"

Reduction of Quality (RoQ) Attacks on Dynamic Load Balancers:

Vulnerability Assessment and Design Tradeo;fs

MINA GUIRGUIS AZERBESTAVROS IBRAHIM MATTA YUTING ZHANG
msg@txstate.edu {best,matta }@cs.bu.edu yzhang@allegheny.edu
Computer Science Department Computer Science Department Computer Science Department
Texas State University Boston University Allegheny College
San Marocs, TX 78666, USA Boston, MA 02215, USA Meadville, PA 16335, USA

Abstract—One key adaptation mechanism often deployed in attacks are orchestrated in such a manner that would keep
networking and computing systems is dynamic load balancing. disturbing the prices fed-back to the adaptation mechanisms,
The goal from employing dynamic load balancers is to ensure resulting in a continuous operation in a transient state. The
that the offered I_oa_d would be judiciously distributed across impact of RoQ attacks is assessed through the “Potency”
resources to optimize the overall performance. To that end, —\neyric which reflects the trade-offs between the damage
this paper discovers and studies new instances of Reduction caused by an attack to the cost of mounting the attack. For

of Quality (RoQ) attacks that target the dynamic operation . . .
of load balancers. Our exposition is focused on a number of More information on the theoretical grounds of RoQ attacks,

load balancing policies that are either employed in current ~We refer the reader to our work in [16], [17].

commercial products or have been proposed in literature for Aqyersarial Exploits of Dynamic Load Balancing Mech-
future deployment. Through queuing theory analysis, numer- 5 qisme-| oad balancers are integrated in the design of most

ical solutions, simulations and Internet experiments, we are labl d distributed licat d . Tvpicall
able to assess the impact of RoQ attacks through the potency SCalable ana distributed applications and services. lypically,

metric. We identify the key factors, such as feedback delay they are embedded as part of the infrastructure supporting
and averaging parameters, that expose the trade-offs between these applications and services-g:,as part of routers and
resilience and susceptibility to RoQ attacks. These factors could network switches [11], [12], routing protocols [15], firewalls
be used to harden load balancers against RoQ attacks. To the and traffic shapers [32], [14], HTTP and database server
best of our knowledge, this work is the first to study adversarial ~ farms [27], [26], [18], among others.

exploits on the dynamic operation of load balancers. . .
In general, load balancing mechanisms could be clas-

Index Terms—Security; Denial of Service; Load Balancing; sjfied into two categories: static and dynam@tatic load
Performance Evaluation. balancers either use static information (such as the IP
address/prefix of a client or a source) or else they use
a prescribed assignment strategy (such as round-robin or
|. INTRODUCTION AND MOTIVATION weighted round-robin) to make load distribution decisions
. 14], [11]. Dynamic load balancerson the other hand,
To deal with the open-access nature of the Internet, We el); 0E1 rr]1etri)c/al statistics fed-back from the resources they

applications and servi.ces typicall_y e_mploy_ differen_t formsmanage to dynamically adjust assignment decisions. There
of adaptation mechanisms to maintain a high-fidelity oper-

. .~ Is a large body of research (as well as empirical evidence)
ation. Of the most commonly deployed forms of adaptationy, o a5 established the poor performance of static load

mechanisms are admission controllers and load balancergancers, especially for workloads that exhibit significant
Such mechanisms have grown to be very sophisticated

Wariability and/or burstiness. Early examples of such studies
their design, without the proper attention been given to thei 4 ' y b

: "finclude [30], [13], [4]. This realization has led to a large
security aspects. Recent work of ours have demonstrated dy of research works on dynamic load balancing such
instance of RoQ attacks on admission controllers [17]. |

n .
this paper, we discover and assess another instance of R@ﬂﬁgrgggd[_loog's [[%]é]asar\l/éegnfiis;epirr?éjljjgrsie[slg,].mlddleware

attacks on dynamic load balancers.

.] . Invariably, a dynamic load balancer will rely ode-
The Premise of RoQ Attacks:RoQ attacks are a relatively ,uq feedbackrom underlying resourcese-g., utilization,

nﬁsponse time, or average number of pending requests at

Meach one of the set of servers/links/routes it manages. Due

converging to steady-state. In an abstract way, resourcy the bursty nature of arrivals and service times of the

adaptation can be viewed as the process of measuring trQf%lrious requests in the workload, load balancers cannot

offered load and setting a price, based on a pricing function
Consumerf a%aptayon, hon the othgr g.and., Woﬁld dbe th cales, but rather must rely on “smoother” aggregates, which
process of observing the price and adjusting the demang, v ica|ly computed over longer time scales, or through
accordingly. A price is simply a measure of congestion. ROQExponentially Weighted Moving Averages (EWMA). More-

over, the fact that the entities performing load balancing are
This work was supported by NSF awards CNS Cybertrust Award #0524477, P 9 9

CNS NeTS Award #0520166, CNS TR Award #0205294, and EIA R YPically not collocated with the resources being managed
Award #0202067, and by grants from Fortress Technologies. necessitates the existence of some delay between when

rely on metrical statistics computed over very short time

metrics are computed and when they are available for load To assess the vulnerability of a RoQ attack, we follow our
balancing decisions. definition of attack potencyw, proposed in [16], whereby
he potency of an attack is the ratio of tdamagecaused

The feedback delay inherent in the design of any dynami y the attack to the attacker®stfor mounting the attack.

