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Abstract—We study the problem of maximizing the lifetime of a
sensor network by means of routing and initial energy allocation
over its nodes. We consider a general state space battery model
and show that similar results to our previous work with simpler
battery dynamics are still valid. In particular, we show that un-
der this general dynamic battery model, there exists an optimal
policy consisting of time-invariant routing probabilities in a fixed
topology network and these can be obtained by solving a set of
nonlinear programming (NLP) problems. Moreover, we show that
the problem can be reformulated as a single NLP problem. In
addition, we consider a joint routing and initial energy allocation
problem over the network nodes with the same network lifetime
maximization objective. We prove that the solution to this problem
is given by a policy that depletes all node energies at the same
time and that the corresponding energy allocation and routing
probabilities are obtained by solving an NLP problem. Finally, we
examine a network’s performance under security threats, typified
by faked-cost attacks, in terms of its lifetime and its normalized
throughput. We illustrate how the optimal routing probabilities,
as well as the network lifetime, are robust under such forms of
routing attacks even though its normalized throughput can be
significantly reduced.

Index Terms—Energy-aware systems, optimal control, opti-
mization, sensor networks .

I. INTRODUCTION

A WIRELESS-SENSOR network (WSN) is formed by
small autonomous nodes communicating over wireless

links. Nodes have sensing, processing, and communicating
capabilities. They are mainly battery powered and tightly con-
strained in terms of energy, processing, and storage capacities,
therefore requiring careful resource management [2]. Applica-
tions of such networks include exploration, surveillance, and
environmental monitoring. Power consumption is a key issue
in WSNs, since it directly impacts their lifetime in the likely
absence of human intervention for most applications of interest.
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Since the majority of power consumption is due to the radio
component [3], nodes rely on short-range communication and
form a multihop network to deliver information to a base
station.

Routing schemes in WSNs aim to deliver data from the
data sources (nodes with sensing capabilities) to a data sink
(typically, a base station) in an energy-efficient and reliable
way. A survey of several routing algorithms may be found
in [4]. Most proposed algorithms are based on shortest path
routing, for example, [5] and [6], or multipath approaches, for
example, [7], and may indirectly reduce energy usage, but they
do not explicitly use energy consumption models to address
the optimality of a routing policy with respect to energy-aware
metrics. Such “energy awareness” has motivated a number
of minimum-energy routing algorithms which typically seek
paths minimizing the energy per packet consumed, for example,
[8]. However, seeking a minimum energy path can rapidly
deplete energy from some nodes and ultimately reduce the
full network’s lifetime by destroying its connectivity. Shah and
Rabaey [9] proposed an energy-aware routing (EAR) policy
which does not attempt to use a single optimal path, but rather a
number of suboptimal paths that are probabilistically selected.
In [10], a similar problem is studied with the inclusion of
uncertainties in several WSN parameters. In a network utility
maximization framework, [11] proposes a fully asynchronous
distributed algorithm based on dual decomposition for a general
utility function, while [12] proposes centralized and decentral-
ized algorithms to solve a multiperiod scheduling problem con-
sidering energy constraints and periodic sensing requirements.

The importance of prolonging the lifetime of a WSN has
motivated studies of routing with network lifetime as an explicit
performance metric. This is usually defined as the time until
the first node depletes its battery [1], [13]. In [13], this optimal
routing problem was solved based on two assumptions: 1) a
battery is “ideal” in the sense that it depletes linearly with
respect to the quantity of information forwarded, independent
of physical dynamics of the battery itself and 2) only fixed
routing probabilities over time were sought. In a recent paper
[1], we addressed this problem with the goal of determining
routing probabilities in order to maximize the lifetime of a
WSN subject to a dynamic energy consumption model for each
node, thus relaxing both of these assumptions. In particular,
we used a kinetic battery model (KBM) [14]–[16] for the
batteries powering the WSN nodes and proved that in a fixed
network topology, there exists an optimal policy consisting of
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time-invariant routing probabilities determined through a set
of relatively simple nonlinear programming (NLP) problems.
We also considered a problem where, in addition to routing,
we allocate total initial energy over the network nodes with the
same network lifetime maximization objective. We showed that
the solution to this problem is given by a policy that depletes
all node energies at the same time and that the corresponding
energy allocation and routing probabilities are obtained by
solving an NLP problem. The conclusion from [1], therefore,
is that even when the dynamic behavior of batteries is taken
into account, the solution of the network lifetime maximization
problem is robust to the battery behavior and leads to optimal
routing policies which are static, similar to those obtained in
[13] under the simplifying assumptions of ideal batteries and
static routing. Furthermore, the solution of the optimal routing
problem in [1] leads to individual node lifetimes being the same
or almost the same as those of others, hence, the definition
of network “lifetime” as the time until the first node depletes
its battery is indeed a good characterization of the overall
network’s lifetime.

In view of these results, the question we address in this
paper is whether considering different, more elaborate, nonideal
battery models preserves the time-invariant nature of an optimal
routing policy as shown in [1]. In other words, is the relatively
simple nature of the KBM previously used to capture battery
behavior responsible for this property or is this inherent in
the problem regardless of how detailed a battery model one
uses? There are three specific contributions in this paper. First,
we generalize the results obtained in [1] for both the optimal
routing and the joint routing and initial energy allocation prob-
lems for lifetime maximization by adopting the most general
nonideal battery model available in the literature and show that
the time-invariant nature of a maximal network lifetime routing
policy is preserved. This leads to the conclusion that optimal
policies for WSNs are indeed robust with respect to the battery
model used, although, naturally, the corresponding network
lifetime value may be very different (therefore, accurately
predicting the lifetime benefits from the increased accuracy of
such general nonideal battery models.) The second contribution
is to reduce the computational complexity of the method used
in [1] for deriving an optimal routing policy. In particular, in
[1], this was accomplished by solving a set of NLP problems,
whereas here we provide a much more efficient single NLP
formulation.

The third contribution of this paper is to investigate WSN
performance under common forms of security threats. This is
motivated by the fact that energy-aware routing policies are
often probabilistic in nature, thus making it harder for attackers
to identify an “ideal node” to take over. At the same time,
such a probabilistic routing policy can be easily implemented
as a deterministic policy as well by simply transforming these
probabilities to packet flows over links. We explore the network
performance under one of the most severe routing attacks in
WSN, namely, the sink-hole attack [17]. Although we limit
ourselves to a simple empirical study, it becomes clear that
the optimal policy we have derived is significantly more robust
to common forms of cyberattacks than other proposed energy-
aware routing policies.

