefit	or	impact	of	biofuel,	forage,	grain,	and	other	mixed	production	systems.	The	successful	
application of these models requires a correct parameterization of crop, soil, and landscape properties, 
as	well	as	a	well	defined	initialization	procedure.	The	quantification	of	the	uncertainties	associated	
with model-based extrapolation can be complex, and requires careful attention and interpretation. 
Models vary in the detail with which crop, soil and landscape-scale processes are treated and in the 
fundamental	principles	driving	mass	and	energy	flux	in	the	system.	These	differences	are	briefly	
discussed for biomass accretion and nutrient cycling in the soil.

Biomass Accretion
There are two approaches used to simulate crop processes in cropping and ecosystem simulation 
models.	Some	modeling	systems	use	a	generic	vegetation	model	(e.g.	APEX-EPIC,	C-Farm,	CropSyst,	
DayCent,	Ecosys,	WIMOVAC),	while	others	use	a	species-based	model	(e.g.	APSIM,	DSSAT).	In	the	
former a common framework is used to simulate all processes and different species or cultivars are 
represented by variations in the parameters. This confers substantial advantages in terms of algorithm 
development and re-use of code at run time, while facilitating the data collection for calibration and 
testing of the model. In the species-based approach, a different model is developed for each species and 
the	parameters	adjusted	for	each	cultivar	using	so-called	genetic	coefficients.

Another dimension in which vegetation models vary is in the treatment of plant and population 
properties, with some models simulating growth and development of an individual plant (some species in 
the APSIM and DSSAT models) and others simulating these processes on a unit-area basis (most models). 
Most models mentioned in this chapter use a “top-down” approach for modeling crop processes, which 
means that the underlying mechanisms are modeled only one or two levels of resolution “below” the 
response variable of interest. The appropriateness of each approach is more related to the objective in the 
model application than with the approach itself. Large-scale or country-wide simulations that respond to 
climate	and	soil	variables	are	likely	more	robust	based	on	generic	crop	models	(e.g.	applications	of	EPIC	
in	the	Conservation	Effects	Assessment	Project)	while	system	biology	studies	may	require	a	greater	level	
of de-aggregation of physiological processes. The number of parameters of a model grows dramatically as 
the	level	of	resolution	increase,	making	the	calibration	difficult.
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The algorithms to simulate growth vary for different models. Some models use a detailed, multi-layered 
canopy approach in which photosynthesis is simulated at multiple heights through the plant canopy 
on	a	sub-daily	basis	(typically	hourly)	and	aggregated	for	the	entire	canopy	(e.g.	WIMOVAC).	Some	
models fully couple photosynthesis, transpiration, and the other component of the energy balance 
(Grant,	1995;	Kremer	et	al.,	2008),	while	others	simulate	these	processes	somewhat	independently	
(Sadras et al., 2005).

One	approach	that	has	been	used	in	models	to	predict	biomass	production	(Clifton-Brown	et	al.,	2004)	
to simulate and analyze crop growth is to express biomass accumulation as the product of a resource 
captured	and	the	efficiency	with	which	it	is	converted	to	biomass.	When	the	resources	are	radiation,	
water, or nutrients in general, the expression can be formalized as follows:

B=RUE×fis×St

B=TUE×fis×ET

B=XnUE×Xn

where B is biomass produced (g m−2),	RUE	is	the	radiation-use	efficiency	which	is	a	crop/cultivar	
specific	parameter	(g	MJ−1), fis is the fraction of the incident solar radiation intercepted by the canopy, 
St	is	total	incoming	solar	radiation	(MJ	m−2)	in	a	given	time	interval,	TUE	is	transpiration	use	efficiency	
(g B kg−1 H2O), ET is the evapotranspiration, fis is the fraction of ET which is crop transpiration (kg H2O 
m−2), and XnUE	is	the	use	efficiency	(kg	B	kg−1 Xn) of nutrient Xn (kg m−2). The subject has been discussed 
and	reviewed	extensively	for	the	radiation-based	approach	(Monteith,	1977;	Sinclair	and	Muchow,	1999;	
Stöckle	and	Kemanian,	2009)	and	the	transpiration	based	approach	(Tanner,	1981;	Tanner	and	Sinclair,	
1983;	Kemanian	et	al.,	2005).	As	opposed	to	the	original	crop	growth	analysis	proposed	by	Watson	
(1952), this framework targets the canopy instead of a representative leaf area section, and offers a 
robust framework for hypothesis-driven research (Sadras et al., 2005). Most simulation models using 
this	“big	leaf”	approach	for	simulating	growth	apply	the	radiation-based	approach	(e.g.	EPIC)	while	
a	more	sophisticated	dual	approach	is	used	in	APSIM,	C-Farm,	and	CropSyst	in	which	the	minimum	
of two estimations of growth is used, one based on transpiration and the other based on radiation 
interception. Stöckle and Kemanian (2009) have shown that the transpiration based approach is robust 
in most circumstances, being applicable without any calibration in different environments provided that 
transpiration is correctly simulated.

The	alternative	to	the	“efficiency”	based	models	are	enzyme-kinetic	models	that	calculate	
photosynthesis and transpiration based on a semi-mechanistic understanding of the effects of light, 
CO2,	temperature,	humidity,	and	nitrogen	on	leaf-level	photosynthetic	rates	and	stomatal	conductance	
(Farqhuar	et	al	1980,	Collatz	et	al	1992,	Leuning	1995).	Multi-layered	coupled	photosynthesis	
and	transpiration	models	as	those	used	in	the	Ecosys	model	(Grant,	1995),	the	model	WIMOVAC	
(Humphries	and	Long,	1995)	and	that	presented	by	Kremer	et	al.	(2008).	A	recent	study	suggested	
that	these	multi-layered	models	perform	better	than	efficiency	based	models,	especially	at	short	time	
intervals (Alton and Bodin, 2010).

