Appendix 1

Commonly Used Mathematical Rules

A1.1 Rules for Algebraic Functions

The following rules help to simplify functions involving powers and fractions:

Rule Al.1: @ =a
1
Rule A1.2: — =q7’
a’
a* %
Rule A1.3: — =g’
a’
Rule Al.4: @ =a*?
Rule A1.5: a'* = Va; in particular, a'? = Va
Rule Al.6: @V*=a
Rule A1.7: (ac)= a‘c
a\* a
Rule A1.8: = ==
ule A1.8 (c) =
Rule A1.9: ! A B

- +
(a; + bix)(ap + byx) (4 + byx)  (a + byX)
(partial fractions)

here A £ and B b,
w = ————— an =
(ayby, — a,by) (a1 by, — a,by)
__b 2 \/ L.
Rule A1.10: IfaxX?4+bx+c=0 then x = ZZZ o

(quadratic formula)

A1.2 Rules for Logarithmic and Exponential Functions

The following rules help to simplify functions involving logarithms. On the
left are rules for logarithms in any base, b, defined by the fact that if y = b* then
log,(y) = x. On the right are specific rules for natural logs in basee = 2.71 . . .,
defined by the fact that if y = ¢* then In(y) = log.(y) = x.

Rule A1.11: log,(a') = t log,(a) In(a") = t In(a)
Rule A1.12: log,(ac) = logy(a) + log,(c) In(a ¢) = In(a) + In(c)

Rule A1.13: logb(%> = —log,(c) ln(%) = —In(c)
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Rule A1.14: logb(%) = log,(a) — log,(c) ln<%> = In(a) — In(c)

Rule A1.15: log,(b*) = x In(e*) = x
Rule Al.16: s = x ) =

A1.3 Some Important Sums

The following rules describe how certain sums can be evaluated and written in
simpler terms. To interpret a sum, read >I_1f(i) as “the sum of the values of f(i)
starting with i equals one, then two, then three, etc., up until i = n.” That is,
SI_uf(i) = f(1) + f(2) + f(3)+ -+ f(n). Sums starting with i =1 are given
on the left and starting with i = 0 on the right.

™M

Il

=
M:

Rule A1.17: ; ._Oa =(n+1)a
i=1 i=0
n _ antl n n+1
Rule AL19: 3 a' = e Pring 11 =
Rule A1.20: ga‘ = ——iflal <1 ,2)“, = e aiflal <1
Rule A1.21: %’;211 X =% (arithmetic mean)
Rule A1.22: (—n%ﬁ,-:l (x; — X)> = Var(x) (sample variance)

Note that, in Rule A1.22, if the variance is based on the true value of the mean
(i.e., the mean is known without error), then the sum should be divided by (1)
rather than (n — 1). For example, if the x; values are known for every member
of a population rather than just a sample, then the variance is given by
(1/n) 2;’=1 (x; — X)* The order in which a sum is taken does not matter, so that
" (F)+ gy = (S, FOV+ (2, g(i)), and constants can always be
factored out of a sum, _, (af(i) = aZ;_, f(i).

A1.4 Some Important Products

The following rules describe how certain products can be evaluated. To
interpret a product, read IT;-; f(i) as “the product of the values of f(i) starting
with i equals one, then two, then three, etc., up until i = n.” That is,

ITi=1 £(i) = (1) f(2) f(3)- f(m).

n

Rule A1.23: a=a"

-

Rule A1.24: i =n! (n factorial)

]
fury
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n

Rule A1.25: [ 4 = a+vr2

i=1
n 1/n n
Rule A1.26: (H x,~> =] x = % (geometric mean)
i=1 i=1
Note that the order in which a product is taken does not matter, so that
TI= 1 (F(i) (i) = (ITi- f(i)) x (ITi=1 g(i)), and that constants can be fac-
tored out of each term in a product, IT{-; (a f(i)) = a" ITi-1 f(i).

A1.5 Inequalities

The following rules are used to simplify functions involving the inequalities
“<” (less than) and “>" (greater than):

Rule A1.27: If x+a>y+b, then x>y + b — a. The direction of an
inequality is unchanged by addition or subtraction.
Rule A1.28: If x/a > y/b, then x > y a/b if a is positive, while
x < y a/b if a is negative. The direction of an inequality
must be reversed when multiplying or dividing by a
negative number.

Exercise Al.1: The following questions review algebraic techniques needed
throughout the text.

(a) Solve 2x*> — 7x + 3 = O for x.

(b) Simplify ((a x)* — a*)/(ax — a) as much as possible.