load balancer constitutes the “Trojan Horse” through which
an a RoQ attack would be mounted. Consider a simple setup Damage D

of two servers and a load balancer. Upon arrival to the load T = TCost O 1)
balancer, a request is forwarded to the least loaded server for

processing. Periodically, the servers relay their load to the

load balancer. To prevent oscillations between full load andx. An Upper Bound on Attack Potency

no load, the load value is smoothed out using a weighted

moving average. To unbalance the load, the attacker would Consider a simple setup consisting/éfidentical servers
inject a burst of requests in a very short period of time. Dueand a load balancer. Requests arrive according to a Poisson
to the delay it will take the load balancer to register theprocess with an average rate sfrequests per second to
load differential between the two servers, most of this bursthe load balancer. All requests are assumed to be identical
will likely be forwarded to one of the servers, pushing it and each requires a fixed service timeZgfseconds. The

into overload. Eventually, the load differential will register load balancer picks the server that is to handle an incoming
at the load balancer, resulting in all (legitimate) requests tagequest based on some load balancing policy. By symmetry,
be routed to the other server. Given that one server canna@issuming that a static policy is used, the load balancer would
handle all legitimate requests by itself—otherwise there willassign+. of the arrivals to each server. The offered load, in
be no need to load balancing in the first place—it is likelyterms of\, should always be less than the total service rate
that the second server will also be pushed into overloadfor all servers—otherwise the servers would not be able to
Once the two servers recover from the ill-effect of this handle the load whether load balancing is used or not.

exploit, an attacker would simply repeat its attack. Under this static policy, the arrival rate for each server is

In addition to the feedback delay, most current Ioad%.According to an M/D/1 service discipline, the utilization,
balancers employ a persistence feature (sticky connectiong) for each server, is given b%TS and the steady state
to ensure that connections originating from the same clienaverage queue size for each server is simply given by [3]:
would always “stick” to the same server, which is mandatory)
in secure and commercial applications [34]. This feature, _ 14 I ©)
however, can enable an attacker to bypass the load balancer, ¢ 2(1—p) P
by injecting a burst of requests that would go directly to . . o .

a single servet. Of course, if the servers have public |p the average response time, using Little’s law, is given by:
addresses, the attacker can simply send the burst directly to q
the intended server. T, = %)

Throughout this paper, we limit our exposition to load
balancers employed in server farms. However, we believe Following the illustrative example we alluded to in
that the methodology we present in this paper can be exSection |, consider a RoQ attack with aftack burstof
tended to load balancing solutions deployed in other settings4 requests arriving to one of the servers, which is repeated
Paper Outline: In Section II, we assess the vulnerability of EVETyattack periodT".* Throughout this papef' is chosen
dynamic load balancers against RoQ attacks, under differerif P€ large enough to allow the system to converge back to
load balancing policies. We present a dynamic feedbackS Stéady-state behavior before the next attack cycle. As a
model to inform load balancing decisions. We give an uppef€Sult of this attack, the queue size of the server under attack
and a lower bound on the impact of RoQ attacks. In Sectioﬁ(‘”" jump instantly, from its average valugto g + A.

[, we confirm our analysis and simulation via Internet The victimized server will spend a period of time re-
experimental results. In Section 1V, we discuss related worlcovering from the ill effects of this burst, until its average

and we conclude with a summary in Section V. gueue size converges back to its normal, steady-state value,
q. However, during this recovery time, newly arriving legiti-
1. ANALYTIC VULNERABILITY ASSESSMENT mate requests will experience a larger queue size and delay.

We approximate this recovery time using a fluid-like model.

In this section, we assess the vulnerability of dynamicThus, the time it takes the server to get rid of this burst and
load balancers against RoQ attacks. We start with a simpleeturn to its normal operating queue sizés given by:
baseline model involving a static load balandes.(without
feedback from the servers), which establishes an upper T = A 4)
bound on the impact of RoQ attacks. Next, we present %
a more realistic, dynamic model that employs feedback ‘
to inform load balancing decisions. Using that model, we 2the gefinitions in [16] allow for an aggressiveness infiexwhich we

establish a lower bound on the impact of RoQ attacks. take to be 1.
3We relax this assumption in our experiments, where we use heavy-tailed
INotice, however, that a legitimate burst from multiple clients would be distributions for the service time.
load balanced across servers, unless least loaded policy is in use. 4Due to sticky connections, an attacker can bypass the load balancer.

=N

Requests arriving during’ will experience, on average, a where is simply AT, and \ is given by:
queue size of: ~ A\ A
A= =+ — 12
2 R Clearly, the absolute damage is larger than the sensitivity
and the number of these requestgig:. damage, sincd7, is always less thal, due to the absence

of attack traffic.

These requests will experience a response tifﬁ,e,

which is lower-bounded by x T3, thus: The cost (to the attacker) can be captured by several
R metrics, including the attack magnitudd, or the attack
T, > ¢xT; (6) rate, %. In this paper, however, we define the cost as the

time spent by the attack requests in service. This metrics

Notice that equation (6) represents a lower bound on théeflects the capacity (or “energy”) used by the system to
response time for such requests since at least they have Rsocess the adversarial workload. In particular, the aOst,
wait, on average, for the average queue before it is possibi§ given by:
to start their service. If we ignore the remaining service time C = AxT, (13)
for the request being serviced at time of arrival, we arrive
to this lower bound. All other legitimate requests simply
experiencel, and the number of those request&E—T%.
Therefor the average response time, over the whole atta
period T, can be derived to be:

Using the expressions for damag®)(and cost (),

ne can compute the attack potency using the definition in
ct%quation (1), wheré could be instantiated as the absolute
damage or the sensitivity damag® { or Dg).