Soil Carbon and Nutrient Cycling
One of the advantages of developing a bioenergy industry is the possibility of producing fuel while 
reducing	the	GHG	emissions	through	direct	reduction	in	emission	and	by	offsetting	fossil	fuel	usage.	
Therefore, simulating the components of the global warming potential of feedstock production systems 
is	critical	for	a	comprehensive	assessment	of	the	benefits	and	impact	of	bioenergy	cropping	systems.
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Soil carbon cycling is an essential component of comprehensive agricultural and ecological models. 
Different approaches for simulation the soil carbon balance and its linkages with other nutrients have 
been	discussed	extensively	elsewhere	(Stewart	et	al.,	2008)	and	a	brief	summary	presented	in	Kemanian	
and Stöckle (2010) is used here to present examples of different models. Soil organic carbon is composed 
of an array of organo-mineral complexes whose turnover rates vary along a continuum from labile or 
fast turnover fractions to highly recalcitrant fractions. Representing this continuum has been a challenge 
for	soil	scientists	and	biological	systems	modelers.	Early	models	of	soil	carbon	(Cs)	cycling	consisted	
of	one	Cs	pool	and	one	residue	pool	(Henin	and	Dupuis,	1945).	As	basic	knowledge	on	Cs	dynamics	
expanded, new multi-compartment models represented explicitly the microbial pool and separated 
residues	and	Cs	in	several	pools	(Jenkinson	and	Rayner,	1977;	McGill	et	al.,	1981;	Paul	and	N.G.	Juma,	
1981;	Parton	et	al.,	1988;	Verberne	et	al.,	1990;	Coleman	and	Jenkinson,	2005).	Other	models	represented	
mathematically	the	Cs	turnover	rate	continuum	(Ågren	and	Bosatta,	1987).

Multi-compartment	models	separate	Cs	in	pools	with	different	turnover	rates.	Each	pool	 
decomposes due to microbial attack at different rates assumed to depend on the chemical recalcitrance 
and physical protection of the organic matter fraction: the higher the recalcitrance and physical 
protection the lower the turnover rate. The carbon lost by a pool can have as destiny the atmosphere 
(CO2 from microbial respiration), the microbial biomass pool, or another carbon pool through chemical 
reactions or physical aggregation. The transfer of carbon from one pool to another is accompanied by 
fluxes	of	other	elements	such	as	nitrogen	and	phosphorus.	Six	et-al.	(2002)	concluded	after	an	extensive	
literature	review	that	the	success	at	matching	measurable	and	modelable	Cs	pools	has	been	minimal.	
Multi-compartment	models	such	as	the	Century	model	(Parton	et	al.,	1988)	and	Daycent	(Del	Grosso	
et	al.,	2005)	have	been	widely	used	for	assessing	Cs	evolution	and	variations	of	multi-compartment	
models	have	been	incorporated	in	comprehensive	cropping	systems	models	(e.g.	EPIC,	Izaurralde	et	al.,	
2006;	CropSyst,	Stockle	et	al.,	2003).

Another approach to accommodate the continuum of turnover rates of soil organic matter is to simulate 
a single pool of soil organic matter whose turnover rate varies with the size of the carbon pool. This 
approach	is	followed	in	the	C-Farm	model	(Kemanian	and	Stöckle,	2010).	In	addition,	the	size	of	the	
organic carbon pool in relation to an assumed maximum carbon carrying capacity or carbon saturation 
level	(Hassink	and	Whitmore,	1997;	Six	et	al.,	2002;	Stewart	et	al.,	2008).	While	this	approach	requires	
further testing the number of core parameters of the model is lower than that of multi-compartment 
models, the spin-up period for equilibrating organic matters pools is not needed, and the interpretation 
of outputs is straightforward.

Nitrous Oxide Emissions
The high temporal and spatial variability of nitrous oxide emissions from soil under agricultural 
management	makes	measurements	at	regional	or	national	scales	impractical	(Giltrap	et	al.,	2010).	For	
this reason, there is an opportunity to use process-based models to assess nitrous oxide which are 
important	components	of	improving	the	efficiency	of	cropping	systems	(minimizing	N	losses)	and	
reducing their impact on greenhouse gases emissions. However, the variability of N2O emissions makes 
modeling	this	process	difficult	in	various	ways.	First,	it	requires	an	accurate	spatial	and	temporal	
simulation of nitrate and oxygen content and heterotrophic respiration in soil. Second, there is large 
spatial	variation	in	this	process	and	the	correct	“average”	condition	for	a	field	can	be	difficult	to	predict	
for different landscapes. 
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Nonetheless, a number of applications of simulation models to estimate nitrous oxide emission rates are 
presented	in	the	literature.	For	example,	Del	Grosso	et	al.	(2005)	used	the	DAYCENT	ecosystem	model	
to estimate the nitrous oxide emissions for the main crops in the U.S. arguing that the combination of a 
process-based model that accounts for cropping system, soil type, climate and tillage and provide more 
informed decisions than a simple methodology which only considers an emission factor based on N 
applications. In the emission factor model, nitrous oxide emissions from cropping systems are mainly 
driven by fertilization events and there is no consideration to other processes that affect emissions such 
as fertilizer timing or application method. These authors suggest that converting the cropland area to no 
tillage can reduce, at the national scale, 20 percent of agricultural emissions of this greenhouse gas.

