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Hierarchical Nonlinear Models



  

Assumption of linearity

● The final assumption of linear models that
we'll address is that of linearity
– Recall that linearity of models is wrt

parameters

● “Beastiary” of model from lecture 6
(Bolker ch 3) 



  

Assumption of linearity

● Consider any arbitrary function / process
model  y = g(x|q

m
)

– Choose a data model 
y ~ PDF( g(x|q

m
) , q

d 
)

– If Bayesian, choose priors on q
m 

& q
d



  

Fitting nonlinear models

● Rarely an analytical solution
● Likelihood

– Numerical optimization
– LRT or Bootstrap error estimates &

prediction
● Bayes

– Metropolis-Hastings



  

Fitting nonlinear models

● Nothing you haven't seen / done
before

● Nothing sacred about linear models



  

Things to watch for...

● Parameter
identifiability

● Redundant
parameters 

Y= a
bc X

Y= 1
b 'c ' X



  

Things to watch for...

● Odd
correlations
between
parameters 



  

Nonlinear Hierarchical Models

● Often takes more thought to decide which
parameters you consider random and
which are fixed

● Setting all parameters to random can
often result in unidentifiablity

● Inclusion of covariates also challenging



  

Example: Coho salmon reproduction

● Beverton-Holt pop'n model with DD

● Consider
– s = # of spawning Coho salmon

– r = # of recruits

● Reproduction varies by stream?
– How can we incorporate random stream effect?

r t=
st

1/st /rm
et



  

Alternatives

r i , t=
st

1/isi , t /rm
ei ,t

r i , t=
st

1/si , t /rm,i
ei ,t

r i , t=
st

1/isi , t /rm,i
ei , t

r i , t=
st

1/si , t /rm
ei , ti



  

r i , t=
st

1/isi , t /rm,i
ei , t Process model

i , t~N 0,2 Residual error

r i ,m~N r ,r
2

i~N  ,
2 

Stream-level
parameters

 r~N r0,V r
~N 0,V 

Across stream
parameters

 ,r~IG s1, s2 Across stream
variance



  



  

FvCB Model



  

25 prairie species
2 years
Monthly (within growing season)
3-5 replicates/species



  



  



  

Example: CO2 effect on tree
seedling growth

● i – seedling

● j – plot

● t – year

● l – light

● y - growth

 i , j , t=gi , j  l j , t−lcl j , t 

yi , j , t= i , j , tk ti , j , t
yearmean residual

i , j , t~N 0,2
k t~N 0,k

gi , j~ln  , g

l
c
 varies w/ CO2, Priors on a, v

g
, v

k
, s2, q, l

c



  

CO2 effect



  



  

Canopy Light:
Synthesizing multiple data sources

● Plant growth depends upon light (previous
example, lab 7)

● Hard to measure how much light an ADULT
tree receives

● Multiple sources of proxy data
– Exposed Canopy Area

● aerial photography, Quickbird

– Canopy status 
● suppressed, intermediate, dominant (ex 8.2.2)

– Light models
● Allometries, stand map



  



  

Mechanistic Light Model
• Estimate light
levels based on
a 3D ray-tracing
light model 

• Parameterized
based on canopy
photos, tree
allometries



  



  

Linear models

Logistic

Multinomial



  

Exposed Canopy Area

● Error in relationship between “true” light l and
observations le

● Probability of observing the tree in imagery
increases with “true” light availability

p i
e={ 1−pi i

e=0

piN  ln i
e∣ln i , e i

e0}

logit  pi=c0c1i



  

Mechanistic Light Model

● Assume a log-log linear relationship between
“true” light and modeled light

● Provides a continuous estimate of light
availability for understory trees
– ECA = 0

– Status = 1

p i
m=N  ln i

m∣a0a1⋅ln i ,m



  

Model Fitting

● Model fit all at once
● Find the conditional probabilities for each

parameter (i.e. those expressions that contain
that parameter)
– Always at least 2 – likelihood and prior

– Can be multiple likelihoods

● MCMC iteratively updates each parameter
conditioned on the current value of all others
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