In Section II, we formulate the maximum lifetime optimiza-
tion problem using nonideal energy sources based on a detailed
energy consumption model due to Rakhmatov et al. in [18]. In
Section III, we show that for a fixed network topology, there
exists an optimal routing policy which is time invariant and we
identify a set of NLP problems which can be solved to obtain
an explicit fixed optimal routing vector and the corresponding
WSN lifetime. In view of the existence of fixed optimal routing
probabilities, we also introduce a single NLP problem which
results in optimal routing and lifetime at the same time. We
also show that this optimal policy is robust with respect to the
battery model used. In Section IV, we consider a joint optimal
routing and initial energy allocation problem and show that it is
optimal to set a routing vector and initial node energies so that
all nodes have the same lifetime. In Section V, we analyze the
network performance when the network is under a “sink hole”
type of routing attack in terms of its normalized throughput
as a performance metric. In particular, we compare the WSN
performance by adopting our optimal routing policy and the
energy-aware routing policy introduced in [19]. Numerical
examples are included to illustrate our analytical results.

II. OPTIMAL CONTROL PROBLEM FORMULATION

A. Network Model

We begin by reviewing the WSN model used in [1], with
a single source node and one base station and fixed topol-
ogy. Consider a network with N + 1 nodes where 0 and N
denote the source and destination (base station) nodes, re-
spectively. Except for the base station whose energy supply
is not constrained, a limited amount of energy is available to
all other nodes. Let ri(t) be the residual energy of node i,
i = 0, . . . , N − 1, at time t. The dynamics of ri(t) depend on
the battery model used at node i, which will be presented in
the next subsection. The distance between nodes i and j at time
t is denoted by di,j(t); since we assume a fixed topology, we
will treat di,j(t) as time-invariant in the sequel. The nodes in
the network may be ordered according to their distance to the
destination node N so that d1,N ≥ d2,N ≥ · · · ≥ di,N ≥ · · · ≥
dN−1,N and assume that d0,N > di,N for all i = 1, . . . , N − 1.

Let Oi denote the set of nodes to which node i can send
packets. We assume full coverage of the network and define
Oi = {j : j > i, di,j < di,N}, where j > i implies that di,N >
dj,N , that is, a node only sends packets to those nodes that
are closer to the destination, and di,j < di,N means that a
node cannot send packets to another node which is further
away from it relative to the destination node N . We will
use the notation i ≺ j, if j ∈ Oi. Let wi,j(t) be the routing
probability of a packet from node i to node j at time t. The
vector w(t) = [w0,1(t), . . . , w0,N−1(t), . . . , wN−2,N−1(t)]

′ de-
fines the control in our problem. We do not include
w0,N (t), . . . , wi,N (t), . . . , wN−1,N (t) in the definition of w(t),
since it is clear that wi,N (t) is an implicit control variable given
by wi,N (t) = 1−

∑
i≺j, j<N wi,j(t), i = 0, . . . , N − 2.

For simplicity, the data sending rate of source node 0 is
normalized to 1 and let Gi(w) denote the data packet inflow
rate to node i. Given the definitions from before, we can
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Fig. 1. Battery operation: (a) Charged battery. (b) Before recovery. (c) After
recovery. (d) Discharged battery.

express Gi(w) through the following flow conservation recur-
sive equation, where G0(w) = 1

Gi(w) =
∑
k≺i

wk,i(t)Gk(w), i = 1, . . . , N. (1)

B. Dynamic Battery Model

Under the assumption that an electrochemical battery cell is
“ideal,” a constant voltage throughout the discharge process
and a constant capacity for all discharge profiles are both
maintained over time. However, in real batteries, the rate ca-
pacity effect [20] leads to the loss of capacity with increasing
load current and the recovery effect [21] makes the battery
appear to regain portions of its capacity after some resting
time. Due to these phenomena, the voltage, as well as energy
amount delivered by the battery, heavily rest on the discharge
profile. Therefore, when dealing with energy optimization, it
is necessary to take this into account, along with nonlinear
variations in a battery’s capacity.

There are several proposed models to describe a nonideal
battery overviewed in [22]. Accordingly, models are broadly
classified as electrochemical, circuit based, stochastic, and
analytical. Among all, analytical models, such as the kinetic
battery model (KBM) [14], [15] or diffusion-based models
[23]–[25], provide a tradeoff between accuracy and computa-
tional complexity. A detailed analysis of two analytical battery
models—the KBM and diffusion models derived by Rakhmatov
et al. [18]—is given in [26] where it is shown that the KBM is a
first-order approximation of the popular Rakhmatov-Vrudhula-
Wallach (RVW) diffusion model [27].

The results obtained in [1] adopting the KBM pave the way
for an investigation of the same problem using a more accurate
model. In what follows, we briefly review a linear state-space
model [24] derived from the diffusion-based model [18]. In
Fig. 1, the battery operation based on the diffusion model is
illustrated. We assume the distance between electrodes (anode
and cathode) is 2ω. As shown in Fig. 1, during a rest time,

the electrolyte concentration is constant over the length of
ω [Fig. 1(a)]. Under a load, i(t), due to the electrochemical
reaction, the concentration of the electrolyte is reduced near
the electrode and creates a gradient [Fig. 1(b)], which causes
the diffusion of species toward the electrode. Then, during an
idle period, this diffusion makes the electrolyte concentration
gradually become uniform over the length ω showing the
battery recovery effect [Fig. 1(c)]. Finally, when the electrolyte
concentration drops to a predetermined cutoff level, Ccutoff , the
battery is said to be depleted while it has some unused capacity.
This phenomenon describes the rate capacity effect [Fig. 1(d)].

A 1-D diffusion equation describing the concentration behav-
ior inside a battery [18] is given by

J(x, t) = −D
∂C(x, t)

∂x

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(2)

where C(x, t) represents the electrolyte concentration at time t
at a distance x ∈ [0, ω] from the electrode. J(x, t) stands for the
electrolyte flux at time t at distance x and D denotes a constant
diffusion coefficient. Let the initial concentration be a constant
C∗. As described in [18], applying the following two boundary
conditions:

D
∂C(x, t)

∂x

∣∣∣∣
x=0

=
i(t)

νAF
, D

∂C(x, t)

∂x

∣∣∣∣
x=ω

= 0

where A is the area of the electrode, F is Faraday’s constant,
and ν is a scaling factor, the final solution for the concentration
of the electrolyte at the electrode (x = 0) is (using ∗ to denote
convolution)

C(0, t) = C∗ − i(t)

νωFA
∗
(
1 + 2

∞∑
m=1

e−
π2m2

ω2 Dt

)
. (3)