(c) Factor both sides of x* — yx* = x — y. What are the three possible
values of x that ensure that this equation holds true?

(d) Solve In(x") = 1/2 for t.

(e) Write In(a x) + In(b x) — In(c) as a single logarithmic function In().

(f) Solve x™ = 100 for t. [Hint: take the logarithm of both sides.]

(g) What does the sum 3/, 1 equal?

(h) What does the product ITj~; 1 equal?

(i) Evaluate and simplify /-, (2i — 1).

(j) If x/(—=3) + 5 > 15, is x greater than some number or less than some
number? What is that number?

Answers to Exercise

Exercise A1.1

(a) Using the quadratic formula (Rule A1.10) witha =2,b = —7,and c = 3, the two
solutions of 2x* — 7x + 3 = Oare x = (7 = V49 — 4(2)(3))/4 = (7 = 5)/4.
That is, x = 3 and x = 1/2. Alternatively, we could try to factor 2x* — 7x + 3 in
various combinations to show that it equals (2x — 1)(x — 3), which gives the same
answer.
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®) (ax)) - @ -a (-1 dx+1)(x-1)
ax—-a ax—-a a(x—-1) a(x—1)

=a(x+ 1)

It is worth remembering that (x> — 1) can be factored as (x + 1)(x — 1); alter-
natively, the quadratic formula (Rule A1.10) can be used to show that the two
roots of (x> — 1) = 0 are x = —1 and x = +1, indicating that we can
factor (x* — 1) as (x + 1)(x — 1).

(c) Factoring both sides gives x* (x — y) = (x — y). For this equation to hold true,
either x* must equal one or (x — y) must equal zero. Three possible solutions for
xarethusx=—1,x= +1,and x = y.

(d) Using Rule A1.11, In(x") = tIn(x) = 1/2. Thus, t = 1/(2 In(x)), which we can
also write as 1/In(x?) (both are correct).

(e) Using Rules A1.12 and A1.14, In(a x) + In(b x) — In(c) = In(a b x*/c).

(f) Solving for terms in the exponent is made easier by taking the logarithm (in
any base) of both sides: In(x"*) = r t In(x) = In(100). Thus, t = In(100)/
(r In(x)) or, equally, t = In(100)/In(x").

(g) Using Rule A1.17, 37_; 1 = n.

(h) Using Rule A1.23, IT{_; 1 = 1.

(i) We can rewrite 2:;1 (2i — 1) as (22;;1 i) - (2;;1 1), which accord-

ing to Rules A1.17 and A1.18 equals (n (n + 1)) — (n) = n’

(j) Adding (—S5) to both sides, we get x/(—3) > 10. Multiplying both sides by
(—3), we get x < —30 (x must be less than —30). Note that this last operation
required that we reverse the inequality.
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Some Important Rules from Calculus

A2.1 Concepts

In this appendix, we review basic concepts and formulae from calculus that are
used repeatedly in the text. We assume that you have learned this material in
the past and provide exercises to help refresh your memory. See Neuhauser
(2003) for additional review.

Let us consider a function f(x) of an independent variable x. The function
can be represented as a curve drawn on a two-dimensional plot (Figure A2.1).
The rate at which the height of f(x) changes as x is varied is described by the
derivative of the function. By definition, the derivative of a function f(x) with
respect to x is

df(x) _ i [f(x + Ax) = f(x)
gy vt g Ax P

In words, the derivative of f with respect to x is defined as (“=") the change
in fover an interval Ax (that is, f(x + Ax) — f(x)), divided by the length of the
interval (Ax), as the interval is reduced to zero (“lim,, .,”). A graphical way to
think about the derivative is that it equals the slope of the line tangent to the
function at point, x. For example, in Figure A2.1, we plot the function f(x) =
x3 — 12x* + 36x — 20, whose derivative is df (x)/dx = 3x*> — 24x + 36. At x =
1, the slope of the tangent line (“rise over run”) would be 15 (thin line).
Whenever the function f(x) is flat, for example at a local maximum or mini-
mum, the derivative is zero. In Figure A2.1, the function has a derivative of
zero at both x = 2 and x = 6. Another way to think about derivatives is that
they measure the sensitivity of the height f(x) to changes in x. This mental
picture helps explain why derivatives are so important in biology, because we
often want to describe how sensitive a quantity of interest (e.g., the growth
of a population) is to some other quantity (e.g., the current population size).

