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Abstract—We consider the problem of controlling the
movement of multiple cooperating agents so as to mini-
mize an uncertainty metric associated with a finite number
of data sources. In a one-dimensional (1-D) mission space,
we adopt an optimal control framework and show that the
solution can be reduced to a simpler parametric optimiza-
tion problem: Determining a sequence of locations where
each agent may dwell for a finite amount of time and then
switch direction. This amounts to a hybrid system which
we analyze using the infinitesimal perturbation analysis
(IPA) to obtain a complete online solution through an event-
driven gradient-based algorithm which is also robust with
respect to the uncertainty model used. The resulting con-
troller depends on observing the events required to excite
the gradient-based algorithm, which cannot be guaranteed.
We solve this problem by introducing a new metric for the
objective function which creates a potential field guarantee-
ing that gradient values are nonzero. This approach is com-
pared to an alternative graph-based target-visit scheduling
and dwell times optimization algorithm. The simulation ex-
amples are included to demonstrate the proposed methods.

Index Terms—Agents and autonomous systems, cooper-
ative control, hybrid systems, optimization.

I. INTRODUCTION

SYSTEMS consisting of cooperating mobile agents are of-
ten used to perform tasks such as coverage control [1], [2],

surveillance, and environmental sampling. The persistent mon-
itoring problem arises when agents are assigned to monitor a
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dynamically changing environment which cannot be fully cov-
ered by a stationary agent allocation. Thus, persistent monitor-
ing differs from traditional coverage tasks due to the perpetual
need to cover a changing environment. This exploration process
results in the eventual discovery of various “points of interest”
which, once detected, become “data sources” or “targets” which
need to be monitored. This setting arises in multiple application
domains ranging from large-scale surveillance, environmental
monitoring, and energy management [3], [4] in smart cities down
to particle tracking in nanoscale systems tasked to the study of
dynamic and interactive processes in biomolecular systems and
in nanomedical research [5]–[7]. In contrast to patrol strategies
for sweep coverage [8]–[11] or to discover intruders/new targets
[12], [13] where every point in a mission space must be con-
tinually surveyed, the problem we address here involves a finite
number of known data sources (typically larger than the num-
ber of agents and we will refer to them as “targets” for short)
which the agents must cooperatively monitor through periodic
visits.

The state of each target is observed and controlled by agents
equipped with sensing capabilities (e.g., cameras) and which
are normally dependent upon their physical distance from the
target. The objective of cooperative persistent monitoring in this
case is to minimize an overall measure of uncertainty about the
target states. This may be accomplished by assigning the agents
to specific targets dynamically or by a periodic scheduling ap-
proach of designing motion trajectories through which agents
reduce the uncertainty state of a target by visiting it (and pos-
sibly remaining at the target for a finite amount of time) until a
certain switching condition is met [14]. Viewed as an optimiza-
tion problem, the goal is for the agents to jointly minimize some
cost function that captures the desired features of the monitoring
task [15]. The key problem is determining for each agent the
sequence of target visits and the associated dwell time at each
target. As long as the numbers of agents and targets are small,
it is possible to identify sequences that yield a globally optimal
solution; in general, however, this is a computationally intensive
procedure which does not scale well [16].

Rather than viewing this problem as a target visiting task
which eventually falls within the class of traveling salesman
[17] or vehicle routing problems [18], in this paper we follow
earlier work in [10] and introduce an optimal control frame-
work whose objective is to control the movement of agents so
as to collect information from targets and ultimately minimize
an average metric of uncertainty over all targets. An important

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5541-9421
https://orcid.org/0000-0003-0316-1187
https://orcid.org/0000-0001-7575-3507
https://orcid.org/0000-0002-1625-7658


ZHOU et al.: OPTIMAL EVENT-DRIVEN MULTIAGENT PERSISTENT MONITORING OF A FINITE SET OF DATA SOURCES 4205

difference between the previous work [10] and the current per-
sistent monitoring setting is that there is now a finite number of
targets that agents need to monitor as opposed to every point in
the mission space. In a 1-D mission space, we show that the opti-
mal control problem can be reduced to a parametric optimization
problem. In particular, every optimal agent trajectory is charac-
terized by a finite number of points where the agent switches
direction and by a dwelling time at each such point. As a result,
the behavior of the agents under optimal control is described
by a hybrid system whose behavior is captured by agent control
switches and states of the targets. This allows us to make use of
infinitesimal perturbation analysis (IPA) [19], [20] to determine
online the gradient of the objective function with respect to these
parameters and to obtain a (possibly local) optimal trajectory.
Our approach exploits an inherent property of IPA under mild
conditions which allows virtually arbitrary stochastic effects in
modeling target uncertainty. Moreover, IPA’s event-driven na-
ture renders it scalable in the number of events in the system
and not its state space.

A potential drawback of event-driven control methods is that
they obviously depend on the events which “excite” the underly-
ing controller being observable. However, this is not guaranteed
under every feasible control: It is possible that no such events
are excited under a nominal control in which case the controller
may be useless. The crucial events in persistent monitoring are
“target visits” and it is possible that such events may never oc-
cur for a large number of feasible agent trajectories which IPA
uses to estimate a gradient online, especially when targets are
sparse and the corresponding gradient field is flat. At the heart
of this problem is the fact that the objective function we define
for a persistent monitoring problem has a nonzero cost met-
ric associated with only a subset of the mission space centered
around targets, while all other points have zero cost, since they
are not “points of interest”. This lack of event excitation is a
serious problem in many trajectory planning and optimization
tasks [21]–[23]. Thus, to solve this problem, we propose a new
cost metric introduced in [24] which creates a potential field
based on the existing targets guaranteeing that gradient values
are generally nonzero throughout the mission space and ensures
that all events are ultimately excited.

To summarize, the contributions of this paper consist of:
1) presenting new results on characterizing the optimal tra-

jectories of agents when a finite number of targets is
known (in contrast to [10] where targets are unknown);

2) providing a globally optimal solution to the problem by
using a graph-based scheduling method as a baseline for
assessing the performance of the IPA gradient scheme we
use to determine agent optimal trajectories;

3) addressing the potential lack of event excitation in an
event-driven optimization approach as described above.

The rest of the paper is organized as follows. Section II for-
mulates persistent monitoring as an optimal control problem and
Section III presents a Hamiltonian analysis which characterizes
the optimal solution in terms of two sets of parameter vectors
specifying switching points and associated dwelling times for
each agent. Section IV provides a complete solution obtained
through event-driven IPA gradient estimation, and solves the

issue of potential lack of event excitation through a modified
cost metric. In Section V, we present a graph-based scheduling
approach as an alternative aimed at finding a global optimum
and comparing it with the IPA-based solution. Section VI in-
cludes several simulation results and Section VII concludes the
paper.

II. PERSISTENT MONITORING PROBLEM FORMULATION

We begin by reviewing the model and problem formulation
introduced in [25] before providing a complete analysis of its
solution. We consider N mobile agents moving in a 1-D mission
space [0, L] ⊂ R and maintaining a fully connected network.
Let the position of the agents at time t be sj (t) ∈ [0, L], j =
1, . . . , N , following the dynamics:

ṡj (t) = uj (t) (1)

i.e., we assume that an agent j can control its direction and
speed. Without the loss of generality, after proper rescal-
ing, we further assume that the speed is constrained by
|uj (t)| ≤ 1, j = 1, . . . , N . As will become clear, the agent
dynamics in (1) can be replaced by a more general model
of the form ṡj (t) = gj (sj (t)) + bjuj (t) without affecting the
main results of our analysis. Finally, for convenience we la-
bel agents 1, . . . , N sequentially according to their initial po-
sitions s1(0) ≤ s2(0) . . . ≤ sN (0) and we will show that this
ordering is preserved throughout an optimal trajectory for all
j = 1, . . . , N − 1 as follows:

sj (t) − sj+1 (t) ≤ 0. (2)