Defining ρ(t) = 1− (C(0, t)/C∗) at t = 0, we have C(0, 0) =
C∗ and ρ(0) = 0. Note that during discharge, C(0, t) decreases,
hence, ρ(t) increases. When the battery is depleted (electrolyte
concentration reaches Ccutoff ), ρ(t) reaches the corresponding
threshold ρcutoff = (1− Ccutoff/C

∗). In order to derive a state-
space realization as in [24], we define y(t) = ρ(t)/ρcutoff
which results in y(0) = 0 and y(T ) = 1 at the failure time
t = T . Replacing the infinite sum in (3) by a finite one with
M terms, we obtain

y(t) =
i(t)

α
∗ 1 + i(t)

α
∗ 2

M∑
m=1

e−δmt

= [1 1, . . . , 1]

⎡
⎢⎢⎢⎣

i(t)
α ∗ 1

2i(t)
α ∗ e−δ1t

. . .
2i(t)
α ∗ e−δM t

⎤
⎥⎥⎥⎦ (4)
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where δm = π2m2D/ω2 and α = C∗νωFAρcutoff . Next, we
define the state vector x(t) = [x0(t), . . . , xM (t)]T such that

ẋ0(t) =
1

α
i(t)

ẋm(t) =
2

α
i(t)− δmxm(t) m ∈ {1, 2, . . . ,M}

xm(0) = 0 m ∈ {0, 1, . . . ,M} (5)

which can be written as

x0(t) =
i(t)

α
∗ 1

xm(t) =
2i(t)

α
∗ e−δmt m ∈ {1, 2, . . . ,M}. (6)

Substituting (6) into (4), we have

y(t) = [1 1, . . . , 1]

⎡
⎢⎢⎣
x0(t)
x1(t)
. . .

xM (t)

⎤
⎥⎥⎦ = [1 1, . . . , 1]x(t). (7)

For each node i = 0, . . . , N − 1, yi(t) is the battery status
indicator at time t. Setting yi(0) = 0, it follows that yi(T ) = 1
which indicates that the battery is out of charge at the failure
time t = T .

In our WSN environment, the battery workload i(t) is due to
three factors: 1) the energy needed to sense a bit; Esense; 2) the
energy needed to receive a bit Erx; and 3) the energy needed
to transmit a bit Etx. If the distance between two nodes is d,
we have

Etx = p(d), Erx = Cr, Esense = Ce (8)

where Cr, Ce are given constants depending on the communi-
cation and sensing characteristics of nodes, and p(d) ≥ 0 is a
function monotonically increasing in d; the most common such
function is p(d) = Cf + Csd

β where Cf , Cs are given con-
stants and β is a constant dependent on the medium involved.
We shall use this energy model but ignore the sensing energy,
that is, set Ce = 0. Clearly, this is a relatively simple energy
model that does not take into consideration the channel quality
or the Shannon capacity of each wireless channel. The ensuing
optimal control analysis is not critically dependent on the exact
form of the energy consumption model attributed to communi-
cation, although the ultimate optimal value of w(t) obviously is.
Before proceeding, as in [1], we define the following constants:

ki,j = p(di,j)− p(di,N ), i < j < N (9)

k0,N = p(d0,N ) (10)

ki,N = Cr + p(di,N ), i = 1, . . . , N − 1 (11)

where di,j is the distance between nodes i and j. Note that we
may allow these constants to be time dependent if the network
topology is not fixed, that is, di,j(t) is time varying. Let us
now combine the adopted battery model above with (8). Then,

similar to [1], we can show that the workload of node 0 u0(t)
is given by

u0(t) = G0(w)

⎡
⎣ ∑
0≺j,j<N

w0,j(t)k0,j + k0,N

⎤
⎦ (12)

where G0(w) = 1. Also, for any node i = 1, . . . , N − 1, where
we must include the energy for both receiving and transmitting
data packets, we can show that

ui(t) = Gi(w)

⎡
⎣ ∑
i≺j,j<N

wi,j(t)ki,j + ki,N

⎤
⎦ . (13)

Defining gi(w) =
∑

i<j,j<N wi,j(t)ki,j + ki,N the dynamic
model (5) and (7) for nodes i = 0, . . . , N − 1 becomes

ẋi(t) = Aixi(t) + biGi (w(t)) gi (w(t))

yi(t) = cxi(t) (14)

Ai =

⎡
⎢⎢⎢⎣
0 0 . . . 0
0 −δ1 . . . 0
...

...
. . .

...
0 0 . . . −δM

⎤
⎥⎥⎥⎦

= diag[0,−δ1, . . . ,−δM ](M+1)×(M+1) (15)

bi =

[
1

α
,
2

α
, . . . ,

2

α

]T
c = [1 1, . . . , 1]1×(M+1). (16)

This is a more general, high-dimensional model compared
to the KBM considered in [1] where there are only two state
equations

ṙi(t) = −Gi (w(t)) gi (w(t)) + k (bi(t)− ri(t)) (17)

ḃi(t) = −k (bi(t)− ri(t)) (18)

in which k is a crucial parameter modeling the “recovery
effect” in the battery dynamics, similar to the role that the D
parameter plays in (2).

Note that we consider identical battery characteristics for all
nodes in the network, that is, Ai = Aj , bi = bj for all i, j =
0, . . . , N − 1 (we will discuss the reason for this assumption
later in Remark 1). The vectors xi(t) = [xi0, . . . , xiM ]T for i =
0, . . . , N − 1 define the state variables for our problem. Finally,
observe that by controlling the routing probabilities wi,j(t) in
(12) and (13), we directly control node i’s battery discharge
process.

C. Optimal Control Problem Formulation

Our objective is to maximize the WSN lifetime by control-
ling the routing probabilities wi,j(t). The maximum lifetime
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optimal control problem is formulated as follows:

min
w(t)

−
T∫

0

dt (19)

s.t. for i = 0, . . . , N − 1

ẋi(t) = Axi(t) + bGi (w(t)) gi (w(t)) (20)

yi(t) = cxi(t)

A = diag[0,−δ1, . . . ,−δM ](M+1)×(M+1)

b =

[
1

α
,
2

α
, . . . ,

2

α

]T
c = [1 1, . . . , 1]1×(M+1)

Gi (w(t)) =
∑
k≺i

wk,i(t)Gk (w(t)) (21)

G0 (w(t)) = 1

gi (w(t)) =
∑

i≺j,j<N

wi,j(t)kij + ki,N (22)

∑
i≺j,j<N

wi,j(t) ≤ 1, 0 ≤ wi,j(t) ≤ 1 (23)

min
i=0,...,N−1

yi(T ) = 1 (24)

where xi(t) = [xi0, . . . , xiM ]T are the state variables repre-
senting node i’s battery dynamics for i = 0, . . . , N − 1 and
yi(t) =

∑M
j=0 xij(t) is the battery status indicator at node

i. Control constraints are specified through (23), where the
first inequality follows from the fact that

∑
i≺j<N wi,j(t) +

wi,N (t) = 1. Finally, (24) provides boundary conditions for
xi(t), i = 0, . . . , N − 1, at t = T requiring that the terminal
time is the earliest instant when yi(t) =

∑M
j=0 xij(t) = 1 for

any node i (recall that yi(T ) = 1 indicates battery depletion). In
other words, at t = T , we require that the maximal value over
all {y0(T ), . . . , yN−1(T )} is 1 or, equivalently, T = inft≥0{t :
yi(t) = 1 for at least some i = 0, . . . , N − 1}.

