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Abstract

We develop and analyze an algorithm to maximize the throughput of a serial kanban-
based manufacturing system with arbitrary arrival and service process distributions
by adjusting the number of kanban allocated to each production stage while main-
taining the total work-in-process inventory at any desired level. The optimality
properties of the algorithm are proved under a necessary and sufficient “smoothness
condition”. The algorithm is driven by throughput sensitivities which, in general,
can only be estimated along an observed sample path of the system. It is shown
that the algorithm converges to the optimal allocation in probability and, under
additional mild conditions, almost surely as well. Finally, it is shown that Finite
Perturbation Analysis (FPA) techniques can be used to obtain the sensitivity es-
timates in order to reduce the amount of simulation required in either on-line or
off-line simulation-based optimization.

Key words: Manufacturing system, kanban, discrete event system, ordinal
optimization, perturbation analysis

1 Introduction

The objectives of the Just-In-Time (JIT) manufacturing approach (see (Sugimori
et al., 1977) and (Ashburn, 1986)) are, among others, to reduce the work-
in-process inventory and its fluctuations and hence reduce production costs.
The main principle of the technique is to produce material only when it is
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needed. Its most celebrated component is the so called kanban method, which
many researchers and analysts have adopted in order to model various types
of manufacturing processes. The main idea behind the kanban method is the
following. A production line is divided into several stages and at every stage
there is a fixed number of tags (or tickets) called kanban. An arriving job
receives a kanban at the entrance of the stage and maintains possession of it
until it exits the stage. If an arriving job does not find an available kanban at
the entrance, it is not allowed to enter that stage until a kanban is freed; in
this case, the job is forced to wait in the previous stage and becomes blocked.

There are several variations of the basic kanban production system (see (Di Mas-
colo et al., 1991) for an overview) and, over the past years, much work has been
devoted to the analysis and performance evaluation of such schemes. One of
the main issues associated with the kanban method is the determination of the
number of kanban at every stage. It is obvious that in order to achieve a min-
imum work-in-process inventory, no more than one job should be allowed at
every stage. This, however, would severely restrict the achievable throughput.
Clearly, therefore, the selection of the number of kanban is closely linked to the
usual tradeoff between throughput and work-in-process inventory (or, equiv-
alently, the delay or “lead time” of jobs through the system). Other factors
affecting the determination of the number of kanban (including the coefficient
of variation in processing times, machine utilization, and the autocorrelation
of processing times) were investigated by (Philipoom et al., 1987), who also
proposed an empirical methodology for determining the number of kanban. In
related work, (Gupta and Gupta, 1989) investigated additional performance
measures such as production idle time and shortage of final products. In study-
ing the performance of kanban systems, both analytical models (e.g., (Kimura
and Terada, 1981; Mitra and Mitrani, 1988; So and Pinault, 1988)) and simu-
lation (e.g., (Huang et al., 1983; Lulu and Black, 1987; Schroer et al., 1985))
have been used. In the former case, one must resort to certain assumptions
regarding the various stochastic processes involved (e.g., modeling demand
and service processes at different stages through exponential distributions);
however, even in the case of a simple finite Markov chain model, the large
state space of such models necessitates the use of several types of approxima-
tions. In the case where simulation is used, any kind of parametric analysis of
the model requires a large number of simulation runs (one for each parame-
ter setting) to be performed. A comparative overview of many such studies is
contained in (Uzsoy and Martin-Vega, 1990).

Advances in the field of Discrete Event Systems (DES) have provided op-
portunities for the study of kanban systems from different perspectives. For
example, (Glasserman and Yao, 1994) have placed these systems in a General-
ized Semi-Markov Process (GSMP) framework and have derived, under certain
conditions, several structural properties such as monotonicity and concavity of
throughput as a function of the number of kanban. Using Perturbation Anal-
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ysis (PA), (Ho et al., 1979) have also considered the problem of allocating a
finite number of buffers to a set of sequential machines in order to maximize
the system throughput, a problem equivalent to allocating a given number of
kanban over a series of stages in a simple kanban system. Their optimization
approach was based on estimating a “pseudogradient” of the throughput with
respect to the vector describing a buffer allocation, treating buffer sizes as con-
tinuous variables. A similar in spirit approach was used in (Yan et al., 1994),
where the actual buffer contents are also treated as continuous variables and
a stochastic approximation scheme is invoked to perform the optimization it-
self. In (Liberatore et al., 1995), the problem considered in (Ho et al., 1979)
is revisited for more general topologies and a control scheme for dynamically
allocating kanban is proposed. The advantage of PA in this context lies in its
ability to estimate the effect of adding/removing one kanban on the system
performance based on a single observed sample path (e.g., a single simulation
run). It is therefore possible to develop schemes for adjusting the allocation of
kanban on line, without explicit knowledge of the distributional characteristics
of the stochastic processes involved.

In this paper, we consider a kanban system consisting of several stages con-
nected in series. A job arrives at the first stage and is placed in a buffer waiting
for service. Once it receives service, if there is a free kanban in the next stage
it advances to that stage; otherwise it waits for the next available kanban in
the current stage blocking the operation of the corresponding server. Our ob-
jective is to allocate a fixed number of kanban (equivalently, buffer slots) to
a number of stages so as to maximize the system throughput. Unlike (Ho et
al., 1979; Yan et al., 1994), we do not resort to continuous flow models of the
system or “pseudogradient” estimation. Instead, we develop a discrete opti-
mization scheme maintaining the naturally discrete nature of the controllable
parameters, i.e., the numbers of kanban at each stage.

This paper is based on our earlier work described in (Panayiotou and Cassan-
dras, 1996). In (Panayiotou and Cassandras, 1996) we assumed a determin-
istic model and identified a necessary and sufficient condition under which a
specific discrete optimization scheme we derived can yield an allocation that
maximizes throughput. Specifically, we assumed that a closed-form expres-
sion for the system’s performance under any allocation exists, and showed
that our scheme delivers the optimal allocation in a fixed number of steps K,
where K is the number of available kanban to be allocated 2 . In this paper,
we extend the approach to stochastic models. Note that in most practical
systems, closed-form expressions for performance measures are rarely avail-
able, so one is usually forced to use performance estimates obtained through