The ability of an agent to sense its environment is modeled
by a function pj (x, sj ) that measures the probability that an
event at location x ∈ [0, L] is detected by agent j. We assume
that pj (x, sj ) = 1 if x = sj , and that pj (x, sj ) is monotonically
nonincreasing in the distance |x − sj |, thus capturing the re-
duced effectiveness of a sensor over its range which we consider
to be finite and denoted by rj . Therefore, we set pj (x, sj ) = 0
when |x − sj | > rj . Although our analysis is not affected by
the precise sensing model pj (x, sj ), we will consider a linear
decay model as follows:

pj (x, sj ) = max
{

1 − |sj − x|
rj

, 0
}

(3)

and limit ourselves to continuous sensing functions for simplic-
ity, although this is not required for the subsequent analysis to
hold. Unlike the persistent monitoring problem setting in [10],
here we consider a known finite set of targets located at xi ∈
(0, L), i = 1, . . . ,M (we assume M > N to avoid uninteresting
cases where there are at least as many agents as targets, in which
case every target can be assigned to at least one agent). We can
then set pj (xi, sj (t)) ≡ pij (sj (t)) to represent the effective-
ness with which agent j can sense target i when located at sj (t).
Accordingly, the joint probability that xi ∈ (0, L) is sensed by
at least one agent (assuming detection independence) is

Pi(s(t)) = 1 −
N∏

j=1

[1 − pij (sj (t))] (4)
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Fig. 1. Polling model interpretation of problem P1.

where we set s(t) = [s1 (t) , . . . , sN (t)]T.
Next, we define uncertainty functions Ri(t) associated with

targets i = 1, . . . ,M , so that they have the following properties:
1) Ri(t) increases with a prespecified rate Ai if Pi (s(t)) =

0 (we will later allow this to be a random process
{Ai(t)}),

2) Ri(t) decreases with a fixed rate Bi if Pi (s(t)) = 1, and
3) Ri(t) ≥ 0 for all t. It is then natural to model uncertainty

dynamics associated with each target as follows:

Ṙi(t)=
{

0 if Ri(t) = 0 and Ai ≤BiPi (s(t))
Ai − BiPi (s(t)) otherwise

(5)

where we assume that initial conditions Ri(0), i = 1, . . . ,M ,
are given and that Bi > Ai > 0 (thus, the uncertainty strictly
decreases when there is perfect sensing Pi (s(t)) = 1).

Our goal is to control the movement of the N agents through
uj (t) in (1) so that the cumulative average uncertainty over all
targets i = 1, . . . , M is minimized over a fixed time horizon T .
Thus, setting u (t) = [u1 (t) , . . . , uN (t)]T we aim to solve the
following optimal control problem P1:

min
u(t)

J =
1
T

∫ T

0

M∑
i=1

Ri(t)dt (6)

subject to the agent dynamics (1), uncertainty dynamics (5),
control constraint |uj (t)| ≤ 1, t ∈ [0, T ], and state constraints
(2). Fig. 1 shows a polling model version for problem P1 where
each target is associated with a “virtual queue” where uncer-
tainty accumulates with the inflow rate Ai . The service rate of
this queue is time-varying and given by BiPi (s(t)), control-
lable through the agent position at time t. This interpretation
is convenient for characterizing the stability of such a system
over a mission time T : For each queue, we may require that∫ T

0 Aidt <
∫ T

0 BiPi(s(t))dt. Alternatively, we may require that
each queue becomes empty at least once over [0, T ]. Note that,
this analogy readily extends to two or 3-D settings.

III. OPTIMAL CONTROL SOLUTION

In this section, we derive properties of the optimal control
solution of problem P1 and show that it can be reduced to
a parametric optimization problem. This will allow us to uti-
lize an IPA gradient estimation approach [19] to find a com-
plete optimal solution through a gradient-based algorithm. We
begin by defining the state vector x(t) = [R1(t), ...RM (t),

s1(t)...sN (t)] and associated costate vector λ = [λ1(t), ...,
λM (t), λs1 (t), ..., λsN

(t)]. As in [10], due to the discontinu-
ity in the dynamics of Ri(t) in (5), the optimal state trajectory
may contain a boundary arc when Ri(t) = 0 for some i; other-
wise, the state evolves in an interior arc. Thus, we first analyze
such an interior arc. Using (1) and (5), the Hamiltonian is

H(x, λ,u) =
M∑
i=1

Ri(t) +
M∑
i=1

λi(t)Ṙi(t) +
N∑

j=1

λsj
(t)uj (t).

(7)

The costate dynamics are

λ̇i(t) = − ∂H

∂Ri(t)
= −1, λi(T ) = 0; (8)

λ̇sj
(t) = − ∂H

∂sj (t)
=

M∑
i=1

λi (t) Bi
∂Pi(s(t))
∂sj (t)

, λsj
(T ) = 0.

(9)

Applying the Pontryagin minimum principle to (7) with u�(t),
t ∈ [0, T ), denoting an optimal control, a necessary condition
for optimality is

H (x� , λ� ,u�) = min
u(t)

H (x, λ,u) (10)

from which it immediately follows that

u∗
j (t) =

{
1 if λsj

(t) < 0
−1 if λsj

(t) > 0
. (11)

Note that, there exists a possibility that λsj
(t) = 0 over some

finite singular intervals [26], in which case u∗
j (t) may take values

in {−1, 0, 1}. This requires further analysis, in particular we
show in Lemma 2 that u∗

j (t) = 0 when λsj
(t) = 0.

Similar to the case of the persistent monitoring problem stud-
ied in [10], the complete solution requires solving the state and
costate equations, which in turn involves the determination of all
points where Ri(t) = 0, i = 1, . . . , M . This generally involves
the solution of a two-point-boundary-value problem. However,
we will next prove some structural properties of an optimal tra-
jectory, based on which we show that it is fully characterized
by two sets of parameters, thus reducing the optimal control
problem to a much simpler parametric optimization problem.

We begin by assuming that targets are ordered accord-
ing to their location, so that x1 < · · · < xM . Let r =
maxj=1,...,N {rj}, a = max{0, x1 − r}, and b = min{L, xM

+ r}. Thus, if sj (t) < x1 − r or sj (t) > xM + r, then it fol-
lows from (3) that pij (sj (t)) = 0 for all targets i = 1, . . . , M .
Clearly, this implies that the effective mission space is
[a, b], i.e.,

a ≤ sj (t) ≤ b, j = 1, . . . , N (12)

imposing an additional state constraint for P1. We will show
next that on an optimal trajectory every agent is constrained to
move within the interval [x1 , xM ]. This implies that every agent
must switch its direction no later than reaching the first or last
target (possibly after dwelling at the switching point for a finite



ZHOU et al.: OPTIMAL EVENT-DRIVEN MULTIAGENT PERSISTENT MONITORING OF A FINITE SET OF DATA SOURCES 4207

time interval). To establish this and subsequent results, we first
define the following.

Definition III.1: An agent switches direction at time t
when the following conditions hold: There exists t0 ∈ [0, t)
such that uj (t0) �= 0; uj (τ)uj (t0) ≥ 0 for all τ ∈ [t0 , t); and
uj (t+)uj (t0) < 0.

In contrast, we define the agent control switching points as
follows.

Definition III.2: A control switching point of agent j is
sj (t) ∈ [a, b] such that uj (t−) �= uj (t+), t ∈ (0, T ).

Next, we will make a technical assumption that no two events
altering the dynamics in (1) and (5), respectively, can occur
at the exact same time when an agent switches direction. This
will simplify the subsequent derivations without restricting the
implementations presented in Section VI.

Assumption 1: Suppose that an agent switches direction
at θ ∈ [a, b]. For any j = 1, . . . , N, i = 1, . . . ,M, t ∈ (0, T ),
there exists ε > 0, such that if sj (t) = θ, sj (t − ε) > θ, or
if sj (t) = θ, sj (t − ε) < θ, then either Ri(τ) > 0 for all τ ∈
[t − ε, t] or Ri(τ) = 0 for all τ ∈ [t − ε, t].

