
AN ON-LINE ‘SURROGATE PROBLEM’ METHODOLOGY

FOR STOCHASTIC DISCRETE RESOURCE ALLOCATION

PROBLEMS∗

Kagan Gokbayrak
Department of Manufacturing Engineering

Boston University
Boston, MA 02215
kgokbayr@bu.edu

Christos G. Cassandras
Department of Manufacturing Engineering

Boston University
Boston, MA 02215

cgc@bu.edu

Abstract

We consider stochastic discrete optimization problems where the decision variables are
non-negative integers. We propose and analyze an on-line control scheme which transforms
the problem into a “surrogate” continuous optimization problem and proceeds to solve the
latter using standard gradient-based approaches while simultaneously updating both actual
and surrogate system states. It is shown that the solution of the original problem is recov-
ered as an element of the discrete state neighborhood of the optimal surrogate state. For
the special case of separable cost functions, we show that this methodology becomes partic-
ularly efficient. Finally, convergence of the proposed algorithm is established under standard
technical conditions and numerical results are included in the paper to illustrate the fast
convergence properties of this approach.

1 Introduction

We consider stochastic discrete optimization problems where the decision variables are non-
negative integers. In the context of resource allocation, in particular, classic problems of this
type include: buffer allocation in queueing models of manufacturing systems or communication

∗This work was supported in part by the National Science Foundation under Grants EEC-95-27422 and ACI-
98-73339, by AFOSR under contract F49620-98-1-0387, by the Air Force Research Laboratory under contract
F30602-99-C-0057 and by EPRI/ARO under contract WO8333-03.

1

networks [1],[2],[3], where a fixed number of buffers (the integer-valued decision variables) must
be allocated over a fixed number of servers to optimize some performance metric; and the trans-
mission scheduling problem in radio networks [4],[5], where a fixed number of time slots forming
a “frame” must be allocated over several nodes. In the context of Discrete Event Systems (DES),
integer-valued control variables have proven to be very common (e.g., as threshold parameters in
many control policies), making the issue of optimizing over such variables of particular interest.

In the problems we consider in this paper, let r ∈ ZN+ be the decision vector or “state”. In
general, there is a set of feasible states denoted by Ad such that r ∈ Ad represents a constraint.
In a typical resource allocation setting, ri denotes the number of resources that user i is assigned
subject to a capacity constraint of the form

Ad =

(
r :

NX
i=1

ri = K

)
(1)

where K is the total number of identical resources and N is the number of users.

In a stochastic setting, let Ld(r,ω) be the cost incurred over a specific sample path ω when the
state is r and Jd(r) = E[Ld(r)] be the expected cost of the system operating under r. The
sample space is Ω = [0, 1]∞, that is, ω ∈ Ω is a sequence of random numbers from [0, 1] used
to generate a sample path of the system. To be more specific, the cost functions are defined as
Ld : Ad ×Ω→ R and Jd : Ad → R, and the expectation is defined with respect to a probability
space (Ω,=, P) where = is an appropriately defined σ-field on Ω and P is a conveniently chosen
probability measure. In the sequel, ‘ω’ will be dropped from Ld(r,ω) and, unless otherwise
noted, all costs will be over the same sample path. Then, the discrete optimization problem we
are interested in is the determination of r∗ ∈ Ad such that

Jd(r
∗) = min

r∈Ad
Jd(r) = min

r∈Ad
E[Ld(r)] (2)

In general, this is a notoriously hard stochastic integer programming problem. Even in a deter-
ministic setting, where we may set Jd(r) = Ld(r), this class of problems is NP-hard (see [6] [7]
and references therein). In some cases, depending upon the form of the objective function Jd(r)
(e.g., separability, convexity), efficient algorithms based on finite-stage dynamic programming
or generalized Lagrange relaxation methods are known (see [7] for a comprehensive discussion
on aspects of deterministic resource allocation algorithms). Alternatively, if no a priori infor-
mation is known about the structure of the problem, then some form of a search algorithm is
employed (e.g., Simulated Annealing [8], Genetic Algorithms [9]). When the system operates in
a stochastic environment (e.g., in a resource allocation setting users request resources at ran-
dom time instants or hold a particular resource for a random period of time) and no closed-form
expression for E[Ld(r)] is available, the problem is further complicated by the need to estimate
E[Ld(r)]. This generally requires Monte Carlo simulation or direct measurements made on the
actual system.

While the area of stochastic optimization over continuous decision spaces is rich and usually
involves gradient-based techniques as in several well-known stochastic approximation algorithms
[10],[11], the literature in the area of discrete stochastic optimization is relatively limited. Most
known approaches are based on some form of random search, with the added difficulty of having

2

to estimate the cost function at every step. Such algorithms have been recently proposed by Yan
and Mukai [12], Gong et al [13], Shi and Olafsson [14]. Another recent contribution to this area
involves the ordinal optimization approach presented in [15]. For a class of resource allocation
problems of the form (1)-(2), an approach of this type was used in [16] to develop a specific
algorithm that moves one resource unit from the least sensitive user to the most sensitive, thus
preserving feasibility at every iteration step. This algorithm was shown to converge in probability
(and a.s. under certain added conditions [17]). Among other features, this approach is intended
to exploit the fact that ordinal estimates are particularly robust with respect to estimation
noise compared to cardinal estimates (see also [18]). The implication is that convergence of
such algorithms is substantially faster. Even though the approach in [16] yields a fast resource
allocation algorithm, it is still constrained to iterate so that every step involves the transfer of
no more than a single resource from one user to some other user. One can expect, however, that
much faster improvements can be realized in a scheme allowed to reallocate multiple resources
from users whose cost-sensitivities are small to users whose sensitivities are much larger. This
is precisely the rationale of most gradient-based continuous optimization schemes, where the
gradient is a measure of this sensitivity.

With this motivation in mind, it is reasonable to pose the following question: Is it possible to
transform a discrete optimization problem as in (2) into a “surrogate” continuous optimiza-
tion problem, proceed to solve the latter using standard gradient-based approaches, and finally
transform its solution into a solution of the original problem? Moreover, is it possible to design
this process for on-line operation? That is, at every iteration step in the solution of the sur-
rogate continuous optimization problem, is it possible to immediately transform the surrogate
continuous state into a feasible discrete state r? This is crucial, since whatever information is
used to drive the process (e.g., sensitivity estimates) can only be obtained from a sample path
of the actual system operating under r.

This idea was used in [19] to solve the classical stochastic discrete resource allocation problem
where there are K identical resources to be allocated over N user classes. Auxiliary control
variables were introduced to denote the probability θi that any one resource is allocated to user
i. A particular continuous optimization problem over θ = [θ1 ... θN]

0 was then solved and its
solution was transformed into a solution of the original discrete optimization problem. In this
paper, based on the ideas we introduced in [20], we propose and analyze a different and more
general approach. In particular, we transform the original discrete set Ad into a continuous set
over which a “surrogate” optimization problem is defined and subsequently solved. As in earlier
work in [16], [19] and unlike algorithms presented in [7], an important feature of our approach is
that every state r in the optimization process remains feasible, so that our scheme can be used
on line to adjust the decision vector as operating conditions (e.g., system parameters) change
over time. Thus, at every step of the continuous optimization process, the continuous state
obtained is mapped back into a feasible discrete state; based on a realization under this feasible
state, new sensitivity estimates are obtained that drive the surrogate problem to yield the next
continuous state. The proposed scheme, therefore, involves an interplay of sensitivity-driven
iterations and continuous-to-discrete state transformations. The key issue then is to show that
when (and if) an optimal allocation is obtained in the continuous state space, the transformed
discrete state is in fact r∗ in (2).

3

The rest of the paper is organized as follows. In Section 2 we give an overview of our basic
approach. In Section 3 we present the key results enabling us to transform a stochastic discrete
resource allocation problem into a “surrogate” continuous resource allocation problem. In Sec-
tion 4 we discuss the construction of appropriate “surrogate” cost functions for our approach
and the evaluation of their gradients. Section 5 discusses how to recover the solution of the orig-
inal problem from that of the “surrogate” problem. In Section 6 we describe how our approach
generalizes to optimization problems with arbitrary feasible sets. Section 7 presents the detailed
optimization algorithm and analyzes its convergence properties. Some numerical examples and
applications are presented in Section 8.

2 Basic approach for on-line control

In the sequel, we shall adopt the following notational conventions. We shall use subscripts to
indicate components of a vector (e.g., ri is the ith component of r). We shall use superscripts
to index vectors belonging to a particular set (e.g., rj is the jth vector of the same form as r
within a subset of Ad that contains such vectors). Finally, we reserve the index n as a subscript
that denotes iteration steps and not vector components (e.g., rn is the value of r at the nth step
of an iterative scheme, not the nth component of r).

The expected cost function Jd(r) is generally nonlinear in r, a vector of integer-valued decision
variables, therefore (2) is a nonlinear integer programming problem. One common method for
the solution of this problem is to relax the integer constraint on all ri so that they can be
regarded as continuous (real-valued) variables and then apply standard optimization techniques
such as gradient-based algorithms.