2 If K is not fixed, the algorithm can be used on line to incrementally adjust a
kanban allocation until a point where throughput and work-in-process inventory
can be traded off at desirable levels.
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on-line system observation or simulation. Therefore, we have adapted the orig-
inal optimization scheme to operate in such environments. Furthermore, by
exploiting properties of ordinal comparison techniques derived in (Cassandras
et al., 1998; Dai, 1996), we show that it converges in probability, and, under
some additional technical conditions, almost surely as well, to the optimal
allocation. We point out that the results in this paper make no assumptions
on the distributions of the interarrival and service times. Further, we note
that since the algorithm is driven by ordinal comparisons of finite difference
throughput estimates, convergence is fast, as also observed in similar optimiza-
tion schemes (e.g., see (Cassandras et al., 1998)). The second contribution is
the use of a Finite PA (FPA) approach to estimate the finite differences re-
quired by our discrete optimization scheme from a single observed sample
path. We have chosen to pursue this approach (in contrast to more general
concurrent estimation techniques as in (Cassandras and Pan, 1995; Cassan-
dras and Panayiotou, 1996)), since it exploits the structure of the system and
the performance measure of interest (throughput). The results of this FPA
approach are similar to those of (Ho et al., 1979; Liberatore et al., 1995); they
are obtained, however, through the use of a simple recursive max-plus type
of equation that formally describes the departure time dynamics at all stages
of the kanban system and hence yields a formal characterization of the corre-
sponding departure time perturbation dynamics as well. A byproduct of this
analysis is a simple derivation of throughput monotonicity with respect to the
number of kanban at any stage.

The paper is organized as follows. In Section 2 we formally define the opti-
mization problem and introduce two conditions on the performance measure
of interest. In Section 3 we present the Incremental Optimization algorithm
which is designed to work for systems where a closed-form expression of per-
formance as a function of kanban allocations is available. In Section 4 we show
that a modified version of the algorithm, adapted for a stochastic environment
(i.e., when only noisy performance estimates are available), converges in prob-
ability, and, under some additional conditions, almost surely as well, to the
optimal allocation. In Section 5 we develop the PA approach used to derive
the perturbed departure time dynamics and hence the throughput sensitivities
required by our algorithm. Some simulation examples are included in Section 6
and we close with the conclusions from this work in Section 7.

2 Problem Formulation

We consider a manufacturing process modeled as a kanban system consisting
of N + 1 stages in series. The entrance to stage 0 contains an infinite-capacity
buffer, i.e. stage 0 has infinite kanban. A job that completes service at any
stage i = 0, · · · , N − 1 proceeds to the (i + 1)th stage if there is an available
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kanban for that stage, otherwise it waits, hence blocking the operation of the
corresponding server; stage N is assumed to be connected to an infinite sink.
Jobs are processed at all stages on a First-In-First-Out (FIFO) basis and no
distinction among job types is made. Let xi denote the number of kanban
allocated to stage i and define the N -dimensional vector x = [x1, ..., xN ] to
represent a kanban allocation. We will assume that at least one kanban is
initially allocated to each of stages 1, · · · , N (xi ≥ 1), otherwise the throughput
of the system is zero. We will further assume that an upper bound on the work-
in-process is given such that

∑N
i=1 xi = K ′. Note that since every stage must

have at least one kanban, only K = K ′−N are available to be allocated to the
N stages. Let J(x) be an objective function (typically, the throughput). The
problem then is to determine an allocation x that maximizes J(x) subject to
this constraint on the total number of kanban.

We will make use of the following definitions. First, ei = [0, ..., 0, 1, 0, ...0] is
an N -dimensional vector with all of its elements zero except the ith element
which is equal to 1. Second,

∆Ji(x) = J(x + ei) − J(x) (1)

is the change in J(x) due to the addition of a new kanban to the ith element
of an allocation x. In other words, it is the sensitivity of J(x) with respect to
xi. Finally, let

Ak =

{
x :

N∑
i=1

xi = k + N, xi ≥ 1

}
, k = 0, 1, · · ·

be the set of all possible allocations of k available kanban to N stages.

Using the above definitions, the optimization problem is formally stated as:

(P1) max
x∈AK

J(x)

In addition, we define the following conditions on J(x):

Smoothness Condition or Condition (S):
If J(x∗) ≥ J(x) for some x∗ ∈ Ak and any x ∈ Ak, k = 1, · · · , K then

max
i=1,...,N

J(x∗ + ei) ≥ max
i=1,...,N

J(x + ei) (2)

Uniqueness Condition or Condition (U):
Let i∗ = arg maxi=1,...,N{∆Ji(x)}, then

∆Ji∗(x) > ∆Jj(x), for any x ∈ Ak, k = 1, · · · , K, and any j �= i∗. (3)
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Condition (S) does not allow an allocation that is not optimal in Ak to become
the only optimal allocation in Ak+1 by the addition of one kanban to some
stage. When J(x) is the throughput of a serial system, this condition has been
empirically observed to hold over all cases considered and it reflects the fact
that the addition of a single kanban to a stage of a non-optimal allocation will
not cause a “non-smooth” jump in the overall throughput of a serial system.
It is possible, however, that the presence of branching and merging in more
general topologies may violate (S).

Condition (U) requires that at every allocation the maximum finite difference
as defined in (1) is unique. This is a rather technical condition, as will become
clear in the sequel, and it may be relaxed as shown in Section 3.1.

3 Incremental Optimization Algorithm

Problem (P1) falls in the class of discrete resource allocation problems. A
major difficulty here is due to the fact that performance measures such as
throughput are not separable over the number of stages, i.e., one cannot ex-
press J(x) as J(x) =

∑N
i=1 Ji(xi), in which case a number of algorithms ex-

ist for the solution of (P1) (e.g., (Ibaraki and Katoh, 1988; Cassandras and
Julka, 1994)). Under conditions (S) and (U), however, the following simple in-
cremental allocation process similar to one found in (Ibaraki and Katoh, 1988)
provides an optimal allocation of K kanban in K steps.

Define the sequence {xk}, k = 0, · · · , K such that

xk+1 = xk + ei∗
k

(4)

where

i∗k = arg max
i=1,...,N

{∆Ji(xk)} (5)

and x0 := [1, 1, ..., 1]. After K steps, xK is the optimal solution of (P1) as
shown in the theorem that follows.

Theorem 1 For any k = 0, 1, · · ·, xk in (4) yields a solution to problem (P1)
if and only if J(x) satisfies conditions (S) and (U).

PROOF. We use induction on k = 0, 1, · · · and establish the result for any
number of kanban k to be allocated over N stages. First, define the following
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vectors: xk is the allocation reached at the kth step in (4); x∗
k is the solution

of (P1) over x ∈ Ak; and finally yk is any allocation in Ak.

For k = 0, (5) gives i∗0 := arg maxi=1,...,N{∆Ji(x0)}. Then, from the definition
of ∆Ji(x) and condition (U), it follows that

J(x0 + ei∗0) > J(x0 + ei0) for all i0 = 1, ..., N, i0 �= i∗0 (6)

which implies that x∗
1 = x0 +ei∗0 . Note that this is true because (5) is obtained

from an exhaustive search over the entire space A1 which includes only N
allocations, x0 + ei for i = 1, · · · , N . Since equation (4) gives x1 = x0 + ei∗0 , it
follows that x1= x∗

1, that is, x1 is the solution of (P1) over A1.

