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Abstract—An optimal control approach is used to solve the
problemof routing in sensor networkswhere the goal is tomaximize
the network’s lifetime. In our analysis, the energy sources (batteries)
at nodes are not assumed to be “ideal” but rather behaving
according to a dynamic energy consumptionmodel, which captures
the nonlinear behavior of actual batteries. We show that in a fixed
topology case there exists an optimal policy consisting of time-
invariant routing probabilities, which may be obtained by solving
a set of relatively simple nonlinear programming (NLP) problems.
We also show that this optimal policy is, under verymild conditions,
robust with respect to the battery model used. Further, we consider
a joint routing and initial energy allocation problem over the
network nodes with the same network lifetime maximization objec-
tive. We prove that the solution to this problem is given by a policy
that depletes all node energies at the same time and that the
corresponding energy allocation and routing probabilities are
obtained by solving an NLP problem. Numerical examples are
included to illustrate the optimality of the time-invariant policy
and its robustness with respect to the battery model used.

Index Terms—Optimal control, power-limited system, routing,
sensor network.

I. INTRODUCTION

A WIRELESS SENSOR NETWORK (WSN) is a spatially
distributed wireless network consisting of low-cost

autonomous nodes, which are mainly battery powered and have
sensing and wireless communication capabilities [20]. Applica-
tions of such networks include exploration, surveillance, and
environmental monitoring. Power consumption is a key issue in
WSNs, since it directly impacts their lifetime in the likely
absence of human intervention for most applications of interest.
Since the majority of power consumption is due to the radio
component [30], nodes rely on short-range communication and
form a multihop network to deliver information to a base station.
Routing schemes in WSNs aim to deliver data from the data
sources (nodes with sensing capabilities) to a data sink (typically,
a base station) in an energy-efficient and reliable way. A survey
of the state-of-the-art routing algorithms is provided in [1].

In this paper, we focus on the problem of routing in a WSN
with the objective of optimizing performance metrics that reflect
the limited energy resources of the networkwhile also preventing
common security vulnerabilities. Most proposed routing proto-
cols in WSNs are based on shortest path algorithms, e.g., [25],
[23]. Such algorithms usually require each node to maintain a
global cost (or state) information table, which is a significant
burden for resource-constrained WSNs. In order to deal with
node failures, Ganesan et al. [14] proposed a multipath routing
algorithm, so that a failure on the main path can be recovered
without initiating a network-wide flooding process for path
rediscovery. Since flooding consumes considerable energy, this
routing method can extend the network’s lifetime when there are
failures. On the other hand, finding multiple paths and sending
packets through them also consumes energy, thus adversely
impacting the lifetime of the network if there are no failures.

The routing policies mentioned earlier may indirectly reduce
energy usage in WSNs, but they do not explicitly use energy
consumption models to address optimality of a routing policy
with respect to energy-aware metrics. Such “energy awareness”
has motivated a number of minimum-energy routing algorithms,
which typically seek paths minimizing the energy per packet
consumed (or maximizing the residual node energy) to reach a
destination, e.g., [31]. However, seeking a minimum energy (or
maximum residual energy) path can rapidly deplete energy from
some nodes and ultimately reduce the full network’s lifetime by
destroying its connectivity. Thus, an alternative performance
metric is the network lifetime. The definition of the term “life-
time” for WSNs varies. Some researchers, e.g., [7], define the
network lifetime as the time until the first node depletes its
battery; however, thismay just aswell be defined as the time until
the data source cannot reach the data sink [5]. Inwhat follows,we
will adopt the former definition, i.e., the time until the first node
depletes its battery. As our results will show, it is often the case
that an optimal policy controlling the WSN’s resources leads to
individual node lifetimes being the same or almost the same as
those of others, hence this definition is a good characterization of
the overall network’s lifetime.

Along the lines of energy-aware routing, Shah and Rabaey
[29] proposed an Energy Aware Routing (EAR) policy, which
does not attempt to use a single optimal path, but rather a number
of suboptimal paths that are probabilistically selected with the
intent of extending the network lifetime by “spreading” the traffic
and forcing nodes in the network to deplete their energies at the
same time. In [24], a similar problem is studiedwith the inclusion
of uncertainties in several WSN parameters. From a network
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security viewpoint, deterministic routing policies (i.e., policies
where source nodes send data through one or more fixed paths)
are highly vulnerable to attacks that can compromise a node and
easily falsify cost information, leading to Denial of Service
(DoS) attacks [35]. In order to reduce the effect of such attacks,
probabilistic routing is an interesting alternative, since this
makes it difficult for attackers to identify an “ideal” node to
take over. In this sense, the EARpolicy is attractive because of its
probabilistic routing structure, even though it does not attempt to
provide optimal routing probabilities for network lifetime max-
imization. It is worth mentioning, however, that a routing policy
based on probabilities can easily be implemented as a determin-
istic policy as well by transforming these probabilities to packet
flows over links and using simple mechanisms to ensure that
flows are maintained over time.

