
Reminder of some Markov Chain
properties:

1. a transition from one state to another occurs probabilistically

2. only state that matters is where you currently are (i.e. given
present, future is independent of the past)

Reminder of some Markov Chain
properties:

1. a transition from one state to another occurs probabilistically

2. only state that matters is where you currently are (i.e. given
present, future is independent of the past)

the next value x1 depends only on the last value x0 according
to some transition probability p(x0 x1)

+

=

Reminder of some Markov Chain
properties:

if you can get to any state from any state in a finite number of steps,
the distribution of the population in each state remains the same
after a while. This is referred as the stationary distribution.

π(x) Probability density for the state x for an infinitely long chain.
π*p = π

probability distribution!

the next value x1 depends only on the last value x0 according
to some transition probability p(x0 x1)

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior

3) Propose a new parameter value

4) Evaluate the new unnormalized posterior

5) Decide whether or not to accept the new value

6) Repeat 3-5

*

*

The idea of MCMC

Could we find a transition rule p such that the
stationary distribution:

- Exists
- Equals to the posterior (target distribution)

*

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior

3) Propose a new parameter value

4) Evaluate the new unnormalized posterior

5) Decide whether or not to accept the new value

6) Repeat 3-5

*

*

Markov Chain Monte Carlo

● Looks remarkably similar to optimization

– Evaluating posterior rather than just likelihood

– “Repeat” does not have a stopping condition

– Criteria for accepting a proposed step

● Optimization – diverse variety of options but no “rule”

● MCMC – stricter criteria for accepting

● Performs random walk through PDF

● Converges “in distribution” rather than to a
single point

Markov Chain Monte Carlo

● Looks remarkably similar to optimization

– Evaluating posterior rather than just likelihood

– “Repeat” does not have a stopping condition

– Criteria for accepting a proposed step

● Optimization – diverse variety of options but no “rule”

● MCMC – stricter criteria for accepting

● Performs random walk through PDF

● Converges “in distribution” rather than to a
single point

(vs rejection sampling)

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior
3) Propose a new parameter value depending on the
previous value, according to a transition probability
(jump function needed!)

4) Evaluate the new unnormalized posterior
5) Decide whether or not to accept the new
value in comparison to the value from the
previous step (no envelope function needed!)
6) Repeat

MCMCRejection SamplingImportance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

Metropolis algorithm

• Perturb parameters: Q(✓0
; ✓), e.g. N (✓,�2

)

• Accept with probability min

1,

˜P (✓0|D)

˜P (✓|D)

!

• Otherwise keep old parameters
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(✓0; ✓) = Q(✓; ✓0)

Explore everywhere! Avoid empty space!

- Samples are independent - Each sample dependent on previous

- Parallelizable (computationally effective) - Sequential (computationally costly)

- Easy to implement, easy to design - Easy to implement, harder to design
- Need A LOT of draws in higher dimensions

 (computationally costly)
- Need slightly more draws than usual in higher
dimensions (computationally effective)

- Did you miss anything?
 need to assess convergence

- Sample everywhere, approximate answer

Metropolis Algorithm

● Most popular form of MCMC

● Can be applied to most any problem

● Implementation requires little additional thought
beyond writing the model

● Evaluation/Tuning does require the most skill &
experience

● Indirect Method

– Requires a second distribution to propose steps

Metropolis Algorithm

1) Start from some initial parameter value qc

2) Evaluate the unnormalized posterior p(qc|X)

3) Propose a new parameter value q∗

Random draw from a “jump” distribution
centered on the current parameter value

4) Evaluate new unnormalized posterior p(q∗|X)

5) Decide whether or not to accept the new value
Accept new value with probability

a = p(q∗) / p(qc)

6) Repeat 3-5

if
 runif(1,0,1) < a
 accept
else
 reject

The Metropolis-Hastings transition

•  Jump according to the ratio of the
values; means that
–  P(x1) > P(x0) : p > 1, accept always