Another	model	that	has	been	frequently	used	for	simulation	of	nitrous	oxide	emissions	is	DNDC	
(Denitrification-Decomposition)	(Li	et	al.,	1992).	Giltrap	et	al.	(2010)	reviewed	the	status	of	the	model	
and	the	ability	of	the	model	to	simulate	GHG	emissions	under	different	ecosystems.	They	recognized	
that the model is a useful tool for modeling the environmental impact of agricultural practices and 
for	improving	our	understanding	of	the	underlying	processes.	Hsieh	et	al.	(2005)	used	DNDC	to	
simulate N2O emissions from a fertilized humid grassland in Ireland and found that major emission 
events followed nitrogen applications and heavy rainfall. The measured annual emissions were 11.6 
kg N ha-1 and the modeled prediction 15.4 kg N ha−1, showing that the modeled captured the major 
emission events reasonably well. This study also indicated that emissions are predicted to increase 
up to 22.4 kg N ha−1	under	the	future	climate	scenario	of	the	Hadley	Center	model	output,	holding	
other factors constant. Although this model was used here in a grazing system (not a biomass crop) it 
shows how biophysical models can be applied to better assess the long-term sustainability of cropping 
systems.	Clearly,	biomass	crops	that	reduce	or	minimize	external	inputs	such	as	N	fertilizer	will	be	
both energetically more favorable as well as more likely to cause a smaller impact on future climate. In 
addition, reduced use of N fertilizer will make biomass crops more competitive economically with other 
alternative sources of energy.

Sustainability of Biomass Production
There have been several efforts at developing and testing biophysical models with the objective of 
simulating M. × giganteus and P. virgatum biomass production and evaluating the sustainability and 
economic	feasibility	of	bioenergy	crops.	A	recent	study	by	Jain	et	al.	(2010)	integrated	a	biogeochemical	
model, a simple crop model (based on RUE and light interception) and an economic analysis to evaluate 
the feasibility and competitiveness of biomass crops M. × giganteus and P. virgatum with alternative 
row	crops	building	upon	the	work	of	Khanna	et	al.	(2008).	In	terms	of	productivity	their	model	
estimated that yields of M. × giganteus are largely driven by temperature and radiation in the Midwest 
with	maximum	peak	yields	of	7-48	Mg	ha−1. For switchgrass a similar pattern was found but average 
yields were about 3 times lower (10-16 Mg ha−1-maximum of 40 Mg−1). Under a low-cost scenario, M. 
× giganteus	biomass	was	estimated	to	have	a	farm-gate	cost	between	34	and	80	$	Mg−1	(58-131	under	
the	high-cost	scenario).	The	combination	of	predicted	yields	and	economic	considerations	identified	
Missouri as a more competitive state for biomass crops.

A similar modeling approach was used by Heaton et al. (2004a) where a model based on RUE 
previously	calibrated	for	Ireland	(Clifton-brown	et	al.,	2000)	was	used	to	predict	potential	biomass	
production for M. × giganteus	in	Illinois.	As	in	the	model	used	by	Jain	et	al.	(2010),	these	results	are	
primarily driven by radiation and temperature and they suggested peak average yields between 27-44 
Mg ha−1 for Illinois.

A different approach taken by Wullschleger et al. (2010) developed a database of P. virgatum 
productivity	based	on	39	field	trials	and	estimated	potential	harvestable	biomass	based	on	a	regression	
approach with maximum biomass yields projected in a corridor westward from the mid-Atlantic coast 
region	to	Kansas	and	Oklahoma.	As	opposed	to	Jain	et	al.	(2010)	who	concentrated	on	the	P. virgatum 
cultivar	Cave-in-Rock,	they	evaluated	a	variety	of	lowland	(southern	and	wetter	habitats)	and	upland	
(mid and northern latitudes and drier habitats) P. virgatum cultivars. 
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Models that contain biogeochemical routines are suited for evaluating the potential for soil carbon 
sequestration	and	the	fate	of	agricultural	nitrogen.	A	subset	of	these	(e.g.	Century,	DayCENT,	CropSyst,	
C-Farm)	are	further	able	to	evaluate	trace	gas	emissions.	As	an	example,	Davis	et	al.	(2009),	using	
DayCent,	evaluated	the	greenhouse	gas	emissions	of	M. × giganteus, corn, P. virgatum and native 
mixed species prairie. All of the perennial crops had lower net greenhouse gas emissions than corn. 
These authors found M. × giganteus	to	be	a	sink	for	GHG	emissions	in	contrast	to	the	net	positive	
GHG	emissions	from	corn,	P. virgatum and mixed prairie. M. × giganteus also had a higher potential 
for building soil organic carbon than the other feedstocks. In addition, this study suggested that M. × 
giganteus	is	capable	of	fixing	substantial	amounts	of	atmospheric	N,	since	this	was	a	requirement	for	
balancing	the	N	budget	in	the	DayCent	models	and	potential	N-fixing	activity	was	measured	in	the	
rhizomes and rhizosphere of M. × giganteus in Illinois (Davis et al., 2009). Further research is needed to 
confirm	the	potential	of	biomass	crops	with	substantial	N	fixing	potential	that	can	reduce	the	need	for	
external fertilizer inputs.

One of the main concerns of the use of highly productive grasses for biofuel production is their 
accompanied increase in water use and its effects on the hydrologic cycle. Models that have hydrology 
sub-models	are	able	to	address	questions	about	the	potential	impacts	of	biofuel	crops	on	stream	flow	
and	nutrient	run-off.	Vanloocke	et	al.	(2010)	used	Agro-IBIS	to	study	the	potential	impact	of	growing	
M. × giganteus in the Midwestern U.S. Their simulations suggested that if M. × giganteus were to be 
grown	in	10%	of	the	land	as	suggested	by	Heaton	et	al.	(2008)	little	impact	will	occur	to	the	hydrological	
cycle. Only when simulating a replacement of current vegetation with 50% (or greater) of M. × giganteus 
noticeable changes were detected in the overall hydrological cycle of the Midwestern U.S. with an 
increase of 40-160 mm per year in total evapotranspiration. This higher ET under M. × giganteus is 
mainly a result of the longer growing season of M. × giganteus compared to annual crops such as corn 
and soybean. However, this small impact on the hydrological cycle can have major effects on climate as 
the area devoted to highly productive biomass crops is expanded.