Notice that our choice of both metricd) and C, as
, Ty, xT+T, x (NT —T) units of time enables us to have a unit-less metric (the
T, = NT (7) potency) which describes the trade-offs in time. For example,
a potency of 100, would mean that for every second, the
We are interested in assessing the damage resulting frofftack requests spend in service, 100 seconds of additional
this RoQ attack. A natural metric to use is thdditional ~ delay get added to the response time for the legitimate
delaythat legitimate requests will experience. We instantiate ©qUests.
two different metrics for computing the damage. A Numerical Example: Consider a setup with two servers

Absolute Damage [4): One can capture the damage and a load balancer with an average arrival ratel5f
resulting from this attack by the additional delay legitimatef€duests per second, following a Poisson process. Each
requests experience in comparison with their response timg@duest requireg.1 seconds of serviceThus, the utilization
when the attack is not launched. In that case the absoluf®f €ach server is given b¥2 x 0.1, which is0.75 and the

damage,D 4 is given by: average queue size is875 as computed from equation (2)
and the average response timé)i85 seconds as computed
Dy = (IT,—Ty) xTA (8) from equation (3).

Now consider a RoQ attack with parametess= 100
Sensitivity Damage (s): One can also capture the dam- and T = 50, arriving to one of the servers. The time it
age resulting from this attack by the additional delay thatakes the attacked server to get rid of this burst can be
legitimate requests experience, in comparison with anothesomputed from equation (4) and is equal 8%+, which

system where the attack burst would be smoothed over time . 012
according to another Poisson Process with a different arrivap 40 seconds. During thest) seconds40 x 5 (i.e., 300)

rate, through the load balancer. Thus this damage measur%%queSts arrive. These requests will observe an average queue
the sensitivity of the response time to therstinessof the Size of51.8 (equation (5)) with an average response time of

' . at least5.18 (equation (6)). In the remaining0 seconds,
{arg?ffck_ ;[rzag;cr,ti fj a(r)p&?ggﬁ:gggia%ngﬁgiogytzhe attack the average response time is back0td5 seconds. So the

average response time, over the whole attack periot s

Dg = (T,—T,) xTA (9) seconds.

To computeDg, we have to compute the average re-
onse time when the arrival rate %Jr %, that is the
ttack traffic is smoothed. For this case, the arrival rate is
8.5 requests per second (equation (12)). Thuss 0.85.
The average queue size 258 (equation (2)) and the

whereT, is the average response time these requests wou
have experienced, if the attack burst was smoothed ov
time. In particular,T;, is given by:

T, = g 10 i 258 :
¢« = (10) average response time 52> = 0.383 second (equation
L (3))- Thus the sensitivity damagPB,s, over the attack period,
wheregq is given by: is 1,379. The cost of the attack, as defined in equation (13),
=2
jg = P +p (11) SArrival rates are chosen large enough, not be handlef/by1 servers

and low enough, not to exceed the total service rate ofValervers.

is Ax T, = 10, so the attack potency 38 computed from wherea is the percentage of requests admitted to server
equation (1). That is, for every second the attack requests—a percentage that is set by the load balangéris the
s_pend gettir_wg servicd38 seconds get added to the waiting service rate for serven.® Clearly, Zﬁf:l ol at any time
time for legitimate requests. instant,i, is 1. Equation (14) is bounded from below by 0.

If we are assessing the absolute damage, as defined by Ideally, servers should measure their load and report that
equation(8), we get &4 of 1,479 seconds giving an attack back to the load balancer. In our analysis, we use the queue
potency of148—worse than the sensitivity attack potency. size (or a function thereof) as a load metric—the larger the

In our analysis, we used a fluid-like model deriving the Ueue size, the more loaded the server is. We relax this

transient period as in equation (4). In practice, the arrival rat@Ssumption in our _experlme_ntal evaluation since we allow
during this period may change due to the stochastic naturEduests to be of different sizes.

of the arrival process. We present here simulation results that The instantaneous queue size will likely exhibit oscilla-
relax this assumption. To that end, we ran several simulatiofions that would prevent it from being used directly as an
experiments with the parameters above0r000 requests. accurate measure of load, unless reported instantly to the
We use their response time to derive damage when thiad balancet. However, due to the feedback delay coupled
load balancer is under attack, when there is no attack, angith the overhead of communicating instantaneous queue
when the attack traffic is smoothed out. The attack potencgizes to the load balancer, a more smoothed signal should
computed with the absolute damage was and with the be used. One example would be to compute averages. We let
sensitivity damage wasi8. These values are obtained as any” denote the average queue size for servat timei. The
average oveil0 independent runs. average queue size could be computed over a window of
Notes: There are a few important points that should belime or using EWMA according to the following equation:

pointed out. (1) The above analysis indicates that static o' = (1 =)ol + gt (15)
balancing (as with a round robin policy) can result in a very

high attack potency, making it easy for the attacker to geyvhereﬂy is the weight given to the instantaneous measure.
more mileage (damage) for its traffic. (2) Static balancing Periodically, servers will relay their loads to the load-
(without feedback) tends to give an upper bound for thebalancer. The load balancer would then adjust the admission
attack potency. This is so because any other reasonabtatio for each server based on the load-balancing policy.
balancing policy that utilizes feedback should be able toThere are a number of load balancing policies that can
shift some of the subsequent incoming requests to the othdéye used. We outline here few of the most-commonly used
under-loaded servers. (3) The difference betwéen and mechanisms [14], [11]:

Dg is relatively small. Indicating that the main contributor

to the potency is the sensitivity to burstiness as opposed téln)cePrrospr?gﬂ%nanlq-aclitgﬂtrtor:eBaLaenucelngi:lzdeesalIX: ts?ri Iloeaocl:oaa'::bller
the presence of the attack traffic. q : P

to achieve such a goal can be described by the following
Attacking more than One Server: The above analysis proportional controller:

demonstrates the case of the attacker sending its burst to) N

only one server. The question arises, is this the best attack n _ L i _.n

strategy, given a fixed attack budget of magnitutiz As it @ =y 52(%_1 ¢i-1) (16)
turns out, this is the best attack strategy under static load o =t

balancing. We omit the proof due to space limitation, but itWherea;' is adjusted based on the differences between queue
could be found in [24]. sizes.3, a key parameter in the controller, is introduced to

. , . . smooth out the difference for stability reasons as we will
Figure 4(a) shows simulation results obtained from agnqy pelow. One can easily see that when all servers have
setup with 6 servers. We vary the number of servers attackeghe same queue size? will be % Also, at any time instant

(on the x-axis) from 1 to 6 and we plot the absolute potency. ZN o will be 1. Notice that here we didn’t need to use
Jj=1"" .

on the y-axis. Each point is averaged over 10 independe average valual ,) sinceg is taking care of smoothin
runs. One can see that attacking one server is the best atta 9 L 9 9-

strategy under static load balancing. As the results in thig2) Weighted Balancinglf the load-balancer uses weighted
paper will demonstrate, the use of feedback by a dynamibalancing, thena] would be adjusted according to the
load balancer will reduce damage, but will not eliminate it. following equation?

We establish this point analytically next. 1
B. Potency for Dynamic Load Balancing Ejzl vl

We consider a dynamic discrete-time model, where SThroughout this paper, we assume Aliservers have the same service
servers relay their load to the load balancer in order tgateu, thus we occasionally drop the superscript.

: : o 7In our analysis, we assume infinite queue size.
influence future balancmg decisions. l’#tdenOte the queue 8Indeed, if instantaneous load measures are reported instantly, the load

size, at time;, for servem. The queue size evolves according pajancer could perfectly adapt to noisy/short-term changes. Communicating
to the following equations: instantaneous measures may not be feasible in practice.
SWe add a small value to the average queue size for all servers to
g = q i t+alx—p" (14) prevent division by zero. We taketo be equal to 1.

(3) Least-Loaded BalancingJnder this policy,o;" would to get rid of the burst and return to its normal operation at
be adjusted according to the following equations: around time22 seconds (as opposed 40 seconds, in the
1 o <o VieNj4n static case \{vith same parameters). However, for the other
a = { 0 1# ,i-1 J »J (18) server, the situation is different. It has to deal with the extra
otherwise load being diverted to it. That is why we see an increase
in its queue size before it can also get back to its normal
operation. The above attack resulted in an attack potency
of 65 using the absolute damage metric &l using the
sensitivity damage metric. These results are computed in
mulation experiments averaged over 10 independent runs.
The potency we got from the numerical solution was pretty
In a smooth fluid model, as long as the arrival rate is lessonsistent ar'3.

Fpaﬁ the'selrvice rate, therehwill be no queuing. .Howevelr, Similar conclusions are drawn under weighted balancing
if the arrival rate exceeds the service rate, queuing wouldicy and least-loaded policy, except that the least-loaded

occur. We will also validate our model with simulation jicy resulted in higher oscillations due to the on/off nature
results, which will show that despite the limitations of the o the controller. The results are reported in [24].

fluid model, the numerical solutions we derive still capture

the essential dynamics involved, enabling us to accurately Figure 2 summarizes the potency values computed as a
assess the damage inflicted by an adversary. result of the above attack (simulations are averaged over 10

) independent runs). In general, the numerical solution, despite
Due to the absence of stochastic effects, we canngfs jimitation was able to give a reasonable approximation.

differentiate between the case when the attack traffic is Nqhgeed the static case gives an upper bound for any reason-
present versus when the attack traffic is smoothed, sincgyje |0ad balancing.

in both cases the queue size would be zero as the arrival
rate never exceeds the service rate. Hence, we give only
the damage as the increase in response time observed by
legitimate requests compared to observing an empty queue
(of size0).

For simple illustrations, we tak& to be equal to 2, and
we assume that requests arrive with a rate 15 requests
per second, that the service tirfig is fixed to 0.1 seconds,
and that the attack burst of magnitude 100 arrives to one of
the servers and is repeated every attack peridd seconds.

Numerical Solution: We now solve the above difference
equations numerically to capture the effect of RoQ attack
on the above load balancing policisFor simplicity, we
ignore the stochastic effect of the request arrival process al
present results under a fluid model.

Il Simulation Absolute
[Simulation Sensitivity|
[_INumerical Solution

Potency

120} —Server 1
- - Server 2

100

Static Prop Weight Least Optimal

Fig. 2. Summarization of the attack potency for different balancing
policies. Simulation results are computed as an average value 16ver
independent runs.