Proposition 1: In an optimal trajectory, if x1 ≤ s∗j (0) ≤ xM ,
then x1 ≤ s∗j (t) ≤ xM , t ∈ [0, T ], j = 1, . . . , N .

Proof: We first prove that s∗j (t) ≥ x1 for any agent j. Sup-
pose that s∗j (t0) = x1 and u∗

j (t0) = −1. In view of (12), assume
that agent j reaches a point θ ∈ [a, x1) at time t1 > t0 where it
switches direction, we will show that θ /∈ [a, x1) using a con-
tradiction argument. There are two cases to consider. �

Case 1: θ = a. Assuming s∗j (t1) = a, we first show that
λ∗

sj
(t−1 ) = 0 by a contradiction argument. If λ∗

sj
(t−1 ) �= 0, re-

call that u∗
j (t

−
1 ) = −1, therefore λ∗

sj
(t−1 ) > 0 from (11). Since

the constraint a − sj (t) ≤ 0 is active, λ∗
sj

(t) may experience a
discontinuity so that

λ∗
sj

(t−1 ) = λ∗
sj

(t+1 ) − πj (13)

where πj ≥ 0 is a scalar multiplier associated with the constraint
a − sj (t) ≤ 0. It follows that λ∗

sj
(t+1 ) = λ∗

sj
(t−1 ) + πj > 0.

Since the Hamiltonian in (7) and the constraint a −
sj (t) ≤ 0 are not explicit functions of time, we have [26]
H∗(x(t−1 ), λ(t−1 ),u(t−1 )) = H∗(x(t+1 ), λ(t+1 ),u(t+1 )) which,
under Assumption 1, reduces to

λ∗
sj

(t−1 )u∗
j (t

−
1 ) = λ∗

sj
(t+1 )u∗

j (t
+
1 ). (14)

Recall that λ∗
sj

(t−1 )u∗
j (t

−
1 ) < 0. However, u∗

j (t
+
1 ) ≥ 0 (since the

agent switches control), therefore, λ∗
sj

(t+1 )u∗
j (t

+
1 ) ≥ 0 which

violates (14). This contradiction implies that λ∗
sj

(t−1 ) = 0.

Recalling (4) and (9), we get λ̇∗
sj

(t−1 ) =
∑M

i=1,Ri �=0 λ∗
i (t

−
1 )

Bi

rj

∏
d �=j [1 − pid(s∗d(t

−
1 ))]. Under Assumption 1, there exists

δ > 0 such that during interval (t1 − δ, t1), no Ri(t) ≥ 0 be-
comes active, hence, no λ∗

i (t) encounters a jump for i =
1, . . . ,M and it follows from (8) that λ∗

i (t) > 0. Moreover,
pid(s∗d(t)) �= 1 for at least some d �= j since we have assumed
that M > N . Thus, we have λ̇∗

sj
(t) > 0, for all t ∈ (t1 − δ, t1).

However, since agent j is approaching a, there exists some δ′ <
δ, such that u∗

j (t) = −1 for all t ∈ (t1 − δ′, t1), and λ∗
sj

(t) ≥ 0.

Thus for t ∈ (t1 − δ′, t1), we have λ∗
sj

(t) ≥ 0 and λ̇∗
sj

(t) > 0.

This contradicts the established fact that λ∗
sj

(t−1 ) = 0. We con-
clude that θ �= a.

Case 2: θ ∈ (a, x1). Assuming s∗j (t1) = θ, we still have
u∗

j (t
−
1 ) = −1, u∗

j (t
+
1 ) ≥ 0. Since the Hamiltonian (7) is not an

explicit function of time, we have H∗(x(t−1 ), λ(t−1 ),u(t−1 )) =
H∗(x(t+1 ), λ(t+1 ),u(t+1 )) which leads to (14) under
Assumption 1. First, we assume λ∗

sj
(t−1 ) �= 0. Since

u∗
j (t

−
1 ) < 0, we have λ∗

sj
(t−1 ) > 0 and the left hand side

of (14) gives λ∗
sj

(t−1 )u∗
j (t

−
1 ) < 0. On the other hand, in order to

satisfy (14), we must have u∗
j (t

+
1 ) > 0 and λ∗

sj
(t+1 ) < 0. How-

ever, if λ∗
sj

(t−1 ) > 0 and λ∗
sj

(t+1 ) < 0, then either λ̇∗
sj

(t1) < 0
and λ∗

sj
(t1) = 0, or λ∗

sj
(t) experiences a discontinuity at

t1 . We show that neither condition is feasible. The first one
violates our assumption that λ∗

sj
(t1) �= 0, while the second

one is not feasible since at t = t1 the constraint a − sj (t) ≤ 0
is not active. This implies that λ∗

sj
(t−1 ) = 0. Again, under

Assumption 1, the same argument as in Case 1 can be used to
show that λ∗

sj
(t) ≥ 0 and λ̇∗

sj
(t) > 0 for all t ∈ (t1 − δ′, t1).

This contradicts the established fact that λ∗
sj

(t−1 ) = 0 and we
conclude that θ /∈ (a, x1).

Combining both the cases, we conclude that θ /∈ [a, x1),
which implies that s∗j (t) ≥ x1 . The same line of argument can
be used to show that s∗j (t) ≤ xM . �

Proposition 1, in conjunction with (11), leads to the conclu-
sion that the optimal control consists of each agent moving with
maximal speed in one direction until it reaches a point in the in-
terval [x1 , xM ] where it switches direction. Note that, this prop-
erty applies to the problem in [10] as well, however, here we need
to additionally prove that sj (t) /∈ (a, x1) as shown in Case 2
on the proof. However, the exclusion of the case λsj

(t) = 0
allows the possibility of singular arcs along the optimal tra-
jectory, defined as intervals [t1 , t2 ] such that λsj

(t) = 0 for all
t ∈ [t1 , t2 ] and λsj

(t−1 ) �= 0, λsj
(t+2 ) �= 0. The next result estab-

lishes the fact that we can exclude singular arcs from an agent’s
trajectory while this agent has no target in its sensing range.

Lemma 1: If |sj (t) − xi | > rj for t ∈ [0, T ], any target i =
1, . . . ,M , and agent j = 1, . . . , N , then u∗

j (t) �= 0.
Proof: We proceed with a contradiction argument. Suppose

that u∗
j (t) = 0 for t ∈ [t1 , t2 ], such that |s∗j (t1) − xi | > rj for

all i = 1, . . . , M and that u∗
j (t) �= 0 (without the loss of gen-

erality, let u∗
j (t) = 1) for t > t2 , so that |s∗j (t3) − xi | = rj for

some i = 1, . . . ,M and |s∗j (t3 + Δ) − xi | < rj for t3 + Δ >
t3 > t2 . In other words, agent j eventually reaches a target i
that it can sense at t = t3 . Assume that u∗

j (t), t ∈ [t1 , t3 + Δ]
is replaced by u′

j (t) as follows: u′
j (t) = 1 for t ∈ [t1 , t3 + Δ +

t1 − t2 ] and u′
j (t) = 0 for t ∈ (t3 + Δ + t1 − t2 , t3 + Δ]. In

other words, the agent moves to reach s′j (t3 + Δ + t1 − t2) =
s∗j (t3 + Δ) and then stops. The two controls are thereafter
identical, as illustrated in Fig. 2. Then, referring to (6) we
have

∫ t3 +Δ
t3 +Δ+t1 −t2

R′
i(t)dt ≤ ∫ t3 +Δ

t3 +Δ+t1 −t2
R∗

i (t)dt since under
u′

j (t) the agent may decrease Ri(t) over [t3 + Δ + t1 − t2 , t3 ],
whereas under u∗

j (t) this is impossible since |s∗j (t) − xi | > rj

over this time interval. Since the cost in (6) is the same over
[0, t3 + Δ + t1 − t2) and (t3 + Δ, T ], it follows that u∗

j (t) = 0
when |sj (t) − xi | > rj cannot be optimal unless u∗

j (t) = 0 for
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Fig. 2. Illustration of the control strategies compared in the proof of
Lemma 1. The dashed red lines indicate the segments when the target
is within the agent’s sensing range and the thick green bars indicate the
segments when the control takes the value 1.