Models that have a land surface model are designed to capture the full energy and mass balance of the 
ecosystem at a fast time scale. This enables these models to be coupled with atmospheric models and 
thus address questions about the potential atmospheric feedbacks that could result from large-scale 
biofuel crop deployment. These feedbacks could include changes in air temperature and precipitation 
patterns. This is an active area of research and integrated models capable of producing robust forecasts 
are under development.

The Ecosystem Demography model (ED) is a physiologically-based plant growth model that was 
originally formulated to model forest ecosystem dynamics (Medvigy et al., 2009). ED is being applied 
to evaluate woody biofuel crops such as hybrid poplar as well as to evaluate the potential use of 
native forest and other novel tree species (Wang and Dietze, in prep). ED has also been reformulated to 
represent perennial grasses and in particular is leveraging its representation of community dynamics to 
address the use of native grasslands and polycultures.

Databases
There are a number of datasets that play a critical role as drivers of biofuel crop models as well as in 
their parameterization, calibration, and validation. Below we highlight some of these resources. For 
drivers we focus on the availability of data related to weather and soils, while for model testing we 
focus on databases that compile site-level yield data and species-level ecophysiological data. There are a 
number of other resources that are commonly used to test plant and ecosystem models in other contexts 
but which are not yet utilized extensively by biofuel modelers, generally because there is a limitation of 
data due to the small spatial scales and short histories for many second generation crops. These include 
remote sensing, eddy-covariance, and USDA county-level data on crop and forest production. As 
research matures, and biofuel crops are planted on larger scales, modelers are encouraged to look more 
broadly to these and other emerging data sets.
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Biofuel Trait and Yield Database
The	Biofuel	Ecophysiological	Trait	and	Yield	Database	(BETY-db,	http://ebi-forecast.igb.uiuc.edu/)	was	
created	in	order	to	compile	the	available	field	data	about	proposed	“second	generation”	biofuel	crops.	
There are two categories of data currently represented in the database: information on the productivity 
of different species and cultivars at different sites and “trait” information on the characteristics of 
different species. These data are also associated with detailed information on treatments that have 
been applied (e.g. different levels of N addition) and different management operations (e.g. dates of 
planting and harvest). Both types of data can be queried in a number of ways, for example by species or 
by	location	using	a	Google	map	interface.	In	the	context	of	modeling	biofuel	crops	the	trait	database	is	
intended	primarily	to	produce	initial	estimates	for	model	parameters.	Existing	utilities	in	BETY-db	have	
been designed to estimate the probability distributions of each trait based on a meta-analytical model 
(LeBauer et al in prep).	Yield	data	across	many	sites	are	also	critical	for	model	validation.	Beyond	model	
applications, the database is intended to promote data sharing and cross-site syntheses. For example, a 
meta-analysis of the switchgrass data from this database suggested that perennial grasses grown with 
legumes may have comparable yields and lower inputs than fertilized monocultures (Wang et al., 2010). 
Similarly, analyses of trait data may be useful for pre-screening potential species or cultivars based on 
comparison to the traits of current crops. Finally, the spatial query in the database is intended to allow 
land managers and extension agents evaluate what yields have actually been achieved in a given region 
by different crops.

Meteorological Data
A crucial component needed for evaluating which crops to grow for bioenergy and where and how 
to grow them is the weather and climate data for a particular region. In order to make regional-scale 
projections	of	biofuel	crops	all	models	require	estimates	of	climate	that	reflect	the	differences	among	
regions. Furthermore, most models are dynamic and thus need detailed weather data with high 
temporal and spatial resolution. The critical variables are precipitation, temperature, yet most models 
also require or render better results when humidity, atmospheric pressure, and wind speed are also 
available.	Carbon	dioxide	concentration	is	also	needed	by	enzyme-kinetic	photosynthesis	models.	Land	
surface sub-models, which explicitly calculate the overall energy balance, will typically need to be able 
to resolve the sub-daily cycles of these variables. A number of models that run at hourly time intervals 
are capable of using daily meteorological records and simulate hourly conditions based on typical 
patterns	of	temperature	and	radiation	daily	fluctuations	(Campbell	and	Norman,	1998).	The	hourly	
fluctuations	of	precipitation,	wind	speed	and	relative	humidity	are	harder	to	simulate	realistically	
based on daily summaries and these are often considered uniform or simulated stochastically using 
appropriate algorithms.

Another variable of interest is solar radiation, with models varying from those that just require an 
overall light level to those that need radiation broken up by different spectral bands (e.g. photo-
synthetically active radiation, near infra-red, and long-wave infra-red) or into direct and diffuse 
radiation versus indirect or diffuse radiation. Since meteorological stations are not laid out on a well-
defined	grid,	modelers	rely	on	data	products	that	have	been	interpolated	either	statistically	or,	more	
often, via data assimilation in atmospheric models. Weather databases can generally be divided by their 
spatial and temporal resolution. Below we will describe some of the data products available at a state-
by-state level, nationwide, and globally.
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Statewide
The	Iowa	Environmental	Mesonet	(http://mesonet.agron.iastate.edu/)	is	an	example	of	weather	
data that are synthesized from 7 different observing networks and represents an outstanding effort at 
integrating meteorological variables for different purposes. Hourly (or even every minute) data from 
ASOS (Automated Surface Observing Systems) and AWOS (Automated Weather Observing System) 
can	be	obtained	from	the	Iowa	Environmental	Mesonet	from	a	convenient	interface	(http://mesonet.
agron.iastate.edu/request/asos/1min.phtml).	For	Illinois,	there	is	another	weather	database	managed	
by	the	Illinois	State	Water	Survey	(http://www.isws.illinois.edu/data/climatedb/	and	http://www.
isws.illinois.edu/warm/datatype.asp).	These	weather	databases	are	suitable	for	use	in	most	computer	
simulation models that typically run at daily or hourly time intervals. 

