
  

Lecture 4:
Maximum Likelihood



  

Review – Common Distributions

● Uniform
● Normal
● Lognormal
● Beta
● Exponental/Laplace
● Gamma

● Binomial
● Bernoulli
● Poisson
● Negative Binomial
● Geometric

Continuous Discrete



  

What are we trying to do?

● “Confronting models with data”
● How is the data modeled?

– What type of data?

– What process generated
 this data?

– What distributions are an
appropriate description
of the data?

● How is the process modeled?
● How are the parameters

modeled?



  

Why are we trying to do this?

● Quantify states & relationships
– What is Y?

– How is Y related to X?

● Test Hypotheses
● Prediction
● Decision making  



  

How do we do this?
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Likelihood

● Probability of observing a given data point x
conditional on parameter value q

● Likelihood principle: a parameter value is more
likely than another if it is the one for which the
data are more probable

L=P X=x∣=P data∣model



  

Maximum Likelihood

● Step 1: Construct Likelihood
● Step 2: Maximize function

● Take Log of likelihood function
● Take derivative of function
● Set derivative = 0
● Solve for parameter

L=P X=x∣=P data∣model

Goal: Find the q that maximizes L



  

Example – Mortality Rate

● Assume mortality rate is constant – r –  but is an
UNKNOWN we want to estimate

● a
i
 is a KNOWN time of death

Pr aaia a = Pr die now given that

plant is still alive ⋅Pr plant is

still alive
≈  a × e−a

= Expa∣ a



  

L=Pr a∣∝Exp a∣



  

An Observation
● A plant is observed to die on day 10

● From this observation, what is the best estimate for r?



  

A few things to note

● A likelihood surface is NOT a PDF

● Pr(X | q) ≠ Pr(q | X)
● Does not integrate to 1
● No, you can't just normalize it
● The model parameter is being varied, not the

random variable
– i.e. the x-axis is fixed, not random

● Cannot interpret surface in terms of it's mean,
variance, quantiles



  

Maximum Likelihood

● Step 1: Write a likelihood function describing
the likelihood of the observation 

● Step 2: Find the value of the model parameter
that maximized the likelihood

dL
d 

=0



  

L = e−a

ln L = ln −a

∂ ln L
∂

= 1

−a=0

ML = 1
a

= 0.1day−1



  

L = e−a

ln L = ln −a

∂ ln L
∂

= 1

−a=0

ML = 1
a

= 0.1day−1

ln e−a
ln ln e−a
ln −a



  

L = e−a

ln L = ln −a

∂ ln L
∂

= 1

−a=0

ML = 1
a

= 0.1day−1

∂[ ln −a]
∂

∂ ln 
∂

−∂a
∂

1

−a



  

L = e−a

ln L = ln −a

∂ ln L
∂

= 1

−a=0

ML = 1
a

= 0.1day−1

1

=a

1=a
1
a
=

a = 10



  



  

● Suppose a second plant dies at day 14
● Step 1: Define the likelihood

A second data point

L = Pr (a1,a2∣ρ)

= Pr (a2∣a1,ρ)Pr (a1∣ρ)

= Pr (a2∣ρ)Pr (a1∣ρ)

∝ Exp(a2∣ρ)Exp(a1∣ρ)

Assume measurements are
independent



  

● Step 2: Find the maximum

L = e−a1⋅e−a2

ln L = 2 ln −a1−a2

∂ ln L
∂

= 2

−a1a2=0

ML = 2
a1a2

= 0.0833day−1



  



  



  

A whole data set

● Step 1: Define Likelihood

L = Pr a1,a2,⋯, an∣

= ∏
i=1

n

Pr ai∣

= ∏
i=1

n

Exp ai∣

Assume measurements are
independent



  

● Step 2: 
Find the maximum

L = ∏
i=1

n

 e− ai

ln L = ∑
i=1

n

 ln−ai 

= n ln−∑
i=1

n

ai

∂ ln L
∂

= n

−∑
i=1

n

ai=0

ML = n

∑
i=1

n

ai

= 1/a
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