Let the “relaxed” set Ac be the convex hull of the original constraint set Ad and define Lc :
Ac × Ω → R be the cost function over a specific sample path. As before let us drop ‘ω’ from
Lc(ρ,ω) and agree on that unless otherwise noted all costs will be over the same sample path. The
resulting “surrogate” problem then becomes: Find ρ∗ that minimizes the “surrogate” expected
cost function Jc : Ac → R over the continuous set Ac, i.e.,

Jc(ρ
∗) = min

ρ∈Ac
Jc(ρ) = min

ρ∈Ac
E[Lc(ρ)] (3)

where ρ ∈ RN+ , is a real-valued state, and the expectation is defined on the same probability
space (Ω,=, P) as described earlier. Assuming an optimal solution ρ∗ can be determined, this
state must then be mapped back into a discrete vector by some means (usually, some form of
truncation). Even if the final outcome of this process can recover the actual r∗ in (2), this
approach is strictly limited to off-line analysis: When an iterative scheme is used to solve the
problem in (3) (as is usually the case except for very simple problems of limited interest), a
sequence of points {ρn} is generated; these points are generally continuous states in Ac, hence
they may be infeasible in the original discrete optimization problem. Moreover, if one has
to estimate E[Lc(ρ)] or

∂E[Lc(ρ)]
∂ρ through simulation, then a simulated model of the surrogate

problem must be created, which is also not generally feasible. If, on the other hand, the only cost
information available is through direct observation of sample paths of an actual system, then

4

there is no obvious way to estimate E[Lc(ρ)] or
∂E[Lc(ρ)]

∂ρ , since this applies to the real-valued ρ,
not the actual cost observable under integer-valued r.

In this paper we propose a different approach intended to operate on line. In particular, we still
invoke a relaxation such as the one above, i.e., we formulate a surrogate continuous optimization
problem with some state space Ac ⊂ RN+ and Ad ⊂ Ac. However, at every step n of the
iteration scheme involved in solving the problem, both the continuous and discrete states are
simultaneously updated through a mapping of the form rn = fn(ρn). This has two advantages:
First, the cost of the original system is continuously adjusted (in contrast to an adjustment
that would only be possible at the end of the surrogate minimization process); and second, it
allows us to make use of information typically needed to obtain cost sensitivities from the actual
operating system at every step of the process.

Before getting into details, we outline below the basic scheme we consider. Initially, we set the
“surrogate system” state to be that of the actual system state, i.e.,

ρ0 = r0 (4)

Subsequently, at the nth step of the process, let Hn(rn,ωn) denote an estimate of the sensitivity
of the cost Jc(ρn) with respect to ρn obtained over a sample path ωn of the actual system
operating under allocation rn; details regarding this sensitivity estimate will be provided later
in the paper. Two sequential operations are then performed at the nth step:

1. The continuous state ρn is updated through

ρn+1 = πn+1[ρn − ηnHn(rn,ωn)] (5)

where πn+1 : RN → Ac is a projection function so that ρn+1 ∈ Ac and ηn is a “step size”
parameter.

2. The newly determined state of the surrogate system, ρn+1, is transformed into an actual
feasible discrete state of the original system through

rn+1 = fn+1(ρn+1) (6)

where fn+1 : Ac → Ad is a mapping of feasible continuous states to feasible discrete states
which must be appropriately selected as will be discussed later.

One can recognize in (5) the form of a stochastic approximation algorithm (e.g., [21]) that
generates a sequence {ρn} aimed at solving (3). However, there is an additional operation
(6) for generating a sequence {rn} which we would like to see converge to r∗ in (2). It is
important to note that {rn} corresponds to feasible realizable states based on which one can
evaluate estimates Hn(rn,ωn) from observable data, i.e., a sample path of the actual system
under rn (not the surrogate state ρn). We can therefore see that this scheme is intended to
combine the advantages of a stochastic approximation type of algorithm with the ability to
obtain sensitivity estimates with respect to discrete decision variables. In particular, sensitivity

5

estimation methods for discrete parameters based on Perturbation Analysis (PA) and Concurrent
Estimation [22],[23] are ideally suited to meet this objective.

Before addressing the issue of obtaining estimates Hn(rn,ωn) necessary for the optimization
scheme described above to work, there are two other crucial issues that form the cornerstones
of the proposed approach. First, the selection of the mapping fn+1 in (6) must be specified.
Second, a surrogate cost function Lc(ρ,ω) must be identified and its relationship to the actual
cost Ld(r,ω) must be made explicit. These issues for a stochastic discrete resource allocation
problem of the form (1)-(2) are discussed next, in Sections 3 and 4 respectively.

3 Continuous-to-discrete state transformations

In order to facilitate the presentation of the main concepts in our approach, we shall limit
ourselves to the discrete feasible set Ad of the form (1), which corresponds to a large class of
resource allocation problems subject to a total capacity constraint. We would like to stress
the fact that our approach is more generally applicable to optimization problems with certain
feasible set structures. We will return to the issue of generality of the approach in Section 6.

We define Ac as the convex hull of Ad:

Ac =

(
ρ :

NX
i=1

ρi = K

)
(7)

Given a vector ρ ∈ RN+ , we begin by specifying a set Fρ of mappings f(ρ) as in (6). To do so,
first define

Iρ = {i | ρi ∈ Z+} (8)

to be the set of components of ρ (i.e., user indices) that are strictly integer. Next, define

f+
i (ρ) =

½
ρi if i ∈ Iρ
dρie otherwise

and f−i (ρ) =
½

ρi if i ∈ Iρ
bρic otherwise

(9)

where, for any x ∈ R, dxe and bxc denote the ceiling (smallest integer ≥ x) and floor (largest
integer ≤ x) of x respectively. Then, let

Fρ = {f | f : Ac → Ad, ∀i fi(ρ) ∈ {f+
i (ρ), f

−
i (ρ)}} (10)

Note that for all f ∈ Fρ and r ∈ Ad, f(r) = r. The purpose of f ∈ Fρ is to transform some
continuous state vector ρ ∈ Ac into a “neighboring” discrete state vector r ∈ Ad obtained
by seeking dρie or bρic for each component i = 1, . . . , N . With this definition of continuous-
to-discrete state transformations, we can now define N (ρ), the set of all feasible neighboring
discrete states of some ρ ∈ Ac:

Definition 1 The set of all feasible discrete neighboring states of ρ ∈ Ac is
N (ρ) = {r | r = f(ρ) for some f ∈ Fρ} (11)

6

A more explicit and convenient characterization of the set N (ρ) is often possible by defining the
residual vector ρ̃ ∈ [0, 1)N of the continuous state ρ, given by

ρ̃ = ρ− bρc (12)

where bρc is the vector whose components are bρci = bρic.

For the case of (7), we set

mρ =
NX
i=1

ρ̃i =
NX
i=1

(ρi − bρic) = K −
NX
i=1

bρic (13)

and note that mρ ∈ Z+ is an integer with the following convenient interpretation: If all users are
assigned bρic resources, then mρ is the total residual resource capacity to be allocated. Recalling
the definition of the set Iρ in (8), let q = |Iρ| be the number of components of ρ with strictly
integer values. Then,

mρ ∈ {0, . . . , N − q − 1} (14)

Therefore, Fρ may be interpreted as a set of mappings that allocate mρ residual resources over
all i /∈ Iρ in addition to a fixed integer bρic already assigned to i. Let us then define

r̃j(ρ) = [r̃j1, ..., r̃
j
N]
0, with r̃ji ∈ {0, 1}

to be the jth discrete residual vector corresponding to some given ρ which satisfies

NX
i=1

r̃ji = mρ and r̃
j
i = 0 for i ∈ Iρ

Thus, r̃j(ρ) is an N-dimensional vector with components 0 or 1 summing up to mρ. It is easy
to see that the number of such distinct vectors, and hence the cardinality of the set N (ρ), is

|N (ρ)| =
µ
N − q
mρ

¶
(15)

It follows that we can write, for all f j ∈ Fρ,
f j(ρ) = bρc+ r̃j(ρ) (16)

In order to clarify the notation, we consider the following example, which we will use throughout
our analysis:

Example: Consider the allocation problem of K = 20 resources over N = 4 users, and let
ρ = [1.9, 9.1, 6.1, 2.9]0. The feasible set is

Ac =

(
ρ :

NX
i=1

ρi = 20

)
(17)

Since bρc = [1, 9, 6, 2]0, we have ρ̃ = [0.9, 0.1, 0.1, 0.9]0 and mρ =
PN
i=1 ρ̃i = 2. Note that since ρ

does not have any integer components, Iρ is empty and q = 0.

7

The residual discrete vectors and the corresponding discrete neighbors, using (16), are

r̃1(ρ) = [1, 1, 0, 0]0 ⇒ f1(ρ) = [2, 10, 6, 2]0, r̃2(ρ) = [1, 0, 1, 0]0 ⇒ f2(ρ) = [2, 9, 7, 2]0

r̃3(ρ) = [1, 0, 0, 1]0 ⇒ f3(ρ) = [2, 9, 6, 3]0, r̃4(ρ) = [0, 1, 1, 0]0 ⇒ f4(ρ) = [1, 10, 7, 2]0

r̃5(ρ) = [0, 1, 0, 1]0 ⇒ f5(ρ) = [1, 10, 6, 3]0, r̃6(ρ) = [0, 0, 1, 1]0 ⇒ f6(ρ) = [1, 9, 7, 3]0

Therefore,

N (ρ) = {[2, 10, 6, 2]0, [2, 9, 7, 2]0, [2, 9, 6, 3]0, [1, 10, 7, 2]0, [1, 10, 6, 3]0, [1, 9, 7, 3]0}

Note that |N (ρ)| = ¡N−qmρ

¢
=
¡

4
2

¢
= 6.

The following theorem is the main result of this section and it establishes the fact that any
ρ ∈ Ac can be expressed as a convex combination of points r ∈ N (ρ).

Theorem 3.1 Any ρ ∈ Ac is a convex combination of its discrete feasible neighboring states,
i.e., there exists a vector α such that

ρ =
MX
j=1

αjr
j, with

MX
j=1

αj = 1, αj ≥ 0 for all j = 1, ..,M

where M = |N (ρ)| and rj ∈ N (ρ), j = 1, . . . ,M .