U.S. Nationwide
At the national scale there are a number of data products available, however there is a strong trade-off 
among data products in terms of spatial vs. temporal resolution. The PRISM database (Parameter-
elevation	Regressions	on	Independent	Slopes	Model)	has	the	greatest	spatial	resolution	(a	grid	of	800-m)	
but has the coarsest temporal resolution (monthly). At the other extreme, NARR, the product with the 
highest temporal resolution (3 hrs) also has the coarsest spatial resolution (32-km). This trade-off in part 
reflects	the	fact	that	there	is	only	a	finite	amount	of	information	in	the	network	of	weather	stations.	It	
also	reflects	a	switch	between	statistical	and	atmospheric	models,	the	latter	possessing	computational	
constraints in reducing their spatial resolution but inherently operating at high temporal resolution.

PRISM-http://www.prism.oregonstate.edu/
PRISM	uses	meteorological	station	“point”	data	and	a	digital	elevation	model	(DEM)	to	generate	fine-
scale	(800m)	gridded	estimates	of	climate	parameters	on	a	month-by-month	basis	(Daly	et	al.,	1994).	
PRISM	is	designed	specifically	to	capture	the	small-scale	topographic	variability	in	climate,	using	a	
DEM and a windowing technique to group stations onto individual topographic facets. PRISM develops 
a	weighted	precipitation/elevation	(P/E)	regression	function	to	predict	precipitation	at	the	elevation	of	
each cell using data from nearby stations, with greater weight given to stations with location, elevation, 
and topographic positioning (e.g. aspect) similar to that of the grid cell. In a model comparison, PRISM 
exhibited superior performance to various methods of kriging, and has been successfully applied to the 
entire United States (Daly et al. 1994).

Daymet-http://www.daymet.org
Daymet is a semi-mechanistic statistical model conceptually similar to PRISM that generates daily 
surfaces of seven variables: daily mean, minimum, and maximum temperature, precipitation, humidity, 
radiation,	and	day	length	(Thornton	and	Running,	1999).	The	Daymet	data	set	spans	1980-2003	and	has	
a 1km resolution. Data are downloadable either as time-series at point locations or climatological maps. 
Daily radiation is generated based on algorithms that produce adequate monthly averages but that 
show less variation than station or satellite based daily radiation measurements.

NARR-http://nomads.ncdc.noaa.gov/
The North American Regional Reanalysis (NARR) is an atmospheric-model data-assimilation product 
from	NOAA	that	covers	all	of	North	America	and	parts	of	the	Atlantic	Ocean,	Pacific	Ocean,	Central	
America and the Eurasian arctic. Historical climate data that has been assimilated through atmospheric 
models is typically referred to as “reanalysis” products and a number of other reanalysis data sets 
are available on a global scale and will be discussed below. The NARR has a spatial resolution of 
approximately 32 km and a 3 hour temporal resolution and spans the time period from 1979 to the 
present. Because the NARR is processed through an atmospheric model there are a large number of 
output variables available that include both the state of the land surface and the atmosphere.
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Global
At a global scale there is a diversity of different products available. In terms of raw weather station data 
and	statistically	interpolated	products	we	briefly	describe	three	sources:	CRU,	LocClim,	and	Worldclim.	
The	CRU	dataset	is	a	product	of	the	Climate	Research	Unit	at	the	University	of	East	Anglia	(http://
www.cru.uea.ac.uk/cru/data/availability/)	which	provides	gridded	surface	temperature	datasets	
over the past 150 years and has played a critical role in diagnosing spatial patterns of climate change. 
LocClim	(http://www.fao.org/sd/locclim/srv/locclim.home)	is	a	UN	FAO	tool	used	to	estimate	
eight different climate variables: Average, minimum, and maximum temperatures, precipitation, light, 
humidity, wind speed, and potential evapotranspiration. Estimates are available at monthly, 10-day, 
and	daily	time	intervals.	The	grid	resolution	in	LocClim	is	not	predetermined;	the	utility	performs	
interpolation	on-the-fly	based	on	latitude,	longitude,	and	elevation.	The	underlying	dataset	in	LocClim	
is	the	FAOCLIM	data	set	of	28800	met	stations.	WorldClim	is	a	high-resolution	(1km)	global	gridded	
data set of average climate for 1950-2000 (Hijmans et al., 2005) for 23 climate variables: mean, minimum, 
and maximum temperature, precipitation, and 19 bioclimatic indicators. The same algorithm has also 
been	used	to	produce	climate	maps	for	IPCC	climate	change	scenarios	(2020,	2050,	and	2080	under	
the A2A and B2A emissions scenarios) and for the mid-Holocene (6000BP), last glacial maximum 
(21,000BP), and last interglacial (130,000BP).

In addition to statistically gridded data sets, there are also a few key global “reanalysis” data sets. 
The	most	commonly	used	are	the	ECMWF	(European	Centre	for	Medium-Range	Weather	Forcasts)	
“ERA-40”	(Uppala	et	al	2005,	http://data.ecmwf.int/data/)	and	the	NCEP	(National	Center	for	
Environmental	Prediction)	“Reanalysis	2”	(Kanamitsu	et	al.	(2002),	http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis2.html).	Both	these	data	products	have	a	2.5	degree	resolution	and	
a	6	hour	time	step.	The	ERA-40	covers	1957-2001	with	a	newer	ERA-Interim	product	covering	1989-
2009	while	the	NCEP	covers	1979-2008	with	a	newer	“Twentieth	Century”	product	covering	1871-2008	
(Compo	et	al.,	2010).	There	is	also	a	reanalysis	from	the	Princeton	Land	Surface	Hydrology	Research	
Group	(LSHRG,	Sheffield	et	al	2006))	that	attempts	to	correct	biases	in	the	NCEP	reanalysis	based	on	
a	number	of	satellite	and	surface	data	compilations,	such	as	CRU,	and	which	appears	to	have	the	least	
biased radiation (Ricciuto pers com). This data set is available at 3-hr and monthly time steps and a 1.0 
degree resolution.