Now suppose that for some k ≥ 1 the vector xk obtained from (4)-(5) yields
the optimal allocation, that is

J(xk) = J(x∗
k) ≥ J(yk) for all yk ∈ Ak

From (5), again i∗k = arg maxi=1,...,N{∆Ji(xk)} (a unique index under (U)). It
then follows from the definition of ∆Ji(x) that

J(xk + ei∗
k
) = J(xk) + ∆Ji∗

k
(xk)

≥ J(xk) + ∆Jik(xk)

= J(xk + eik), for any ik = 1, · · · , N

Therefore,

J(xk + ei∗
k
) = max

i=1,..,N
{J(xk + ei)} ≥ max

i=1,..,N
{J(yk + ei)}

where the inequality is due to the smoothness condition (S). Hence, x∗
k+1 =

xk +ei∗
k

Finally, note that (4) also gives xk+1 = xk +ei∗
k
, and therefore, xk+1=

x∗
k+1, i.e. xk+1 is the solution of (P1) over Ak+1.

Conversely, suppose that the algorithm yields the optimal solution for any K =
1, 2, · · ·, however it does not satisfy conditions (S) and (U) for some k < K.
This implies that there exists an allocation x∗

k ∈ Ak such that J(x∗
k) ≥ J(yk)

for all yk ∈ Ak and maxi=1,..,N{J(x∗
k + ei)} < maxi=1,..,N{J(yk + ei)}. This

implies that the algorithm does not yield an optimal allocation over Ak+1,
which is a contradiction.

Remark 1 If there are K available resources to be allocated to N stages, then
the process (4)-(5) requires K steps before it delivers the optimal allocation.
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In contrast, using exhaustive search requires a number of steps which is com-
binatorially explosive:


K + N − 1

K


 =

(K + N − 1)!

(N − 1)!K!
(7)

Note that the algorithm defined by (4)-(5) is simple to implement provided
the sensitivity information in (5) is available. We shall subsequently refer to
this as the Incremental Optimization (IO) algorithm.

It is possible to relax the Uniqueness condition (U) through a straightforward
extension of the IO algorithm as described in the next section.

3.1 Extension of the Incremental Optimization Algorithm

Suppose that the sequence {xk} in (4) yields x̄k after k steps and assume that
(5) gives i∗k = i = j, for two indices i, j ∈ 1, · · · , N . In this case, it is clear that
J(x̄k +ei) = J(x̄k +ej), but the process has no way of distinguishing between i
and j in order to define a unique new state xk+1 given xk = x̄k. Note also that
random selection cannot guarantee convergence since it is possible that at the
next iteration only one of the two allocations (either x̄k + ei or x̄k + ej) can
yield the optimum. Since there is inadequate information to choose between i
and j, it is natural to postpone the decision until more information is available.
To achieve this we modify the process as described next, by using a recursion
on a set of allocations Uk ∈ Ak. In particular, we define a sequence of sets
{Uk}, k = 0, · · · , K such that

Uk+1 = {xk + ei | ∆Ji(xk) = ∆Ji∗
k
(xk), i = 1, · · · , N,xk ∈ Uk} (8)

where

i∗k = arg max
i=1,...,N
xk∈Uk

{∆Ji(xk)}. (9)

and U0 = {x0}, x0 = [1, 1, ..., 1]. After K steps, it is easy to see that any
allocation in UK is the optimal solution to (P1). The extra cost incurred by
this scheme compared to (4)-(5) involves storing additional information.

As already mentioned, the IO algorithm and its extension above are easy to
implement if a closed-form expression for J(x) (and hence ∆Ji(x)) is available
for any possible allocation vector x. However, this is seldom the case, since
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the manufacturing processes we are interested in are generally stochastic DES
with arbitrary distributions characterizing the job arrival and the N+1 service
processes. One is therefore forced to resort to estimates Ĵ(x) of J(x), obtained
either from simulation or on-line observations. This raises an obvious question
as to whether the IO algorithm can be appropriately adapted to operate with
these estimates and whether it will still converge to the optimal allocation.
This issue is investigated in the following section.

4 Stochastic Incremental Optimization Algorithm

In this section we focus our attention to the kanban allocation problem in a
stochastic environment. In this case, we assume that the performance measure
is in the form of an expectation, J(x) = E[L(x)], where L(x) is a sample
function used as the noisy performance estimate. The problem then, is to
determine the optimal kanban allocation based on a scheme similar to the IO
algorithm defined by (4)-(5) now driven by estimates of J(xk). In particular,
let Ĵ t(xk) denote a noisy estimate of J(xk) obtained through simulation or
on-line observation of the system over an “estimation period” t. Clearly, the
IO algorithm (as well as its extension in Section 3.1) can no longer guarantee
convergence in such a stochastic setting. For instance, suppose that at the
kth step of the allocation process i∗k = j, however, due to noise, we obtain
an estimate î∗k = m �= j. In this case, the mth stage will get an additional
kanban, whereas it is possible that at the optimal allocation the mth stage
has only as many kanban as it had prior to the kth iteration. Since there is no
way of reallocating kanban to another stage, the optimal allocation will never
be reached.

With this observation in mind, we introduce next a number of modifications to
the IO algorithm. First, there should be a mechanism through which kanban
erroneously allocated to some stage are reallocated to other stages. Second,
it must be possible to progressively improve the performance estimates so as
to eliminate the effects of estimation noise. Toward this goal, let f(l) denote
the length of the sample path on the lth iteration and let it be such that
liml→∞ f(l) = ∞. We then define a stochastic process {x̂k,l}, k = 0, · · · , K,
l = 1, 2, · · ·, as follows:

x̂k+1,l = x̂k,l + eî∗
k,l

k = 0, · · · , K − 1 (10)

for all l = 1, 2, · · ·, and every K iterations, i.e. after allocation x̂K,l, the process
is reset to

x̂0,l+1 = [1, · · · , 1] l = 1, 2, · · · (11)
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where

î∗k,l = arg max
i=1,...,N

{
∆Ĵ

f(l)
i (x̂k,l)

}
. (12)

We will subsequently refer to the above allocation scheme as the Stochastic
Incremental Optimization (SIO) algorithm. Regarding the performance esti-
mates Ĵ t(x) obtained over an estimation period of length t, we will make the
following assumption:

A1: For every x the estimate Ĵ t(x) is ergodic as the sample path length in-
creases in the sense that

lim
t→∞ Ĵ t(x) = J(x), a.s. for all x ∈ Ak, k = 0, · · · , K

We can then establish the following result, the proof of which is very

similar to that of Lemma 4.1 in (Cassandras et al., 1998):

Lemma 1 Suppose that assumption A1 is satisfied and that liml→∞ f(l) = ∞.
For any allocation x ∈ Ak, k = 0, · · · , K, if ∆Ji(x) < ∆Jj(x) for some
i, j ∈ 1, · · · , N then

lim
l→∞

Pr
[
∆Ĵ

f(l)
i (x) ≥ ∆Ĵ

f(l)
j (x)

]
= 0

and

lim
l→∞

Pr
[
∆Ĵ

f(l)
i (x) < ∆Ĵ

f(l)
j (x)

]
= 1

PROOF. Let

ŷl = ∆Ĵ
f(l)
i (x) − ∆Ĵ

f(l)
j (x), y = ∆Ji(x) − ∆Jj(x) < 0.