Proof. Consider the residual vectors ρ̃ = ρ− bρc with PN
i=1 ρ̃i = mρ ≤ N , in which case the

feasible neighboring state set N (ρ̃) consists of the vectors

r̃j = rj − bρc , j = 1, ...,M

Let e be anM-dimensional vector with all entries equal to 1. Then, consider the Linear Program
(LP)

min
α
e0α s.t. R̃α = ρ̃, α ≥ 0 (18)

where R̃ = [r̃1, ..., r̃M] is the N ×M matrix with all discrete feasible states in N (ρ̃) as columns.
The dual LP problem is

max
γ
γ0ρ̃ s.t. γ0R̃ ≤ e0

Note that in this dual problem, the constraint requires the sum of any mρ components (whose
indices are not in Iρ) of the dual vector γ to be less than or equal to 1. Since all components of
ρ̃ are nonnegative, the dual optimal vector γ∗ must make the constraint active, i.e., γ∗0R̃ = e0;
otherwise, increasing any component of γ whose index is not in Iρ increases the value of γ

0ρ̃. It
is then easy to verify that γ0R̃ = e0 yields an N-dimensional dual optimal vector

γ∗i =
½ 1

mρ
i /∈ Iρ

0 otherwise

8

Therefore, the optimal cost of the dual problem is (γ∗)0 ρ̃ = 1 which is equal to the optimal cost
of the primal problem, i.e., e0α =

PM
j=1 αj = 1. Hence, the primal problem is feasible and there

exists a solution α such that

ρ̃ = R̃α =
MX
j=1

αj r̃
j , α ≥ 0,

MX
j=1

αj = 1

Finally, returning to the original vector ρ, we get

ρ = ρ̃+ bρc =
MX
j=1

αj r̃
j +

MX
j=1

αj bρc

=
MX
j=1

αj (r̃
j + bρc) =

MX
j=1

αjr
j (19)

which completes the proof.

Remark. Note that since ρ̃ = R̃α =
PM
j=1 R̃jαj, it follows that

NX
i=1

ρ̃i =
NX
i=1

MX
j=1

R̃ijαj =mρ

Therefore,
PM
j=1mραj = mρ, which implies that

PM
j=1 αj = 1, i.e., all feasible points in (18) are

optimal.

Theorem 3.1 asserts that every ρ ∈ Ac belongs to conv(N (ρ)), the convex hull of the feasible
neighboring state set N (ρ) defined in (11). We can further limit the set of states over which
such a convex combination can be formed as follows.

Corollary 3.1 Any ρ ∈ Ac is a convex combination of at most N−q discrete feasible neighboring
states, i.e., there exists a vector α such that

ρ =

N−qX
j=1

αjr
j with

N−qX
j=1

αj = 1, αj ≥ 0 for all j = 1, ..,N (20)

where rj ∈ N (ρ), j = 1, . . . , |N (ρ)|, q = |Iρ|.

Proof. The feasibility constraint (7) and the constraints

rji = ρi for i ∈ Iρ and j = 1, . . . , |N (ρ)|
reduce the dimensionality of our space from RN to RN−q−1. By Caratheodory’s fundamental
theorem [24], every point in the convex hull of a set S in RN is a convex combination of N+1 or
fewer points of S. Using this theorem, we conclude that ρ can be written as a convex combination
of at most N − q discrete feasible neighbors rj .

Based on this corollary, we define a subset of N (ρ) in (11) as follows:

9

Definition 2 NN−q(ρ) is a subset of N (ρ) that contains N −q (with q = |Iρ|) linearly indepen-
dent discrete neighboring states whose convex hull includes ρ.

The existence of this set is guaranteed by the previous corollary and it plays a crucial role in
our approach, because the mapping fn(ρn) that we select in (6) will be an element of NN−q(ρn).
Therefore, it is important to be able to identify N − q elements of N (ρ) that satisfy (20), and
hence determine NN−q(ρn). The Simplex Method (e.g., see [24]) of Linear Programming (LP)
provides one way to accomplish this as follows. We define R = [r1 ...rM] as the N ×M matrix
with all discrete feasible states in N (ρ) as columns and solve the following LP problem

min
s
e0s s.t. [R I]

·
α
s

¸
= ρ, α, s ≥ 0 (21)

with the initial basic feasible solution [α0 s0]0 = [0 ρ
0] to start the Simplex. Since we know (by

Theorem 3.1) that Rα = ρ, α ≥ 0 has a solution, we can drive s components to zero. The non-
zero components of the resulting basic feasible solution are associated with vectors r ∈ N (ρ)
and they are linearly independent by the Simplex Method. The set NN−q(ρ) will be formed by
these vectors. Note that NN−q(ρ) is not unique because different column and row selections are
possible in the Simplex Method.

Given this “reduced” set of discrete feasible neighbors of ρ, NN−q(ρ), we restrict our original
set of continuous-to-discrete transformations Fρ in (10) to

Fρ = {f : f(ρ) ∈ NN−q(ρ)}
Note that when the continuous state is ρn, the continuous-to-discrete mapping fn will be an
element of Fρn. In order to clarify the new notation let us continue with the previous example:

Example (Continued): Recall that q = |Iρ| was zero, therefore NN−q(ρ) = N4(ρ) will have 4
elements from the previously obtained set

N (ρ) = {[2, 10, 6, 2]0, [2, 9, 7, 2]0, [2, 9, 6, 3]0, [1, 10, 7, 2]0, [1, 10, 6, 3]0, [1, 9, 7, 3]0}
To determine a set N4(ρ), we can write ρ as

ρ = [1.9, 9.1, 6.1, 2.9]0 = 0.1[2, 10, 6, 2]0 + 0.8[2, 9, 6, 3]0 + 0.1[1, 9, 7, 3]0

which is a convex combination of only three elements of N (ρ). Since [2, 9, 7, 2]0 is linearly
independent of these three discrete neighbors, N4(ρ) can be selected to be

N4(ρ) = {[2, 10, 6, 2]0, [2, 9, 6, 3]0, [1, 9, 7, 3]0, [2, 9, 7, 2]0} (22)

Alternatively,
ρ = 0.1[2, 9, 7, 2]0 + 0.8[2, 9, 6, 3]0 + 0.1[1, 10, 6, 3]0

and [1, 9, 7, 3]0 is linearly independent of these three discrete neighbors, so another possible N4(ρ)
is

N4(ρ) = {[1, 10, 6, 3]0, [2, 9, 6, 3]0, [1, 9, 7, 3]0, [2, 9, 7, 2]0} (23)

It should be clear that NN−q(ρ) may not be unique.

10

4 Construction of surrogate cost functions and their gradients

Since our approach is based on iterating over the continuous state ρ ∈ Ac, yet drive the iteration
process with information involving Ld(r) obtained from a sample path under r, we must establish
a relationship between Ld(r) and Lc(ρ). The choice of Lc(ρ) is rather flexible and may depend
on information pertaining to a specific model and the nature of the given cost Ld(r).

As seen in the previous section, it is possible that some components of ρ are integers, in which
case the set Iρ is non-empty and we have q = |Iρ| > 0. In order to avoid the technical com-
plications due to such integer components, let us agree that whenever this is the case we will
perturb these components to obtain a new state ρ̂ such that Iρ̂ = ∅. In what follows, we will
assume that all states ρ either have Iρ = ∅ or have already been perturbed and relabeled ρ so
that Iρ = ∅. Since q is going to be zero, we will rename NN−q(ρ) as NN(ρ).

We shall select a surrogate cost function Lc(ρ) to satisfy the following two conditions:

(C1): Consistency: Lc(r) = Ld(r) for all r ∈ Ad.

(C2): Piecewise Linearity: Lc(ρ) is a linear function of ρ over conv(NN (ρ)).

Consistency is an obvious requirement for Lc(ρ). Piecewise linearity is chosen for convenience,
since manipulating linear functions over conv(NN(ρ)) simplifies analysis, as will become clear
in the sequel.

Given some state ρ ∈ Ac and cost functions Ld(rj) for all rj ∈ NN(ρ), it follows from (C2) and
(20) in Corollary 3.1 that we can write

Lc(ρ) =
NX
j=1

αjLc(r
j)

with
PN
j=1 αj = 1, αj ≥ 0 for all j = 1, ..,N . Moreover, by (C1), we have

Lc(ρ) =
NX
j=1

αjLd(r
j) (24)

that is, Lc(ρ) is a convex combination of the costs of N discrete feasible neighbors. Note that
Lc(ρ) depends on NN(ρ), which may not be unique therefore, Lc(ρ) may not be unique.

Next, if we are to successfully use the iterative scheme described by (5)-(6), we need information
of the form Hn(rn,ωn) following the nth step of the on-line optimization process. Typically,
this information is contained in an estimate of the gradient. Our next objective, therefore, is to
seek the sample gradient ∇Lc(ρ) expressed in terms of directly observable sample path data.

11

4.1 Gradient evaluation

Since Lc(ρ) is a linear function on the convex hull defined by the N discrete neighbors in (24),
one can write

Lc(ρ) =
NX
i=1

βiρi + β0 (25)

for some βi ∈ R, i = 0, ...,N . Moreover, due to the linearity of Lc(ρ) in conv(NN(ρ)), we have

βi =
∂Lc
∂ρi

, i = 1, ..., N (26)

Note that the βi values depend on the selection of NN(ρ) which, as already pointed out, may
not be unique.

For any discrete feasible neighboring state rj ∈ NN(ρ), one can use (25) and (C1) to write

Ld(r
j) =

NX
i=1

βir
j
i + β0, j = 1, . . . ,N (27)

Letting
∇Lc(ρ)0 = [β1, . . . ,βN]

be the gradient of Lc(ρ), our objective is to obtain an expression for β1, . . . ,βN (not β0) in terms
of Ld(r

j). Note that Ld(r
j) are costs that can be evaluated at feasible states rj ∈ NN (ρ). These

may be obtained by direct simulation; however, they are not available if a system is operating on
line under one of these states, say r1. This is where techniques such as Concurrent Estimation
and Perturbation Analysis mentioned earlier can be used to facilitate this task.