–  P(x1) < P(x0) : 0< p < 1, jump sometimes

p(x0 ! x1) = P(x1) / P(x0)

Accept new value with probability
a = P(θ*) / P(θc)

means

P(θ*) > P(θc): a > 1 accept always
P(θ*) < P(θc): 0<a<1 accept sometimes

if
 runif(1,0,1) < a
 accept
else
 reject

θc θ* θcθ*

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x
Proposal function

Target distribution

N Iterations

N = 0 A = 0 AR = 0

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 1 A = 1 AR = 1

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 2 A = 2 AR = 1

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 3 A = 2 AR = 2/3

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 4 A = 3 AR = 3/4

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 5 A = 3 AR = 3/5

Proposal function

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 6 A = 4 AR = 4/6

Idea: concentrate the sampling in the good areas

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Target distribution

N Iterations

N = 7 A = 5 AR = 5/7

Proposal function

Idea: concentrate the sampling in the good areas

The proposal function

•  Idea: concentrate the sampling in the “good”
areas

•  If the target function is regular, good idea to
draw dependent on the last point according to
a “proposal function” δ"
–  (concentrates sampling in “good areas”)

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1

x

x

Iterations

Target distributionAR = 30-70%

Convergence to the target
distribution

From Andrieu et al. (2003)

Convergence to the target distribution
do you have a representative sample of the target

distribution (posterior) yet?

youtube: youtu.be/zL2lg_Nfi80

https://youtu.be/zL2lg_Nfi80
https://youtu.be/zL2lg_Nfi80

Jump distribution

● For Metropolis, Jump distribution J must be
SYMMETRIC

J(q∗ | qc) = J(qc | q∗)

● Most common Jump distribution is the Normal

J(q∗ | qc) = N(q∗ | qc,u)

● User must set the variance of the jump

– Trial-and-error

– Tune to get acceptance rate 30-70%

– Low acceptance = decrease variance (smaller step)

– Hi acceptance = increase variance (bigger step)

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗=

Jump distribution

● For Metropolis, Jump distribution J must be
SYMMETRIC

J(q∗ | qc) = J(qc | q∗)

● Most common Jump distribution is the Normal

J(q∗ | qc) = N(q∗ | qc,u)

● User must set the variance of the jump

– Trial-and-error

– Tune to get acceptance rate 30-70%

– Low acceptance = decrease variance (smaller step)

– Hi acceptance = increase variance (bigger step)

Speed of convergence

Speed of convergence is determined by the choice of good
proposal distributions

Example

● Normal with known variance, unknown mean

– Prior: N(53,10000)

– Data: y = 43

– Known variance: 100

– Initial conditions, 3 chains starting at -100, 0, 100

– Jump distribution = Normal

– Jump variance = 3,10,30

Acceptance = 12%

Acceptance = 70%

Acceptance = 90%

higher autocorrelation,
lower effective sample size

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Symmetric proposal function Asymmetric proposal function

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗=

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗=

Correlations

•  Naive proposal in n-d:
Symmetric, e.g. multivariate
normal

•  Problem: ineffective sampling

•  Adjust proposal to the posterior
shape
–  Multivariate normal proposals:

estimate covariate matrix of
the chain and use this for the
proposal function

Adjust proposal to posterior shape for effective sampling

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on
parameter values / non-normal Jump
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗

Multivariate example

● Bivariate Normal

● Option 1: Draw from joint distribution

● Option 2: Draw from each parameter iteratively

N
2[0

0] ,[1 0.5

0.5 1]

J=N
2[1

∗


2

∗] ∣ [1

c


2

c] ,V 

J
1
=N 

1

∗ ∣
1

c
,V

1


J
2
=N 

2

∗ ∣
2

c
,V

2


Joint

Iterative

Joint

Iterative

Hartig et al. 2011, Ecology Letters

theoreticalecology.wordpress.com