The network lifetime maximization problem studied in [7] is
based on two assumptions. First, it assumes that the energy in a
battery depletes linearly with respect to the quantity of informa-
tion forwarded, and does not depend on the physical dynamics of
the battery itself. Second, it seeks fixed routing probabilities over
time, even though the dynamic behavior of theWSNmay in fact
imply that a time-dependent (possibly based on state feedback
closed-loop) routing policy may be optimal. More generally,
routing problems in WSNs are based on ideal battery models
where a battery maintains a constant voltage throughout the
discharge process and a constant capacity for all discharge
profiles, neither of which is generally true. In fact, the energy
amount delivered by a battery heavily depends on the discharge
profile and it is generally not possible to extract all the capacity
stored in it [22]. This dynamic behavior also leads to the
conjecture that an optimal routing policy should consider the
battery state over time and should, therefore, be time-dependent
rather than fixed. Thus, an optimal control problem formulation
for the network lifetime maximization problem seems to be a
natural setting.

In this paper, we adopt an optimal control setting with the
goal of determining routing probabilities so as to maximize the
lifetime of a WSN subject to a dynamic energy consumption
model for each node. In particular, we will use aKinetic Battery
Model (KBM) [18], [28], which has successfully been applied
in other power management applications. We will then show
that in a fixed network topology case there exists an optimal
policy consisting of time-invariant routing probabilities. We
subsequently show that the optimal control problem may be
converted into a set of relatively simple nonlinear programming
(NLP) problems. Moreover, we show that, under a very mild
condition, this optimal routing policy is in fact robust with
respect to the battery model used, i.e., the routing probabilities
are not affected by the battery model used, although naturally
the estimatedWSN lifetime itself is significantly longer under a
nonideal battery model, primarily due to the recovery effect
mentioned earlier. We also consider an alternative problem
where, in addition to routing, we allocate a total initial energy
over the network nodes with the same network lifetime maxi-
mization objective; the idea here is that a proper allocation of
energy can further increase the network lifetime. We show that
the solution to this problem is given by a policy that depletes all
node energies at the same time and that the corresponding

energy allocation and routing probabilities are obtained by
solving again an NLP problem. We note that when the battery
behavior is reduced to a simple idealized model, our setting
recovers that of [36] and [21] where it was shown that the set of
NLP subproblems can in fact be transformed into the linear
programming (LP) formulation in [7]. It was also shown in [21]
that the initial energy allocation problem can be reformulated
into a shortest path problem on a graph where the arc weights
equal the link energy costs.

In Section II, we formulate the maximum lifetime optimiza-
tion problem using nonideal energy sources at nodes that have
their own dynamics. We adopt a standard energy consumption
model along with the aforementioned KBM. In Section III, we
show that for a fixed network topology there exists an optimal
routing policy which is time invariant and identify a set of NLP
problems, which can be solved to obtain an explicit fixed optimal
routing vector and the corresponding WSN lifetime. We also
derive sufficient conditions under which this optimal policy is
robust with respect to the battery model used. In Section IV, we
consider a joint optimal routing and initial energy allocation
problem.We show that in this case (under some conditions), it is
optimal to set a routing vector and initial node energies, so that all
nodes have the same lifetime. An explicit solution can again be
obtained by solving an NLP problem. Numerical examples are
included to illustrate our analytical results.

II. OPTIMAL CONTROL PROBLEM FORMULATION

In order to simplify our analysis, we will consider aWSNwith
a single source node and one base station and will assume a fixed
topology. It will become clear that our methodology can be
extended to multiple sources and one base station, as well as
time-varying topologies, although themainfixed optimal routing
result will obviously no longer hold in general.

A. Network Model

Consider a network with nodes, where 0 and denote
the source and destination (base station) nodes, respectively.
Except for the base stationwhose energy supply is not constrained,
a limited amount of energy is available to all other nodes. Let
be the residual energy of node , , at time . The
dynamics of depend on the battery model used at node ;
we will discuss in Section II-B the KBM we will adopt. The
distance between nodes and at time is denoted by ;
since we assume a fixed topology, we will treat as time-
invariant in the sequel. The nodes in the network may be
ordered according to their distance to the destination node
, so that and as-

sume that > for all .
Let denote the set of nodes to which node can send

packets. We assume full coverage of the network and
define > < , where > implies that

> , i.e., a node only sends packets to those nodes that
are closer to the destination, and < means that a node
cannot send packets to another node which is further away
from it relative to the destination node . We will use the
notation , if . Let be the routing probability
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of a packet from node to node at time . The vector
defines the

control in our problem. We do not include
in the definition of , since it is clear

that is an implicit control variable given by

< .
For simplicity, the data sending rate of source node 0 is

normalized to 1 and let denote the data packet inflow
rate to node . Given the definitions above, we can express

through the following flow conservation recursive
equation:

where .