all t ∈ [0, T ], i.e., the agent never moves and never senses any
target, in which case the cost under u′

j (t) is still no higher than
that under u∗

j (t). �
Based on Lemma 1, we conclude that singular arcs in an

agent’s trajectory may occur only while it is sensing a target. In-
tuitively, this indicates that it may be optimal for an agent to stop
moving and dwell in the vicinity of one or more targets that it
can sense so as to decrease the associated uncertainty functions
to an adequate level before it proceeds along the mission space.
The next lemma establishes the fact that if the agent is visiting
an isolated target and experiences a singular arc, then the corre-
sponding optimal control is u∗

j (t) = 0. An isolated target with
position xi is defined to be one that satisfies |xi − xj | > 2r, for
all j �= i where r was defined earlier as r = maxj=1,...,N {rj}.
Accordingly, the subset I ⊆ {1, . . . , M} of isolated targets is
defined as

I = {i : |xi − xj | > 2r ∀j �= i, r = max
j=1,...,N

{rj}}. (15)

Lemma 2: Let |s∗j (t) − xk | < rj for some j = 1, . . . , N and
isolated target k ∈ I . If λ∗

sj
(t) = 0, t ∈ [t1 , t2 ], then u∗

j (t) = 0.
Proof: The proof is along the same line as in [10,

Proposition III.3]. Assume that λ∗
sj

(t) = 0 over a singular arc
[t1 , t2 ]. Let H∗ ≡ H(x∗, λ∗,u∗). Since the Hamiltonian along
an optimal trajectory is a constant, recalling (7) we have

dH∗

dt
=

M∑
i=1

[
Ṙ∗

i (t) + λ̇∗
i (t)Ṙ

∗
i (t) + λ∗

i (t)R̈
∗
i (t)

]

+
N∑

j=1

[
λ̇∗

sj
(t)u∗

j (t) + λ∗
sj

(t)u̇∗
j (t)

]
= 0 (16)

and since from (8) λ̇∗
i (t) = −1, (16) reduces to

dH∗

dt
=

M∑
i=1

λ∗
i (t)R̈

∗
i (t) +

N∑
j=1

[
λ̇∗

sj
(t)u∗

j (t) + λ∗
sj

(t)u̇∗
j (t)

]
= 0.

(17)

Define S(t) = {j|λsj
(t) = 0, λ̇sj

(t) = 0} as the set of agents in
singular arcs at t and S̄(t) as the set of all the remaining agents. If
j ∈ S(t), then λ̇∗

sj
(t)u∗

j (t) + λ∗
sj

(t)u̇∗
j (t) = 0. If j ∈ S̄(t), then

λ∗
sj

(t)u̇∗
j (t) = 0 since u∗

j (t) = ±1 and u̇∗
j (t) = 0. Therefore,

we rewrite (17) as

dH∗

dt
=

M∑
i=1

λ∗
i (t)R̈

∗
i (t) +

∑
j∈S̄ (t)

λ̇∗
sj

(t)u∗
j (t) = 0. (18)

�
Recalling (5), when Ri(t) �= 0, we have Ṙi = Ai − Bi(1 −∏N
n=1[1 − pij (sj (t))]). Therefore,

R̈∗
i (t) =

d

dt
Ṙ∗

i (t)

= −
N∑

j=1

u∗
j (t)Bi

∂pij (s∗j (t))
∂s∗j

∏
d �=j

[1 − pid(s∗d(t))] .

(19)

Moreover, from (9), we have

λ̇∗
sj

(t) =
M∑

i=1,Ri �=0

λ∗
i (t)Bi

∂pij (s∗j (t))
∂s∗j

∏
d �=j

[1 − pid(s∗d(t))] .

(20)

Combining (18)–(20), we get

dH∗

dt
=

−
M∑
i=1

Ri �=0

N∑
j=1

u∗
j (t)λ

∗
i (t)Bi

∂pij (s∗j (t))
∂s∗j

∏
d �=j

[1 − pid(s∗d(t))]

+
∑

j∈S̄ (t)

M∑
i=1

Ri �=0

u∗
j (t)λ

∗
i (t)Bi

∂pij (s∗j (t))
∂s∗j

∏
d �=j

[1 − pid(s∗d(t))]

= −
∑

j∈S (t)

M∑
i=1

Ri �=0

u∗
j (t)λ

∗
i (t)Bi

∂pij (s∗j (t))
∂s∗j

∏
d �=j

[1 − pid(s∗d(t))]

= 0. (21)

Since we have assumed that |s∗j (t) − xk | < rj and k is an iso-
lated target, it follows that pkj (s∗j (t)) �= 0 and pij (sj (t)) = 0

if i �= k. Therefore,
∂pk j (s∗

j (t))
∂s∗

j
�= 0 and

∂pi j (s∗
j (t))

∂s∗
j

= 0 for all

i �= k and (21) reduces to

∑
j∈S (t)

u∗
j (t)λ

∗
k (t)Bi

∂pkj (s∗j (t))
∂s∗j

∏
d �=j

[1 − pkd(s∗d(t))] = 0.

(22)

Observe that, from (8), λi(t) > 0 when Ri(t) �= 0, t < T . In
addition Bi > 0 and

∏
d �=j [1 − pkd(s∗d(t))] �= 0. Therefore, to

satisfy (22) for all t ∈ [t1 , t2 ], we must have u∗
j (t) = 0, for all

j ∈ S(t). �
We can further establish the fact that if an agent j experiences

a singular arc while sensing an isolated target k, then the optimal
point to stop is such that s∗j (t) = xk .

Proposition 2: Let |s∗j (t) − xk | < rj for some j = 1, . . . , N
and isolated target k ∈ I . If λ∗

sj
(t) = 0, t ∈ [t1 , t2 ], and

u∗
j (t

−
1 ) = u∗

j (t
+
2 ), then s∗j (t) = xk , t ∈ [t1 , t2 ].



ZHOU et al.: OPTIMAL EVENT-DRIVEN MULTIAGENT PERSISTENT MONITORING OF A FINITE SET OF DATA SOURCES 4209

Fig. 3. Illustration of the control strategies compared in the proof of
Proposition 2. The thick green bars indicate the segments when the
control takes the value 1.

Proof: By Lemma 2, we know that u∗
j (t) = 0, t ∈ [t1 , t2 ].

We use a contradiction argument similar to the one used
in Lemma 1 to show that s∗j (t) = xk , t ∈ [t1 , t2 ]. Suppose
that u∗

j (t
−
1 ) = 1 (without the loss of generality) and that

s∗j (t) = xk − Δ < xk . Note that, at the end of the singu-
lar arc u∗

j (t
+
2 ) = 1 since u∗

j (t
−
1 ) = u∗

j (t
+
2 ). This implies that

s∗j (t2 + Δ) = xk . Assume that u∗
j (t), t ∈ [t1 , t2 + Δ] is re-

placed by u′
j (t) as follows: u′

j (t) = 1 for t ∈ [t1 , t1 + Δ] and
u′

j (t) = 0 for t ∈ (t1 + Δ, t2 + Δ]. In other words, the agent
moves to reach s′j (t1 + Δ) = s∗j (t2 + Δ) = xk and then stops.
The two controls are thereafter identical, see Fig. 3. Then, re-
ferring to (6) we have

∫ t2 +Δ
t1

R′
i(t)dt <

∫ t2 +Δ
t1

R∗
i (t)dt since

Ṙ∗
i (t) < Ṙ′

i(t) due to (5) and the fact that pkj (sj (t)) is monoton-
ically decreasing in |sj (t) − xk |. Since the cost in (6) is the same
over [0, t1) and (t2 + Δ, T ], it follows that s∗j (t) = xk − Δ can-
not be optimal. The same argument holds for any Δ > 0, leading
to the conclusion that s∗j (t) = xk , t ∈ [t1 , t2 ]. A similar argu-
ment also applies to the case s∗j (t) = xk + Δ > xk . �

Finally, we consider the case where the state constraint (2) is
included. We can then prove that this constraint is never active
on an optimal trajectory, i.e., the agents reverse their directions
before making contact with any other agent. Therefore, the con-
straint (2) is superfluous.