Then, Assumption A1 and liml→∞ f(l) = ∞ guarantee that

lim
l→∞

ŷl = y, a.s.

Since a.s. convergence implies convergence in probability, we know that, for
every ε > 0,

lim
l→∞

Pr[|ŷl − y| ≥ ε] = 0.
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Setting ε = −y > 0, we obtain

lim
l→∞

Pr[|ŷl − y| ≥ −y] = 0. (13)

Finally, since Pr[ŷl ≥ 0] ≤ Pr[|ŷl − y| ≥ −y], it immediately follows from (13)
that

lim
l→∞

Pr[ŷl ≥ 0] = 0

which is the statement of the lemma.

Theorem 2 For any performance measure J(x) that satisfies conditions (S)
and (U), {x̂K,l} converges in probability to the global optimal allocation, as
l → ∞.

PROOF. Let yk, k = 1, · · · , K denote the allocations that the IO process in
(4) would visit if J(x) were known exactly. Clearly, yK is the optimal allocation
due to Theorem 1. We proceed by determining the probability that (10)-(12)
will yield yK for some l:

Pr[x̂K,l = yK ] = Pr[̂i∗K−1,l = i∗K−1|x̂K−1,l = yK−1] Pr[x̂K−1,l = yK−1,l]

where î∗K−1,l and i∗K−1 are defined in (12) and (5) respectively. Further condi-
tioning, we get

Pr[x̂K,l = yK ] =

{
K−1∏
k=1

Pr[̂i∗k,l = i∗k|x̂k,l = yk]

}
Pr[x̂0,l = y0] (14)

Next, take any term of the product

Pr
[̂
i∗k,l = i∗k|x̂k,l = yk

]
= Pr


∆Ĵ

f(l)
i∗
k,l

(x) > max
j=1,···,N

j 	=i∗
k,l

{
∆Ĵ

f(l)
j (x)

}
|x̂k,l = yk




= 1 − Pr


∆Ĵ

f(l)
i∗
k,l

(x) ≤ max
j=1,···,N

j 	=i∗
k,l

{
∆Ĵ

f(l)
j (x)

}
|x̂k,l = yk




= 1 − Pr




N⋃
j=1

j 	=i∗
k,l

∆Ĵ
f(l)
i∗
k,l

(x) ≤ ∆Ĵ
f(l)
j (x)|x̂k,l = yk



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≥ 1 −
N∑

j=1
j 	=i∗

k,l

Pr
[
∆Ĵ

f(l)
i∗
k,l

(x) ≤ ∆Ĵ
f(l)
j (x)|x̂k,l = yk

]
(15)

Since liml→∞ f(l) = ∞, and since ∆Ji∗
k,l

(x) > ∆Jj(x), j �= i∗k,l all terms in the

summation go to 0 due to Lemma 1 and therefore, all terms Pr[̂i∗k,l = i∗k|x̂k,l =
yk] approach 1 as l → ∞. Moreover, by (11) we have Pr[x̂0,l = y0] = 1, where
y0 = [1, · · · , 1]. It follows that liml→∞ Pr[x̂K,l = yK ] = 1 and the theorem is
proved.

Remark 2 The convergence rate of the algorithm depends on the difference
∆j(x) − ∆i(x). When this difference is large, then the limit of the probabili-
ties described in Lemma 1 converges faster. Therefore, the algorithm quickly
converges to a set of allocations that exhibit near optimal performance. Subse-
quently, it may oscillate between allocations in this set and eventually settles
down to the optimal one.

4.1 Stronger Convergence Results

Under some additional mild conditions and by properly selecting the “obser-
vation interval” t = f(l), it is possible to show that the process (10)-(12)
converges to the optimal allocation almost surely. To show this, first recall a
result from (Dai, 1996).

Lemma 2 Suppose that {x̂t, t ≥ 0} is a stochastic process satisfying (a)
limt→∞ x̂t = x, a.s.; (b) limt→∞ E[x̂t] = x; (c) V ar[x̂t] = O(1

t
). If x > 0,

then

Pr[x̂t ≤ 0] = O(
1

t
).

The assumptions in Lemma 2 are very mild and almost always satisfied in the
simulation or direct sample path observation of DES. Lemma 2 establishes
the rate of convergence for comparing x̂t against 0. Using this result, we can
prove the following lemma which will be needed for our main result.

Lemma 3 Assume that, for every i, the estimate Ĵ t
i (x) satisfies the assump-

tions of Lemma 2. Then, for any i, j, i �= j,

Pr[∆Ĵ t
i (x) ≥ ∆Ĵ t

j (x)] = O(
1

t
)
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and

Pr[∆Ĵ t
i (x) < ∆Ĵ t

j(x)] = 1 −O(
1

t
)

provided that ∆Ji(x) < ∆Jj(x).

PROOF. Let x̂k = ∆Ĵ t
j(x) − ∆Ĵ t

i (x) and x = ∆Jj(x) − ∆Ji(x). Then, {x̂k}
satisfies the assumptions of Lemma 2 and x > 0. Thus the conclusion holds.

Theorem 3 For any performance measure J(x) that satisfies conditions (S)
and (U) and the conditions of Lemma 3, if the observation interval f(l) ≥ l1+c

for some constant c > 0, the process {x̂k,l} converges to the global optimal
allocation almost surely.

PROOF. From Lemma 3 we get that

Pr
[
∆Ĵ

f(l)
i∗
k,l

(x) ≤ ∆Ĵ
f(l)
j (x)|x̂k,l = yk

]
= O(

1

f(l)
) = O(

1

l1+c
)

Also from (15) we get that the

Pr[x̂k,l �∈ X ∗
k |x̂k,l = yk] = O(

1

l1+c
) (16)

where X ∗
k is the set of all allocations that exhibit optimal performance from

the set Ak. Clearly,

∞∑
l=1

1

l1+c
< ∞ (17)

Hence, using the Borel-Cantelli Lemma (see pp. 255-256 of (Shiryayev, 1979))
we conclude that x̂k,l converges to the optimal allocation almost surely.