801

60|

Queue Size

40r|

209 Attacking more than One Server: Figure 4(a) shows

NN 2 iy WO simulation results obtained from a setup with 6 servers with
0 20 e secy g 100 different values of the parametgr The attack magnitude
A is distributed uniformly at random over the number of

i i attacked servers. One can observe that, with the same attack
Figure 1 shows the queue sizes for both servers as the,gnitude, the optimal number of servers to attack is a func-

attack is launched on server 1, results are obtained usingyn of the aggressiveness of the proportional load balancer.
a proportional-control balancingpolicy, with 3 chosen t0 \yhen 3 is small, the performance of the proportional load
be 0.003. Unlike the static balancing policy, the attack had pajancer gets closer to the static policy, indicating that it is
an impact on both servers, even though only one of themyetter 1o attack less servers. For example, with 0.0003,
was targeted by the adversary. This is the result of thegacking two servers is the best attack strateg. iff large,
dynamic load balancer's diversion of subsequent requesigowever, the proportional load balancer can recover quickly
to the other server, which temporary exceeds its service ratgnq it js better for the attacker to distribute its attack burst
causing queuing. Notice that the attacked server was ablger all servers. Notice that in this case, the attacker does
10We were able to derive closed-form solutions for the attack potencynOt need to _bypas_s the Ioad_ balance-r' As we will show in
when proportional control balancing is used, however, we do not presenrthe rest Of_thls section, there is an optimal load balancer that
the derivations here due to lack of space, but they can be found in [24]. Would achieve a lower bound on the attack potency.

Fig. 1. Simulation results under proportional control

C. A Lower Bound on Attack Potency

120 —Server 1|
Computing a lower bound on the attack potency is

equivalent to finding the optimal load balancing policy 100
(which is simply making instantaneous decisions based on a
clairvoyant knowledge of the RoQ attack parameters), even
if such a policy cannot be implemented in practice.

80

60

Queue Size

Consider our model withV servers. The attack burst 40

arrives to serven while we refer to any other server with 20
h. After the attack burst, serverhas a queue size of around / X
A + g, thus the optimal load balancer would favor all other % 20
servers for the incoming requestsSo a4 at time instant 2,
will jump from its steady state}- to 0. For all other servers,
of, will jump from 3 to . The admission controller
will remain with such values, until all servers, including the 48 using the sensitivity damage metric. These results are
attacked server, reach the same queue size. At this point iveraged overl0 independent runs. The potency we got
time, the optimal load balancer, would return to its steadyfrom the numerical solution wad8. Figure 2 shows the
state giving each servq{; of the arrival rate. comparison between all policies.

Let 7* denote the time it takes all servers to reach theAttacking more than One Server: The above analysis can
same queue size of valug + ¢, given that all incoming be easily extended to the case the attacker distributes its
requests are being directed to té — 1 servers evenly. attack burst oved” servers. In particular, the optimal load

40 60 80 100
Time (sec)

Fig. 3. Simulation result obtained from using the Optimal Balancing Policy
with parameters\ = 15, Ts = 0.1, A = 100 andT = 50

Thus, for any serveh, we have: balancer would favor theV — Y servers for subsequent
A legitimate requests until the all servers would have the same
g = (m — My (19) queue size. So for any attacked serven will jump from

its steady state}v to 0. For the otherN — Y servers, it
The above equation simply states that the accumulation kil jump from & to —L... The admission controller will
requests over time* that would result in each server, having remain with such values, until all servers, including the ones
¢* additional requests by time*. For the attacked server attacked, reach the same queue size. At this point in time, the
we have: optimal load balancer, would return to its steady state giving
A—q¢* each serve% of the arrival rate. The best attack strategy
T = (20) under optimal load balancing is to distribute the attack burst

. . a , over all servers. In that case; would be0 andg¢* would
The above equation simply states that we have to ddain g %_ Again, the proof can be found in [24].

q* requests inT* seconds in order to reach a queue size

of ¢* + ¢ at time7*. Equations 19 and 20 could be solved ~ Figure 4(a) shows simulation results in the caseVot
together for the values af* and¢*. 6, the optimal curve shows the absolute potency obtained

from attacking different number of servers. One can see that

One can capture the damage for legitimate requestSacking all servers, is the best attack strategy, under optimal
under this optimally-tuned load balancer, by the additionaly,q balancing.

delay that these legitimate requests would experience. Le-
gitimate requests suffer additional delays in two regions.
The first region is through the duratiart where requests
start accumulating at th&/ — 1 servers. The total requests
arriving during this period isr* x A. The average queue The optimal (clairvoyant) policy we discussed above
they experience ig<. Once the load balancer switches presents a lower bound on the attack potency whereas the
the admission ratio back tg:, all servers will spend some static (inflexible) policy introduced early on in this section
time draining their queues from* back tog. This time is presents an upper bound—uwith all other policies in between.

" —q i ; .)
equal to;—", which we denote by. A x ¢ requests arrive Notice that the dynamic models proposed do not capture

during this period and they observe, on average, a queugome of the factors that are present in real scenarios such as
size oqu“. the presence of feedback delay, the overhead from context

We ran simulation experiments to assess the damag%yvitching between requests and the possibility of thrashing

under such an optimal (clairvoyant) policy. Figure 3 shows2S the number of concurrent requests for a given server
how the queue sizes, for 2 servers, when senisrattacked. shoots upwards. We have conducted a series of experiments

The attack is launched with magnitude = 100 requests, '° duantify the potency of RoQ attacks in the presence of
repeated evenf’ — 50. The above attack resulted in an such factors which we report in [24]. We briefly present here

attack potency of3 using the absolute damage metric andSCmMe ©f those results.