B. Energy Consumption Model

Under the assumption that an electrochemical battery cell is
“ideal,” a constant voltage throughout the discharge process and
a constant capacity for all discharge profiles are both maintained
over time. However, in real batteries, the rate capacity effect [12]
leads to the loss of capacity with increasing load current, and the
recovery effect [19] makes the battery appear to regain portions
of its capacity after some resting time. Due to these phenomena,
the voltage as well as energy amount delivered by the battery
heavily rest on the discharge profile. Therefore, when dealing
with energy optimization, it is necessary to consider this along
with nonlinear variations in a battery’s capacity. As a result, there
are several proposed models to describe a nonideal battery; a
detailed overview is given in [16]. Accordingly, models are
broadly classified as: electrochemical [13], [12], [26], circuit-
based [15], [8], stochastic [10], [9], [11], [28], and analytical
[27], [32], [17]. Electrochemical models possess the highest
accuracy, but their complexity makes them impractical for most
real-time applications. Electrical-circuit models are much sim-
pler and, therefore, computationally less expensive but their
accuracy leads to errors, which may be reduced at the expense
of added complexity [8]. Stochastic models use a discrete time
Markov chain with states to represent the number of
charge units available in the battery. Since is large (in the order
of ), these models are also limited by high computational
requirements. Last but not the least, analytical models, including
diffusion-based models [32], [37], [2] and the KBM [18], [28],
use only a few equations to capture the battery’s main features.
While diffusion-based models are hard to combine with a
performance model [16], a KBM combines speed with sufficient
accuracy, as reported, for instance, in embedded system applica-
tions [18]. Empirical evidence for the accuracy of the KBM is
also provided in [28]. The KBM was successfully used to study
problems of optimal single and multibattery power control in
[33], [34] with results consistent with the use of a more elaborate
linear state space model [37] derived from the popular RVW
diffusion-based model [27]. In what follows, we briefly review
the KBM.

TheKBMmodels a battery as twowells of charge, as shown in
Fig. 1. The available-charge well (R-well) directly supplies

electrons to the load, whereas the bound-charge well (B-well)
only supplies electrons to the R-well. The energy levels in the
two wells are denoted by and , respectively. The rate of
energy flow from the B-well to the R-well is ,
where depends on the battery characteristics. The output is
the workload of the battery at time . The battery is said to be
depleted when . If a battery has rechargeability capabil-
ities, we modify the KBM by adding a controllable input flow

. For the sake of generality, we distribute the inflow to
both wells by adding a constant coefficient ( ), as
seen in Fig. 1. The resulting model is

where , are battery-specific influencing factors for the
discharge outflow and the recharge inflow , respectively;
since, in general, a battery discharges faster than it can recharge,
we assume > where the special case simply
means the battery is not rechargeable. The state variables ,
are physically constrained, so that and ,
where is the battery capacity.

In our WSN environment, the battery workload is due to
three factors (e.g., see [4], [3]): the energy needed to sense a bit

, the energy needed to receive a bit , and the energy
needed to transmit a bit . If the distance between two nodes is
, we have

where , are given constants dependent on the commu
nication and sensing characteristics of nodes, and
is a function monotonically increasing in ; the most common
such function is where , are given
constants and is a constant dependent on the medium
involved. We shall use this energy model but ignore the
sensing energy, i.e., set . Clearly, this is a relatively
simple energy model that does not consider the channel quality
or the Shannon capacity of each wireless channel. The ensuing
optimal control analysis is not critically dependent on the

Fig. 1. Kinetic battery model including recharging.
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exact form of the energy consumption model attributed to
communication, although the ultimate optimal value of
obviously is. Before proceeding, it is convenient to define the
following constants:

< <

where is the distance between nodes and . Note that
we may allow these constant to be time-dependent if the
network topology is not fixed, i.e., is time-varying. Let
us now combine the KBM model above with (4). Although the
ability to recharge a battery offers an interesting possibility for
routing control, we shall not consider it in this paper, i.e., set

in (2) and (3). Moreover, for simplicity, we set .
Then, starting with node 0, the workload at that node is
given by

<

< <

<

<

<

where we have used the fact that . Similarly, for any
node , where we must include the energy for
both receiving and transmitting data packets, we get

<

Defining < < , the KBM
equations (2) and (3) for nodes become

The vectors and
define the state variables for our problem. Observe that

controlling the routing probabilities means indirectly
controlling node ’s battery discharge process.