This is a classic minimum (maximum) time optimal control
problem except for two complicating factors: 1) The bound-
ary condition (24) which involves the nondifferentiable min
function, and 2) the control constraints (23). In what follows,
we will use w∗(t) to denote the optimal routing vector, which
provides a (not necessarily unique) solution to this problem.

III. OPTIMAL CONTROL PROBLEM SOLUTION

Our analysis is similar to that in [1], but it is complicated
by the high-dimensional dynamics in (20). We begin with the
Hamiltonian for this optimal control problem

H(w, t, λ)=−1+
∑
i<N

[λi0ẋi0 + λi1ẋi1 + · · ·+ λiM ẋiM ]

=−1+
∑
i<N

[
λi0

1

α
Gi(w(t)) gi(w(t)) + · · ·

+λiM

(
2

α
Gi(w(t))gi(w(t))−δMxiM

)]
(25)

where λi0(t), . . . , λiM (t) are the costates corresponding to
xi0(t), . . . , xiM (t) at node i, which must satisfy{

λ̇i0(t) = − ∂H
∂xi0

= 0

λ̇im(t) = − ∂H
∂xim

= −δmλim(t) m = 1, . . . ,M.
(26)

Due to the nature of the state boundary conditions in (24), it is
hard to derive explicit expressions for the costates λij(t). Thus,
we proceed by considering each possible case of a node dying
first, which we will refer to as “scenario Si” under which 1 =
yi(T ) ≥ yj(T ), j 	= i for some fixed node i.

A. Analysis of scenario Si

Under Si, we have the terminal time constraints yi(T ) = 1
and yj(T ) ≤ 1 for all j 	= i. Consequently, all yj(t); hence,
xj(t), j 	= i, are unconstrained at t = T . The next theorem
establishes the property that under a fixed network topology,
there exists a static optimal routing policy, that is, there exists a
vector w∗(t) which is time invariant.

Theorem 1: If 1 = yi(T ) ≥ yj(T ), j 	= i, for some i and
the network topology is fixed, that is, dij(t) = di,j = constant
for all i, j = 0, . . . , N − 1, then there exists a time-invariant
solution of (19)–(24): w∗(t) = w∗(T ).

Proof: See the Appendix.
Note that there may exist multiple optimal control policies,

including some that may be time varying. Theorem 1 asserts
that there is at least one which is time-invariant, that is, w∗(t) =
w∗(T ) = w∗, and it remains to obtain the values of w∗

i,j ,
i = 0, . . . , N − 2, and j = 1, . . . , N − 1 by explicitly solving
the optimization problem (41). This requires knowledge of all
yi(t), t ∈ [0, T ] in order to determine the values of all yi(T )
and, hence, identifying the node i such that 1 = yi(T ) ≥ yj(T )
and use the values of yj(T ), j 	= i. This can be accomplished
by solving the differential equations (14)–(16), whose initial
conditions are given as xim(0) = 0, i = 0, . . . , N − 1, and
m = 0, . . . ,M , with w(t) = w being the unknown optimal
routing vector. It is straightforward to obtain xij(t) as follows:

xi0(t) =
1

α
Gi(w)gi(w)t

xij(t) =
2

αδj
Gi(w)gi(w)(1− e−δjt), j = 1, . . . ,M.

Recall that yi(t) =
∑M

j=0 xij(t), the “critical time” T ∗
i such

that yi(T
∗
i ) = 1 and 0 < yi(t) < 1 for all t ∈ [0, T ∗

i ) is the
solution of the nonlinear equation in T

1

α
Gi(w)gi(w)T +

M∑
j=1

2

αδj
Gi(w)gi(w)(1− e−δjT ) = 1

(27)
which we write as T ∗

i (w). Thus, we may rewrite the Si opti-
mization problem as follows:

Pi : min
w

Gi(w)gi(w)

s.t. (21)− (23), T ∗
i (w) ≤ T ∗

j (w), j 	= i
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where T ∗
i (w) is the solution of (27) for all i = 0, . . . , N − 1.

Note that Pi may not always have a feasible solution.
Based on our analysis thus far, if we focus on a fixed scenario

Si, the solution to the optimal control problem is simply the so-
lution of the NLP problem Pi. However, since we do not know
which node will die first, determining the value of i such that
T ∗
i (w) ≤ T ∗

j (w) for all j 	= i requires solving all Pi problems
and finding the best policy among them. This is accomplished
through the following algorithm, referred to as A1.

Algorithm A1

1) Solve problem Pi for i = 0, . . . , N − 1 to obtain T ∗
i (w).

2) Set T ∗
i (w) = −1 if a problem is infeasible.

3) The optimal lifetime is given by maxi{T ∗
i (w)} and the

corresponding optimal policy w∗ is the one obtained for the
associated problem Pi.

B. Robustness Property of the Optimal Routing Policy

In this section, we show that the optimal routing vector
w∗ obtained through Algorithm A1 is robust with respect to
the diffusion coefficient constant D. This is similar to the
robustness property established in [1, Lemma 3 and Theor. 2],
where it is shown that the solution of problem Pi is robust
with respect to the parameter k of the KBM in (17) and (18).
Here, the intuition behind this property lies in the nature of the
NLPs Pi: observe that the solution depends on the values of
Gi(w)gi(w) and the associated constraints (21)–(23), while the
only effect of the parameter D enters through the inequalities
T ∗
i (w) ≤ T ∗

j (w), j 	= i. Therefore, if a solution is obtained
under D = 0 and these inequalities are still satisfied when
D > 0, then the actual routing policy remains unchanged, while
the value of the resulting optimal network lifetime is generally
different. Let wi(D) denote the solution of problem Pi when
the RVW model is invoked with parameter D, including the
case D = 0. The corresponding node lifetimes are denoted by
T ∗
i (w

i, D). The robustness property we identify rests on the
following Theorem:

Theorem 2: The optimal routing policy under D = 0, is
unaffected when D > 0, i.e.,

w∗(0) = w∗(D) for any D > 0. (28)

Proof: See the Appendix.
Remark 1: It should be noted that the robustness property of

the optimal solution may not be valid if nodes have different
battery parameters, that is, Ai, bi in (15) and (16) are not all the
same. However, the time-invariant nature of the optimal routing
vector in Theorem 1 remains unaffected.