To obtain expressions for β1, . . . ,βN in terms of Ld(r
j), let r1 be the current state of the system

(without loss of generality), and define

δj,1i = rji − r1
i =


−1 if r1

i > r
j
i

1 if r1
i < r

j
i

0 otherwise

(28)

and
∆Lj,1 = Ld(r

j)− Ld(r1) (29)

for all i = 1, . . . ,N and j = 2, . . . , N . Using (27), the last equation can be rewritten as

∆Lj,1 =
NX
i=1

βi(r
j
i − r1

i) =
NX
i=1

βiδ
j,1
i (30)

If all Ld(r
j) in (29) are observable, then (30) provides N − 1 linearly independent equations

for the N variables β1, . . . ,βN . An additional equation is obtained as follows. Recall (5) with
Hn(rn,ωn) = ∇Lc(ρn):

ρn+1 = πn+1[ρn − ηn∇Lc(ρn)]

12

and let
ρ̄n+1 = ρn − ηn∇Lc(ρn)

be an “intermediate” state prior to applying the projection πn+1. In order to force ρ̄n+1 to
satisfy the total capacity constraint (7), i.e.,

NX
i=1

¡
ρ̄n+1

¢
i
=

NX
i=1

(ρn)i − ηn
NX
i=1

∂Lc(ρn)

ρi
= K

we require that
NX
i=1

∂Lc(ρn)

ρi
=

NX
i=1

βi = 0 (31)

Note that this additional equation is particularly convenient because it allows us to use an
identity mapping for the projection πn+1, i.e., ρn+1 = ρ̄n+1 ∈ Ac, provided that ηn is selected
small enough to maintain the additional component constraints 0 ≤ ¡

ρ̄n+1

¢
i
≤ K for all i =

1, ...,N .

The combination of (30) and (31) provides N equations used to determine unique β1, . . . ,βN .
Specifically, define the (N − 1)-dimensional vector

∆L0 =
£
∆L2,1, . . . ,∆LN,1

¤
whose components were defined in (29), and the (N − 1)×N matrix

∆R =

 δ2,1
1 · · · δ2,1

N
...

...

δN,11 · · · δN,1N


whose rows are the vectors δj,1 =

h
δj,11 , · · · , δj,1N

i0
as defined in (28). Therefore, given r1 and

some NN (ρ), ∆R is fixed. We then get from (30) and (31):·
∆R
e0

¸
∇Lc(ρ) =

·
∆L
0

¸
where e, as before, is an N-dimensional vector with all entries equal to 1. It follows that

∇Lc(ρ)=
·
∆R
e0

¸−1 ·
∆L
0

¸
(32)

Therefore, ∇Lc(ρ), the sample gradient to be used as an estimate of ∇Jc(ρ) in (3), is obtained
through the N costs Ld(r

1), . . . , Ld(r
N). The sample path at our disposal corresponds to one

of the state vectors, which we have taken to be r1 ∈ NN (ρ), so that Ld(r1) is observable; the
remaining N − 1 costs therefore need to be obtained by some other means. One possibility is to
perform N − 1 simulations, one for each of these states. This, however, is not attractive for an
on-line methodology. Fortunately, there exist several techniques based on Perturbation Analysis
(PA) [22],[23] or Concurrent Estimation [1], which are ideally suited for this purpose; that is,
based on observations of a sample path under ri, one can evaluate Ld(r

j) for states rj 6= ri

13

with limited extra effort. The efficiency of these techniques depends on the nature of the system
and cost function. In the next section, we will examine a specific class of problems where the
evaluation of ∇Lc(ρ) in (32) is greatly simplified and standard PA techniques may be used to
evaluate neighboring state costs with minimal effort.

Example (Continued): Consider the previous allocation problem of K = 20 resources over
N = 4 users so as to minimize the cost function

Jd(r) = −
NY
i=1

ri

Assume that the current continuous state is ρ = [1.9, 9.1, 6.1, 2.9]0 and the discrete state obtained
through some mapping f(ρ) ∈ Fρ is r = [2, 9, 6, 3]0. We previously obtained two different possible
N4(ρ) sets. Let us use the one in (22):

N4(ρ) = {[2, 10, 6, 2]0, [2, 9, 6, 3]0, [1, 9, 7, 3]0, [2, 9, 7, 2]0}
with α = [0.1, 0.8, 0.1, 0.0]. The continuous cost function Jc(ρ) is defined as

Jc(ρ) =
NX
j=1

αjJd(r
j) = −(24 + 259.2 + 18.9) = −302.1

and using (32):

∇Jc(ρ) =

·
∆R
e0

¸−1 ·
∆J
0

¸

=


0 1 0 −1
−1 0 1 0
0 0 1 −1
1 1 1 1


−1 

84
135
72
0

 =

−86.25
60.75
48.75
−23.25

 (33)

If, on the other hand, we use the set in (23):

N4(ρ) = {[1, 10, 6, 3]0, [2, 9, 6, 3]0, [1, 9, 7, 3]0, [2, 9, 7, 2]0}
with α = [0.1, 0.8, 0.0, 0.1] then,

Jc(ρ) =
NX
j=1

αjJd(r
j) = −302.4

and

∇Jc(ρ) =

·
∆R
e0

¸−1 ·
∆J
0

¸

=


−1 1 0 0
−1 0 1 0
0 0 1 −1
1 1 1 1


−1 

144
135
72
0

 =

−85.5
58.5
49.5
−22.5

 (34)

14

This example illustrates the fact that ∇Lc(ρ) is generally not unique, since it depends on the
selected (not necessarily unique) set NN(ρ), and serves to highlight the flexibility inherent in our
approach. As we shall see in Section 5, regardless of the choice of NN (ρ) throughout each step
of the iterative process (5)-(6), the optimal state r∗ is recovered from the state ρ∗, the solution
of the surrogate problem (3).

Finally, note that the properties of ∇Lc(ρ) in (32) as an estimator of ∇Jc(ρ) reduce to the basic
stochastic properties of the system itself: Since ∇Lc(ρ) is simply a linear combination of costs
Ld(r

1), . . . , Ld(r
N), ∇Lc(ρ) is a strongly consistent estimator of ∇Jc(ρ) as long as standard

ergodicity conditions are satisfied.

4.2 Separable cost functions

Suppose that the cost function, Ld(·), is separable in the sense that it is a sum of component
costs each dependent on its local state only, i.e., let

Ld(r) =
NX
i=1

Ld,i(ri) (35)

In this case, our approach is significantly simplified and is easily applicable to arbitrary constraint
sets as we will see in Theorem 4.1. We begin with a technical lemma, which holds regardless of
the nature of Ld(·).

Lemma 4.1 If ρ =
PN
j=1 αjr

j, where rji ∈ {bρic , dρie} and
PN
j=1 αj = 1, then the ith compo-

nent of the residual vector of ρ, can be written as

ρ̃i = ρi − bρic =
NX
j=1

rji=bρic+1

αj

Proof. Since ρ =
PN
j=1 αjr

j , we have ρi =
PN
j=1 αjr

j
i and it follows that

ρ̃i = ρi − bρic =
NX
j=1

αj(r
j
i − bρic)

Since rji ∈ {bρic , dρie}, we get

ρ̃i =
NX
j=1

rji=bρic

αj(r
j
i − bρic) +

NX
j=1

rji=bρic+1

αj(r
j
i − bρic) =

NX
j=1

rji=bρic+1

αj

which completes the proof.

Note that in the lemma a state rj is not required to be feasible and the existence of such states is
still guaranteed by Theorem 3.1 and Corollary 3.1. Thus, expressing ρ in the form ρ =

PN
j=1 αjr

j

with
PN
j=1 αj = 1 is always possible. Using this lemma, one can prove the following:

15

Theorem 4.1 If Ld(·), is separable and ρ =
PN
j=1 αjr

j where rji ∈ {bρic , dρie} and
PN
j=1 αj =

1, then
∂Lc
∂ρi

= Ld,i(bρic+ 1)− Ld,i(bρic) (36)

and

Lc(ρ) = Ld(r) +
NX
i=1

(ρi − ri)[Ld,i(bρic+ 1)− Ld,i(bρic)] (37)

for any discrete feasible neighbor r.