D. Summary, Practical Considerations and Mitigation

Figure 4(b) shows the impact of a 10-sec feedback delay

llNOtiCe that the ideal load balancing decision is not applled to the attaclbn the absolute potency under the proportlonal |Oad balancer
burst A. As we alluded earlier, in practice, this is possible using sticky

connections, for example. for different values of$3. Notice that larges values that

160

Y —&— Optimal 200 —&— Optimal
140 —+—Beta = 0.0015 ——Beta =0.0015
—e— Beta = 0.0009 —— Beta = 0.0009
120 —=—Beta = 0.0003 150¢ —=—Beta = 0.0003
—e—Beta = 0.00015 —e—Beta = 0.00015|
.. 100 St]
3 —v— Static 2 —v— Static
g 80 g
E g 100§
60
40, 50
20, 4
o
1 2 3 4 5 6 1 2 3 4 5 6
Attacked Servers Attacked Servers
(@) (b)

Fig. 4.
delay (a) and With feedback delay of 10 seconds (b)

decreased the potency close to optimal when no feedbagkractice. SinceMiniHTTPD Will fork a new thread for each
delay was present (Figure4(a)), are now the ones maximizingew accepted connection, the queue size is also the number
potency @ = 0.0015 and 8 = 0.0009). That is because the of currently running threads that deal with the requests in the
load balancer is reacting in the wrong manner (aggressivelygystem. The multithreaded naturemfniHTTPD implies that

in the wrong time (too late). In these casdésjs better multiple requests can be handled by different threads in a
not to do dynamic load balancing and switch to static loadround-robin manner (as opposed to the pure FIFO analytical
balancing If g is small, however, the load balancer reactsframework we used in Section).

slowly and becomes less sensitive to the feedback delay, but In each series of experiments, three scenarios are evalu-

gtuf:metr(;?jsg-ggfsaarr)gtsgrcyirtr?a(t)rlthCtszehitohltih?ltuﬁ())?i::g%lfggated: The first measures performance in the absence of RoQ
that the damage inflicte)c; is cl?omposed o?thgnc;rmal queuinattaCkS; the second measures performance under a periodic
delay due to the additional attack traffic plus the extr %OQ attack of_magmtudeél repeated every’ seconds;
queueing delay resulting from the load balancer handlin hereas t_he third measures performance when the attack
this attack traffic g?/vorkltl)ad is smoothed out. Each run lasts for 310 seconds.
' For simplicity, the attack requests are sent to one of the

In [24], we report on detecting RoQ attacks and theserver bypassing the load balantein our experiments,
possibility of adjusting some of the parameters online (suchihe request service time follows a Pareto distribution to
as3) to reduce their impact. reflect the highly variable nature efrteP connection time—
e.g.,due to the heavy-tailed nature of file size distributions
[4]. The parameters of the Pareto service time distribution
was set to (2,0.05) with an upper bound of 250 seconds

To validate the results we obtained analytically, numer-and a mean of 100msec. Request arrivals follow a Poisson
ically, and via simulations, we have experimented with aprocess with a mean rate of 15 requests/sec. The attack
host of web server load balancing mechanisms. Notice thavorkload was chosen to consist of 100 attack requests that
despite the small-scale setup used in our experiments, o@'€ injected every 50 seconds for five times. All experiments
results give evidence to the potency of RoQ attacks and the§re allowed to warm-up for 60 seconds before measurements
are directly applicable to small-scale services. were collected.

Experimental Setup: Our setup consists of a machine Susceptibility of Various Load Balancing Policies to
running the load balancer, and two machines running=xploits: Figure 5 shows the average response time for
MINIHTTPD[28], and several client machines generating weblegitimate requests under the different load policies under
traffic usingHTTPERH31]. All machines are of 1Ghz/256MB consideration, as well as the corresponding absolute and
AMD Athlon(tm) and running Linux 2.4.20. We modified Sensitivity potencies. These results show that the perfor-
MINIHTTPD and HTTPERF to communicate with the load mance of proportional and weighted load balancing policies
balancer, which is responsible for selecting a server fore similar, and significantly better than that of the least-
each client request. For each connection request, the lodgaded policy. In our experiments, the proportional policy
balancer will select aviNniHTTPD server according to the Wwas slightly better than the weighted policy, especially when
load balancing policy used. As a result, the client initiatingthe load balancer was under attack. This is due to the
the request will establish a normatTe connection with the feedback delay inherent in averaging the queue size (used
selectedMINIHTTPD server. The servers send their feedbackin the weighted policy).

information to the load balancer periodically. Linux doesn't gtfect of Adaptive Feedback Update Period:in the previ-
provide any system calls for applications to get the listeryys experiments, thetiniHTTPD Servers reported back their
queue size. Thus, we use the number of active requesfgedhack information to the load balancer every 1 second.

(accepted connections) as an approximation to the totafhs timescale may pose significant overhead, necessitating
number of pending requests, which constitute the feedback

signal to the _'0a9| balanc?r- This is similar to what mO.St 12As we noted earlier, attack requests can also go through the load
software monitoring solutions report to load balancers inbalancer using stickiiTTP sessions.