C. Optimal Routing by Solving a Single NLP

Based on Theorem 1, when the topology of the network is
fixed, there is at least one optimal routing policy which is time-
invariant. Now, by defining a new variable T as the network
lifetime (the first node whose battery is depleted), we merge

Fig. 2. Network topology.

Algorithm A1 into a single NLP problem which determines
an optimal routing vector and the network lifetime at the same
time as follows:

max
w

T

s.t. (21)− (23), T ≤ T ∗
i (w). (29)

Note that T ∗
i (w) is the parametric solution of the node i lifetime

based on the energy dynamics considered for the battery. We
consider the following three cases:

1) For nodes with ideal battery dynamics, the energy con-
sumption is directly proportional to the battery load, that
is, ∂ri(t)/∂t = −i(t), T ∗

i (w) = Ri/Gi(w)gi(w), where
Ri is the initial energy of node i.

2) If the KBM we used in [1] describes the battery dynamics,
we have

ṙi(t) = −ii(t) + k (bi(t)− ri(t))

ḃi(t) = −k (bi(t)− ri(t))

and the battery lifetime T ∗
i (w) is the solution of the

following equation:

Ri −
Gi(w)gi(w)

2
T

− 1

2

[
Bi −Ri −

Gi(w)gi(w)

2k

]
(e−2kT − 1) = 0.

3) If we consider the diffusion model (14)–(16) to describe
the battery dynamics, T ∗

i (w) is the solution of (27).

D. Simulation Examples

In order to illustrate the results of our analysis, we consider
the 7-node network shown in Fig. 2 where node coordinates
are given next to each node. Nodes 1 and 7 are the source and
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TABLE I
OPTIMAL ROUTING PROBABILITIES AND NETWORK LIFETIME FOR A

7-NODE NETWORK WITH DIFFERENT DIFFUSION COEFFICIENTS

TABLE II
NODE LIFETIMES UNDER w∗(0) WHEN δm = (0.273)2m2

base, respectively, while the rest are relay nodes. We solve the
problem for a 2-state model (M = 1) and set Cs = 0.0001,
Cf = Cr = 0.05, and β = 2 in the energy model. We assume
αi = 40375, i = 1, . . . , 6 [28]. Table I shows the optimal rout-
ing probabilities and network lifetime for different values for
δm (D = 0 and D > 0) obtained through Algorithm A1. Note
that D is a constant multiplier in δm. To validate the robustness
property discussed in Theorem 2, we apply the routing vector
obtained when δm = 0 (column 2 of Table I), w∗(0) to the
Ti(w) equations with δm = (0.273)2m2 to see if it results in
the same network lifetime of 80723.17 (we do not provide
specific units, but, based on standard known data, distance
units in feet and time units in minutes are reasonable for the
RVW model). Table II shows node lifetimes under w∗(0) when
δm = (0.273)2m2. It is observed that by adopting w∗(0), node
1 dies first and the network lifetime is equal to that obtained by
solving the NLP problem (29) when δm = (0.273)2m2. This
illustrates the robustness property as expected.

Remark 2: We should point out that solving (27) to obtain
a parametric solution for node i lifetime Ti(w) is a hard task
when we consider the battery model with more than two state
variables (M > 1). However, the robustness property of the
optimal solution with respect to the diffusion coefficient D,
obtained in Theorem 2, allows us to find the optimal routing
vector for the simpler case when D = 0 and the same routing
vector is optimal for other cases with D > 0. Assuming D = 0
(consequently δm = 0) in (5) and (7), we obtain a closed-
form expression for the lifetime of node i as Ti(w) = α/(1 +
2M)Gi(w)gi(w). We can then find the optimal routing vector
for any value of M by solving a single NLP problem (29).

Reduction in Computational Complexity: In order to investi-
gate the reduction in the computational effort needed to find
the optimal routing probabilities using the proposed “single
NLP” formulation, we solve (29) for all three battery dynamic

TABLE III
CPU TIME UNDER DIFFERENT BATTERY DYNAMICS USING SINGLE

NLP FORMULATION COMPARED TO ALGORITHM A1

models discussed in Section III-C and compare the CPU times
with those needed when implementing Algorithm A1. For
the network in Fig. 2, we adopt the diffusion-based model
(δm = (0.273)2m2), the KBM (with k = 0.02), and the ideal
battery model. The corresponding CPU times are as shown in
Table III where one can see that the new formulation offers
a reduction in computation time of an order of magnitude or
more, with the understanding that this reduction depends on
the size of the network and its topology. Note that in order
to obtain an optimal routing vector using Algorithm A1, one
should solve (N − 1) NLP problems.

Remark 3: The extension to a network with multiple source
nodes is straightforward. Let us assume a network with k source
nodes, each with a data generation rate of uk. Let us also
assume that the source nodes do not act as relay nodes and that
each node routes data to nodes which are closer to the base
station. The rest of the analysis is the same as the problem with
a single-source network. The optimal control problem remains
as in (19)–(24) except that the inflow rate to each node becomes

Gi (w(t)) = ui ∀ i ∈ Ns

Gi (w(t)) =
∑
j≺i

wj,i(t)Gj (w(t)) ∀ i 	= Ns

where Ns is the set of all source nodes. Beginning with
the Hamiltonian and defining Scenario Si as we did in
Section III-A, one can show that there exists a time-invariant
optimal routing policy for networks with multisource nodes and
fixed topology.