If the derivative of a function f(x) is g(x), then the antiderivative of g(x) is f(x).
Thus, antidifferentiation (“integration”) undoes the process of taking the deriv-
ative of a function. We can represent the antiderivative of g(x) with respect to
x using an indefinite integral:

/g(x) dx = f(x).
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Figure A2.1: Slopes and derivatives. A plot of the = - . 1 .
function f(x) = x> — 12x% + 36x — 20 (thick 9 ‘ : > 6 8 X
curve) and its tangent line at x = 1 (thin line). o 3
The slope of the tangent line equals 15, which is g -10 g

described by the derivative of f(x) at x = 1 and
which can be confirmed by dividing the “rise” in 20
the tangent (15) over a “run” in x of 1.

But not only is f(x) the antiderivative of g(x), so too is f(x) + c. That is, indefi-
nite integrals are not unique. Thus, when taking an indefinite integral, we add
a “constant of integration” (c) to the result to indicate that any possible value
of ¢ would work:

/g(X) dx = f(x) + c.

For example, if g(x) = 2x, then its antiderivative would be any function x* + ¢,
including both f(x) = x* and f(x) = x*> — 20 (as can be confirmed by taking the
derivative of both possibilities for f(x)).

If derivatives are measures of rates of change (“slopes”), antiderivatives are
measures of “areas.” Indefinite integrals represent the area under the curve g(x)
without specifying the range of values of x that we want to consider. If we take
an indefinite integral evaluated at x = b and subtract off the indefinite integral
evaluated at x = g, then we get the definite integral:

b

[ s as

XxX=a

this definite integral is the area under the function g(x) between points a and b.
This result is known as “the fundamental theorem of calculus.” Figure A2.2 illus-
trates the integration of the function g(x) = —x? + 8x — 12, whose indefinite inte-
gral is [g(x) dx = —(1/3)x® + 4x* — 12x + c. The area under the curve between

8. s 8(x) dx = 5/3, while the area under the curve between

x=5andx=6is [
x=6 and x =8 is ff= ¢8(x) dx = —32/3. The total area under the curve
between x = 5 and x = 8 can be found either by evaluating the definite integral
fx8=5 g(x) dx = —9 or by adding together the two areas between x = 5 and 6 and
between x = 6 and 8; either way the answer is —9. The fact that this area is a neg-
ative number indicates that the curve lies mainly below the horizontal axis.

It is helpful to think of an area as a sum of rectangles whose width is very

small and whose height is given by g(x) (inset in Figure A2.2). This mental
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Figure A2.2: Areas and integration. A plot of the function g(x) = —x* + 8x — 12. The area
under the curve can be found by integration and is 5/3 between x = 5 and x = 6 (dark
shaded area) and —32/3 between x = 6 and x = 8 (light shaded area). The inset shows how
the area under the curve can be approximated by filling in the area with a series of rectan-
gles whose height is given by g(x). The sum of these rectangles is an approximation to the
area found by integration. This approximation improves when using more rectangles of

smaller width.

image helps to explain the importance of integration in biology, because we
often want to describe the sum total effect of a process. For example, we might
want to determine the sum total effect of past selection or the sum total change

to the size of a population over an interval of time.

A2.2 Derivatives

The following rules describe some of the more important derivatives:

Rule A2.1: % =0 (derivative of a
constant)
d(aflx)) _ dflx) :
Rule A2.2: e e e (factoring out a
constant)
d(fix) + g(x dfix dg(x
Rule A2.3: (fx) + 8(x)) = fix) = 5(x) (linearity

dx dx dx
property)
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d(a x) :
Rule A2.4: =a (linear
dx functions)
Rule A2.5: (;)i‘ = g ¥t (polynomial
functions)
flx)
Rule A2.6: o eft) —~ ) (exponential
dx dx :
functions)
fx)
Rule A2.7a: Al h s ﬂ")d(ﬂ )) In(a) (power
dx .
functions)
Rule A2.7b: ax) = af(x)““d(ﬂx)) (power
dx dx .
functions)
Rule A2.8: d(lngzx))) = ﬂi) d(’?};)) (natural log
functions)
- d(logy(flx)) _ 1 d(fv) )
Rule A2.9: i1 =) Ao & gftg) afus(::nlg)tlons
Rule A2.10: d—(s—m—éxw os{fix)—— (ﬂ ) (sine functions)
Rule A2.11: @iﬁxﬂ‘m = —sin(f(x)) (ﬂ »)) (cosine
functions)
Rule A2.12: d(ﬂx(;xg(x)) = d(];(;c) g(x) + Ax)——— d(stx ))(product rule)
fx) d d
d(@) ) ) — gy 20 (80) |
Rule A2.13: i = prone (quotient rule)
Rule A2.14: M = g dx (chain rule:
dt dx dt .
1 variable)
Rule A2.15: M = E[g—{ + iﬂ chain rule:
dt dx dt dy dt variables)