If the Uniqueness condition (U) is not satisfied, then there is no guarantee
that the SIO algorithm will converge to the optimal in any sense. In this case,
one can proceed in a way similar to the set-iterative process in Section 3.1.
For example, one can include in the set Uk all the allocations whose estimated
performance lies within some distance δ from the observed maximum. How-
ever, we will not elaborate on this issue any further and concentrate instead
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on the crucial problem of obtaining estimates of the finite differences ∆Ji(x),
i = 1, · · · , N .

Note that the algorithm SIO cannot be directly used on-line because allowing
the system allocation to reset according to (11) will significantly degrade the
system’s performance, and it will take K steps until the performance reaches
the optimal level again. This is clearly inefficient. Nevertheless, it is possible
to use SIO on-line if one adopts ideas from concurrent estimation (Cassandras
and Panayiotou, 1996). Specifically, one can implement a simulator of the sys-
tem under any allocation, but rather than using a random number generator
to obtain the various event lifetimes, observe them directly from the actual
system. We can then use SIO with the simulated system to allocate all K re-
sources and then update the allocation of the actual system. Note that if one
resorts to simulation, for either an on-line or off-line implementation, in order
to obtain the estimates ∆Ĵ

f(l)
i (x̂k,l) in (12) for all i = 1, · · · , N , at least N + 1

simulations are required before a single step of the SIO algorithm can take
place. This motivates the use of PA techniques for obtaining all these from a
single simulation (or observation of a sample path of the actual system). Fi-
nally, it is worth pointing out that if this approach is used for on-line control,
the system of interest may contain features such as machine failures and re-
pairs, preventive maintenance, and setup times; this is because the estimates
obtained are dependent only on observable events and event times and not on
any specific distribution characteristics for the stochastic processes involved.

5 Perturbation Analysis for Throughput Sensitivity Estimation

We will henceforth concentrate on throughput as the objective function J(x)
to be maximized. In this section, we will employ PA in order to estimate the
finite differences ∆Ji(x) defined in the previous section and required by the
SIO algorithm as seen in (12). Our goal, therefore, is to estimate the effect
of adding a kanban to any one of stages 1, · · · , N in the system operating
under an allocation x ∈ Ak while observing a sample path of that system and
without actually making any such change to it.

5.1 Notation and Definitions

We begin by establishing some basic notation and defining quantities we will
use in our analysis. First, for any x, let [x]+ ≡ max{0, x}. The pair (k, n) will
be used to denote the kth job in the nth stage. Associated with such a job are

Zn
k : the service time of (k, n).

14



Cn
k : the service completion time of (k, n) at stage n.

Dn
k : the departure time of (k, n) from stage n; if no blocking occurs, then
Dn

k = Cn
k .

We also define

In
k ≡ Dn−1

k −Dn
k−1 ≡ −W n

k (18)

Observe that when In
k > 0, this quantity is the length of an idle period at

stage n that starts with the departure of (k − 1, n) and ends with the arrival
of (k, n) at time Dn−1

k . Conversely, if W n
k = −In

k > 0, this is the waiting time
of (k, n) who can only begin processing at time Dn

k−1 > Dn−1
k . Similarly, we

define

Bn
k ≡ Dn+1

k−xn+1
− Cn

k (19)

which, if Bn
k > 0, provides the length of a blocking period for the job (k, n)

completing service at time Cn
k . Finally,

Qn
k ≡ Dn

k −Dn
k−1 = Zn

k + [In
k ]+ + [Bn

k ]+ (20)

so that Qn
k represents the interdeparture time of (k− 1, n) and (k, n) at stage

n.

For our purposes, a perturbed sample path is one that would have resulted if the
exact same nominal sample path had been reproduced under an allocation with
one kanban added at some stage. To distinguish between quantities pertaining
to the nominal path and their counterparts on a perturbed path we will use a
superscript p as follows: if the number of kanban allocated to stage n is xn in
the nominal path, then xp n denotes the number of kanban in the perturbed
path. Similar notation applies to other quantities such as Dn

k , etc. With this
in mind, we define the indicator function

1[n + 1] = 1[ xp n+1 = xn+1 + 1] =




1 if xp n+1 = xn+1 + 1

0 if xp n+1 = xn+1

to identify the downstream stage to any stage n where an additional kanban
would have been added in a perturbed path. We also define

∆Dn
k ≡ Dn

k − Dp n
k (21)

to be the departure time perturbation for (k, n) due to the addition of a kanban
to the nominal allocation.
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Finally, we will find useful the following quantity, defined as the relative per-
turbation in departure times for two jobs (k1, n1) and (k2, n2):

∆
(k1,n1)
(k2,n2)

≡ ∆Dn1
k1

− ∆Dn2
k2

(22)

5.2 Derivation of Departure Time Perturbation Dynamics

We begin with the simple observation that the departure time Dn
k satisfies the

following Lindley-type recursive equation:

Dn
k = max

{
Dn−1

k + Zn
k , Dn

k−1 + Zn
k , Dn+1

k−xn+1

}
(23)

There are three cases captured in this equation:

(1) The departure of (k, n) was activated by the departure of (k, n−1). This
corresponds to the case where (k, n) starts a new busy period at stage
n and, upon completion of service, it is not blocked by the downstream
stage n + 1 . Thus, Dn

k = Dn−1
k + Zn

k and from the definitions (18) and
(19) it is easy to see that

Dn
k = Dn−1

k + Zn
k ⇐⇒ W n

k ≤ 0, Bn
k ≤ 0 (24)

(2) The departure of (k, n) was activated by the departure of (k−1, n). This
corresponds to the case where (k, n) belongs to an ongoing busy period
(hence, experiencing some waiting in queue before receiving service) and
it is not blocked by the downstream server n+ 1. Thus, Dn

k = Dn
k−1 +Zn

k

and from (18) and (19) it is once again easy to check that

Dn
k = Dn

k−1 + Zn
k ⇐⇒ W n

k ≥ 0, Bn
k ≤ 0 (25)

(3) The departure of (k, n) was activated by the departure of (k−xn+1, n+1).
This corresponds to the case where (k, n) is blocked and must remain at
the nth stage after service completion 3 . In this case, Dn

k = Dn+1
k−xn+1

and
from (19) it is easy to check that

Dn
k = Dn+1

k−xn+1
⇐⇒ Bn

k ≥ 0 (26)

Next consider the perturbation ∆Dn
k defined by (21). By applying (23) to both

the nominal and perturbed paths, there are 9 distinct cases possible.

Case 1. Nominal Sample Path: (k, n) starts a new busy period and is not
blocked, i.e. W n

k ≤ 0, Bn
k ≤ 0.