IIl. INTERNETEXPERIMENTS

Vulnerability assessment for proportional load balancer in comparison to the static and the optimal load balancing policies: Without feedback

2 100

Il No Attack Il Absolute

[Smoothed Attack [ISensitivity
“E’ [JLow-rate Attack o 80
IS 15
3
s 60
2 g
g’ E
@ o 40
{=]
o
205
E: 20

" PO 0 "
Prop Weight Least Prop Weight Least
Period Policy
(a) Average Response Time (b) Potency

Fig. 5. Comparative performance and susceptibility to exploitation of the various load balancing policies examined.

the use of longer feedback update periods. The disadvantayge use the same amount of attack traffic as before on a
of longer update periods is the possibility of a less agilecluster of 2.40GHz/1.2GB Intel Pentium(R), and we lock
load balancer (under normal legitimate workloads) as wellb40MB of memory—leaving a total of 560MB for use by the
as an increased susceptibility to adversarial exploits. Asystem and for the CGI programs. In these experiments, the
possible approach to reduce the overhead of feedback signalverage response time for legitimate requests were clocked
ing without compromising performance or susceptibility toat 2,412msec when the system is under attack compared
adversarial exploits, is for servers to send the feedback sign&b 486msec when the system is not under attack (and
to the load balancer whenever the measured signal chang&és046msec when the attack requests are smoothed out). This
significantly (not periodically). Under proportional control, yields absolute and sensitivity potencies of 192 and 128
for example, the instantaneous queue size information is senéspectively, highlighting the fact that server overheads and
over whenever its current value differs from previously thethrashing would increase attack potencies dramatically.
communicated value by more than a given threshold. This

threshold can be fixed, or else be a function of the observed

average queue sizes in steady state. IV. RELATED WORK

To evaluate the effects of the feedback update period g o presented in this paper relates to three main
as well as th|§ thresholding approach, we performed EXPellareas of research: (1) dynamic load balancing, (2) control
ments using f|xed feedback delays of 1 _secon(_j, 3 seconds, Hid queuing theory, and (3) security. In Section | we alluded
well as a vanat_)le feeollback. update period using a threshol a number of studies and products related to dynamic load
of 5 request differential. Figures 6(a) and 6(b) show theba%lancing. In this section, we focus on the latter two areas.
average response times and potencies under these differen
scenarios, respectively. Figure 6(c) shows the total numbeRueuing and Control Theory: There is a huge body
of feedback back messages sent bynheiHTTPD servers to Of queuing theory literature that studies different queuing
the load balancer. From theses results, we observe that usitésciplines [3] in addition to other research efforts [23], [21]

a fixed feedback period of 3 seconds results in the worsthat advance this area further. In this paper, we developed
response time and highest potency, but with ohfjp of & quasi-static M/D/1-based discrete-time model for load
the number of feedback messages sent to the load balandedlancing, where the system is assumed to reach steady-
(compared to the case with a fixed 1-second period). Thétate between successive bursts of RoQ attack. This steady-
adaptive feedback period scheme achieves the best balancgtate analysis allowed us to obtain performance measures
being competitive in terms of response time and potenciesuch as the average queue size at the time of the attack.
with the 1-second fixed feedback period approach, andhis is further complemented with transient analysis in the
competitive in terms of the number of feedback messagetime period immediately following the attack. We used a
with the 3-second fixed feedback period approach. continuous-time fluid model to obtain transient performance

Effects of Server Overheads and Thrashingin previous measures such as the time it takes to re-balance the system.

experiments, theviniHTTPD servers consumed only minor Denial of Service (DoS) Attacks and other Exploits:
CPU resources due to sending small files. Thus, the overhed?oS attacks [7], [6], [8] pose a serious vulnerability for
is mainly due to context switching, which is not very large in aimost every computing system. There are a number of
general, especially when the number of concurrent threads gapers that classify various forms of DoS attacks; examples
limited by the thread pool. However, when requests need ténclude [29], [25]. Such attacks deny access for legitimate
consume a large amount of memory or perform significanfequests by targeting the system’s capacity. In comparison
(disk) 1/0, extra overhead due to paging activities becomdo DoS attacks, RoQ attacks do not necessarily result in
larger and start playing a role in the system performancélenial of access, but of service degradation, with an eye
(and in susceptibility to adversarial exploits). on maximizing the response time for legitimate requests.
. . The work presented in this paper, captures current trends
To evaluate SUCh. conditions, we required that each "Ch the way attackers are mounting their attacks in order to
quest would result in the execution of a CGI program, o ade detection. Recent work in [20], shows how attackers
which randomly reads and writes 6MB chunks of memory.are actually moving away from bandwidth floods to attacks

15

100

700
Il No Attack ! Il Absolute Il No Attack
[Attack Smoothed [ISensitivity 600 ! I Attack Smoothed
2 [_Attack 80 [JAttack
= 500
o 1 4
2 60 =
s 3 % 400
s 0
3 L 2
o
5 T 40 b= 300
205 #*
§ 200
< 20
100
P 0
1 Second Adaptive 3 Second 1 Second Adaptive 3 Second 1 Second Adaptive 3 Second

Period

(a) Average Response Time
Effect of feedback update periods

Period

(b) Potency
Fig. 6.

that mimic the web browsing of a larger set of clients in[11]
order to escape detection. Other work include the low-rat
Shrew attacks [22], where low-rate attack traffic can shuto
TCP traffic through targeting the timeout mechanism. That13]
is, in addition, to previous work of ours on the general clas%m]
of RoQ attacks [16], [17].