Proposition 3: Under the constraint sj (t) ≤ sj+1(t), on
an optimal trajectory, sj (t) �= sj+1(t) for all t ∈ (0, T ),j =
1, ..., N − 1.

Proof: The proof is almost identical to that of
Proposition III.4 in [10] and is, therefore, omitted. �

The above analysis, including Propositions 1–3, fully char-
acterize the structure of the optimal control as consisting of
intervals in [0, T ] where u∗

j (t) ∈ {−1, 0, 1} depending entirely
on the sign of λsj

(t). Based on this analysis, we can parameter-
ize P1 so that the cost in (6) depends on a set ofFirst, switching
points (see Definition III.2) where an agent switches its con-
trol from uj (t) = ±1 to ∓1 or possibly 0, and second, dwelling
times if an agent switches from uj (t) = ±1 to 0. In other words,
the optimal trajectory of each agent j is totally characterized by
two parameter vectors: Switching points θj = [θj1 , θj2 ...θjΓ ]
and dwelling times ωj = [ωj1 , ωj2 ...ωjΓ ′ ] where Γ and Γ′ are
prior parameters depending on the given time horizon. This
defines a hybrid system with state dynamics (1), (5). The dy-
namics remain unchanged in between events that cause them
to change, i.e., the points θj1 , . . . , θjΓ above and instants when

Ri(t) switches from > 0 to 0 or vice versa. Therefore, the over-
all cost function (6) can be parametrically expressed as J(θ,ω)
and rewritten as the sum of costs over corresponding interevent
intervals over a given time horizon

J(θ,ω) =
1
T

K∑
k=0

∫ τk + 1 (θ,ω)

τk (θ,ω)

M∑
i=1

Ri(t)dt (23)

where τk in (23) is the kth event time. This will allow us to apply
IPA to determine a gradient ∇J(θ,ω) with respect to these
parameters and apply any standard gradient-based optimization
algorithm to obtain a (locally) optimal solution.

IV. INFINITESIMAL PERTURBATION ANALYSIS

As concluded in the previous section, the optimal agent tra-
jectories may be selected from the family {s(θ,ω, t, s0)} with
parameter vectors θ and ω and a given initial condition s0 .
Along these trajectories, the agents are subject to dynamics (1)
and the targets are subject to (5). An event (e.g., an agent stop-
ping at some target xi) occurring at time τk (θ,ω) triggers a
switch in these state dynamics. IPA specifies how changes in θ
and ω influence the state s(θ,ω, t, s0), as well as event times
τk (θ,ω), k = 1, 2, . . ., and, ultimately the cost function (23).
We briefly review next the IPA framework for general stochastic
hybrid systems as presented in [19].

Let {τk (θ)}, k = 1, . . . , K, denote the occurrence times of all
events in the state trajectory of a hybrid system with dynamics
ẋ = fk (x, θ, t) over an interval [τk (θ), τk+1(θ)), where θ ∈ Θ
is some parameter vector and Θ is a given compact, convex
set. For convenience, we set τ0 = 0 and τK +1 = T . We use the
Jacobian matrix notation: x′(t) ≡ ∂x(θ,t)

∂θ and τ ′
k ≡ ∂τk (θ)

∂θ , for
all the state and event time derivatives. It is shown in [19] that

d

dt
x′(t) =

∂fk (t)
∂x

x′(t) +
∂fk (t)

∂θ
(24)

for t ∈ [τk , τk+1) with boundary condition

x′(τ+
k ) = x′(τ−

k ) + [fk−1(τ−
k ) − fk (τ+

k )]τ ′
k (25)

for k = 0, ...K. In order to complete the evaluation of x′(τ+
k )

in (25), we need to determine τ ′
k . We classify events into two

categories. An event is exogenous if it causes a discrete state
transition at time τk independent of the controllable vector θ and,
therefore, satisfies τ ′

k = 0. Otherwise, the event is endogenous
and there exists a continuously differentiable function gk : Rn ×
Θ → R such that τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0}
and

τ ′
k = −

[
∂gk

∂x
fk (τ−

k )
]−1 (

∂gk

∂θ
+

∂gk

∂x
x′(τ−

k )
)

(26)

as long as ∂gk

∂x fk (τ−
k ) �= 0 (details may be found in [19]).

Denote the time-varying cost along a given trajectory
as L(x, θ, t), so the cost in the kth interevent interval is
Jk (x, θ) =

∫ τk + 1

τk
L(x, θ, t)dt and the total cost is J(x, θ) =∑K

k=0 Jk (x, θ). Differentiating and applying the Leibniz rule
with the observation that all terms of the form L(x(τk ), θ, τk )τ ′

k
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are mutually canceled with τ0 = 0, τK +1 = T fixed, we obtain

∂J(x, θ)
∂θ

=
K∑

k=0

∂

∂θ

∫ τk + 1

τk

L(x, θ, t)dt

=
K∑

k=0

∫ τk + 1

τk

∂L(x, θ, t)
∂x

x′(t) +
∂L(x, θ, t)

∂θ
dt.

(27)

In our setting, we have L(x, θ, t) =
∑M

i=1 Ri(t) from (23),
which is not an explicit function of the state x(t) = [R1(t),
...RM (t), s1(t)...sN (t)]. Thus, the gradient ∇J(θ,ω) =
[ ∂J (θ,ω)

∂θ , ∂J (θ,ω)
∂ω ]T reduces to

∇J(θ,ω) =
1
T

K∑
k=0

M∑
i=1

∫ τk + 1 (θ,ω)

τk (θ,ω)
∇Ri(t)dt (28)

where ∇Ri(t) = [ ∂Ri (t)
∂θ , ∂Ri (t)

∂ω ]T.
Applying (24), (25), (26), we can evaluate ∇Ri(t). In con-

trast to [10], in our problem agents are allowed to dwell on ev-
ery target and it is necessary to optimize these dwelling times.
Therefore, we need to consider all the possible forms of control
sequences: ±1 → 0, 0 → ±1, and ±1 → ∓1. Applying (24) on
(5) and integrating over time from the last event, we obtain

∂Ri(t)
∂θj

=
∂Ri(τ+

k )
∂θj

−
{
0 if Ri(t) = 0 and Ai <BiPi(s(t))

Bi
∂pi j (sj )

∂sj

∂ sj (τ +
k )

∂θj
Gij (t) otherwise

(29)

∂Ri(t)
∂ωj

=
∂Ri(τ+

k )
∂ωj

−
{
0 if Ri(t) = 0 and Ai <BiPi(s(t))

Bi
∂pi j (sj )

∂sj

∂ sj (τ +
k )

∂ωj
Gij (t) otherwise

(30)

where θj is the vector of switching points of agent j and ωj the

associated dwell times, ∂pi j (sj )
∂sj

= ± 1
rj

or 0 depending on the
relative position of target i with respect to the position of agent
j. Moreover, the term Gij is defined as

Gij (t) =
∫ t

τk

∏
d �=j

[1 − pid(sd(τ))]dτ (31)

and may be interpreted as a “collaboration factor” capturing the
contributions of all other agents d �= j in monitoring target i.

In between each two consecutive events, ∇Ri(t) evolves ac-
cording to (29) and (30), but at the event times it may experience
discontinuities as captured by the boundary condition (25) with
τ ′
k evaluated through (26).

First, let us consider the events that cause switches in Ṙi(t)
in (5) at time τk . For these events, the dynamics of sj (t) are

continuous so that ∇sj (τ−
k ) = ∇sj (τ+

k ). For target i

∇Ri(τ+
k ) =

{∇Ri(τ−
k ) if Ri(τk ) �= 0

0 if Ri(τk ) = 0
. (32)

Notice that, ∇Ri(t) is reset to zero when Ri(t) reaches zero
at event time τk regardless of the value ∇Ri(τ−

k ), otherwise
∇Ri(t) evolves continuously in t.