Proof. Suppose that the current feasible state is r when the surrogate state is ρ. Using (24)
and (35),

Lc(ρ) =
NX
j=1

αjLd(r
j) =

NX
j=1

NX
i=1

αjLd,i(r
j
i)

=
NX
j=1

NX
i=1

αj [Ld,i(r
j
i)− Ld,i(bρic)] +

NX
j=1

NX
i=1

αjLd,i(bρic)

=
NX
i=1

NX
j=1

αj [Ld,i(r
j
i)− Ld,i(bρic)] +

NX
i=1

Ld,i(bρic)

Since rji ∈ {bρic , dρie},

Lc(ρ) =
NX
i=1

NX
j=1

rji=bρic+1

αj [Ld,i(bρic+ 1)− Ld,i(bρic)] +
NX
i=1

NX
j=1

rji=bρic

αj[Ld,i(bρic)− Ld,i(bρic)]

+
NX
i=1

Ld,i(bρic)

=
NX
i=1


NX
j=1

rji=bρic+1

αj

 [Ld,i(bρic+ 1)−Ld,i(bρic)] +
NX
i=1

Ld,i(bρic)

By Lemma 4.1,

Lc(ρ) =
NX
i=1

ρ̃i[Ld,i(bρic+ 1)− Ld,i(bρic)] +
NX
i=1

Ld,i(bρic)

Adding and subtracting the cost at the current feasible point we get

Lc(ρ) =
NX
i=1

ρ̃i[Ld,i(bρic+ 1)− Ld,i(bρic)] +
NX
i=1

Ld,i(bρic)− Ld(r) + Ld(r)

16

¿From (35) it follows that

Lc(ρ) = Ld(r) +
NX
i=1

[ρ̃iLd,i(bρic+ 1)− ρ̃iLd,i(bρic) +Ld,i(bρic)− Ld,i(ri)]

Since r is a feasible neighbor,

Lc(ρ) = Ld(r) +
NX
i=1

ri=bρic+1

(ρ̃i − 1)[Ld,i(bρic+ 1)−Ld,i(bρic)]

+
NX
i=1

ri=bρic

ρ̃i[Ld,i(bρic+ 1)− Ld,i(bρic)]

Observe that ρ̃i − 1 = ρi − (bρic+ 1) = ρi − ri when ri = bρic+ 1. Similarly, when ri = bρic we
get ρ̃i = ρi − bρic = ρi − ri. Thus,

Lc(ρ) = Ld(r) +
NX
i=1

ri=bρic+1

(ρi − ri)[Ld,i(bρic+ 1)− Ld,i(bρic)]

+
NX
i=1

ri=bρic

(ρi − ri)[Ld,i(bρic+ 1)− Ld,i(bρic)]

= Ld(r) +
NX
i=1

(ρi − ri)[Ld,i(bρic+ 1)− Ld,i(bρic)]

Therefore, (36) immediately follows:

∂Lc
∂ρi

= Ld,i(bρic+ 1)− Ld,i(bρic)

Note that the theorem is proven for arbitrary feasible sets, not necessarily of the form (7).

In order to evaluate ∂Lc
∂ρi

while operating at a discrete neighbor r, one will need to evaluate the
effect of decreasing or increasing the number of resources allocated to user i. There is a number
of PA techniques developed precisely for this type of sensitivity estimation problem; for example,
estimating the sensitivity of packet loss in a radio network with respect to adding/removing a
transmission slot available to the ith user [4],[25]. In [26] a PA technique is used together
with our methodology to solve a call admission problem (with a separable cost function) over a
communication network where there are capacity constraints on each node, but there is no total
capacity constraint for the network. This set of constraints define a different type of feasible set
than the one considered so far in this paper.

17

5 Recovery of optimal discrete states

Our ultimate goal remains the solution of (2), that is the determination of r∗ ∈ Ad that solves
this optimization problem. Our approach is to solve (3) by iterating on ρ ∈ Ac and, at each
step, transforming ρ through some f ∈ Fρ. The connection between ρ and r = f (ρ) for each
step is therefore crucial, as is the relationship between ρ∗ and f(ρ∗) when and if this iterative
process comes to an end identifying a solution ρ∗ to the surrogate problem (3). The following
theorem identifies a key property of feasible neighboring states of an optimal surrogate state ρ∗.

Theorem 5.1 Let ρ∗ minimize Lc(ρ) over Ac. Then, there exists a discrete feasible neighboring
state r∗ ∈ NN(ρ∗) which minimizes Ld(r) over Ad and satisfies Ld(r∗) = Lc(ρ∗)

Proof. We begin by noting that Ad ⊂ Ac and Lc(r) = Ld(r) for any r ∈ Ad. Therefore, if

Ld(r
∗) = min

r∈Ad
Ld(r) (38)

then
Ld(r

∗) ≥ Lc(ρ∗) (39)

The optimal surrogate state ρ∗ satisfies

Lc(ρ
∗) = min

ρ∈Ac
Lc(ρ) =

NX
j=1

αjLc(r
j) =

NX
j=1

αjLd(r
j)

where we have used (24), to write Lc(ρ) as a convex combination of the costs of N feasible
discrete neighboring states rj ∈ NN(ρ). Thus,

PN
j=1 αj = 1, αj ≥ 0 for j = 1, .., N .

Let s ∈ {1, .., N} be such that
Ld(r

s) = min
j=1,..,N

Ld(r
j) (40)

Then,

Lc(ρ
∗) =

NX
j=1

αjLd(r
j) ≥

NX
j=1

αjLd(r
s) = Ld(r

s)

In view of (39), we then get
Ld(r

s) ≤ Lc(ρ∗) ≤ Ld(r∗)
and since Ld(r

∗) ≤ Ld(rs) from (38), it also follows that

Ld(r
∗) = Lc(ρ∗) = Ld(rs)

that is, rs is optimal over Ad. Finally, since r
s is one of N discrete feasible neighboring states

of ρ∗, we have rs = f(ρ∗) for some f ∈ Fρ∗ .

Example (Continued): Let us return to our earlier allocation problem of K = 20 resources
over N = 4. Using our iterative procedure (5)-(6) with a gradient obtained through either (33)

18

or (34), if an appropriate step size sequence is selected, the continuous state ρ converges to a
point that satisfies Theorem 5.1 and has the optimal allocation [5, 5, 5, 5]0 in its neighborhood.
To illustrate this, using (33) and ηn =

0.05
n+1 , the states evolve as follows:

Iteration n ρ0n r0n Cost

0 [1.9, 9.1, 6.1, 2.9] [2, 9, 6, 3] −324
1 [6.2125, 6.0625, 3.6625, 4.0625] [6, 6, 4, 4] −576
2 [5.5375, 5.3875, 4.7875, 4.2875] [6, 5, 5, 4] −600
3 [5.3292, 5.1792, 4.9958, 4.4958] [5, 5, 5, 5] −625

6 Generalization to arbitrary feasible sets

We considered above optimization problems over a feasible set determined by the total capacity
constraint (7), but stressed the fact that our method is applicable to optimization problems with
certain feasible set structures. Specifically, this method is applicable to any feasible set as long
as any feasible surrogate state can be written as a convex combination of its feasible discrete
neighbors. In this case, using Caratheodory’s fundamental theorem [24] one can form a ‘reduced’
discrete neighbor set (e.g., NN(ρ) for the total capacity constraint case). One element of this
set will be the operating point for the discrete system and Concurrent Estimation [1] (or related
techniques) will yield cost estimates for the other elements. Given the points and their cost
estimates, a subset of a hyperplane will be formed on which sensitivity can be estimated. Then,
the surrogate state will be updated as in (5). During the update, feasibility will be preserved
by choosing an appropriate projection mapping π, which typically maps to the closest point on
the feasible set. This approach has been applied, e.g., to the ‘lot sizing’ problem common in
manufacturing systems [27], and is illustrated in the next example.

Example: Consider the following Nonlinear Integer Programming Problem:

min
x,y∈Z

J = max((x− 2)2, (y − 1)2) (41)

Note that this problem has a unique optimal point at (2, 1). The feasible set Ad is Z2, therefore,
the relaxed set Ac will be R2. All points in R2 can be written as a convex combination of the
discrete neighbors. In particular, one can show that each surrogate state ρ will fall within a
‘square’ formed by discrete neighbors, and by Caratheodory’s Theorem, three of those vertices
will form a triangle that includes ρ (this argument extends to Ac = RN where N + 1 neighbors
will suffice.)

Let us assume that the current surrogate state is ρn = (2.5, 3.1). One can write

(2.5, 3.1) = 0.4(2, 3) + 0.5(3, 3) + 0.1(2, 4)

therefore, the three neighbors are determined. The costs at these points are J(2, 3) = 4, J(3, 3) =
4, and J(2, 4) = 9. In Figure 1, costs of some feasible points are plotted and the triangular
segment formed by these three neighbors is shown. All points on this plane segment satisfy

J = β0 +∇J • ρ

19

Figure 1: Plane segment for the nth iteration

If the operating point is (2, 3), then the gradient is obtained from ∆J = ∇J ·∆ρ with ∂J∂ρ1
= 4−4

and ∂J
∂ρ2

= 9− 4, and we get
∇J =

·
0
5

¸
Once the sensitivity information is acquired, the gradient-descent method with projection up-
dates both the surrogate and the discrete states.

Finally, if the cost function at hand is separable, the method is simplified, as we saw in Section
4.2, in that we do not need to form the ‘reduced’ set. Instead, a feasible discrete neighbor is
found and we only need to estimate sensitivities so as to use Theorem 4.1 directly. Then, the
continuous state is updated as in (5). During the update, feasibility is preserved by choosing an
appropriate projection π, which typically maps to the closest point on the feasible set.

7 Optimization Algorithm

Summarizing the results of the previous sections and combining them with the basic scheme
described by (5)-(6), we obtain the following optimization algorithm for the solution of the basic
problem in (2):

• Initialize ρ0 = r0

• For any iteration n = 0, 1, . . .:

1. Perturb ρn so that Iρn = ∅.
2. Determine N (ρn) [using (9)-(11)].

20

3. Determine NN(ρn) [using the Simplex Method as described in the last part of Section
3]; recall that this set is generally not unique.

4. Select fn ∈ Fρn such that rn = fn(ρn) = argminr∈NN (ρn) kr − ρnk.
5. Operate at rn to collect Ld(r

i) for all ri ∈ NN (ρn) [using Concurrent Estimation or
some form of Perturbation Analysis; or, if feasible, through off-line simulation].

6. Evaluate ∇Lc(ρn) [using (32)].
7. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].
8. If some stopping condition is not satisfied, repeat steps for n+1. Else, set ρ∗ = ρn+1.

• Obtain r∗ as one of the neighboring feasible states in the set NN(ρ∗).

The last step to obtain r∗ follows from Theorem 5.1, where it was shown that if the solution
ρ∗ of the surrogate problem is obtained, then the solution r∗ of the original problem is easily
obtained as one of the neighboring feasible states in the set NN (ρ∗). Also, note that the choice
of fn ∈ Fρn in step 4 is arbitrary; the specific choice shown above is made for convenience and
has the interpretation of being the “nearest” neighbor in a Euclidean sense.