12]

[15]

V. CONCLUSION [16]

In this paper, we have exposed new vulnerabilities associ-
ated in the operation of dynamic load balancers against nek’]
instances of RoQ attacks. In particular, we have shown that
due to the presence of feedback delay, RoQ attacks woulds]
be able degrade significantly the performance of a dynamic
load balancer to the extent that it could be worse than gg
static one. Persistent connection features, found on dynamic
load balancers, have also contributed to the practicality angzo]
to the ease in mounting RoQ attacks. Our work examined
number of load balancing policies (similar to the ones being
used in practice and those reported in literature) and weéll
assessed the impact of RoQ attacks based on factors, such
as the number of resource managed, the feedback delay afad]
the averaging parameters. We believe that such analysis is
very important in designing and deploying load balancerg,g;
as well as in building defense mechanisms against Rog
attacks. Throughout this paper, we supported our analysis
with simulations and Internet experiments. [24]

25
REFERENCES 129
[1] W. Aiello, A. werbuch, B. Maggs, and S. Rao. Approximate Load [26]
Balancing on Dynamic and Asynchronous NetworksPhoceedings

of the ACM Symposium on Theory of Computibg93.

Akamai. Performance Based Load Balancing. http://www.akamai.con27)
/en/html/services/gtnhow_it_works.html.

A. Allen. Probability, Statistics and Queueing Theory with Computer [28]
Science Applications. Second Edition, Academic Press. [
M. Balter, M. Crovella, and C. Murta. On Choosing a Task Assign-
ment Policy for a Distributed Server Systeduournal of Parallel and
Distributed ComputingSep 1999. [30]
V. Cardellini, M. Colajanni, and P. Yu. Dynamic load balancing on
web-server systemdEEE Internet Computing1999. [31]
CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks. http://www.cert.org/advisories/CA-
1996-21.html. Original issue date: September 19, 1996. [32]
CERT Coordination Center. Denial of Service Attacks. http://www.cer
t.org/techtips/denial of_service.html. [33]
CERT Coordination Center. Trends in Denial of Service Attack
Technology. http://www.cert.org/archive/pdf/Ddfends.pdf.

L. Cherkasova. FLEX: Load Balancing and Management Strategy for
Scalable Web Hosting Service. Rroceedings of ISCCJul 2000.

J. Chuang. Distributed Network Storage Service with Quality-of-
Service Guarantees. Proceedings of Internet Society INET;98an
Jose, CA, June 1999.

(2]
(3]
(4]

(3]
(6]

(7]
(8]
(9]

34]
(0]

Period
(c) Number of Feedback Messages

Cisco. Configuring Load Balancing on the CSS 11500.
http://www.cisco.com/ warp/public/117/methotisad bal.pdf.

Cisco. LocalDirector. http://www.cisco.com/warp/public/cc/pd/cxsr/
400/index.shtml.

W. Kish D. Dias, R. Mukherjee, and R. Tewari. A Scalable and Highly
Available Web Server. IProceedings of IEEE COMPCQN996.

F5. BIG-IP Load Balancer Limited. http://www.f5.com/f5products/
products/bigip/ltm/Ibl.html.

B. Fortz and M. Thorup. Internet traffic engineering by optimizing
OSPF weights. IrProceedings of IEEE INFOCOM2000.

M. Guirguis, A. Bestavros, and |. Matta. Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources.Phoceedings

of the ICNR Oct 2004.

M. Guirguis, A. Bestavros, |. Matta, and Y. Zhang. Reduction of
Quality (RoQ) Attacks on Internet End Systems. Rroceedings of
INFOCOM, Mar 2005.

IBM. DB2 connection routing using Linux load balancing.
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-
0410wright/.

IBM. High availability load balancing with IBM
WebSphere Edge Server for Lotus Workplace. http://www-
128.ibm.com/developerworks/lotus/library/edgehighavail/.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale:
Surviving Organized DDoS Attacks That Mimic Flash Crowds. In
Proceedings of NSDBoston, MA, May 2005.

L. Kleinrock and R. Muntz. Processor Sharing Queueing Models of
Mixed Scheduling Disciplines for Time Shared Systeduournal of
the ACM 1972.

A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants). In
Proceedings of ACM SIGCOMMarlsruhe , Germany, August 2003.
S. Lam and A. Shankar. Response Time Distributions for a Multi-
Class Queue with Feedback. Rroceedings of the International
Symposium on Computer Performance Modeling, Measurement and
Evaluation May 1980.

M. Guirguis. Reduction-of-Quality Attacks on Adaptation Mecha-
nisms. Ph.D. Thesis. Boston University.

C. Meadows. A Formal Framework and Evaluation Method for
Network Denial of Service. InProceedings of the 12th IEEE
Computer Security Foundations Workshdpne 1999.

Microsoft. Network Load Balancing Technical Overview.
http://www.microsoft.com/technet/prodtechnol/windows2000serv/dep
loy/confeat/nlbovw.mspx.

Microsoft. SharePoint Services. http://www.microsoft.com/resources
/documentation/wss/2/all/adminguide/en-us/stsf15.mspx.

mini_httpd: small HTTP server. http://acme.com/software/ntittpd.

29] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoS Attacks

and DDoS Defense Mechanisms. Technical Report 020018, Computer
Science Department, University of California, Los Angeles.

J. Mogul. Network behavior of a busy Web server and its clients.
Research Report 95/5, DEC Western Research Labora@et/1995.

D. Mosberger and T. Jin. Httperf: A Tool for Measuring Web Server
Performance. IfProceedings of the First workshop on Internet Server
Performance (WISP '98Madison, WI, June 1998.

Nortel. Alteon Web OS Traffic Control. http://www.nortelnet
works.com/products/01/webos/index.html.

0. Othman and D. Schmidt. Optimizing Distributed system Perfor-
mance via Adaptive Middleware Load Balancing. MPmoceedings

of ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OMP000.

Cisco Systems. Sticky Configuration Methods on LocalDirector.
http://www.cisco.com/warp/public/117/locdirector/sticky config |
d.pdf.