Second, let us consider events that cause switches in ṡj (t)
in (1) at time τk . For these events, the dynamics of Ri(t) are
continuous so that ∇Ri(τ−

k ) = ∇Ri(τ+
k ). In order to evaluate

(29) and (30), we need ∂sj (τ +
k )

∂θj
and ∂sj (τ +

k )
∂ωj

. Clearly, these
cannot be affected by future events and we only have to consider
the prior and current control switches from l = 1, 2..., ξ. Let θjξ

and ωjξ be the current switching point and dwelling time. Again,
applying (24), (25), (26) to (1), we have

Case 1: uj (τ−
k ) = ±1, uj (τ+

k ) = 0.

∂sj

∂θjl
(τ+

k ) =
{

1 if l = ξ

0 if l < ξ
, (33)

∂sj

∂ωjl
(τ+

k ) = 0 for all l ≤ ξ. (34)

Case 2: uj (τ−
k ) = 0, uj (τ+

k ) = ±1.

∂sj

∂θjl
(τ+

k )

=

⎧⎪⎪⎨
⎪⎪⎩

∂sj

∂ θj l
(τ−

k ) − uj (τ+
k )sgn

(
θjξ − θj (ξ−1)

)
if l = ξ

∂sj

∂ θj l
(τ−

k ) − uj (τ+
k )

[
sgn(θjl − θj (l−1))

−sgn(θj (l+1) − θjl)
]

if l < ξ

,

(35)

∂sj

∂ωjl
(τ+

k ) = −uj (τ+
k ) for all l ≤ ξ. (36)

Case 3: uj (τ−
k ) = ±1, uj (τ+

k ) = ∓1.

∂sj

∂θjl
(τ+

k ) =

{
2 if l = ξ

− ∂sj

∂ θj l
(τ−

k ) if l < ξ
. (37)

Details of these derivations can be found in the Appendix of
[10]. An important difference arises in Case 2 above, where τk =
|θj1 − a| + ωj1 + ... + |θjξ − θj (ξ−1) | + ωjξ . We eliminate the
constraints on the switching location that θjξ ≤ θj (ξ−1) if ξ is
even and θjξ ≥ θj (ξ−1) if ξ is odd.

In addition, we show in a forthcoming paper that even though
it appears that the IPA gradient in (29) and (30) depends on the
state of other agents, it turns out that only the collaboration term
(31) affects changes in the gradient. This suggests a decentral-
ized algorithm as shown in [27] through which each agent can
locally evaluate its gradient using only occasional interagent
information exchange and still achieve the same solution as the
centralized one obtained in this paper.

The event excitation problem: Note that, all the derivative up-
dates above are limited to events occurring at times τk (θ,ω),
k = 1, 2, . . .. Thus, this approach is scalable in the number of
events characterizing the hybrid system, not its state space.
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Fig. 4. Example of no event excitation leading to a failure of IPA finding
an optimal agent trajectory. The yellow bar is the segment of the space
initially covered by the agent.

While this is a distinct advantage, it also involves a potential
drawback. In particular, it assumes that the events involved in
IPA updates are observable along a state trajectory. However, if
the current trajectory never reaches the vicinity of any target so
as to be able to sense it and affect the overall uncertainty cost
function, then any small perturbation to the trajectory will have
no effect on the cost. As a result, the IPA will fail as illustrated in
Fig. 4: where, the single agent trajectory s1(θ,ω, t) is limited to
include no event. Thus, if a gradient-based procedure is initial-
ized with such s1(θ,ω, t), no event involved in the evaluation
of ∇Ri(t) is “excited” and the cost gradient remains zero.

In order to overcome this problem, we modify our cost metric
by introducing a function V (·) with the property of “spread-
ing” the value of some Ri(t) over all points w ∈ Ω ≡ [0, L]
as in (38). Recalling Proposition 1, we limit ourselves to the
subset B = [x1 , xM ] ⊂ Ω. Then, for all points w ∈ B, we de-
fine V (w, t) as a continuous density function which results
in a total value equivalent to the weighted sum of the target
values

∑M
i=1 Ri(t) (the existence of such a function is for-

mally proved in [24]). We impose the condition that V (w, t) be
monotonically decreasing in the Euclidean distance ‖w − xi‖.
More precisely, we define d+

i (w) = max
(‖w − xi‖, r

)
where

r = minj=1,...,N {rj} which ensures that d+
i (w) ≥ r. Thus,

d+
i (w) = r > 0 is fixed for all points within the target’s vicinity,

w ∈ [xi − r, xi + r]. We define

V (w, t) =
M∑
i=1

αiRi(t)
d+

i (w)
. (38)

Note that, V (w, t) corresponds to the “total weighted reward
density” at w ∈ B. The weight αi may be included to capture the
relative importance of targets, but we shall henceforth set αi = 1
for all i = 1, . . . ,M for simplicity. In order to differentiate
points w ∈ B in terms of their location relative to the agents
states sj (t), j = 1, . . . , N , we also define the travel cost func-
tion

Q(w, s(t)) =
N∑

j=1

‖sj (t) − w‖. (39)

Using these definitions we introduce a new objective function
component, which is added to the objective function in (6)

J2(t) =
∫
B

Q(w, s(t))V (w, t)dw. (40)

The significance of J2(t) is that it accounts for the movement of
agents through Q(w, s(t)) and captures the target state values
through V (w, t). Introducing this term in the objective function

in the following creates a nonzero gradient even if the agent
trajectories are not passing through any targets. Defining the
metric in (23) as J1(t) and combining it with J2(t), we get

min
θ∈Θ ,ω≥0

J(θ,ω, T )=
1
T

∫ T

0

[
J1(θ,ω, t)+e−βtJ2(θ,ω, t)

]
dt

(41)

where, as a reminder, J1(θ,ω, t) =
∑M

i=1 Ri(t) is the original
uncertainty metric. This creates a continuous potential field for
the agents which ensures a nonzero cost gradient even when
the trajectories do not excite any events. This nonzero gradient
will induce the trajectory adjustments that naturally bring them
toward ones with observable events. The factor e−βt with β > 0
is included so that as the number of IPA iterations increases, the
effect of J2(θ,ω, t) is diminished and the original objective is
ultimately recovered. The IPA derivative of J2(θ,ω, t) is

∂J2(θ,ω, t)
∂θ

=
∫
B

[
∂Q(w,θ,ω, s(t), t)

∂θ
V (w,θ,ω, t)

+ Q(w,θ,ω, s(t), t)
∂V (w,θ,ω, t)

∂θ

]
dw

(42)

where the IPA derivatives of Q(w,θ,ω, s(t), t) and V (w,θ,
ω, t) are obtained following the same procedure described pre-
viously. Before making this modification, the lack of event ex-
citation in a state trajectory results in the total derivative (28)
being zero. On the other hand, in (42) we observe that if no
events occur, the second part in the integral, which involves
∂V (·)

∂θ is zero, since
∑M

i=1
∂Ri (t)

∂θ = 0 all the time. However, the
first part in the integral does not depend on events, but only
the sensitivity of Q(w,θ,ω, s(t), t) in (39) with respect to the
parameters θ,ω. As a result, the agent trajectories are adjusted
so as to eventually excite desired events and any gradient-based
procedure we use in conjunction with IPA is no longer limited
by the absence of event excitation.

IPA robustness to uncertainty modeling: Observe that the
evaluation of ∇Ri (t), hence ∇J(θ,ω), is independent of Ai ,
i = 1, . . . ,M , i.e., the parameters in our uncertainty model. In
fact, the dependence of ∇Ri (t) on Ai , i = 1, . . . ,M , manifests
itself through the event times τk when Ri(τk ) reaches zero, but
they, unlike Ai which may be unknown, are directly observable
during the gradient evaluation process. Thus, the IPA approach
possesses an inherent robustness property: There is no need to
explicitly model how uncertainty affects Ri(t) in (5). Conse-
quently, we may treat Ai as unknown without affecting the so-
lution approach (the values of ∇Ri (t) are obviously affected).
We may also allow this uncertainty to be modeled through ran-
dom processes {Ai(t)}, i = 1, . . . ,M . Under mild technical
conditions on the statistical characteristics of {Ai(t)} [19], the
resulting ∇J(θ,ω) is an unbiased estimate of a stochastic gra-
dient.