3 Actually, this case combines two subcases, one where (k, n) starts a new busy
period and leaves stage n after being blocked for some time, and another where
(k, n) belongs to an ongoing busy period and leaves stage n after being blocked.
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Perturbed Sample Path: (k, n) starts a new busy period and is not blocked,
i.e. Wp n

k ≤ 0 and Bp n
k ≤ 0.

Applying (24) for both nominal and perturbed sample paths, we get:

∆Dn
k =Dn−1

k + Zn
k − ( Dp n−1

k + Zn
k ) = Dn−1

k − Dp n−1
k = ∆Dn−1

k (27)

Case 2. Nominal Sample Path: (k, n) starts a new busy period and is not
blocked, i.e. W n

k ≤ 0 and Bn
k ≤ 0.

Perturbed Sample Path: (k, n) waits and is not blocked, i.e. Wp n
k > 0 and

Bp n
k ≤ 0.

Applying (24) for the nominal sample path and (25) for the perturbed sam-
ple path, we get:

∆Dn
k =Dn−1

k + Zn
k − ( Dp n

k−1 + Zn
k )

=Dn−1
k + Dn

k−1 − Dp n
k−1 −Dn

k−1

= ∆Dn
k−1 + Dn−1

k −Dn
k−1

= ∆Dn
k−1 + In

k

where (18) was used in the last step. Note that In
k ≥ 0 since W n

k ≤ 0
by assumption. Adding and subtracting ∆Dn−1

k and using (22) allows us to
rewrite this equation in the following form (which will prove more convenient
later on):

∆Dn
k = ∆Dn−1

k −
[
∆

(k,n−1)
(k−1,n) − In

k

]
(28)

Case 3. Nominal Sample Path: (k, n) starts a new busy period and is not
blocked, i.e. W n

k ≤ 0 and Bn
k ≤ 0.

Perturbed Sample Path: (k, n) is blocked, i.e. Bp n
k > 0.

Using (26) for the perturbed path and the definition of ∆Dn
k ,

∆Dn
k =Dn

k − Dp n+1
k−xn+1−1[n+1]

=Dn
k + Dn+1

k−xn+1−1[n+1] − Dp n+1
k−xn+1−1[n+1] −Dn+1

k−xn+1−1[n+1]

= ∆Dn+1
k−xn+1−1[n+1] + Dn

k −Dn+1
k−xn+1−1[n+1]

Using (19),(20) and the fact that Dn
k = Cn

k we get, if 1[n + 1] = 0,

∆Dn
k = ∆Dn+1

k−xn+1
−Bn

k

and, if 1[n + 1] = 1,

∆Dn
k = ∆Dn+1

k−xn+1−1 + Dn
k −Dn+1

k−xn+1
+ Dn+1

k−xn+1
−Dn+1

k−xn+1−1

= ∆Dn+1
k−xn+1−1 − Bn

k + Qn+1
k−xn+1

Again add and subtract ∆Dn−1
k to obtain

∆Dn
k = ∆Dn−1

k −
[
∆

(k,n−1)
(k−xn+1−1[n+1],n+1) + Bn

k −Qn+1
k−xn+1

· 1[n + 1]
]
(29)
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For the other six remaining cases, expressions for ∆Dn
k can be derived in a

similar way. We omit the details and provide only the final equations:

Case 4. Nominal Sample Path: (k, n) waits and is not blocked, i.e. W n
k > 0

and Bn
k ≤ 0.

Perturbed Sample Path: (k, n) starts a new busy period and is not blocked,
i.e. Wp n

k ≤ 0 and Bp n
k ≤ 0.

∆Dn
k = ∆Dn

k−1 −
[
∆

(k−1,n)
(k,n−1) −W n

k

]
(30)

Case 5. Nominal Sample Path: (k, n) waits and is not blocked, i.e. W n
k > 0

and Bn
k ≤ 0.

Perturbed Sample Path: (k, n) waits and is not blocked, i.e. Wp n
k > 0 and

Bp n
k ≤ 0.

∆Dn
k = ∆Dn

k−1 (31)

Case 6. Nominal Sample Path: (k, n) waits and is not blocked, i.e. W n
k > 0

and Bn
k ≤ 0.

Perturbed Sample Path: (k, n) is blocked, i.e. Bp n
k > 0.

∆Dn
k = ∆Dn

k−1 −
[
∆

(k−1,n)
(k−xn+1−1[n+1],n+1) + Bn

k −Qn+1
k−xn+1

· 1[n + 1]
]
(32)

Case 7. Nominal Sample Path: (k, n) is blocked, i.e. Bn
k > 0.

Perturbed Sample Path: (k, n) starts a new busy period and is not blocked,
i.e. Wp n

k ≤ 0 and Bp n
k ≤ 0.

∆Dn
k = ∆Dn+1

k−xn+1
−

[
∆

(k−xn+1,n+1)
(k,n−1) − Bn

k − [W n
k ]+

]
(33)

Case 8. Nominal Sample Path: (k, n) is blocked, i.e. Bn
k > 0.

Perturbed Sample Path: (k, n) waits and is not blocked, i.e. Wp n
k > 0 and

Bp n
k ≤ 0.

∆Dn
k = ∆Dn+1

k−xn+1
−

[
∆

(k−xn+1,n+1)
(k−1,n) −Bn

k − [In
k ]+

]
(34)

Case 9. Nominal Sample Path: (k, n) is blocked, i.e. Bn
k > 0.

Perturbed Sample Path: (k, n) is blocked, i.e. Bp n
k > 0.

∆Dn
k = ∆Dn+1

k−xn+1
−

[
∆

(k−xn+1,n+1)
(k−xn+1−1,n+1) −Qn+1

k−xn+1

]
· 1[n + 1] (35)

Remark 3 Notice that if we substitute equation (22) in all equations (27) to
(35) and take into consideration the conditions on Bn

k and W n
k , it is easily

seen that ∆Dn
k ≥ 0 (provided initial conditions are such that ∆Dn

k = 0 for
any k, n ≤ 0). This provides an immediate proof of the monotonicity of the
throughput with respect to the number of kanban at each stage.
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Equations (27) to (35), provide the departure time perturbation dynamics,
assuming the values of Wp n

k and Bp n
k are known. Our goal, however, is to

derive a recursive equation for ∆Dn
k completely dependent on information ob-

servable along the nominal sample path. The following three theorems provide
such recursions.