IV. JOINT OPTIMAL ROUTING AND

INITIAL ENERGY ALLOCATION

In this section, we go a step beyond routing as a mechanism
through which we can control the WSN resources by also con-
trolling the allocation of initial energy over its nodes in order
to maximize the lifetime. An application where this problem
arises is in a network with rechargeable nodes. In this case,
solving the joint optimal routing and initial energy allocation
problem provides optimal recharging amounts by maximizing
the network lifetime which may not correspond to full charges
for all nodes. Unlike our analysis for this problem in [1],
here the battery model works based on changes in electrolyte
concentration; therefore, finding an optimal initial energy allo-
cation for the nodes is equivalent to finding an optimal initial
electrolyte concentration for each one. Consequently, we need
to relate the battery residual energy to the equivalent electrolyte
concentration. We assume a linear relationship as follows: since
we consider identical batteries for all nodes, we define Rnom

to be the rated energy of the battery. Then, for each node,
we have Ri = SoCi ·Rnom, where SoCi denotes the “state
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of charge” of node i. One of the methods used to find the
SoC of a battery is by measuring the specific gravity (SG)
of its electrolyte. For example, for a lead-acid battery, as the
SoC decreases through discharge, sulfuric acid is consumed
and its concentration in water decreases. Consequently, the
SG of the solution is reduced in direct proportion to the SoC
[29]. We assume a linear relationship between SoC and SG
such that SoCi = a · SGi + b, where a and b can be calculated
based on available SoC versus SG lookup tables. Note that
the electrolyte concentration is proportional to the SG of the
solution, that is, SGi = k · Ci, where Ci stands for the elec-
trolyte concentration at node i, and k is a constant coefficient
which can be calculated based on the molecular wight of the
electrolyte and mass percent of the solution. Finally, initial
energy is a linear function of the initial electrolyte concentration

Ri = m · Ci + n (30)

where m = Rnomak and n = Rnomb. Let us define the total
initial energy available as R̄ and let R = [R0, . . . , RN−1].
Using (30), we define corresponding terms for electrolyte con-
centrations as C̄ and C = [C0, . . . , CN−1]. From Theorem 1,
we know that the optimal routing policy is fixed unless the
topology of the network changes. Then, we can formulate the
following problem:

max
Ci,i=0,...,N−1

wi,j ,j=1,...,N−1

T

s.t. T ≤ T ∗
i (w,Ci), i = 0, . . . , N − 1∑

i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

− n

m
< Ci <

Rnom − n

m
,

N−1∑
i=0

Ci = C̄

C̄ =
R̄−Nn

m
. (31)

This is an NLP problem where the control variables are the rout-
ing probabilities wi,j and the initial concentrations Ci for nodes
i = 0, . . . , N − 1. Looking at (30), the constraints on Ci above
are to ensure that the equivalent Ri stays between 0 and Rnom

and that
∑N−1

i=0 Ri = R̄. In this case, T ∗
i (w,Ci) is the solution

of (27) for all i = 0, . . . , N − 1, which is now dependent on w
and Ci. Recalling that αi = νωFAρcutoffCi, we observe that
unlike the problem discussed in the previous section, α is not
identical for all nodes in the network. Differentiating (27) with
respect to αi, we obtain

Gi(w)gi(w)
∂T

∂αi
+

M∑
j=1

(
2Gi(w)gi(w)

∂T

∂αi
e−δjT

)
= 1

which yields

∂T

∂αi
=

1

Gi(w)gi(w) + 2
∑M

j=1 Gi(w)gi(w)e−δjT
> 0.

Observe that ∂T/∂Ci = (∂T/∂αi) · (∂αi/∂Ci) =
νωFAρcutoff(∂T/∂αi), which results in ∂T/∂Ci > 0.

If the solution of problem (31) is (w∗, C∗), then T ∗
i (w

∗, C∗
i )

is the solution of (27) under this routing vector and initial
electrolyte concentration at node i. The following theorem
establishes the fact that this optimal solution is such that all
nodes deplete their energy at the same time.

Theorem 3: The solution of problem (31) satisfies

T ∗=T ∗
0 (w

∗, C∗
0) = T ∗

1 (w
∗, C∗

1) = · · · = T ∗
N−1

(
w∗, C∗

N−1

)
.

(32)

Proof: See the Appendix.
Remark 4: In order to guarantee (32), it is necessary that

T ∗
i (w

∗, C∗
i ) < ∞. Looking at (27) and recalling that gi(w) >

0, this is equivalent to assuming that Gi(w) > 0, that is, that no
node is left unutilized.

Based on Theorem 3, we can simplify the NLP problem (31).
In particular, we solve it in two steps. In Step 1, assuming a
fixed routing policy w, we determine the corresponding optimal
initial energy distribution policy by solving the set of equations

T ∗
0 (w,C0) = T ∗

1 (w,C1) = · · · = T ∗
N−1(w,CN−1)

s.t.
N−1∑
i=0

Ci = C̄. (33)

Its solution is defined to be C∗(w) with an associated lifetime
T ∗(w). Then, in Step 2, we search over the feasible set of
w given by (23) to determine the optimal T ∗(w) by using a
standard nonlinear optimization solution procedure. As also
observed in [1], we should point out, however, that solving
problem (33) to obtain parametric solutions for T ∗(w) and
C∗(w) is not a simple task and common solvers fail to ac-
complish it. Instead, we can proceed by selecting one of the
parametric equations for T ∗

i (w,Ci) as an objective function and
add (33) as constraints to a new NLP problem below, whose
solution we can obtain with standard optimization solvers

max
Ci,wi,j ,j=1,...,N−1

T ∗
i (w,Ci)

s.t. T ∗
i (w,Ci)− T ∗

j (w,Cj) = 0 i, j = 0, . . . , N − 1, i 	= j∑
i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

− n

m
< Ci <

Rnom − n

m
,

N−1∑
i=0

Ci = C̄. (34)

A. Simulation Examples

We provide a numerical example for the joint optimal routing
and initial energy allocation problem using the network in
Fig. 3 with node coordinates shown next to each node. We
set m = 43.75, n = −200 in (30), Rnom = 25, R̄ = 100 (C̄ =
29.71), α = 40375, δm = 0.2732m2 and other numerical val-
ues as before. Table IV shows the optimal routing probabilities
and initial energies of all nodes. Note that the WSN lifetime for
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Fig. 3. Network topology.

TABLE IV
OPTIMAL ROUTING PROBS., 7-NODE NETWORK, NONIDEAL BATTERIES

this case is 98353 which is equal to the network lifetime when
we consider all batteries initially fully charged (Ri = Rnom,
i = 1, . . . , N − 1) and we just control the routing vector as
discussed in Section III. However, here we observe that only the
source node needs a fully charged battery. Finally, the fact that
the network lifetime coincides with all individual node lifetimes
(as expected by Theorem 3) provides a strong justification for
the definition of network lifetime as the time when the first node
depletes its energy.