C. Optimal Control Problem Formulation

Our objective is to maximize the WSN lifetime by control-
ling the routing probabilities (equivalently, the flows
through all network links). The WSN lifetime is defined as

< , where is given by
. Thus, our objective is to maximize . Using the

energy consumption model we have developed above, the
optimal control problem is formulated as follows:

<

<

where are the state variables representing node ’s
instantaneous battery energy level, . Control
constraints are specified through (15), where the first inequality
follows from the fact that < . Finally,
(16) provides boundary conditions for , , at

requiring that the terminal time is the earliest instant when
for any node . In other words, at , we require that

the minimal value over all is 0 or, equiva-
lently, .

This is a classic minimum (maximum) time optimal control
problem except for two complicating factors: 1) the boundary
condition (16), which involves the nondifferentiable func-
tion, and 2) the control constraints (15). In what follows, we will
use to denote the optimal routing vector, which provides a
(not necessarily unique) solution to this problem.

Remark 1: Note that there is an additional state constraint
imposed by the capacity of every node battery, i.e., .
However, it is easy to show (see [33]) that as long as < , it is
always true that < < for all > , so that this
constraint is never active in our problem (intuitively, since all
batteries are beingdischarged andnever recharged, it is not possible
for a capacity to be reached except at ).Moreover, if ,
then < < as long as > for all
> . Since > in (7) for all , this is

always true unless a node is not used in the network, i.e.,
for all . In addition, observe that when the

battery is “at rest,” i.e., there is no load in (11), it is easy to show
that . Therefore, we normally set
initial conditions, so that .
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III. OPTIMAL CONTROL PROBLEM SOLUTION

We begin with the Hamiltonian for this optimal control
problem:

<

where , are the costates corresponding to and
at node , which must satisfy

To derive explicit expressions for , , it is neces-
sary to use boundary conditions , . This is com-
plicated by the nature of the state boundary conditions in (16).
Thus, we proceed by considering each possible case of a node
dying first, which we will refer to as “scenario ” under which

for some fixed node .

A. Analysis of Scenario

Under , we have the terminal time constraints and
for all . Consequently, all , are

unconstrained at . The next theorem establishes the prop-
erty that under a fixed network topology, there exists a static
optimal routing policy, i.e., there exists a vector , which is
time invariant.

Theorem 1: If , , for some and the
network topology is fixed, i.e., for all

, then there exists a time-invariant solution
of (10)–(16):

Proof: See Appendix.
Note that there may exist multiple optimal control policies,

including some that may be time varying. Theorem 1 asserts
that there is at least one which is time-invariant, i.e.,

, and it remains to obtain the values of
, and , by explicitly solv-

ing the optimization problem (37). This requires knowledge of all
, in order to determine the values of all and

hence identify the node , such that and use
the values of , . This can be accomplished by solving
the differential equations (11) and (12), whose initial conditions
are given, with , the unknown optimal routing vector.
It is straightforward to obtain and hence show that the
“critical time” such that and > for all

is the solution of the nonlinear equation in :

which we write as . Thus, we may rewrite the optimi-
zation problem as follows:

–

where is the solution of (19) for all .We
will refer to this as problem and note that it may not always
have a feasible solution. The following lemma establishes upper
and lower bounds for based on which necessary condi-
tions for to have a feasible solution may be derived. Before
proceeding, we return to the definitions of the energy consump-
tion constants in (5)–(7) and recall that > for all

. Moreover, since < if and
< , we have

< <

Let us also define

<

From the definition of , this is the nearest node in the output
node set of .

Lemma 1: For all ,

and for

Proof: See Appendix.
Note that it is possible for to be negative.

In practice, however, values of the battery parameter are small
and likely to make the contribution of much smaller than

. Lemma 1 allows us to determine necessary
conditions for to have a feasible solution. In particular, if

and

>

then > and has no feasible solution. Thus, the
necessary condition for ( > ) to have a feasible solution is

B. Algorithm for Solving the Optimal Control Problem

Based on our analysis thus far, if we focus on a fixed scenario
, the solution to the optimal control problem is simply the

solution of the NLP problem . However, since we do not know
which node will die first, determining the value of such that

for all requires solving all problems
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and find the best policy among them. Since not all problems
have feasible solutions, we can use (25) to check for feasibility
before solving the associated NLP problem. The complete
algorithm, referred to as A1, to solve this optimal control
problem is as follows.