Theorem 4 If W n
k ≤ 0 and Bn

k ≤ 0, then:

∆Dn
k = ∆Dn−1

k − max
{

0, ∆
(k,n−1)
(k−1,n) − In

k ,

∆
(k,n−1)
(k−xn+1−1[n+1],n+1) + Bn

k−Qn+1
k−xn+1

· 1[n + 1]
}

(36)

PROOF. First, we show that the last two terms in the max bracket above
can be expressed in terms of Wp n

k and Bp n
k alone:

∆
(k,n−1)
(k−1,n) − In

k = ∆Dn−1
k − ∆Dn

k−1 − In
k

=Dn−1
k − Dp n−1

k −Dn
k−1 + Dp n

k−1 −Dn−1
k + Dn

k−1

= Dp n
k−1 − Dp n−1

k

= Wp n
k (37)

∆
(k,n−1)
(k−xn+1−1[n+1],n+1)+Bn

k −Qn+1
k−xn+1

· 1[n + 1] =

= ∆Dn−1
k − ∆Dn+1

k−xn+1−1[n+1] + Bn
k −Qn+1

k−xn+1
· 1[n + 1]

=Dn−1
k − Dp n−1

k −Dn+1
k−xn+1−1[n+1] + Dp n+1

k−xn+1−1[n+1] +

+Dn+1
k−xn+1

−Dn
k − (Dn+1

k−xn+1
−Dn+1

k−xn+1−1) · 1[n + 1]

= Dp n+1
k−xn+1−1[n+1] − Dp n−1

k − Zn
k

= Dp n+1
k−xn+1−1[n+1] − ( Cp n

k − [ Wp n
k ]+)

= Bp n
k + [ Wp n

k ]+ (38)

Therefore, equation (36) is equivalent to:

∆Dn
k = ∆Dn−1

k − max{0, Wp n
k , Bp n

k + [ Wp n
k ]+} (39)

We can then consider the following three possible cases:

(1) If Wp n
k ≤ 0 and Bp n

k ≤ 0, then Case 1 examined earlier applies and equa-
tion (27) gives ∆Dn

k = ∆Dn−1
k , which is precisely (39) since max{0, Wp n

k ,
Bp n

k + [ Wp n
k ]+} = 0.
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(2) If Wp n
k > 0 and Bp n

k ≤ 0, then Case 2 applies and equation (28) holds,
which is again (39) since

max{0, Wp n
k , Bp n

k + [ Wp n
k ]+} = Wp n

k = ∆
(k,n−1)
(k−1,n) − In

k

(3) If Bp n
k > 0, then Case 3 applies and (29) holds, which is the same as

(39) since

max{0, Wp n
k , Bp n

k + [ Wp n
k ]+}= Bp n

k + [ Wp n
k ]+

= ∆
(k,n−1)
(k−xn+1−1[n+1],n+1)

+Bn
k −Qn+1

k−xn+1
· 1[n + 1]

The proofs of the next two theorems are similar to that of Theorem 4 and
they are omitted.

Theorem 5 If W n
k > 0 and Bn

k ≤ 0, then:

∆Dn
k = ∆Dn

k−1 − max
{

0, ∆
(k−1,n)
(k,n−1) −W n

k ,

∆
(k−1,n)
(k−xn+1−1[n+1],n+1)+Bn

k −Qn+1
k−xn+1

· 1[n + 1]
}

(40)

Theorem 6 If Bn
k > 0, then:

∆Dn
k = ∆Dn+1

k−xn+1
− max

{
∆

(k−xn+1,n+1)
(k,n−1) −Bn

k − [W n
k ]+,

∆
(k−xn+1,n+1)
(k−1,n) − Bn

k − [In
k ]+,

(
∆

(k−xn+1,n+1)
(k−xn+1−1,n+1) −Qn+1

k−xn+1

)
· 1[n + 1]

}
(41)

In summary, a single recursive expression for ∆Dn
k is obtained by combining

the three theorems above. The following lemma asserts that all information
involved in the evaluation of ∆Dn

k at time Dn
k is contained in the information

available from the nominal sample path by that time (formally, it is part of
the σ-field generated by the history of the underlying stochastic process up to
time Dn

k ).

Lemma 4 All information required to evaluate the perturbation ∆Dn
k at time

Dn
k is contained in the history of the underlying process up to that time.

PROOF. From Theorems 4-6 and recalling definition (22), the following
quantities are involved in the evaluation of ∆Dn

k : ∆Dn−1
k , ∆Dn

k−1, ∆Dn+1
k−xn+1

,

20



∆Dn+1
k−xn+1−1, I

n
k , W n

k , Bn
k , and Qn+1

k−xn+1
. The first four quantities are evaluated

at times Dn−1
k , Dn

k−1, D
n+1
k−xn+1

, and Dn+1
k−xn+1−1 respectively. Because of the se-

rial topology and FIFO nature of the model, it is obvious that Dn
k > Dn−1

k ,
Dn

k > Dn
k−1. In addition, when the departure of (k, n) occurs at time Dn

k ,
the departure of (k − xn+1, n + 1) must have already occurred, otherwise the
former event would not be feasible: (k, n) would have been blocked at time
Cn

k and remained blocked until Dn+1
k−xn+1

. Therefore, Dn
k ≥ Dn+1

k−xn+1
. Clearly,

then Dn
k > Dn+1

k−xn+1−1 also holds. Finally, the definitions of In
k , W n

k , Bn
k , and

Qn+1
k−xn+1

involve the same departure times above.

5.3 Perturbation Analysis Algorithm

Theorems 4-6 directly lead to the following algorithm for evaluating all depar-
ture time perturbations.

Algorithm (PA1):

(1) Initialize: ∆Dn
k = 0 for all k, n ≤ 0.

(2) At the departure of (k, n):
(a) If (k, n) did NOT wait and was NOT blocked (W n

k ≤ 0, Bn
k ≤ 0),

then

∆Dn
k = ∆Dn−1

k − max
{

0, ∆
(k,n−1)
(k−1,n) − In

k ,

∆
(k,n−1)
(k−xn+1−1[n+1],n+1) + Bn

k −Qn+1
k−xn+1

· 1[n + 1]
}

(b) If (k, n) waited but was NOT blocked (W n
k > 0, Bn

k ≤ 0), then

∆Dn
k = ∆Dn

k−1 − max
{

0, ∆
(k−1,n)
(k,n−1) −W n

k ,

∆
(k−1,n)
(k−xn+1−1[n+1],n+1) + Bn

k −Qn+1
k−xn+1

· 1[n + 1]
}

(c) If (k, n) was blocked (Bn
k > 0), then

∆Dn
k = ∆Dn+1

k−xn+1
− max

{
∆

(k−xn+1,n+1)
(k,n−1) − Bn

k − [W n
k ]+,

∆
(k−xn+1,n+1)
(k−1,n) − Bn

k − [In
k ]+,(

∆
(k−xn+1,n+1)
(k−xn+1−1,n+1) −Qn+1

k−xn+1

)
· 1[n + 1]

}

This algorithm subsumes the FPA results presented in (Ho et al., 1979), where
perturbations were associated with stages rather than individual jobs. The
basic perturbation generation and propagation rules also discussed in (Ho et
al., 1979; Liberatore et al., 1995) are evident in our algorithm. Perturbation
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generation, for example, can arise only in Cases 7-8 examined earlier. One
can check that the first possible perturbation is generated by either one of
these cases and results in ∆Dn

k = Bn
k > 0.

