Block Referenced
Spatial Models

Acknowledgement: Many slides based on / borrowed from Sudipto
Banerjee

If you are interested in spatial modeling | recommend:
“Hierarchical Modeling and Analysis for Spatial Data” 2003 by
Sudipto Banerjee, Alan E. Gelfand, Bradley. P. Carlin (note: text
fairly advanced)

Cressie & Wikle 2011 “Statistics for Spatio-Temporal Data”



Block referenced data

« Data has an location, an attribute and an AREA
* Areas are usually contiguous

» Data often conceived of as being area integrals
of some underlying continuous surface
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e Goals

- Estimate surface z(s) or new blocks
- Account for non-independence of adjacent blocks
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Figure 1: Choropleth map of 1999 average verbal
SAT scores, lower 48 U.S. states.
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Proximity matrices

W, entries w;; (with wy; = 0). CGhoices for w;;:
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w;; = 11if 4,7 share a common boundary (possibly a
common vertex)

w;; 1S an inverse distance between units
w;; = 1 If distance between units is < K
w;; = 1 for m nearest neighbors.

W is typically symmetric, but need not be

——

W standardize row i by w;y =, wi;

W elements often called ;‘weights”; interpretatio_n_

Could also define first-order neighbors W 1),
second-order neighbors W2 etc.



Measures of spatial association

Moran's I: essentially an “areal covariogram”

0 wi(V - Y)(Y; —Y)
(Ziyﬁj wij) Yo (Yi —Y)?

Geary’s C: essentially an “areal variogram"

(n = 1) > >0 wi(Yi — Y5)?
(D i wig) D5 (Yi = Y)?

Both are asymptotically normal if Y; are 1.i.d.;
Moran has mean —1/(n — 1) ~ 0, Geary has mean 1
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Significance testing by comparing to a collection of say
1000 random permutations of the Y;
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Measures of spatial association (cont’d)

# For these data, the Moran’s I is computed as 0.5833,
with associated standard error estimate 0.0920 = very
strong evidence against Hy : no spatial correlation

#® We obtain a Geary’s C of 0.3775, with associated
standard error estimate 0.1008 =- again, very strong
evidence against H, (departure from 1)

# Warning: These data have not been adjusted for
covariates, such as the proportion of students who take
the exam (Midwestern colleges have historically relied
on the ACT, not the SAT; only the best and brightest
students in these states would bother taking the SAT)

# = the map, I, and C all motivate the search for spatial
covariates!
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Spatial smoothers

» To smooth Y;, replace with V; = 2%

Wi+
# More generally, we could include the value actually
observed for unit 7, and revise our smoother to

(1—a)Y; + (ﬂ;;

For 0 < a < 1, this is a linear (convex) combination in
“shrinkage"” form

Finally, we could try model-based smoothing, i.e., based on
E(Y;|Data), 1.e., the mean of the predictive distribution.

Smoothers then emerge as byproducts of the hierarchical
spatial models we use to explain the Y;'s
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Conditional Autoregressive (CAR) Model

yi= KA Z Wi ) + €
= z—|— J#i “’J
process model — _ _ error

spatial autocorrelation

e If raster, equivalent to Markov Random Field

* Analogous to AR(1) or our general model for
spatial point data
Z(s)=p(s[B)+w(slp)+ els)

g — —
trend spatial error  residual error

Note: don't naively Google “CAR model”



Conditional Autoregressive (CAR) Model

Yi= M Z Wi ) + E
- z—l— J#I
process model — g — error

spatial autocorrelation
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Computation of CAR models

e “GeoBUGS” extension of WIinBUGS
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Spatial Misalignment Problem

* "Change of support” problem

e Often need to compare / compute / infer spatial
data of different types

- Point — Point (Kriging)
- Point — Block
- Block — Point
- Block - Block



Point to Block

» Collect point data, want to infer the integral of
the surface (e.g. county level biomass)

* Traditional approach: sample mean, var

- Ignores autocorrelation, covariates, etc.
« Recommended Alternative:

- Bayesian Kriging -> project to a fine grid

- From each grid, numerically integrate



Block to Point
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FIGURE 10.20. Standardized mortality ratios for thirtv-nine wards in Birmingham,

Lngland, calculated as obscrved versus expected cases (feft), and posterior median rel-
ative risk y(s] {rightl. From Kelsall and Wakcheld {2002].



Block-Block Misalignment

Population by census tract; residential structures by “cell”:
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Bivariate misalignment

Ozone measurements at fixed sites; counts of pediatric
asthma cases by zip code in Atlanta, GA:

zipcode boundary

City of Atlanta boundary
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Bivariate misalignment issues

When we have two spatially referenced variables,
interest often lies in spatial regression.

But we cannot fit a regression if the two variables are
misaligned:

s X at point level, Y at other points

s X at point level, Y at block level

s X at block level, Y at point level

s X at block level, Y at a different block level

Solution: Bring the X’s to the scale of the Y’s, then fit
the model (BCG, Sec 6.4)

With more than two variables, bring all the variables to a
common scale. Highest resolution is obviously
preferred, but may be computationally infeasible!
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