Algorithm A1:
1) Solve problem to obtain .
2) For < < , if > , set (no

feasible solution exists); otherwise solve problem and
obtain if it exists.

3) The optimal lifetime is given by and the
corresponding optimal policy is the one obtained for
the associated problem .

If the network topology is such that every node can commu-
nicate with every downstream node , then the algorithm can be
substantially simplified due to the following result.

Lemma 2: For a single-source fixed topology network such
that for all , then
the source node lifetime is no longer than any other node lifetime
under the optimal routing policy , i.e.,

Proof: See Appendix.
This lemma allows us to reduce the original optimal control

problem to a single problem as follows:

– >

where we have used the fact that . Clearly, this
provides a much simpler approach to the solution.

Remark 2: Our analysis can recover the ideal battery case by
setting in (11) and (12). We can then obtain for a
fixed routing vector from ,
as , which greatly simplifies the
process of obtaining a solution through Algorithm A1. In this
case, as shown in [21], the set of NLP problems can be
transformed into the LP formulation in [7].

C. A Robustness Property of the Optimal Routing Policy

In this section, we show that the optimal routing vector
obtained through Algorithm A1 under the ideal battery assump-
tion, i.e., in (11) and (12), is often unchanged when the
nonideal battery model ( > ) is used. The intuition behind such
a robustness property lies in the nature of the NLPs in
Section III-A: observe that the solution depends on the values
of and the associated constraints (13)–(15), while
the only effect of the parameter enters through the inequalities

, . Therefore, if a solution is obtained
under (a much easier problem which, as we have seen,
can be reduced to an LP) and these inequalities are still satisfied
when > , then there is no need to re-solve the NLPs.
Naturally, when this property holds, the value of the resulting
optimal network lifetime is generally different, but the actual
routing policy remains unchanged.

Let denote the solution of problem when theKBM is
invokedwith parameter , including the ideal battery case .
The corresponding node lifetimes are denoted by . The
robustness property we identify rests on the following lemma,
which provides simple sufficient conditions under which

for any > .

Lemma 3: Consider the NLP with solution under
battery parameter . If the initial conditions for the node
energies satisfy for all , then

>

Proof: See Appendix.
The next theorem is a direct consequence of Lemma 3:

Theorem 2: If the initial conditions for all node energies satisfy
, , then the optimal routing policy

under an ideal battery model, , is unaffected when > :

>

Proof: See Appendix.
It should be noted that for all is

a condition that is almost always automatically satisfied by
Remark 1: when a battery is initialized at node , it is normally
“at rest”; therefore, . From a practical standpoint, The-
orem 2 implies that we can obtain under the ideal battery
model assumption using a simple LP (see [21]) and still rely on
this solution even if the batteries are in fact nonideal. Naturally,
the resulting lifetimes are different, but the computational effort
involved to derive an optimal routing policy is substantially
reduced. Moreover, it makes the optimal routing policy inde-
pendent of the parameter , which is often difficult to estimate.

D. Simulation Examples

In order to illustrate the results of our analysis, let us consider a
7-node network as shown in Fig. 2 where node coordinates are

Fig. 2. Network topology-1.
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given next to each node. Nodes 1 and 7 are the source and base
nodes, respectively, while the rest are relay nodes. We set

, , and in the energy model.
The total initial energy is and we assume all nodes have
the same initial energy, so that , .We also
set initial conditions for the KBM at all nodes, so that ,

. Table I shows the optimal routing probabilities for
this network obtained throughAlgorithmA1when ideal batteries
are used (this can be recovered in our analysis by setting in
applying Algorithm A1). The optimal network lifetime in this
case is 54.55 and Table II shows all node lifetimes under the
optimal routing policy (we do not provide specific units in our
examples, but based on standard known data, distance units in
feet and time units in months or weeks are reasonable). Note that
nodes 1–5 die virtually simultaneously, whereas the lifetime of
node 6 is considerably longer. This is because energy consump-
tion at each node depends on both the inflow rate to that node and
the transmitting distances to other nodes. In this example, node 6
is located close to the base, hence using little energy in packet
transmissions. In fact, by relocating node 6 to (120,120) and
roughly doubling its distance from the base, it was observed that
all 6 nodes die at the same time under the optimal policy. Another
important observation in this example is that node 2 receives only
34% of the network inflow and this happens because there is no
benefit in sending data packets to a relatively close relay node.
The network topology in Fig. 2 and all energy model parameter
values are taken from an example in [36] where the routing
problem was solved for the ideal battery case. Our results under

recover almost the same routing probabilities and the exact
same lifetimes as in this example. Moreover, [36] contains a
comparison of the WSN lifetime obtained here with the one
obtained using a locally greedy policy, random routing, and the
EAR policy in [29]; it was shown that the former provides
significant lifetime improvements over all three alternatives.