Soil Databases
Another important component for estimating biomass productivity and ecosystem services of biomass 
production	are	soil	characteristics.	For	a	specific	location,	soil	properties	can	be	measured	directly,	but	
soil	sampling	and	analysis	is	typically	time	consuming	and	costly;	and	for	large	regions	prohibitive.	
Assessing sustainability of biomass production at a regional level requires incorporating soil 
information and here we describe the main sources of soil data on a national and global scale. 

SSURGO
The	Soil	Survey	Geographic	(SSURGO)	database	is	available	for	selected	counties	and	areas	 
throughout	the	United	States	and	its	territories.	In	SSURGO	mapping	scales	generally	range	from	
1:12,000 to 1:63,360 and this is the most detailed level of soil mapping done by the Natural Resources 
Conservation	Service	(NRCS).	Maps	are	derived	from	point	observation	and	conceptual	models	of	
soil formation (Soil Survey Staff, 2009). This database is linked to a National Soil Information System 
(NASIS) attribute database which provides the relative extent of the component soils and their 
properties	for	each	map	unit.	The	SSURGO	map	units	consist	of	1	to	3	components	each	(Figure	1).	
The	database	consists	of	two	main	components,	a	GIS	polygon	map	of	different	soil	map	units	and	a	
set of attribute tables that describe different soil properties for those map units, often with attributes 
varying with depth. For the purpose of biomass production modeling, examples of information that 
can be queried from the database are: soil texture, soil organic matter, pH, available water capacity, soil 
reaction, and electrical conductivity.
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Figure	1:	Structural	diagram	of	USDA-NRCS	digital	soil	survey	data.	Spatial	data	repre-sent	map	unit	polygons,	usually	
consisting of multiple un-mapped components. The complex hierarchy of map unit  component  horizon data is  

encoded	through	a	series	of	1-to-many	tabular	relationships.	Reproduced	with	permission	from	Beaudette,	2008.

The	database	provides	basic	information	from	where	the	soil	profile	input	required	for	the	model	has	
to	be	derived.	This	is	not	a	simple	task	as	the	input,	for	instance	the	layering	of	the	soil	profile,	is	more	
detailed than the original information and the correlation between variables has to be conserved. Soil 
organic	matter	estimates	for	the	profile	and	the	distribution	with	depth	has	to	be	scrutinized	carefully	
as using the raw data carelessly will most likely result in poor outputs. Pedotransfer functions are 
customarily used to predict soil properties from basic textural data (e.g. Saxton and Rawls, 2006). 

STATSGO2
For	larger	scale	simulations	(i.e.	national	scale)	the	U.S.	General	Soil	Map,	known	as	STATSGO2,	
consists of general soil association units, which is generalized soil information interpreted from detailed 
soil survey data and inferred from natural conditions where soil information is absent. It was developed 
by	the	National	Cooperative	Soil	Survey	and	it	consists	of	a	broad-based	inventory	of	soils	and	non-soil	
areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the 
approximate scale of 1:250,000.

The	design	of	STATSGO	is	very	similar	to	SURGO.	The	tabular	data	contain	estimated	data	on	the	
physical and chemical soil properties, soil interpretations, and static and dynamic metadata. Most 
tabular data exist in the database as a range of soil properties, depicting the range for the geographic 
extent of the map unit. In addition to low and high values for most data, a representative value is 
also included for these soil properties. This indicates that working at this scale there is a source of 
uncertainty that has to be taken into account, since the magnitude of the variability in soil variables of 
interest can be substantial.

Using the Soil Databases
The simplest way to access the data from the soil databases is the Web Soil Survey  
(http://websoilsurvey.nrcs.usda.gov/app/)	which	is	an	interactive	web	application	that	allows	access	
to maps and soil characteristics and attributes.

Data	for	soil	survey	contains	a	tabular	and	spatial	component.	The	spatial	component	is	a	vector	file	
(ESRI	shape	file)	with	the	“map	unit”	key	as	the	main	information.	The	tabular	data	contains	four	
general	classes	of	information:	1)	chemical	and	physical	data	(pH,	CEC,	particle	size	distribution,	etc.),	
2) morphologic data (horizonation, etc.), 3) taxonomic data and 4) interpretations for land use and 
engineering.	The	vast	number	of	decisions	made	based	on	soil	surveys	reflect	the	inherent	value	of	this	
information	(Beaudette,	2008).
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An	example	application	of	the	STATSGO2	database	is	the	rasterized	calculation	of	available	water	
capacity, using a 32 by 32 km grid over the conterminous U.S. (Figure 2). The available water capacity of 
a soil is a crucial variable in estimating the potential biomass productivity of different regions.

Figure 2: Available water capacity (proportion) based on a 32 by 32km grid over the conterminous U.S. This map was  
produced	by	rasterizing	the	STATSGO2	and	performing	a	weighted	average	over	different	horizon	depths	and	the	 

proportionate contribution of soil components.

Global Scale Soils Data
At	a	global	scale	it	is	difficult	to	compile	all	the	different	national	soils	maps	that	use	different	
resolutions,	classifications,	and	sampling	methods.	Fortunately	the	U.N.	Food	and	Agriculture	
Organization	does	provide	a	global-scale	soils	map	(http://www.fao.org/nr/land/soils/en/).	This	
map is fairly coarse in resolution, but does provide information on soil texture and soil depth that is 
required to drive the soil moisture sub-models of most vegetation models. To our knowledge there 
is not a global scale map of soil carbon stores, soil nutrients, or other soil biogeochemical rates or 
properties, though model-based estimates of some of these do exist as part of climate change research 
(IPCC,	http://www.ipcc-data.org/).