IPA gradient descent algorithm: We apply a standard gradient
descent scheme to optimize parameter [θ,ω]T following

[
θl+1 ,ωl+1]T

=
[
θl ,ωl

]T −
[

αl
θ 0
0 αl

ω

]
∇J(θ,ω) (43)
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Algorithm 1: IPA-Driven Gradient Desent Optimization.
1: Initialize parameters θ,ω
2: Select an error tolerance ε > 0
3: repeat:
4: Compute trajectory sj (t), t ∈ [0, T ],∀j = 1 . . . N

using θ,ω.
5: Compute the IPA gradient ∇J(θ,ω)
6: Update θ,ω using (43)
7: until ‖∇J(θ,ω)‖ < ε
8: Set the optimized parameter θ∗ = θ,ω∗ = ω and

compute J(θ∗,ω∗)

where αl
θ and αl

ω are diminishing step-size sequences
satisfying

∑∞
l=1 αl

θ = ∞, liml→∞ αl
θ = 0 and

∑∞
l=1 αl

ω =
∞, liml→∞ αl

ω = 0 (elementwise). Our gradient-based IPA op-
timization is summarized in Algorithm 1.

We briefly mention some technical issues concerning
Algorithm 1. First, the dimensions Γj and Γ′

j of θj and ωj

(i.e., the number of switching points contained in an optimal
trajectory) are a priori unknown and depend on T . However, a
feasible upper bound for each can be easily derived as shown
in [10] and we use the maximum upper bound over all agents
j = 1, . . . , N to initialize θ and ω. Second, K in (23) corre-
sponds to the index of the last event observed within the given
time horizon T , this is simply a counter which does not af-
fect the algorithm implementation. Third, the convergence of
Algorithm 1 is guaranteed under standard assumptions made on
the step size sequences in (43) [28]. Finally, to ensure that the
execution time of Algorithm 1 does not exceed a given desired
upper bound (depending on the computation device used), we
may select a maximum number of iterations n0 to ensure that
the algorithm terminates before exceeding this bound.

V. GRAPH-BASED SCHEDULING METHOD

While the IPA-driven gradient-based approach described in
Section IV offers several compelling advantages, it is not guar-
anteed to find a global optimum. It is important, then, to under-
stand the level of suboptimality that can occur. In this section, we
develop a graph-based scheduling method which, at the cost of
the expected but significant increase in computational complex-
ity, guarantees a global optimal solution. While its complexity
limits its applicability to problems of small size, it does al-
low us to compare the performance of the IPA-based scheme in
Algorithm 1 to the global optimal in that setting. The complexity
of graph-based approaches such as the one developed here are
driven by the size of the graph and are invariant to the underlying
dimensionality of the mission space. Such approaches may then
have a greater role in mission spaces of dimension greater than
one where it has been shown that it is challenging to identify a
parametric representation of the optimal agent trajectories [11].

As illustrated in Fig. 5, our approach to the discrete setting
is to divide the overall planning time horizon T for agent j

into a sum of Kj consecutive time steps {t1j , t2j , ..., tKj

j }, j =
1, . . . , N , with t1j = 0. The dependence on j indicates that each

Fig. 5. Time sequence of a single agent on a given trajectory. The ti
are the time points where the agent begins to move to the next target
in the sequence. Each move takes Δti units of time followed by a dwell
period of Δdi units of time during which information is collected from the
target.

agent may have a different discretization. We denote the end
of the Kth step as tK +1

j = T . Each step k ∈ {1, ...,Kj} begins
with a travel stage where the agent moves to a particular target i.
Under the assumption that during the transition between targets
each agent moves at its maximum speed of |uj | = 1, the travel
time is

Δtkj = |sk
j (tkj ) − xi |. (44)

Upon arriving at a target, the agent dwells for a time Δdk
j . Note

that, due to the range-based nature of the sensing, the uncertainty
actually begins to decrease before the arrival of the agent at the
target and continues to decrease after the agent has departed
until the target is out of the sensing range.

The problem of optimizing uj to minimize the average un-
certainty over all the targets has been translated into a mixed
integer programming (MIP) problem to select the sequence of
targets and the dwell time at each target. Letting ak

ji be a binary
variable denoting whether agent j is assigned to target i at time
step k, this MIP is

min
ak

j i ,Δdk
j

J =
1
T

M∑
i=1

∫ T

0
Ri(t)dt (45)

s.t. ak
ji ∈ {1, 0},

M∑
i=1

ak
ji = 1, ∀j, k (46)

K∑
k=1

Δtkj + Δdk
j ≤ T, ∀j. (47)

Note that, we assume that each agent is assigned to a max-
imum of only one target at any one time. The IPA-driven ap-
proach has no such restriction. We break the solution of this
problem into three parts: the enumeration of all feasible trajec-
tories, the calculation of the cost of the feasible trajectories, and
then selection of the optimal trajectory based on those costs. We
focus on the case of a single agent for simplicity of description
before generalizing to the multiple agent case.

The first part, namely determining feasible trajectories, is
straightforward. Given the fixed time horizon T , the target loca-
tions, the locations of the agent at the start of the time horizon,
and the maximum speed of the agent, a feasible trajectory is one
where the sequence of targets can all be visited within the time
horizon. Similarly, the third part simply involves comparing the
trajectories and selecting the one with the minimal cost.

In the second part, the cost of each feasible trajectory must be
determined. Suppose we have a given feasible trajectory with
K targets in its sequence. Note that, because a trajectory may
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include multiple visits to the same target, K may be larger than
m (and may be much larger for large time horizons and small
m). Let {i1 , i2 , . . . , iK } denote the indices of the targets in the
sequence. From (45), the cost of this trajectory is given by the
optimization problem

min
Δdk

j

J =
1
T

M∑
i=1

∫ T

0
Ri(t)dt

s.t.
K∑

k=1

Δtk + Δdk ≤ T.

Our approach to solving this optimization problem is to setup
a recursive calculation. As illustrated in Fig. 5, since the travel
times Δti are completely determined by the sequence alone,
optimizing over the dwell times is equivalent to optimizing the
switching times ti . Assume for the moment that the switching
times through tK−1 have been determined (and thus the first
K − 2 dwell times, Δd1 , . . . ,ΔdK−2 are known). The two final
dwell times are completely determined by selecting time tK at
which to switch the agent from target iK−1 to target iK . This
then gives us a simple single variable optimization problem

min
ΔTK

J =
1

ΔT

∫ T

tK −1
(RiK −1 (t) + RiK

(t)) dt

where ΔT = T − tK−1 . This allows the final switching time to
be expressed as a function of the previous time tK = tK (tK−1).
Repeating this leads to an expression of the optimal switching
times as a nested sequence of optimization functions which can
be solved numerically.

This same optimization procedure can be generalized to the
case of multiple agents. The primary challenge is that the set
of feasible trajectories, and the calculation of the cost of those
trajectories, quickly becomes intractable since all the possible
combinations of assignments of multiple agents must be consid-
ered. The computational complexity can be mitigated somewhat
by taking advantage of the known properties of optimal solutions
(as described in Section III).

Since the computational complexity is exponential in the
length of the time horizon, this approach is limited to short
horizons. In prior work on linear systems, it was shown that
an appropriately defined periodic schedule is sufficient to en-
sure the entire system remains controllable [29], [30]. In the
current context, this translates to being able to keep the uncer-
tainty of each of the targets arbitrarily close to zero. Our most
recent work [14] shows that, under a given periodic visiting
sequence, it is generally optimal to stay with a target until its
uncertainty reaches zero and then to switch to another. Moti-
vated by this, we typically apply our discrete approach over a
relatively short time horizon and extend the resulting optimal
trajectory to longer horizons by simply repeating it in a periodic
manner.