Next, we revisit the same problem with the KBM battery
dynamics (11) and (12). Assuming and using Algo-
rithmA1, the optimal routing probabilities and node lifetimes are
given in Tables III and IV, respectively. It is interesting to
observe that even such a small value of results in a lifetime
improvement of approximately 3%, which is due to the recovery
effect in the battery dynamics captured in (11) and (12). Tables V
and VI provide the resulting optimal routing probabilities and
node lifetimes for two additional larger values of , showing
considerable network lifetime improvements.

Comparing Tables I and III, note that the optimal routing
probabilities for the ideal and nonideal battery cases are virtu-
ally identical, thus confirming our result in Theorem 2 (whose
conditions are satisfied in this example). As a result, one can
adopt in practice a simple ideal battery model, leading to a
simple optimal routing solution through an LP as in [7] and
[21]. Similar results are obtained for a symmetric network
topology with the same positions for source and base nodes.
As one would expect, all nodes die simultaneously due to this
symmetry.

Next, we consider an example in which initial node energies
are no longer identical, specifically: , ,

, , , and , while still maintaining
the condition .We use the same network shown in Fig. 2
and only shift the source node to the point ( , ). Using
Algorithm A1, the optimal routing probabilities and network
lifetime for different values of are shown in Tables VII and VIII,
respectively. As expected, the robustness property identified in
Theorem 2 still applies.

TABLE I
OPTIMAL ROUTING PROBS., 7-NODE NETWORK, IDEAL BATTERIES

TABLE II
LIFETIMES UNDER ROUTING POLICY GIVEN IN TABLE I

TABLE IV
LIFETIMES UNDER ROUTING POLICY GIVEN IN TABLE III AND

TABLE V
OPTIMAL ROUTING PROBABILITIES AND NETWORK LIFETIME FOR A 7-NODE

NETWORK (FIG. 2)

TABLE VI
LIFETIMES UNDER ROUTING POLICY GIVEN IN TABLE V

TABLE III
OPTIMAL ROUTING PROBS., 7-NODE NETWORK, NONIDEAL BATTERIES ( )
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IV. A JOINT OPTIMAL ROUTING AND INITIAL ENERGY
ALLOCATION PROBLEM

In this section, we go a step beyond routing as a mechanism
through which we can control the WSN resources by also
controlling the allocation of initial energy over its nodes so as
to maximize the lifetime. An application where this problem
arises is in a network with rechargeable nodes. In this case,
solving the joint optimal routing and initial energy allocation
problem provides optimal recharging amounts maximizing the
network lifetime,whichmay not correspond to full charges for all
nodes.

Let us define the total initial energy available as and
let . From Theorem 1, we know that the
optimal routing policy is fixed unless the topology of the
network changes. Then, we can formulate the following
problem:

<

< <

This is an NLP problem where the control variables are both
the routing probabilities and the initial energies . In this
case, is the solution of (19) for all ,

which is now dependent on both and . Differentiating (19)
with respect to , we get

which yields:

Observe that > if and only if

<

Recalling Remark 1, we may assume that since all
batteries are normally initialized at an equilibrium state. In this
case, (29) holds. Otherwise, (29) becomes a condition we need
to impose so as to ensure that > , which will be used in the
result that follows.

If the solution of problem (28) is ( ), then is
the solution of (19) under this routing vector and initial energy at
node . The following theorem establishes the fact that this
optimal solution is such that all nodes deplete their energy at
the same time.

Theorem 3: If condition (29) holds, the solution of problem
(28) satisfies

Proof: See Appendix.

Remark 3: In order to guarantee (30), it is necessary that
< . Looking at (19) and recalling that > ,

this is equivalent to assuming that > , i.e., no node is left
unutilized.