V. NETWORK PERFORMANCE UNDER SECURITY THREATS

In this section we compare the WSN’s performance under
our optimal routing policy and the probabilistic routing policy
introduced in [9] when a cyber-attack takes place. We limit
ourselves to an example aimed at simply illustrating the ad-
vantages of the optimal routing policy we have derived for a
specific form of attack. In [9] an Energy Aware Routing (EAR)
policy is proposed in which a number of suboptimal paths are
probabilistically selected with the intent of extending the net-
work lifetime by spreading the traffic and forcing nodes in the
network to deplete their energy at the same time. In EAR, each
node builds a cost information table and propagates local cost
information to other nodes. Costs are determined by the residual
energy of each node and by the distances between them. Each
node also maintains a routing probability table determined by
local cost information. In this method, the routing probabilities

TABLE V
OPTIMAL ROUTING PROBS., 7-NODE NETWORK, IDEAL BATTERIES

Fig. 4. Routing probability updates under EAR policy.

are set periodically. At the beginning of each period, the routing
probabilities are computed recursively as follows:

wi,j =
C−1

ij∑
k∈O{i} C

−1
ik

(35)

Cij = dk1
ij r

k2
j + Cj for all j ∈ O{i} (36)

Ci =
∑

k∈O{i}
wi,jCij (37)

where wi,j is the routing probability on the edge (i, j), Cij is
the cost of sending a data packet from node i to the destination
via node j and Ci is the average cost of sending a packet from
node i to the base station (Note that CN = 0 where N is the
base station). Moreover, rj is the residual energy of node j and
k1 and k2 are weighting factors which can be chosen to find
the minimum energy path or the path with the most energy or a
combination of the above [9]. Since the EAR method works
based on the residual battery energy assuming ideal battery
dynamics, we likewise use the same settings and determine the
optimal routing vector and the network lifetime assuming ideal
battery dynamics, i.e., Case 1) of problem (29).

Consider the network topology shown in Fig. 2. Table V
shows the optimal routing probabilities obtained by solving
(29) under normal (no threat) conditions. Under this routing
policy, the network lifetime is 33.33. Fig. 4 shows the routing
probability updates obtained using the EAR policy by comput-
ing routing probabilities, wi,js, through (35)–(37) periodically
when k1 = 5 and k2 = 1. Under the EAR routing policy, the
network lifetime is 25.94. As expected, our optimal routing
policy results in the longer lifetime compared to the EAR
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Fig. 5. Routing probability updates under EAR policy when node 2 is under
attack.

solution. Next, we investigate the network performance under
a “sink-hole attack,” one of the most severe routing attacks in
sensor networks [17], for the two routing policies. Under a sink-
hole attack, a compromised node broadcasts a fake low cost
to the neighboring nodes, thus enticing all such nodes to route
packets to it. We will assume an attacker uses the following
strategy:

1) The attacker compromises one node in the network
randomly.

2) At each time kT , where T is the updating period for
the routing probabilities, the compromised node will: 1)
broadcast a fake near-zero cost (Ci) to all nodes with
probability p to attract more flow; 2) act as a normal node
with probability (1− p).

3) The compromised node corrupts all the packets it has
received and forwards them to other nodes to deplete their
energy.

In particular, we compare the network performance under
the attack in terms of the normalized throughput (the ratio
of the number of uncorrupted packets to the total number of
packets) for the EAR and our optimal policy. Recall that in
the EAR policy, each node i needs to know its neighbors’
residual energies, rj , and average costs, Cj , ∀ j ∈ Oi, to up-
date its routing table. Thus, it is vulnerable to faked-cost-
based attacks. We will further illustrate this through the same
network in Fig. 2. Assume that node 2 is under sink-hole
attack and that in each updating period it broadcasts faked-
cost information to its neighbors with probability p = 0.5.
Fig. 5 shows how routing probability updates are affected in
this scenario. Based on the network topology, node 1 is the
only node that sends data to node 2. One can observe how
routing probabilities from source node, node 1, to the other
nodes, [w12 w13 w14 w15 w16], are affected at the periods in
which node 2 broadcasts faked-cost data. On the other hand, our
optimal policy uses the network topology to calculate routing
probabilities and is robust with respect to this kind of attacks.

Fig. 6. Normalized throughput versus probability of broadcasting faked-cost.

However, the normalized throughput will be affected in both
routing policies. Fig. 6 shows the normalized throughput as a
function of the probability of broadcasting faked-cost, p, when
node 2 is under sink-hole attack. It can be observed that for
this specific example, under our optimal policy the normalized
throughput drops to 63%, but it is not sensitive to p. However,
under the EAR policy it drops significantly as p increases. This
happens because our routing policy is calculated based on the
network topology and consequently robust with respect to p.
Hence, the inflow rate to the compromised node as well as
the normalized throughput, are not affected by the propagated
faked-cost. On the other hand, in the EAR routing strategy,
the data inflow rate to the compromised node increases with
p which drops the normalized throughput correspondingly.

Remark 5: Depending on the network topology, it is possible
that the optimal routing policy dictates all data packets to be
routed through a specific node, i, which gives Gi = 1, (e.g.,
assume w1,2 = 1 in the previous examples). Under a sink-hole
attack, if this node is the compromised one, the normalized
throughput drops to zero. Clearly, this node should be a top
priority in terms of protection against routing attacks. One way
to address this problem is to purposely deviate from the optimal
solution by routing a fraction q of data packets via node i and
the remaining 1− q through other nodes. This randomization-
by-design degrades the network lifetime from its optimal value
under normal operation (no attack), but protects the network
against becoming completely useless when under attack by
increasing its normalized throughput to 1− q.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that an optimal routing policy for maximiz-
ing a fixed topology sensor network’s lifetime is time invariant
even when the batteries used as energy sources for the nodes
are modeled so as to take into account “nonideal” phenomena
such as the rate capacity effect and the recovery effect with a
detailed dynamic battery model of which the KBM used in our
prior work [1] is a special case. The associated fixed routing
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probabilities may be obtained by solving a set of relatively
simple Non-Linear Programming (NLP) problems. In addition,
this optimal policy is independent of battery parameters. The
fact that the optimal routing probabilities are fixed is a strong
indication leading to reduce Algorithm A1 to a single NLP.
The robustness property suggests to find the optimal routing by
adopting the ideal battery dynamics. This reduces the problem
to a single LP. However, in order to have a precise prediction for
the network lifetime one should calculate T ∗

i (w) by applying
optimal routing as discussed in Section III-C using appropriate
battery dynamic. We have also considered a joint routing and
initial energy allocation problem over the network nodes with
the same network lifetime maximization objective and shown
that the solution to this problem is given by a policy that
depletes all node energies at the same time; the associated
energy allocation and routing probabilities are obtained by
solving an NLP problem.

Extensions to networks with multiple sources and base sta-
tions are expected to be straightforward. However, extensions
to a changing network topology are more challenging. Finally,
our solutions so far are centralized, so that an obvious direction
to pursue is to seek distributed versions of the same problems.