Note that at the last stage, blocking is not possible, therefore all terms that in-
volve blocking above are ignored at stage N . Throughput is defined as the job
departure rate from stage N , and can be estimated by T̂k = k/DN

k . Therefore,
∆DN

k immediately yields an estimate of the throughput sensitivity ∆J(x),
x ∈ AK , over k jobs, where x is the kanban allocation of the observed nom-
inal sample path. Note that as long as all processes are stationary, then T̂k

is an unbiased estimate of the throughput which implies that the assump-
tions of Section 4 hold. We should point out that the same finite difference
estimates may be obtained through concurrent simulation techniques (e.g.,
see (Cassandras and Panayiotou, 1996)) which are well-suited for construct-
ing sample paths of a DES over a range of discrete parameter values (in this
case, kanban allocations). We have selected the FPA approach above, however,
because it takes advantage of the special structure of the system of interest.

6 Simulation Examples

In this section, we present application of (PA1) and the SIO algorithm to
some simulated kanban-based production systems. A system as described in
the opening paragraph of Section 2 was simulated for various values of K,N
and several initial allocations x.

6.1 Application of (PA1)

From a single simulation, (PA1) was used to evaluate the performance (through-
put) of systems with allocations x + ei, for any i = 1, · · · , N under the same
realization of the arrival and all N + 1 service processes. In order to ver-
ify the correctness of the results, brute-force simulation was used to actually
obtain the throughput under all x + ei, i = 1, · · · , N allocations for values
of N = 4, 5, 6, which correspond to systems with 5, 6 and 7 queues in series
respectively. This was also used to evaluate the efficiency of the FPA algo-
rithm compared to brute-force simulation. Letting T denote the CPU time of
a typical simulation run, then 2T is the CPU time required to evaluate one
sensitivity by brute-force simulation. Letting T + τ denote the CPU time of
the same nominal run when the FPA algorithm is incorporated to evaluate
the same one sensitivity, a measure of the efficiency of (PA1) is given by
τ/T , the overhead imposed by FPA on the nominal run. For a model with a
Poisson arrival process and exponential service times, typical overhead values
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obtained were around 40%; not surprisingly, these are much larger than those
of common infinitesimal PA algorithms known to have overheads often less
than 1%. When the model is modified to mixed hyperexponential/Erlang ser-
vice times, however, the overhead is reduced to less than 10%, depending on
the order of the model used. The reason for this improvement is that the CPU
time required to generate a hyperexponential or Erlang random variate is sub-
stantially higher than that of an exponential; since the FPA algorithm uses
the same variates for all the sensitivities estimated from one sample path, the
benefit of eliminating random variate generation increases with the complexity
of the distributional models involved.

6.2 Application of the SIO algorithm.

In order to verify that the SIO algorithm yields an optimal allocation, since no
closed form solution exists for the models considered, we simulated exhaus-
tively all possible allocations to obtain the optimal one, and compared the
results to the allocation that was delivered by the algorithm.
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Fig. 1. Evolution of the SIO algorithm

Figure 1 shows the evolution of the algorithm for a system with five stages
in series (N = 4). In this figure, the horizontal axis is given in term of steps,
where a “step” represents the interval between the allocation of an additional
resource through (10) and (11). The arrival process is Poisson with rate λ = 1.0
and the service processes are all exponential with rates µ1 = 2.0, µ2 = 1.5,
µ3 = 1.3, µ4 = 1.2 , and µ5 = 1.1. Initially, we obtain performance esti-
mates every 100 departures (f(l) = 100 departures) and every time we reset
x̂k,l we increase the observation interval by another 100 departures. Through
exhaustive search, it was found that the optimal allocation is [1, 3, 4, 5] with
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throughput 0.9033. As seen in Figure 1, the SIO algorithm yields near-optimal
allocations within the first four or five iterations 4 (SIO performance curve).
It is also worth reporting some additional results not evident from Figure 1.
Specifically, the algorithm delivered allocations which were among the top
10% designs even at the very first iteration when the observation interval was
limited to only 100 departures. After the first 10 iterations, (observation in-
tervals greater than 1000 departures) the allocations obtained were among the
top 1% designs, and after the 20th iteration the SIO algorithm consistently
picked the top design [1, 3, 4, 5]. Finally, notice the saw-tooth shape of the
evolution of the SIO algorithm curve which reflects the incremental nature of
the algorithm and the resetting of (11).

In addition, the results of the exhaustive search process can be used to pro-
duce a histogram of the throughput over all possible allocations (designs).
For the parameters of the example considered above, the histogram is shown
in Figure 2. Our experience is that, depending on the number of stages and
the service time distributions involved, it is sometimes the case that many
allocations provide optimal performance, and sometimes the case that very
few provide optimal or near-optimal performance with poor performance for
a large number of allocations. For the example under consideration, note that
only 3 out of the possible 220 allocations exhibit performance very close to
the optimal. Furthermore, this figure indicates that the majority of allocations
exhibit performance that is not more than 20% worse than the optimal. Since
a priori knowledge of the form of such response surfaces is generally unavail-
able, the use of the SIO algorithm provides an attractive approach to kanban
allocation.

7 Conclusions

We have developed an algorithm for adjusting the number of kanban in a serial
production system in order to maximize throughput while maintaining a de-
sirable low Work-In-Process inventory level. The algorithm yields an optimal
kanban allocation under the “smoothness condition” introduced in Section 2.
Since the algorithm is driven by finite differences capturing how throughput
changes as an additional kanban is allocated to a stage of the system, per-
turbation analysis is well-suited to estimate all these quantities from a single
sample path. In Section 4, we provided a formal derivation of the event time
perturbation dynamics for this system, which extends the perturbation prop-
agation rules first proposed in (Ho et al., 1979) and readily establishes simple
structural properties such as throughput monotonicity with respect to the
number of kanban. Since the FPA algorithm is based exclusively on observed

4 An iteration corresponds to K steps
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Fig. 2. Performance of all possible allocations when N = 4, λ = 1.0, µ1 = 2.0,
µ2 = 1.5, µ3 = 1.3, µ4 = 1.2 , and µ5 = 1.1

sample path data, it applies to any system with arbitrary arrival and service
process distributions.

Extensions to systems of more general topologies may violate the “smoothness
condition”, but may still yield near-optimal allocations with little computa-
tional effort. Finally, alternative techniques, such as concurrent estimation
(see (Cassandras and Panayiotou, 1996)), for estimating the finite differences
above, and generalizations to systems with multiple products, each with its
own kanban allocation, are the subject of ongoing research.
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