VI. SIMULATION EXAMPLES

To demonstrate the performance of the gradient-based algo-
rithm using the IPA scheme described in Section IV, we present
two sets of numerical examples. The first set uses determin-

Fig. 6. Top: Trajectory of a single agent monitoring three targets using
the IPA-driven gradient descent algorithm. Second: Calculated cost as
a function of iteration in the gradient descent. Bottom figures: Target
uncertainties along the trajectory. The final cost is 25.54.

istic target locations and dynamics. The results are compared
against the optimal found by the discrete scheduling algorithm of
Section V. The second set demonstrates the robustness of the
IPA scheme with respect to a stochastic uncertainty model.

The first example consists of a single agent performing a
persistent monitoring task on three targets over a time hori-
zon of 100 s. The targets are located at positions x1 = 5,
x2 = 10, x3 = 15 and their uncertainty dynamics in (5) are
defined by the parameters Ai = 1, Bi = 5, and Ri(0) = 1 for
all i. The agent has a sensing range of 2 and is initialized with
s(0) = 0, u(0) = 1. The results from the IPA gradient descent
approach are shown in Fig. 6. The top image shows the opti-
mal trajectory of the agent determined after 1000 iterations of
Algorithm 1 while the bottom shows the evolution of the overall
cost as a function of iteration number. The agent is moving
through a periodic cycle of x1 → x2 → x3 → x2 → x1 . . . ,
dwelling for a short time at each target before moving to the
next. Notice that, the agent dwells for a shorter time at the
center target since it visits that location twice per cycle. The
second image in the figure shows that the gradient descent con-
verges within the first 100 iterations. This example aims to
test the event-driven IPA scheme with the discrete scheduling
algorithm which yields a global optimal but suffers from com-
putational intensity. Thus, we start with a short time horizon
T = 100 s. Event-driven IPA in conjunction with Algorithm 1
optimizes the trajectory fast but the convergence exhibits the
oscillatory behavior due to lack of an adequate number of ob-
served events within a short time horizon. The final cost is 25.54.
The bottom images in Fig. 6 show the evolution of the target
uncertainties.
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Fig. 7. Top: Trajectory of a single agent monitoring three targets us-
ing the optimal discrete assignment and dwelling time. Bottom : Target
uncertainties along the trajectory. The final cost is 25.07.

The corresponding result based on the discrete setting of
Section V is essentially the same with the agent moving through
the three targets in a periodic fashion as shown in Fig. 7. The only
deviation from the IPA scheme occurs at the end of the horizon
where the discrete approach returns to the center target. The
final cost was 25.07, thus verifying the approximate optimality
of the solution found in Fig. 6.

The next example involves two agents and five targets over a
time horizon of 500 s. The targets are located at x1 = 5, x2 = 7,
x3 = 9, x4 = 13, x5 = 15. The uncertainty dynamics were the
same as in the single-agent, three-target case. As before, the
agents have a sensing range of 2 and are initialized at s1(0) =
s2(0) = 0, with u1(0) = u2(0) = 1. The results from the event-
driven IPA gradient descent approach are shown in Fig. 8. The
solution is again periodic with the agents dividing the targets
into two groups. Notice that, the single agent on targets x4 and
x5 is able to keep the uncertainties very close to zero since
the targets are quite close relative to the sensing range of the
agent. The other agent is able to hold its middle target (x2)
close to zero since it is visited more often. The corresponding
result based on the discrete setting is shown in Fig. 9. Rather than
solving over the full horizon, the problem was solved over a 60 s
horizon and then, the periodic trajectory repeated to fill the 500 s
horizon. The results are again very close to the event-driven IPA
method.

Note that, the optimal trajectories in both one- and two-agent
examples are bounded between [5, 15] (positions of the first and
last target), which is consistent with Proposition 1.

As mentioned earlier, the IPA robustness property allows us
to handle stochastic uncertainty models at targets. We show a

Fig. 8. Top: Trajectories of two agents monitoring five targets using the
IPA gradient descent algorithm. Second: Calculated cost as a function
of iteration. Bottom figures: Target uncertainty values along the above
trajectories. The final cost is 4.99.

Fig. 9. Top: Trajectories of two agents monitoring five targets using
the discrete assignment and dwelling time. Bottom: Target uncertainty
values along the above trajectories. The final cost was 4.92.

one-agent example in Fig. 10(b) where the uncertainty inflow
rate Ai(t) is uniformly distributed between (0.75, 1.25) for all
targets. In Fig. 10(c), we introduce randomness by allowing tar-
get positions to vary uniformly over (xi − 0.25, xi + 0.25). In
both cases, the optimal cost in the stochastic models in Fig. 10(b)
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Fig. 10. Examples demonstrating IPA robustness with respect to
stochastic uncertainty. (a)–(c) Top plot: Optimal trajectory s∗(t). Bottom
plot: Cost convergence. (a) Example of deterministic target model. Target
positions 5; 7; 15, dynamics parameter Ai = 1, B = 5, r = 2.J ∗(θ, ω) =
29.40. (b) Example with stochastic uncertainty inflow processes. Ai ∼
U (0.75, 1.25).J ∗(θ, ω) = 30.27. (c) Example with stochastic target loca-
tions ∼ U (xi − 0.25, xi + 0.25).J ∗(θ, ω) = 34.89.

and (c) are close to the optimal cost of the deterministic case in
Fig. 10(a) where the parameter Ai and target positions xi are
the means of the associated random processes in the stochas-
tic models. The convergence depends on the variance of these
random processes. As variance increases, so does the cost, as
expected.

The event excitation issue is addressed in Fig. 11(a), where
the agent trajectory is initialized so that it is not close to any of
the targets. Using the original problem formulation (without the
inclusion of J2(θ,ω, t) in (41)), the initial trajectory and cost
remain unchanged. After adding J2(θ,ω, t), the blue, green,
and red curves in Fig. 11(c) show the trajectory adjustment after
5, 10, and 15 iterations, respectively. After 100 iterations, the
cost converges to 30.24 as shown in Fig. 11(b) which is close to

Fig. 11. The event excitation issue. After adding J2 (θ, ω, t), the tra-
jectory adjusts to include targets, the cost converges to 30.24 which is
close to the optimal cost in Fig. 10(a) where the target dynamics are the
same. (a) A trajectory where IPA fails due to lack of event excitation. Top
plot: agent trajectory. Bottom plot: cost convergence. (b) IPA optimization
after event excitation. Top plot: optimal agent trajectory. Bottom plot: cost
convergence. J ∗ (θ, ω) = 30.24. (c) Trajectory adjustments with event
excitation after 5 (blue), 10 (green), and 15 (red) iterations.

the optimal cost in Fig. 10(a) where the target dynamics are the
same.

VII. CONCLUSION

We have formulated a persistent monitoring problem with the
objective of controlling the movement of multiple cooperating
agents so as to minimize an uncertainty metric associated with
a finite number of targets. We have established properties of the
optimal control solution which reduce the problem to a para-
metric optimization one. A complete online solution is given
by IPA to evaluate the gradient of the objective function with
respect to all parameters. We also address the case when IPA
gradient estimation fails because of the lack of event excita-
tion. We solve this problem by introducing a new metric for the
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objective function which creates a potential field guaranteeing
that gradient values are nonzero. This approach is compared to
an alternative graph-based task scheduling algorithm for deter-
mining an optimal sequence of target visits. Ongoing research
includes the study of optimal switching conditions for target
visits and the periodic behavior in the steady-state following a
graph-theoretic approach. Further, we are in the process of de-
veloping a decentralized version of the IPA-driven optimization
in which each agent evaluates its own local gradient using only
occasional interagent communication [27]. Finally, we are con-
sidering extensions to higher-dimensional mission spaces with
certain constraints such as 2-D grids consisting of intersecting
linear segments (e.g., urban street settings).
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