Regarding issues of network security, we have limited our-
selves to simple empirical evidence that our optimal routing
policy is characterized by robustness properties relative to other
energy-aware policies when it comes to certain common types
of cyber-attacks. Clearly, a much more extensive investigation
of how the probabilistic nature of routing policies can be
exploited to react to security threats in terms of maintaining
acceptable performance levels when operating under various
attack conditions. This includes the randomization-by-design
possibility mentioned in Remark 4.

APPENDIX

Proof of Theorem 1: To derive explicit expressions for
λi0(t), . . . , λiM (t) it is necessary to use boundary condi-
tions λi0(T ), . . . , λiM (T ). Since 0 ≤ yi(t) ≤ 1 for all i and
t ∈ [0, T ], the optimal control problem under Si is state-
unconstrained except for yi(T ) =

∑M
j=0 xij(T ) = 1. Thus, the

terminal state constraint function Φ(xi(T ), . . . ,xN−1(T )) is
reduced to

∑M
j=0 xij(T ) and the costate boundary conditions

are given by

⎧⎨
⎩
λim(T ) = ν ∂Φ(xi(T ),...,xN−1(T ))

∂xim
= ν m = 0, . . . ,M

λjm(T ) = 0 j 	= i m = 0, . . . ,M

where ν is an unspecified scalar constant. This allows us to
solve the costate equations in (26) to obtain for t ∈ [0, T ]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λi0(t) = ν

λim(t) = νe−δm(t−T ), m = 1, . . . ,M

λjm(t) = 0 j 	= i m = 0, . . . ,M.

(38)

Using (38) in (25), we can simplify the Hamiltonian as follows:

H(w, t, λ) = −1 + λi0
1

α
Gi (w(t)) gi (w(t))

+

M∑
j=1

λij

(
2

α
Gi (w(t)) gi (w(t))− δjxij

)
. (39)

Observe that the control variables wi,j(t) appear only in
Gi(w(t)) and gi(w(t)) in the problem formulation (19)–(24).
Thus, we can set Ui(t) = Gi(w(t))gi(w(t)), i = 0, . . . , N − 1
to be the effective control variables with Ul ≤ Ui(t) ≤ Uu,
where Ul ≥ 0 and Uu are, respectively, the lower bound and
upper bound of Ui(t) for all t ∈ [0, T ]. Note that both are
constant since their determination depends exclusively on (21),
(22) subject to (23), independent of the states. In particular, they
depend on the fixed network topology and the values of the
energy parameters ki,j , ki,N in (22). Applying the Pontryagin
minimum principle to (39)

U ∗
i (t) = arg min

Ul≤Ui(t)≤Uu

H(Ui, t, λ
∗)

implies that the optimal control is of bang-bang type

U ∗
i (t) =

{
Uu if ν < 0

Ul if ν > 0.
(40)

Moreover, the optimal solution must satisfy the transversal-
ity condition (λ∗(dΦ/dt) + L)t=T = 0 where L = −1 and
we have seen that Φ(xi(T ), . . . ,xN−1(T )) =

∑M
j=0 xij(T ).

Therefore

−1 + ν

M∑
j=0

ẋij(T ) = 0

and it follows that ν = 1/ẏi(T ). Since yi(T ) = 1, yi(0) =
0 and 0 < yi(t) < 1 for all t ∈ [0, T ), we have ẏi(T ) > 0,
therefore, ν > 0. By (40), U ∗

i (t) = Ul for all t ∈ [0, T ]. We
conclude that the optimal control problem under Si is reduced
to the following optimization problem:

min
w(t)

Gi (w(t)) gi (w(t))

s.t. (21)− (23) and 1 = yi(T ) ≥ yj(T ), j 	= i. (41)

When t = T , the solution of this problem is w∗(T ) and de-
pends only on yj(T ), j 	= i, and, as already argued, the fixed
network topology and the values of the fixed energy parameters
ki,j , ki,N in (22). The same applies to any other t ∈ [0, T ),
therefore, there exists a time-invariant optimal control policy
w∗(t) = w∗(T ), which minimizes the Hamiltonian and proves
the theorem. �

Proof of Theorem 2: Let yDi (t) denote the battery status
indicator of node i under D ≥ 0. Recall that δm = π2m2D/ω2;
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therefore, δm = 0 when D = 0 and the state equations in (5) for
node i become

ẋi0(t) =
1

α
i(t)

ẋim(t) =
2

α
i(t) m ∈ {1, 2, . . . ,M}.

Hence,

ẏ0i (t) =

M∑
j=0

ẋij(t) = Gi

(
wi(0)

)
gi
(
wi(0)

) (1 + 2M)

α
.

Therefore, for any j 	= i, we have

ẏ0i (t)

ẏ0j (t)
=

Gi

(
wi(0)

)
gi
(
wi(0)

)
Gj (wi(0)) gj (wi(0))

. (42)

When D > 0, by fixing the routing vector w(t) to wi(0)
and solving the differential (14)–(16) with initial condition
xi(0) = 0, we obtain

yDi (t) =
1

α
Gi

(
wi(0)

)
gi
(
wi(0)

)
t

+

M∑
j=1

2

αδj
Gi

(
wi(0)

)
gi
(
wi(0)

)
(1− e−δjt). (43)

Recall that δm = π2m2D/ω2, D is a constant multiplier in δj .
Consequently, we have

ẏDi (t) =
1

α
Gi

(
wi(0)

)
gi
(
wi(0)

)⎛⎝1 + 2

M∑
j=1

e−δjt

⎞
⎠ .

Therefore

ẏDi (t)

ẏDj (t)
=

Gi

(
wi(0)

)
gi
(
wi(0)

)
Gj (wi(0)) gj (wi(0))

D > 0

which is identical to (42). Thus, under D > 0, the inequalities
T ∗
i (w

i, D) ≤ T ∗
j (w

i, D) remain just as valid as T ∗
i (w

i, 0) ≤
T ∗
j (w

i, 0) under D = 0 and it follows that the solution wi(D)

is unaffected relative to wi(0). Note that Algorithm A1
gives w∗(D) as the solution of the NLP Pi such that
maxi{T ∗

i (w)} = T ∗
i (w

i(D)) for some i for any D ≥ 0. Hence,
w∗(0) = wi(0) = wi(D) = w∗(D). �

Proof of Theorem 3: The proof is similar to the same
problem considered in [1] using the KBM battery model (see
proof of [1, Theorem 3]). The critical fact needed in the proof
is ∂T/∂Ci > 0 (replacing ∂T/∂Ri > 0 in [1]). �
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