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Reminder of some Markov Chain 
properties:

if you can get to any state from any state in a finite number of steps, 
the distribution of the population in each state remains the same 
after a while. This is referred as the stationary distribution.

π(x) Probability density for the state x for an infinitely long chain.
π*p = π

probability distribution!

the next value x1 depends only on the last value x0 according 
to some transition probability p(x0    x1)



  

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior

3) Propose a new parameter value

4) Evaluate the new unnormalized posterior

5) Decide whether or not to accept the new value

6) Repeat 3-5

*

*



The idea of MCMC

Could we find a transition rule p such that the 
stationary distribution: 

- Exists
- Equals to the posterior (target distribution)

*
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Markov Chain Monte Carlo

● Looks remarkably similar to optimization

– Evaluating posterior rather than just likelihood

– “Repeat” does not have a stopping condition

– Criteria for accepting a proposed step

● Optimization – diverse variety of options but no “rule”

● MCMC – stricter criteria for accepting

● Performs random walk through PDF

● Converges “in distribution” rather than to a 
single point  
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(vs rejection sampling)

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior
3) Propose a new parameter value depending on the 
previous value, according to a transition probability 
(jump function needed!)

4) Evaluate the new unnormalized posterior
5) Decide whether or not to accept the new 
value in comparison to the value from the 
previous step (no envelope function needed!)
6) Repeat



MCMCRejection SamplingImportance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

Metropolis algorithm

• Perturb parameters: Q(✓0
; ✓), e.g. N (✓,�2

)

• Accept with probability min

 
1,

˜P (✓0|D)

˜P (✓|D)

!

• Otherwise keep old parameters
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This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(✓0; ✓) = Q(✓; ✓0)

Explore everywhere! Avoid empty space!

- Samples are independent - Each sample dependent on previous

- Parallelizable (computationally effective) - Sequential (computationally costly)

- Easy to implement, easy to design - Easy to implement, harder to design
- Need A LOT of draws in higher dimensions

        (computationally costly)
- Need slightly more draws than usual in higher 
dimensions (computationally effective)

- Did you miss anything? 
  need to assess convergence

- Sample everywhere, approximate answer



  

Metropolis Algorithm

● Most popular form of MCMC

● Can be applied to most any problem

● Implementation requires little additional thought 
beyond writing the model

● Evaluation/Tuning does require the most skill & 
experience

● Indirect Method

– Requires a second distribution to propose steps



  

Metropolis Algorithm

1) Start from some initial parameter value qc  

2) Evaluate the unnormalized posterior p(qc|X)

3) Propose a new parameter value q∗ 

Random draw from a “jump” distribution 
centered on the current parameter value

4) Evaluate new unnormalized posterior p(q∗|X)

5) Decide whether or not to accept the new value
Accept new value with probability

a = p(q∗) / p(qc)

6) Repeat 3-5

if
  runif(1,0,1) < a
  accept
else
  reject  



The Metropolis-Hastings transition 

•  Jump according to the ratio of the 
values; means that 
–  P(x1) > P(x0) : p > 1, accept always 

–  P(x1) < P(x0) : 0< p < 1, jump sometimes 

p(x0 ! x1) = P(x1) / P(x0)  

Accept new value with probability
a = P(θ*) / P(θc) 

means

P(θ*) > P(θc):   a > 1       accept always
P(θ*) < P(θc):   0<a<1     accept sometimes

if
  runif(1,0,1) < a
  accept
else
  reject  

θc θ* θcθ*



Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 

x

x
Proposal function

Target distribution

N Iterations

N = 0 A = 0 AR = 0
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Proposal function
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The proposal function 
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Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 
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Target distribution

N Iterations

N = 3 A = 2 AR = 2/3



Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 
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Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 

x

x

Target distribution

N Iterations

N = 5 A = 3 AR = 3/5



Proposal function

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 

x

x

Target distribution

N Iterations

N = 6 A = 4 AR = 4/6

Idea: concentrate the sampling in the good areas



Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 

x

x

Target distribution

N Iterations

N = 7 A = 5 AR = 5/7



Proposal function

Idea: concentrate the sampling in the good areas

The proposal function 

•  Idea: concentrate the sampling in the “good” 
areas 

•  If the target function is regular, good idea to 
draw dependent on the last point according to 
a “proposal function” δ"
–  (concentrates sampling in “good areas”) 

•  p(x ! x’) = P(x’) / P(x)* δ (x’ ! x) / δ (x ! x’) Symmetric: 1 

x

x

Iterations

Target distributionAR = 30-70%



Convergence to the target 
distribution 

From Andrieu et al. (2003) 

Convergence to the target distribution
do you have a representative sample of the target 

distribution (posterior) yet?

youtube: youtu.be/zL2lg_Nfi80

https://youtu.be/zL2lg_Nfi80
https://youtu.be/zL2lg_Nfi80


  

Jump distribution

● For Metropolis, Jump distribution J must be 
SYMMETRIC

J(q∗ | qc) = J(qc | q∗)

● Most common Jump distribution is the Normal

J(q∗ | qc) = N(q∗ | qc,u)

● User must set the variance of the jump

– Trial-and-error

– Tune to get acceptance rate 30-70%

– Low acceptance = decrease variance (smaller step)

– Hi acceptance = increase variance (bigger step)



  

  

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on 
parameter values / non-normal Jump 
distributions

a=
p∗/ J ∗∣ c 

pc/ J  c∣∗
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Jump distribution

● For Metropolis, Jump distribution J must be 
SYMMETRIC

J(q∗ | qc) = J(qc | q∗)

● Most common Jump distribution is the Normal

J(q∗ | qc) = N(q∗ | qc,u)

● User must set the variance of the jump

– Trial-and-error

– Tune to get acceptance rate 30-70%

– Low acceptance = decrease variance (smaller step)

– Hi acceptance = increase variance (bigger step)



Speed of convergence

Speed of convergence is determined by the choice of good 
proposal distributions



  

Example

● Normal with known variance, unknown mean

– Prior: N(53,10000)

– Data: y = 43

– Known variance: 100

– Initial conditions, 3 chains starting at -100, 0, 100

– Jump distribution = Normal

– Jump variance = 3,10,30



  

Acceptance = 12%

Acceptance = 70%

Acceptance = 90%



  



  

higher autocorrelation, 
lower effective sample size



  



  

Metropolis-Hastings

● Generalization of Metropolis

● Allows for asymmetric Jump distribution

● Acceptance criteria

● Most commonly arise due to bounds on 
parameter values / non-normal Jump 
distributions
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Symmetric proposal function Asymmetric proposal function
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Correlations 

•  Naive proposal in n-d: 
Symmetric, e.g. multivariate 
normal  

•  Problem: ineffective sampling 

•  Adjust proposal to the posterior 
shape 
–  Multivariate normal proposals: 

estimate covariate matrix of 
the chain and use this for the 
proposal function 

Adjust proposal to posterior shape for effective sampling
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Multivariate example

● Bivariate Normal 

● Option 1: Draw from joint distribution

● Option 2: Draw from each parameter iteratively
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Joint

Iterative
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