Implicit differentiation is an important method that builds upon the chain
rule. An explicit function describes how a variable x depends on another vari-
able t in terms of an equation x = f(f). Thus, when t changes, we have an
explicit expression that tells us how x changes. In contrast, an implicit function
has the form f{x, t) = c. Again we can view this as an equation governing how
x must change whenever t changes; when t is varied, x must change in such a
way that the function f(x, f) remains equal to c. For example, the equation x> +
t2 = 5 implicitly describes x as a function of t. When t varies, x must also vary
so that the sum x? + t2 equals 5. Taking the derivative of implicit functions is
called implicit differentiation; it can be carried out using the rules of calculus
described above, and it can be a useful method for finding the derivative, dx/ dt.
For example, the derivative of x* + t* = 5 with respect to t is d(x®)/dt + d(tH)/dt =
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d(S5)/dt (using Rule A2.3). According to the chain rule (Rule A2.14), d(x?)/dt =
(d(x»)/dx) (dx/dt), which equals 2x dx/dt. Furthermore, d(£?)/dt = 2t (Rule A2.5)
and d(5)/dt = O (Rule A2.1). Altogether, we have 2x dx/dt + 2t = 0, which
demonstrates that the derivative of x with respect to t must equal dx/dt = —t/x.
In this case, we could obtain the same result by first finding the explicit solu-
tions to this function, x = V5 — #and x = — V5 — £, calculating dx/dt for
each, and showing that they both equal dx/dt = —t/x. The real power of
implicit differentiation comes from the fact that you can use it to find the
derivative of a function without an explicit expression for the function itself
(which can sometimes be impossible to obtain).

A2.3 Integrals

The following describes some of the more important indefinite integrals (“anti-
derivatives”), where c is a constant of integration. Because a definite integral
evaluated over the range a to b can always be obtained from an indefinite inte-
gral by plugging in x = b and subtracting off the indefinite integral at x = a, we
provide rules for indefinite integrals only.

Rule A2.16: /a dx = a x+c (integral of a
constant)
Rule A2.17: / afx)dx=a / f(x) dx (factoring out a
constant)
Rule A2.18: / fix) + g(x) dx = / fix) dx + / &(x) dx (linearity property)
a x? : 1
Rule A2.19: / axdx = =4 + € (linear functions)
xn+l
Rule A2.20: / x"dx = e * c (polynomial
functions)
Rule A2.21: / £ ax = aln(|x]) + ¢ (fractional
X .
functions)
( a, + b;x )
Inll=ssms—
Rule A2.22: / ! dx = AT A
i (a1 + byx)(a; + byx) ab, — a,b,
(fractional
functions)
Rule A2.23: / e™dx = % i (exponential
functions)
bx
bx — a s
24: = +
Rule A2.24 / a”™ dx Biti(a) ¢ fora>0 (power functions)

Rule A2.25: / In(x)dx = xIn(x) —x + ¢ forx>0 (natural log
functions)
Rule A2.26: / sin(x) dx= —cos(x)+c (sine functions)
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Rule A2.27: / cos(x) dx = sin(x) + ¢ (cosine functions)

Rule A2.28: /ﬂx) dx = / (x) ——— dx /h(u) du

where u = g(x) (integration by
substitution)

Integration by substitution can be useful when the original function, f(x), can
be factored into the product of two terms, h(g(x)) dg(x)/dx, where the first term
depends on x only through the function, g(x), and the second is the derivative
of g(x) with respect to x.

Rule A2.29: / udv=uv-— / v du (integration by
parts)

or, alternatively,

d d(h
[rooan = [ ax - gnen - [s0 TG

Integration by parts can be useful if the original function, f(x), can be factored
into the product of two terms (d(g(x))/dx) h(x), where the first term is the deriv-
ative of another function g(x). This method helps integrate functions whenever
g(x) d(h(x))/dx is easier to integrate than the original function.

A2.4 Limits

The rules of calculus are also useful for determining the limit of a function as a
variable approaches a specific value. To denote the limit of f(x) as x goes to a,
we write lim, ., fix). For many functions, the limit is straightforward to deter-
mine. For example, the limit of flx) =2 + x? as x goes to one is three, and the
limit of fix) = e™ as x goes to zero is one. In some cases, the limit as x
approaches a depends on whether x starts above a (lim,,,; flx)) or below
a (lim,.,,_ fix)). For example, the limit of f(x) = 1/x as x goes to zero is +o if x
is initially positive but — if x is initially negative (Figure A2.3).