Based on Theorem 3, we can simplify the NLP problem (28).
In particular, we solve it in two steps. In Step 1, assuming a fixed
routing policy , we determine the corresponding optimal initial
energy distribution policy by solving the set of equations:

Its solution is defined to be with an associated
lifetime . Then, in Step 2, we search over the feasible
set of given by (15) to determine the optimal by using a
standard nonlinear optimization solution procedure. We should
point out, however, that solving problem (31) to obtain paramet-
ric solutions for and is not a simple task and

TABLE VII
OPTIMAL ROUTING PROBABILITIES AND NETWORK LIFETIME FOR A 7-NODE NETWORK

WITH DIFFERENT INITIAL ENERGIES

TABLE VIII
LIFETIMES UNDER ROUTING POLICY GIVEN BY TABLE VII
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common solvers fail to accomplish it. Instead, we can proceed by
selecting one of the parametric equations for as an
objective function and add (31) as constraints to a new NLP
problem below, whose solution we can obtain with standard
optimization solvers:

<

< <

Remark 4:As in Section III, our analysis can recover the ideal
battery case by setting in (11) and (12), which implies that

. This simplifies the solution of
(31) as follows. Setting , (31)
implies that

and it follows that

Then, the lifetime is given by

<

Consequently, the solution of problem (28) is the same as that
of the NLP problem:

<

<

>

A. Simulation Examples

In this section, we consider a numerical example for the joint
optimal routing and initial energy allocation problem. As in
Section III-D, first the problem is solved for a network with ideal
node batteries and then using the KBM dynamics (11) and (12).
Let us consider the same network as in Fig. 2 except we relocate

the source node to ( , ). Table IX shows the optimal
routing probabilities and initial energies of all nodes under
different vaklues of , including the ideal battery case where

in (11) and (12). Note that the WSN lifetime with is
63.33, which considerably exceeds the value 54.55 seen in
Section III-D, even though the distance between the source and
base nodes is larger in this case. Moreover, once again we
observe that both optimal initial energies and routing probabili-
ties are the same over different values of . Finally, note the fact
that the network lifetime coincides with all individual node
lifetimes, which are the same by Theorem 3, and provides a
strong justification for the definition of network lifetime being
that of the first node to deplete its energy.

V. CONCLUSIONS AND FUTURE WORK

We have shown that an optimal routing policy for maximizing
a fixed topology sensor network’s lifetime is time invariant even
when the batteries used as energy sources for the nodes are
modeled so as to consider “nonideal” phenomena such as the rate
capacity effect and the recovery effect. The associated fixed
routing probabilities may be obtained by solving a set of
relatively simple NLP problems. In addition, under very mild
conditions, this optimal policy is independent of the battery
parameter , where for ideal batteries. Therefore, one can
resort to the case of ideal batteries where the optimal routing
problem is much simpler to solve and can be reduced to an LP
problem. We have also considered a joint routing and initial
energy allocation problem over the network nodes with the same
network lifetime maximization objective. In this case, the solu-
tion to this problem is given by a policy that depletes all node
energies at the same time and the corresponding energy alloca-
tion and routing probabilities are obtained by solving an NLP
problem.

Extensions of our analysis to networks with multiple sources
and base stations are expected to be straightforward. The robust-
ness property we have identified for the optimal routing policy
with respect to the battery dynamics assumedmay no longer hold
if different nodes use different battery characteristics (i.e., dif-
ferent parameters ). In addition, it remains to investigate
whether different battery models used can still preserve the
time-invariant nature of the optimal routing policy and the

TABLE IX
OPTIMAL ROUTING PROBABILITIES, INITIAL BATTERY ENERGY, AND NETWORK LIFETIME

FOR A 7-NODE NETWORK
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robustness property identified in Theorem 2. It is also interesting
to explore how an optimal routing policy may depend on a
changing network topology. Finally, the solutions we have
obtained so far are centralized and require global location
information, so that an obvious direction to pursue is one seeking
distributed versions of the same optimal routing and energy
allocation problem approaches.

APPENDIX

Proof of Theorem 1: Since for all and ,
the optimal control problem under is state-unconstrained
except for . Thus, the terminal state constraint
function is reduced to and the costate
boundary conditions [6] are given by

where is an unspecified scalar constant. This allows us to solve
the costate equations in (18) to obtain for :

Using (33) in (17), we can simplify the Hamiltonian as
follows:

Observe that the control variables appear only in
and in the problem formulation (10)–(16).

Thus, we can set
to be the effective control variableswith ,where

and are, respectively, the lower bound and upper
bound of for all . Note that both are constant since
their determination depends exclusively on (13), (14) subject to
(15), independent of the states and . In particular, they
depend on the fixed network topology and the values of the
energy parameters , in (14). Applying the Pontryagin
minimum principle to (34):

implies that the optimal control is of bang-bang type:

>
<

with the possibility that there is a singular arc on the optimal
trajectory if . Moreover, the optimal solution must
satisfy the transversality condition [6] ,
where and we have seen that .
Therefore

and it follows that

Observing that and looking at (33), we can immediately
exclude the singular case . Moreover, since
and > for all , it follows that < and (36)
implies that < . Therefore, from (33), < throughout