Note that for separable cost functions, steps 1-8 can be replaced by

1. Perturb ρn so that Iρn = ∅.
2. Select fn such that rn = fn(ρn) = argminr∈Ad kr − ρnk.
3. Operate at rn to evaluate ∇Lc(ρn) using Perturbation Analysis and (36).
4. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].
5. If some stopping condition is not satisfied, repeat steps for n+ 1. Else, set ρ∗ = ρn+1.

7.1 Convergence analysis

Since the solution r∗ of the original problem can be obtained from ρ∗, we now concentrate on
the convergence analysis of the algorithm above, and specifically the iteration in step 7. For
unconstrained optimization problems, this iteration is of the general form

ρn+1 = ρn − ηnH(rn,ω)
= ρn − ηnH(fn(ρn),ω)
= ρn − ηn[h(ρn) + εn+1] (42)

where h(ρn) is the cost sensitivity when the state is ρn ∈ Ac, H(fn(ρn),ω) is the estimated sen-
sitivity obtained from a sample path ω under a discrete feasible state rn = fn(ρn), and εn+1 =
H(rn,ω) − h(ρn) is the estimation error. Theorems dealing with the convergence of stochas-
tic algorithms in such form have appeared in the literature see, for example, [21],[11],[28],[29],
[30], [31]. These theorems give conditions for a.s. convergence of {ρn} to some ρ∗, where

21

h(ρ∗) = 0. In our formulation, the cost sensitivity is given by the N-dimensional vector
h(ρn) = [h1(ρn), ..., hN (ρn)] with h : Ac → R, and the estimated cost sensitivity is H(rn,ω) =
[H1(rn,ω), ..., HN (rn,ω)], where

hi(ρn) =
∂Jc (ρ)

∂ρi
|ρ=ρn (43)

Hi(rn,ω) = Hi(fn(ρn),ω) =
∂Lc (ρ)

∂ρi
|ρ=ρn (44)

Our objective is to find ρ∗ that minimizes the cost function Jc(·). Note that cost functions Jc
and Lc are piecewise linear, hence hi(ρn) and Hi(fn(ρn),ω) are not defined at the integer points.
Also, note that h and H are lower semicontinuous functions.

In order to deal with arbitrary feasible sets where ρ may be constrained, the recursive process
takes the form

ρn+1 = πn+1 [ρn − ηn[h(ρn) + εn+1]] (45)

where the projection πn+1[·] is such that

πn+1[ρ̄] = ρn+1 = arg min
ρ∈Ac

kρ̄− ρk (46)

Convergence of the projected algorithm has also been considered in the literature (e.g., [32],[33]).
In this paper we shall follow a very similar line of proof based on results from martingale con-
vergence arguments, a method that seems to have originated with Gladyshev [28]. This requires
an appropriately decreasing step size sequence; alternatively, one may pursue an approach using
a finite step size but increasing estimation intervals (e.g., [34],[35]).

Let {=n} represent the information available up to the time of the nth iteration, so that {=n} is
an increasing sequence of σ-algebras to which {εn}, {ηn} and {ρn} are adapted. We let k.k denote
the standard Euclidean norm on RN . The assumptions that we will need for the convergence
theorem are the standard ones found in the literature (e.g., [32], [33]) except for (H1) and they
are as follows:

Assumptions on h(ρ):

(H1) There exists a unique optimal ρ∗ ∈
◦
Ac, where

◦
Ac denotes the interior of Ac, which satisfies

the following conditions:

• For i = 1, . . . ,N , hi(ρ) ≤ 0 when ρi ≤ ρ∗i and hi(ρ) ≥ 0 when ρi ≥ ρ∗i .
• If ρ 6= ρ∗ then there exists at least one i such that ρi 6= ρ∗i and hi(ρ) 6= 0.

(H2) supρ∈Ac kh(ρ)k <∞

Assumptions on {ηn}:

(A1)
P∞
n=1 ηn =∞ a.s.

22

(A2)
P∞
n=1 η

2
n <∞ a.s.

Assumptions on {εn}:

(E1)
P∞
i=1 ηi kE(εi+1|=i)k <∞ a.s.

(E2) For all n, E(kεn+1k2 |=n) ≤ σ2
n for some sequence of random variables {σn} adapted to

{=n} such that
P∞
n=1 σ

2
nη

2
n <∞ a.s.

Assumptions (A1)-(A2) are easily satisfied by choosing an appropriate sequence {ηn}. As-
sumptions (E1)-(E2) depend on the properties of the estimator used for H(rn,ω). As we have
seen in Section 4, the estimators used in our approach are based on finite differences and, there-
fore, are characterized by properties such as unbiasedness and consistency under mild conditions
on the cost function and the stochastic properties of the underlying system (i.e., ergodicity).
Thus, these assumptions are not restrictive. Regarding (H1)-(H2), the latter is not restrictive,
as the choice of Ac typically guarantees it; the former is required to guarantee uniqueness and
relaxing it leads to possible convergence to a local, rather than global, optimum.

The following lemma due to Neveu [36] is instrumental in the proof of the main convergence
result:

Lemma 7.1 Let {Tn}, {αn}, {βn} be sequences of nonnegative random variables adapted to an
increasing sequence of σ-algebras {=n} such that

E(Tn+1|=n) ≤ Tn − αn + βn (47)

If
P∞
n=1 βn <∞ a.s., then Tn converges a.s. to a finite random variable T, and

P∞
n=1 αn <∞

a.s.

Proof. See [36], p.33.

Theorem 7.1 (Convergence) Assume (H1),(H2),(A1),(A2),(E1),(E2) are satisfied. Sup-
pose there exists a twice-differentiable nonnegative function U : RN → R such that

(U1) For all ρ ∈ Ac, ∇Ui(ρ)hi(ρ) ≥ 0

(U2) For ρ ∈ Ac, ∇Ui(ρ) = 0 iff ρi = ρ∗i , where ρ∗is the unique minimizer of U on Ac.

(U3) For all n and all ρ ∈ RN , U(πn+1(ρ)) ≤ U(ρ)

(U4) For all ρ ∈ RN ,
°°∇2U(ρ)

°° ≤ ν, for some ν ∈ R.

Let {ρn} be defined by (45), with ρ0 ∈ Ac (initial condition) arbitrary. Then ρn → ρ∗ as n→∞
with probability 1.

Proof. The proof follows the same lines as similar results in the literature, e.g., [32], and is
included in the Appendix.

23

Remark. Conditions (U1) and (U2) may be viewed as Lyapunov conditions, and U can be
thought of as a Lyapunov function.

The last remaining step is to identify a function U serving our purposes.

Proposition 7.2 Under assumption (H1), the function U(ρ) = kρ− ρ∗k2 satisfies assumptions
(U1)-(U4).

Proof. Note that U(·) is continuous, twice differentiable and nonnegative. Clearly assumptions
(U2) and (U4) are satisfied with ν = 2. It has also been shown in [31] that the projection
mapping defined in (46) is continuous and nonexpansive, i.e.,

kπ[ρ]− ρ∗k = kπ[ρ]− π[ρ∗]k ≤ kρ− ρ∗k for all ρ ∈ RN

therefore, (U3) is satisfied. By assumption (H1), (ρi − ρ∗i)hi(ρ) ≥ 0 for all ρ ∈ Ac and
i = 1, ..., N which satisfies assumption (U1).

8 Numerical Examples and Applications

We first illustrate our approach by means of a simple deterministic example, followed by a more
challenging stochastic optimization application for a classic problem in manufacturing systems.

Example 1: Consider an allocation problem of K = 20 resources over N = 4 users so as to
minimize the convex cost function Jd(r) defined as

Jd(r) =
°°r − [4, 5, 3, 8]0°°2

Suppose the current state is ρn = [1.9, 9.1, 6.1, 2.9]0. Following the eight steps shown in the
algorithm of the previous section, we have:

1. All components of ρn are real numbers, so no perturbation to avoid integer values is
involved.

2. Obtain the set of feasible neighboring states N (ρn): Since bρnc = [1, 9, 6, 2]0, we have
ρ̃n = [0.9, 0.1, 0.1, 0.9]

0 so that the residual capacity is mρn = 2, and we get

N (ρn) = {[2, 10, 6, 2]0, [2, 9, 7, 2]0, [2, 9, 6, 3]0, [1, 10, 7, 2]0, [1, 10, 6, 3]0, [1, 9, 7, 3]0}

3. Obtain a subset NN(ρn) with N = 4 linearly independent discrete neighboring states
whose convex hull includes ρn. The Simplex method gives

NN(ρn) = {[2, 10, 6, 2]0, [2, 9, 6, 3]0, [1, 9, 7, 3]0, [2, 9, 7, 2]0}
Note that ρn = 0.1[2, 10, 6, 2]

0 + 0.8[2, 9, 6, 3]0 + 0.1[1, 9, 7, 3]0. The last vector, [2, 9, 7, 2]0,
is linearly independent of the other three and is included in the set NN(ρn) to ensure the
desired cardinality N = 4.

24

4. Choose rn = fn(ρn) = argminr∈NN (ρn) kr − ρnk =[2, 9, 6, 3]0.
5. Evaluate the cost functions for rn and for the remaining three states in NN(ρn):

Jd(rn) = 54, Jd([2, 10, 6, 2]
0) = 74, Jd([1, 9, 7, 3]

0) = 66, Jd([2, 9, 7, 2]
0) = 72

6. Evaluate the gradient of the cost at ρn using (32):

∇Jc(ρn) =

·
∆R
e0

¸−1 ·
∆J
0

¸

=


0 1 0 −1
−1 0 1 0
0 0 1 −1
1 1 1 1


−1 

20
12
18
0

 =

−5
9
7
−11


7. Update the surrogate state: ρn+1 = ρn − ηn∇Jc(ρn).
8. If the stopping condition is not satisfied, go to step 1 and repeat with ρn+1 replacing ρn.