Land Use Databases
Other databases of importance are those providing information about land cover. This is useful 
when performing detailed landscape-level assessments of the impact of crops, trees or other large 
scale practices. One example is the national land cover database from the Multi-Resolution Land 
Characteristics	Consortium	(MRLC,	www.mrlc.gov).	This	is	available	for	the	50	U.S.	states	and	it	
provides	classification	of	land	on	a	30	by	30m	resolution	that	can	be	used	to	plan	where	biomass	crops	
might be deployed at a more detailed level. One disadvantage is that the latest version is from 2001 and 
many	changes	might	have	occurred	to	land	use	since	then.	Examples	of	land	classification	are:	open	
water,	grassland,	cropland,	mixed	forest,	etc.	Another	useful	database	is	the	USDA-NASS	Cropland	
Data	Layer	(CDL)	which	contains	crop	specific	information.	The	CDL	Program	annually	focuses	on	
producing digital categorized geo-referenced output products using imagery from the Resourcesat-1 
AWIFS	and	the	Landsat	5	TM	satellites	(http://www.nass.usda.gov/research/Cropland/SARS1a.htm).	
At a global scale the MODIS satellites provide an annual 500m land cover estimate from 2001 to the 
present	(http://modis-land.gsfc.nasa.gov/).	These	maps	provide	up-to-date	land	cover	information	and	
can be useful for both modeling outside the U.S. and for assessing land cover change.
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Model Assessment
Models are only as good as the data that go into building them and thus model assessment is a critical 
activity. We can conceptually break assessment down into two phases, training and testing. Activities 
in the training phase are focused on using data to estimate model parameters while the testing phase is 
focused on confronting the model with independent data.

There are a number of different approaches used during the training phase and we will conceptually 
break them down into what we call parameterization and calibration, though these labels are not 
universally	used	and	not	all	techniques	fit	nicely	into	these	definitions.	By	parameterization	we	refer	
to	the	process	of	setting	model	parameters	where	there	is	a	direct	mapping	of	field	or	experimental	
data	to	a	specific	parameter	or	set	of	parameters.	This	definition	is	distinct	from	usages	found	in	other	
fields,	such	as	atmospheric	science,	where	most	model	parameters	are	known	physical	constants	and	
parameterization instead refers to the choice of a functional form for modeling a process statistically 
rather than mechanistically. Examples of this could range from 1:1 mappings between parameters 
and	data,	such	as	the	C:N	ratio	of	a	tissue	or	the	specific	leaf	area	of	a	leaf,	to	parameters	that	are	fit	
statistically but still have a direct link to data, such as the estimation of photosynthetic parameters 
from	an	A/Ci	curve	or	an	exponential	decay	rate	from	a	litter	bag	experiment.	Parameterization	has	
traditionally	occurred	by	reference	to	the	scientific	literature	or	using	expert	opinion	to	fix	parameter	
values.	In	the	past	it	has	often	been	difficult	for	the	non-expert	to	see	where	specific	model	parameters	
have come from, which has been known to engender distrust of models. Some of the disadvantages of 
traditional parameterization are that error distributions associated with parameters have rarely been 
reported and there has been a bit of subjectivity in choices about why parameter values from one study 
were chosen over another. Newer meta-analytical techniques aim to get around this because they allow 
parameters to be constrained based on the combined weight of multiple studies and provide a formal 
estimate of parameter uncertainty that can be used for error propagation (LeBauer et al in prep).

In contrast to parameterization, where there is a direct mapping between data and parameters, we 
use the term calibration to deal with the situation where the connection between data and parameters 
is often less direct but more holistic. In general during calibration we are comparing a model output 
to	data,	for	example	the	comparison	between	predicted	and	observed	yield.	Yield	is	not	determined	
by	a	single	parameter	but	is	influenced	by	many	different	parameters	in	many	different	processes.	
Another important distinction between parameterization and calibration is that the whole model has 
to be run in calibration while in parameterization we only need to know the biological meaning of a 
parameter or a single functional relationship. Because of this, calibration methods end up being much 
more computationally intensive. However, there are a few advantages of calibration. First, it allows the 
estimation the overall error variance of the model. Second, it potentially allows for the estimation of 
covariances between parameters, which can often be substantial and tend to reduce the overall model 
uncertainty.	Third,	calibration	allows	one	to	estimate	model	parameters	that	are	difficult	or	impossible	
to	measure	directly	in	the	field,	for	example,	carbon	allocation	(Miguez,	2009).

There are a number of statistical methods available that can be used during calibration. In general it is 
best to base calibration on objective criteria rather than simply “tuning” the model-manually adjusting 
free parameters to make the model match the data. The statistical approaches to calibration have 
sometimes been referred to as “inverse modeling” because it is the reverse of “forward” modeling 
where a model is run forward given a set of known parameters in order to produce an unknown output. 
Instead	in	inverse	modeling	the	desired	output	is	known	(i.e.	data)	and	the	goal	is	to	figure	out	what	
parameters produce the required outputs. We will discuss three approaches to calibration: minimization 
of an objective function, maximization of a likelihood, and estimation of the posterior parameter 
distribution.	In	the	first	approach	the	modeler	must	specify	some	function	that	they	would	like	to	
minimize. Traditionally, the mean squared error (MSE), the sum of squares error (SSE) or other function 
that expresses the mismatch between the model and the data, which will be minimized.
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Where Oi is the observed data, Si is the simulated data and n is the total number of observations.