. Consequently, for by (35). We
conclude that the optimal control problem under is reduced
to the following optimization problem:

–

When , the solution of this problem is and
depends only on , , and, as already argued, the
fixed network topology and the values of the fixed energy
parameters , in (14). The same applies to any other

; therefore, there exists a time-invariant optimal control
policy , which minimizes the Hamiltonian and
proves the theorem. ▪

Proof of Lemma 1:We begin with a lower bound for ,
. Recalling the state equation (11) and observing

that , it follows that a lower bound for ,
when first reaches zero, is given by the value of that
maximizes < , i.e.,

<

The inflow rate is upper-bounded by the sending rate of
the source ; therefore, . Thus

< <

Next, consider < . In view of (20) and
> , setting for all < and attains the

maximal value of this expression, i.e.,

<

Combining (39) and (40), we have

<

and it follows from (38) that

Regarding an upper bound for , if , it is possible
to have , while the upper bound for the term
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in (11) is , where is the battery capacity.
Hence, we can only write and this establishes (22).

If , we have and it follows from (11) that

<

Therefore, an upper bound for is obtained by mini-
mizing < . This entails solving
an LP problem as follows:

<

<

For this problem, one of the extreme points of the feasible
set will be an optimal solution. There are extreme points

, such that:

and the point . The latter cannot minimize the objective
function, since, from (20), we know that < . Thus, the
optimal extreme point must be one of the extreme points
in (42). In this case, the objective function becomes

<

for some . Thus, in order to minimize the
objective function, we need to find the smallest . It follows
from (21) that the optimal extreme point is such that

and the optimal value is . It follows that

which along with (41) proves (23) and completes the proof. ▪
Proof of Lemma 2: There are two cases to consider:

Case 1: If , then it is obvious that
for all since none of the nonsource
nodes is used.

Case 2: If < , we use a contradiction argument. Let us
assume that under the optimal routing vector there
exists a node, say > , which dies first in the network,
i.e., < . Next, let us introduce the
following perturbation to the optimal routing vector:

0 >

where > is sufficiently small, so that the new routing policy
0 is still feasible, and 1 > where 1 >

is the usual indicator function (this is always possible for
> ). In other words, we only perturb routing probabilities

from the source node 0 to other nodes. Consequently, we increase
the flow rate from the source to the sink node, and decrease flow
rates into other nodes so as to maintain the same total flow out of
node 0. It follows that the source node’s life must decrease since
it sends more traffic through the longest link. At the same time,
the lifetimes of all other nodes receiving positive flows from
node 0 must increase since the inflow rates into all of them
decrease. Therefore, letting denote the node lifetime under
the perturbed routing vector 0, we have

where , is a continuous function, such
that and . Since is continuous, we can
find a small enough > such that < , so that the source
node 0 cannot die first under 0. Therefore, the lifetime under
routing policy 0 is .

Since the lifetimes of all nonsource nodes increase under 0, it
follows that > . In other words, 0 provides a
longer network lifetime that contradicting the assumption
that is optimal. ▪

Proof of Lemma 3: Let , denote the node battery
state variables under . When , (11) becomes

. Therefore, for any , we
have

When > , let and note that by
subtracting (11) from (12), we have

Fixing the routing vector to and solving the differ-
ential equation above with initial condition

by assumption, we get .
Using this in (11), we have

Therefore

>

which is identical to (44). Thus, under > , the inequalities
remain just as valid as

under and it follows that the solution
is unaffected relative to , completing the proof. ▪
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Proof of Theorem 2: By assumption, Lemma 3 applies to all
nodes , i.e., . Algorithm A1
gives as the solution of the NLP such that

for some for any . It then follows
from Lemma 3 that . ▪

Proof of Theorem 3:We use a contradiction argument. Let us
assume that under the optimal policy ( ), not all nodes die
together. We then define the following two index sets:

>

According to our assumption, is not empty and let
, i.e., node is the first one to die after

time and for all , we have <
(if there are two or more nodes with the same

value , then we select any one of them). Keeping
the routing vector to its optimal value , we then perturb the
energy allocation vector to a new vector 0 as follows:

where > is sufficiently small to ensure > . Since
, it follows that 0 is a feasible policy.

Under this policy, the node lifetimes are given by
, the solution of (19) under 0 . Since we

have shown that > under (29), we have

where is a continuous function such that and
. Since is continuous, we can find a small enough

> and hence to guarantee that

< <

and the lifetime under 0 is > .
Thus, by choosing a small enough > the network lifetime

under 0 is larger than under which contradicts
the optimality of . Therefore, we conclude that must
be empty, which implies (30). ▪
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