Letting n = 0 and using a step size sequence ηn = 0.5/(n + 1), the following table shows the
evolution of the algorithm for the first few steps. Note that the optimal allocation [4, 5, 3, 8] is
reached after a single step.

STEP ρ0 r0 Jc(ρ) J(r)

0 [1.900, 9.100, 6.100, 2.900] [2, 9, 6, 3] 56.84 54

1 [4.400, 4.600, 2.600, 8.400] [4, 5, 3, 8] 0.6400 0

2 [4.150, 4.850, 2.850, 8.150] [4, 5, 3, 8] 0.0900 0

3 [3.980, 5.020, 3.020, 7.980] [4, 5, 3, 8] 0.0016 0

4 [4.105, 4.895, 2.895, 8.105] [4, 5, 3, 8] 0.0441 0

5 [4.005, 4.995, 2.995, 8.005] [4, 5, 3, 8] 0.0001 0

Example 2: Consider a kanban-based manufacturing system where 15 kanban (resources) are
allocated to 3 servers (users) in series. The objective is to find the optimal allocation r∗ that
minimizes the average cycle time, defined as the time between two job completions at the last
server (this is equivalent to a throughput maximization problem). The arrival process is Poisson
with rate λ = 1.6. The service times of the servers are exponentially distributed with rates
µ1 = 2.0, µ2 = 1.6, µ3 = 3.0. We use the decreasing step size sequence ηn = 100/(n + 1) and
constant observation intervals. The system is started with an initial allocation r0 = [3, 5, 7]

0 and
the algorithm performs as follows:

25

Number of jobs completed ρ0 r0 Average Cycle Time

0 [2.80, 4.90, 7.30] [3, 5, 7] 0.830316

100 [7.50, 2.57, 4.93] [7, 3, 5] 0.737110

200 [7.18, 3.35, 4.47] [7, 3, 5] 0.749643

300 [6.92, 3.89, 4.19] [7, 4, 4] 0.661367

400 [6.79, 4.41, 3.80] [7, 4, 4] 0.811934

500 [6.79, 4.48, 3.73] [7, 4, 4] 0.737795

600 [6.70, 4.50, 3.80] [7, 4, 4] 0.666858

700 [6.71, 4.76, 3.53] [7, 5, 3] 0.770734

800 [6.66, 4.78, 3.56] [7, 5, 3] 0.736424

In later iterations, the system stays at the allocation [7, 5, 3] which is determined to be the opti-
mal allocation using brute-force simulation. A similar kanban allocation problem was considered
in [37] where an algorithm that incrementally adjusts the allocation one resource at a time was
used. As seen in the results here, however, the use of gradient information allowed us to adjust
the initial allocation [3, 5, 7] to [7, 3, 5] without having to go through several intermediate steps,
thus substantially speeding up the optimization process.

9 Conclusions

In this paper we presented a methodology for solving stochastic discrete optimization prob-
lems where the decision variables are non-negative integers. The discrete optimization problem
was transformed into a “surrogate” continuous optimization problem which was solved using
gradient-based techniques. It was shown that the solution of the original problem is readily
recovered as an element of the discrete state neighborhood of the optimal surrogate state. Con-
vergence of the surrogate problem was also established under standard technical conditions. A
key contribution of the methodology is its on-line control nature, based on actual data from
the underlying system. One can therefore see that this approach is intended to combine the
advantages of a stochastic approximation type of algorithm with the ability to obtain sensitivity
estimates with respect to discrete decision variables. This combination leads to very fast con-
vergence to the optimal point, as illustrated in Section 8. It appears, therefore, feasible to apply
this approach to problems with local extreme points by developing a procedure that allows the
algorithm to operate from multiple initial states in an effort to determine a global optimum.

Although our analysis was carried out for a class of resource allocation problems with a capac-
ity constraint of the form (7), this methodology may be applied to other types of constraints
(equivalently, feasible sets) as long as any feasible surrogate state can be written as a convex
combination of its feasible discrete neighbors. Unconstrained problems, for instance, are easily
handled, as illustrated in Section 6. Unfortunately, it is not always trivial to determine if the
method is applicable to a feasible set structure. Identifying exactly what the limitations of the
proposed methodology are is currently under investigation.

It is also worth stressing the fact that in the case of separable cost functions, treated in Section
4.2, this approach is greatly simplified and requires limited sensitivity estimation that is gener-

26

ally easily obtained through standard methods such as Perturbation Analysis and Concurrent
Estimation [22],[23].

References

[1] C. G. Cassandras and C. G. Panayiotou, “Concurrent sample path analysis of discrete event
systems,” Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 9,2,
pp. 171—195, 1999.

[2] Y. Ho, A. Eyler, and D. Chien, “A gradient technique for general buffer storage design in a
serial production line,” International Journal of Production Research, vol. 17, pp. 557—580,
1979.

[3] H. Yan, X. Zhou, and G. Yin, “Finding optimal number of kanbans in a manufacturing
system via stochastic approximation and perturbation analysis,” Proc. of 11th Intl. Conf.
on Analysis and Optimization of Systems, pp. 572—578, 1994.

[4] C. G. Cassandras and V. Julka, “Scheduling policies using marked/phantom slot algo-
rithms,” Queueing Systems: Theory and Applications, vol. 20, pp. 207—254, 1995.

[5] C. M. Barnhart, J. E. Wieselthier, and A. Ephremides, “Admission control policies for
multihop wireless networks,” Wireless Networks, vol. 1, no. 4, pp. 373—387, 1995.

[6] R. Parker and R. Rardin, Discrete Optimization. Inc, Boston: Academic Press, 1988.

[7] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches. MIT
Press, 1988.

[8] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines. Wiley, 1989.

[9] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[10] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression function,”
Annals of Mathematical Statistics, vol. 23, pp. 462—466, 1952.

[11] H. Robbins and S. Monro, “A stochastic approximation method,” Annals of Mathematical
Statistics, vol. 22, pp. 400—407, 1951.

[12] D. Yan and H. Mukai, “Stochastic discrete optimization,” SIAM Journal on Control and
Optimization, vol. 30, 1992.

[13] W. B. Gong, Y. C. Ho, and W. Zhai, “Stochastic comparison algorithm for discrete opti-
mization with estimation,” Proc. of 31st IEEE Conf. on Decision and Control, pp. 795—800,
1992.

[14] L. Shi and S. Olafsson, “Nested partitions method for global optimization,” Operations
Research, 1999. To appear.

27

[15] Y. C. Ho, R. S. Sreenivas, and P. Vakili, “Ordinal optimization in DEDS,” J. of Discrete
Event Dynamic Systems: Theory and Applications, vol. 2, pp. 61—88, 1992.

[16] C. G. Cassandras, L. Dai, and C. G. Panayiotou, “Ordinal optimization for deterministic
and stochastic resource allocation.,” IEEE Trans. Automatic Control, vol. 43, no. 7, pp. 881—
900, 1998.

[17] L. Dai, C. G. Cassandras, and C. G. Panayiotou, “On the convergence rate of ordinal
optimization for a class of stochastic discrete resource allocation problems,” IEEE Trans.
Automatic Control, 1999. To appear.

[18] L. Dai, “Convergence properties of ordinal comparison in the simulation of discrete event
dynamic systems,” J. of Optimization Theory and Applications, vol. 91, pp. 363—388, 1996.

[19] C. G. Cassandras and V. Julka, “A new approach for some combinatorially hard stochastic
optimization problems,” Proc. of 31st Annual Allerton Conference on Communication,
Control, and Computing, pp. 667—676, 1993.

[20] K. Gokbayrak and C. G. Cassandras, “Stochastic discrete optimization using a surro-
gate problem methodology,” in Proceedings of 38th IEEE Conf. On Decision and Control,
pp. 1779—1784, Dec. 1999.

[21] H. Kushner and D. Clark, Stochastic Approximation for Constrained and Unconstrained
Systems. Springer-Verlag, 1978.

[22] Y. Ho and X. Cao, Perturbation Analysis of Discrete Event Dynamic Systems. Kluwer
Academic Publishers, 1991.

[23] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis. Irwin
Publ., 1993.

[24] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Belmont, Mas-
sachusetts: Athena Scientific, 1997.

[25] J. Wieselthier, C. Barnhart, and A. Ephremides, “Standard clock simulation and ordinal
optimization applied to admission control in integrated communication networks,” Journal
of Discrete Event Dynamic Systems, vol. 5, pp. 243—279, 1995.

[26] K. Gokbayrak and C. G. Cassandras, “Adaptive call admission control in circuit switched
networks,” Submitted for publication.

[27] C. G. Cassandras and R. Yu, “A ‘surrogate problem’ approach for lot size optimization in
manufacturing systems,” Proc. of 2000 American Control Conference, 2000. To appear.

[28] E. G. Gladyshev, “On stochastic approximation,” Theo. Prob. Appl., vol. 10, pp. 275—278,
1965.

[29] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Tr. Automat. Control, vol. 22,
pp. 551—575, 1977.

[30] M. Metivier and P. Priouret, “Applications of a kushner and clark lemma to general classes
of stochastic algorithms,” IEEE Tr. Inform. Theory, vol. 30, pp. 140—151, 1984.

28

[31] D. P. Bertsekas, Nonlinear Programming. Belmont, Massachusetts: Athena Scientific, 1995.