Given	the	complexity	of	vegetation	models	analytical	solutions	to	these	minimizations	typically	do	not	
exist	and	one	uses	a	numerical	optimization	algorithm	(Bolker,	2008).	The	second	approach,	maximum	
likelihood, is similar to the objective function approach except that instead of minimizing an objective 
function one is instead calculating the probability that a certain parameter set would have produced the 
observed data. This probability statement is referred to as the likelihood function and the goal is usually 
to	find	the	most	likely	parameter	values,	i.e.	those	that	maximize	the	likelihood	function.	As	with	
objective functions, likelihood functions are usually evaluated using numerical optimization. The most 
common choice of probability distributions is to assume that error is normally distributed, in which 
case the maximum likelihood solution is equivalent to the sum of squares objective function, which is 
likewise	the	most	commonly	chosen	objective	function	(Givens	and	Hoeting,	2005).

An example in the context of biomass crops where the objective was to produce reliable estimates 
of switchgrass productivity used a combination of parameters derived from the literature and 
optimization using a numerical algorithm minimizing the mean sum of squares of the error function 
(Di	Vittorio,	et	al.	2010).	While	the	authors	were	able	to	obtain	several	parameters	directly	from	the	
literature,	they	identified	5	parameters	which	needed	to	be	optimized	based	on	data.	These	parameters	
were mostly related to root and carbon dynamic processes which are seldom measured in detail in 
individual studies. This effort at identifying uncertainty in parameters and evaluating the robustness of 
model simulations is crucial for the generation of robust forecasts of feedstock availability.

The third alternative for calibration, estimation of the posterior parameter distribution, is also  
based on probability theory, just like maximum likelihood, but instead employs Bayes’ Theorem in 
order	to	estimate	the	full	probability	distribution	of	a	parameter	(Gelman	et	al.,	2004).	Bayesian	 
methods are popular because most often what we are actually interested in is the probability of 
the model parameters not the probability of the data, which is calculated in maximum likelihood. 
Furthermore, because these methods provide a whole probability distribution for the parameter,  
rather than a single optimum value, they more directly capture and propagate model uncertainty. 
Bayesian	posterior	parameter	distributions	are	usually	estimated	by	Markov	Chain-Monte	Carlo	
(MCMC)	numerical	techniques,	which	tend	to	be	more	computationally	demanding	than	numerical	
optimization	(Brooks,	1998).

Before	proceeding	on	to	model	testing	we	also	wanted	to	briefly	touch	on	data	assimilation	methods,	
which	have	received	a	lot	of	attention	in	the	modeling	literature	lately.	The	exact	definition	of	data	
assimilation varies from discipline to discipline and many modelers refer to techniques that we 
would lump under calibration as data assimilation. Traditionally in atmospheric science, where data 
assimilation has seen the greatest use, the technique referred strictly to methods for estimating the value 
of a model’s state variables from data, rather than estimating model parameters. Data assimilation can 
further be broken down into off-line methods, where all the data are available, and on-line methods, 
where data assimilation is being performed in real time and each new data point arrives in order with 
analyses being updated at each time point. Wikle and Berliner (2007) give a good overview of both 
classical and Bayesian approaches to data assimilation while Lewis et al. (2006) provided a detailed 
treatment of these methods.
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Finally, after the model training phase models then often undergo a testing phase, which is sometimes also 
referred	to	as	model	validation	or	model	verification.	Typically	some	portion	of	the	data	collected	is	withheld	
during the training phase for use in the testing phase, since the aim is to provide an independent test of 
model performance rather than testing the model against the same data that was used for calibration. During 
testing	model	parameters	are	either	fixed	to	the	values	estimated	during	the	training	phase	or,	if	Bayesian	
methods were used, are sampled from their posterior distributions. In the latter it is customary to run the 
model many times to generate an “ensemble” estimate of model uncertainty. While modelers often refer 
to this phase a model validation, technically we can never assess if the model is valid in all situations, and 
indeed all models will be wrong under some conditions (Oreskes et al 1994). Rather we are attempting to 
discern under which conditions the model is reliable and which it is not.

A	major	challenge	in	modeling	efforts	is	to	integrate	databases,	field	experiments,	biophysical	models	while	
using optimization and sensitivity analysis techniques. A strategy for simulating productivity and assessing 
sustainability of biomass feedstocks is to integrate databases, biophysical models and statistical approaches. 
Miguez et al (2009) developed M. × giganteus harvestable biomass projections by integrating weather 
data	from	North	American	Regional	Reanalysis,	the	U.S.	general	soil	map	(STATSGO2)	and	a	biophysical	
model	(Figure	3).	A	recent	example	of	data	and	model	integration,	specifically	targeted	to	evaluating	the	
sustainability and productivity of biofuel crop systems was presented by Zhang et al. (2010). Within their 
spatially	explicit	framework,	they	integrated	weather	data	from	NARR,	the	EPIC	biophysical	model,	the	
SSURGO	soil	database,	Land	use,	hydrological	unit	and	political	boundaries	into	a	homogeneous	spatial	
modeling unit. Using an optimization algorithm they were able to develop a set of optimal solutions that 
represents a compromise between N losses, energy production and greenhouse gas emissions.

Figure 3: M. × giganteus simulated harvestable biomass production for the U.S. integrating weather  
(NARR)	and	soil	(STATSGO2)	databases.

Conclusions
In this chapter we outlined the characteristic of existing models and databases that are useful for regional 
assessments of productivity and sustainability of biomass feedstocks along with a summary of statistical 
approaches for model training and testing.

An ideal framework would provide seamless access to databases required for model development or 
adaptation. It is of utmost importance that these databases are maintained and quality control criteria are 
used. The databases can later be used in testing the model simulations as well and this does not need to be a 
static	process,	but	rather	a	continuous	process	in	which	models	are	developed,	tested	and	refined.
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Ultimately, the objectives of a particular application dictate the appropriate balance among model complexity, 
data availability, and desired outcome. In this context, simulation models are a powerful component of 
systems for multi-criteria assessment of the productivity and impacts of biofuel feedstock production. 
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