In certain cases, however, the limit is not obvious. For example, what is the
limit of (e"™* — e**)/x as x goes to zero? The answer is unclear because both the
numerator and the denominator are zero at x = 0. In such cases, we can use
L’Hopital’s rule to determine the limit:

1 S f'(x)

8(x) g (%)
L’Hopital’s rule requires that both f(x) and g(x) are zero at x = a (or both are infi-
nite), that both f’(x) = df/dx and g’ (x) = dg/dx exist at x = 4, and that g(a) is
not zero.

L’Hopital’s rule allows us to calculate limits of quotients such as lim,.,
((e™ — e*¥)/x). Specifically, Rule A2.30 tells us that (e™ — e*¥)/x has the same
limit as f/(x)/g'(x) = (re™ — se**)/1, whose limit as x goes to zero is easy to cal-
culate: (r — s). Occasionally, you must rearrange a function to apply L'Hopital’s

Rule A2.30: lim,_,,—/— (L'Hopital’s rule)
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Figure A2.3: Limit of the inverse function. A plot
of the function f(x) = 1/x, whose limit as x goes to
zero depends on whether x is initially positive or
negative.

Figure A2.4: An application of L'Hépital’s rule. A
plot of the function f(x) = x e ™ using r = 2,
whose limit as x goes to infinity is zero, as can be
shown using L'Hopital’s rule (A2.30).

rule. For example, to evaluate lim, ...(x e”") for positive r using L'Hopital’s rule,
we must first write it as a quotient: lim, ,..(x/e”*). In this example, both the
numerator and denominator approach infinity, rather than zero, in the limit.
L'Hopital’s rule can still be applied in such cases, allowing us to determine the
limit of x/e™ from the limit of f"(x)/g'(x) = 1/(r ¢"*), which approaches zero as

x goes to infinity (Figure A2.4).

Exercise A2.1: The following questions review calculus techniques needed

throuéhout the text (treat everything but x as a constant).

(a) Find the derivative with respect to x of the following functions f{(x):

o — x4+ 8x—12
1
[ ]
X+ 1

Continued
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Exercise A2.1 (Continued)
° e3x
o A + g**
° xn eax
¢ In(x)
e In(a x?)
® cos(5x)
e sin%(b x%)

(b) Determine the following indefinite integrals (don’t forget the con-
stant of integration):

/3x2dx
/(4x + 5) dx
i
/ez"dx
/x" + e dx
[

/ In(x) dx (use integration by parts)

/ €*x dx (use integration by parts)

(c) Calculate the following definite integrals:
2

/ 8 x3 dx

x=

(2x +.1) dx

1
3
X
1

X

/
. / esixdx
=0

. / e~ " dx (assume that r is positive)
x=0

(d) Calculate the following limits:

i sin(x)
e llmx._.oi—_i_—x

sin(x)

o limx_,o
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Answer to Exercise
Exercise A.2.1

(a)gis
e —2x+ 8
—2X
(x* + 1)2
° 3e3x
e nx"! 4+ ge®*
e nx" e + g x"e?

®IN X |

e —5sin(5x)
2 b a x* ' sin(b x*) cos(b x%)

(b) The indefinite integrals are
e x>+ ¢
e 2x* +5x +¢

2In(lxl) + ¢
er
*2 T

xn+1 ax

o

+
n+1 a
X

*me) "€

(using Rule A2.5)
(using quotient Rule A2.13)

(using Rule A2.6)
(using Rules A2.3, A2.5, and A2.6)
(using product rule A2.12)

(using Rule A2.8)

(using Rule A2.8)

(using Rule A2.11)
(using Rule A2.7b and A2.10)

(using Rule A2.20)
(using Rule A2.20)
(using Rule A2.21)

(using Rule A2.23)

(using Rules A2.18, A2.20, A2.23)

(using Rule A2.24)

Letting u = In(x) and dv = dx so that du = 1/x dx and v = x,

/ln(x)dx =xIn(x) — / ldx = xIn(x) —x + ¢ (using Rule A2.29)

e Letting u = x and dv = e* dx so that du = 1 dx and v = ¢*,
/e"x dx =e*x— / e*dx =e*x —ef+c¢ (using Rule A2.29)

(c) The definite integrals are
2

. / 8xde = 224

x=1

2

x=1

=32-2

= 30 (using Rule A2.20)
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