[32] E. K. P. Chong and P. J. Ramadge, “Convergence of recursive optimization algorithms
using ipa derivative estimates,” Journal of Discrete Event Dynamic Systems: Theory and
Applications, vol. 1, pp. 339—372, 1992.

[33] H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications. Springer-
Verlag New York, Inc., 1997.

[34] H. J. Kushner and F. J. V’azquez-Abad, “Stochastic approximation methods for systems
of interest over an infinite horizon,” to appear in SIAM J. on Control and Optimization.

[35] F. Vázquez-Abad, C. Cassandras, and V. Julka, “Centralized and decentralized asyn-
chronous optimization of stochastic discrete event systems,” IEEE Trans. Automatic Con-
trol, 1995. To appear.

[36] J. Neveu, Discrete Parameter Martingales. 1975.

[37] C. G. Panayiotou and C. G. Cassandras, “Optimization of kanban-based manufacturing
systems,” Automatica, vol. 35, pp. 1521—1533, September 1999.

APPENDIX

Proof of Theorem 7.1: The proof consists of five steps as follows.

Step 1. Set up conditions that allow us to apply the previous lemma with Tn = U(ρn). First,
let

ρ̄n+1 = ρn − ηn[h(ρn) + εn+1], (48)

therefore ρn+1 = πn+1[ρ̄n+1]. Then, consider a Taylor expansion of U(ρ̄n+1) about ρn:

U(ρ̄n+1) = U(ρn) +∇U(ρn)0(ρ̄n+1 − ρn) +
1

2
(ρ̄n+1 − ρn)0∇2U(ζ)(ρ̄n+1 − ρn)

where ζ = ρn + α(ρ̄n+1 − ρn) and 0 ≤ α ≤ 1. Using (48) we get

U(ρ̄n+1) = U(ρn)− ηn∇U(ρn)0[h(ρn) + εn+1]

+
1

2
η2
n[h(ρn) + εn+1]

0∇2U(ζ)[h(ρn) + εn+1]

= U(ρn)− ηn∇U(ρn)0h(ρn)− ηn∇U(ρn)0εn+1 +
η2
n

2
h0(ρn)∇2U(ζ)h(ρn)

+
η2
n

2
h0(ρn)∇2U(ζ)εn+1 +

η2
n

2
ε0n+1∇2U(ζ)h(ρn) +

η2
n

2
ε0n+1∇2U(ζ)εn+1

Using the inequality x0Py ≤ kPkx0y and assumption (U4), as well as assumption (H2) with
γ = supρ∈Ac kh(ρ)k <∞, we have

U(ρ̄n+1) ≤ U(ρn)− ηn∇U(ρn)0h(ρn)− ηn∇U(ρn)0εn+1

29

+
η2
nν

2
kh(ρn)k2 + η2

nνh
0(ρn)εn+1 +

η2
nν

2
kεn+1k2

≤ U(ρn)− ηn∇U(ρn)0h(ρn) +
η2
nνγ

2

2

−ηn[∇U(ρn)0 − ηnνh0(ρn)]εn+1 +
η2
nν

2
kεn+1k2

U(ρ̄n+1) is measurable and nonnegative, and taking conditional expectations of both sides with
respect to =n, we get

E[U(ρ̄n+1)|=n] ≤ U(ρn)− ηn∇U(ρn)0h(ρn) +
η2
nνγ

2

2

−ηn[∇U(ρn)0 − ηnνh0(ρn)]E(εn+1|=n) + η
2
nν

2
E(kεn+1k2 |=n)

Note that Ac is a closed and bounded subset of RN , therefore compact. Using the continuity
of ∇U(ρ), compactness of Ac, and (U4), we have µ = supρ∈Ac k∇U(ρ)k < ∞. Applying
assumptions (E2) and (H2),

E[U(ρ̄n+1)|=n] ≤ U(ρn)− ηn∇U(ρn)0h(ρn) +
η2
nνγ

2

2

−ηn[∇U(ρn)0 − ηnνh0(ρn)]E(εn+1|=n) + η
2
nνσ

2
n

2

≤ U(ρn)− ηn∇U(ρn)0h(ρn) +
η2
nνγ

2

2
+
η2
nνσ

2
n

2
+η2

nνγ kE(εn+1|=n)k− ηn∇U(ρn)0E(εn+1|=n)
≤ U(ρn)− ηn∇U(ρn)0h(ρn) +

η2
nνγ

2

2
+
η2
nνσ

2
n

2
+η2

nνγ kE(εn+1|=n)k+ ηnµ kE(εn+1|=n)k
= U(ρn)− ηn∇U(ρn)0h(ρn) + φnη2

n + µηn kE(εn+1|=n)k (49)

where
φn =

ν

2
(γ2 + σ2

n + 2γ kE(εn+1|=n)k)
is an =n-measurable random variable. Note that the third inequality above follows from the fact
that −ηn∇U(ρn)0E(εn+1|=n) ≤ ηn k∇U(ρn)k kE(εn+1|=n)k. Next, by (A2), (E1), and (E2),

∞X
n=1

φnη
2
n =

ν

2

∞X
n=1

(γ2 + σ2
n + 2γ kE(εn+1|=n)k)η2

n (50)

=
νγ2

2

∞X
n=1

η2
n +

ν

2

∞X
n=1

σ2
nη

2
n + γν

∞X
n=1

kE(εn+1|=n)k η2
n <∞ a.s.

Since ρn+1 = πn+1[ρ̄n+1], then by assumption (U3),

E[U(ρn+1)|=n] = E[U(π[ρ̄n+1])|=n] ≤ E[U(ρ̄n+1)|=n] (51)

Step 2. Apply Lemma 7.1. Define a sequence of nonnegative (by assumption (U1)) random
variables {αn} by

αn = ηn∇U(ρn)0h(ρn)

30

Define another sequence of nonnegative random variables {βn} by

βn = φnη
2
n + µηn kE(εn+1|=n)k

Therefore, using equations (49) and (51) we can write,

E(U(ρn+1)|=n) ≤ U(ρn)− αn + βn (52)

Note that {U(ρn)}, {αn} and {βn} are adapted to {=n} and using assumption (E1) and (50),P∞
n=1 βn <∞ a.s. Applying Lemma 7.1, we get that U(ρn) → U∗ a.s. for some finite random

variable U∗ and ∞X
n=1

αn =
∞X
n=1

ηn∇U(ρn)0h(ρn) <∞ a.s. (53)

Step 3. Show that there is a subsequence {ρkn} such that {∇U(ρkn)0h(ρkn)}→ 0 a.s. Suppose
there exist δ > 0 and a finite M such that P{ω : ∀j ≥M , ∇U(ρj)0h(ρj) ≥ δ} > 0. In this case,
with nonzero probability we have a sample path where

∞X
n=1

αn =
∞X
n=1

ηn∇U(ρn)0h(ρn)

=
M−1X
n=1

ηn∇U(ρn)0h(ρn) +
∞X

n=M

ηn∇U(ρn)0h(ρn)

≥
M−1X
n=1

ηn∇U(ρn)0h(ρn) + δ
∞X

n=M

ηn =∞

Note that the last equality follows from (A1). This conclusion contradicts (53).

Step 4. Show that ρkn → ρ∗ a.s. Suppose that there exists δ > 0 such that
°°ρkn − ρ∗°° ≥ δ

for infinitely many n with some nonzero probability. Consider the compact set E = Ac ∩ {ρ :
kρ− ρ∗k ≥ δ} and define f(ρ) = ∇U(ρ)0h(ρ). Since f(ρ) is a lower semicontinuous function,
there exists a ρE such that

f(ρE) ≤ f(ρ) for all ρ ∈ E (54)

f(ρE) = ∇U(ρE)0h(ρE) =
NX
i=1

∇Ui(ρE)hi(ρE)

=
NX
i=1

∇Ui(ρE)=0

∇Ui(ρE)hi(ρE) +
NX
i=1

∇Ui(ρE)6=0

∇Ui(ρE)hi(ρE)

=
NX
i=1∇Ui(ρE) 6=0

∇Ui(ρE)hi(ρE)

31

By assumption (U1), each term in the summation is non-negative therefore f(ρE) ≥ 0. Using
assumption (U2)

f(ρE) =
NX
i=1

∇Ui(ρE) 6=0

∇Ui(ρE)hi(ρE) =
NX
i=1

ρEi 6=ρ∗i

∇Ui(ρE)hi(ρE)

and by (H1), at least one of the terms in the summation is non-zero, hence strictly positive by
(U1). Therefore,

0 < f(ρE) ≤ f(ρ) for all ρ ∈ E (55)

Since we assumed that ρkn ∈ E infinitely often with nonzero probability, then f(ρkn) ≥ f(ρE)
infinitely often with nonzero probability. Using the same argument as in Step 3 (with f(ρE) = δ)
we arrive at a similar contradiction.

Step 5. Show that ρn → ρ∗ a.s. As ρkn → ρ∗ a.s. and U(ρn) → U∗ a.s. from steps 4 and 2
respectively, we have U∗ = U(ρ∗), the unique minimum of U(·). Suppose there exists δ > 0
such that kρn − ρ∗k ≥ δ for infinitely many n with nonzero probability. Consider the compact
set E = Ac ∩ {ρ : kρ− ρ∗k ≥ δ}. Then, since U(·) is continuous, there exists ρE such that for
all ρ ∈ E, U(ρE) ≤ U(ρ). Note that ρE 6= ρ∗ and since ρ∗ is the unique minimum of U(·), we
have U(ρE) > U(ρ

∗). Since we assumed that ρn ∈ E infinitely often with nonzero probability,
U(ρn) ≥ U(ρE) > U(ρ∗) with nonzero probability which contradicts the fact that U(ρn)→ U∗.
Therefore, ρn → ρ∗ with probability one. This completes the proof.

32

