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Abstract—This paper addresses a one-dimensional op-
timal persistent monitoring problem using second-order
agents. The goal is to control the movements of agents to
minimize a performance metric associated with the environ-
ment (targets) over a finite time horizon. In contrast to earlier
results limited to first-order dynamics for agents, we con-
trol their accelerations rather than velocities, thus leading
to a better approximation of agent behavior in practice and
to smoother trajectories. Bounds on both velocities and ac-
celerations are also taken into consideration. Despite these
added complications to agent dynamics, we derive a nec-
essary condition for optimality and show that the optimal
agent trajectories can be fully characterized by two param-
eter vectors. A gradient-based algorithm is proposed to op-
timize these parameters and yield a minimal performance
metric. In addition, a collision avoidance algorithm is pro-
posed to solve potential collision and boundary-crossing
problems, thus extending the gradient-based algorithm so-
lutions. Finally, simulation examples are included to demon-
strate the effectiveness of our results.

Index Terms—Optimal control, persistent monitoring,
second-order agent.

I. INTRODUCTION

R ECENT developments in cooperative multiagent systems
have enabled applications in which a group of autonomous

agents is used to perform tasks collectively in order to optimize
a global objective. In particular, persistent monitoring arises in
applications, such as city patrolling [1], [2], ecological surveil-
lance [3], [4], traffic monitoring [5], [6], smart-grid security [7],
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[8], and ocean sampling [9], [10]. The dynamically changing
environments in these applications require the agents to perpet-
ually move in a large mission space. The challenge in this type
of problems is to design the agent trajectories under physical
motion constraints in order to optimize an overall performance
metric.

Relevant studies on the persistent monitoring problem can
be categorized into two classes, namely, one with predefined
trajectories [11]–[13] and one without predefined trajectories
[14]–[18]. For the monitoring problem with predefined trajecto-
ries, the main challenge is to design appropriate motion laws for
agents to patrol on the given trajectories. Persistent monitoring
of a changing environment is addressed in [19], where the ob-
ject is to control the agents’ velocities to prevent the unbounded
growth of an accumulation function defined on a finite number
of locations. The increase or decrease of the accumulation func-
tion depends on whether the location is covered under an agent’s
footprint. For the monitoring problem without predefined tra-
jectories, the main challenge is to find an optimal target visiting
schedule and conditions for agents to switch if the problem is
discrete [20], [21] or to search for optimal trajectories if the prob-
lem is continuous [18], [22], [23]. The latter paradigm is more
flexible without predefined agent trajectories and finds wider
applications, such as maneuvering targets [24], [25], detecting
random events [20], [26], and monitoring dynamically chang-
ing environments [22], [27] or fields with motion constraints
[28], [29]. An optimal control framework for persistent moni-
toring problems is proposed in [23], where an uncertainty metric
is minimized subject to first-order agent dynamics. Compared
with the accumulation function in [19], the uncertainty metric in
[23] is more general because the detection probability of a point
may vary depending on the distance between the agent and the
point.

The aforementioned literature deals with the monitoring task
using first-order agents by controlling their velocities. However,
in practice, agents are subject to maximum power constraint
that leads to bounds on both accelerations and velocities. In
this paper, we consider second-order agents with such a power
constraint. We control the agent accelerations rather than the
velocities leading to a better approximation of agent behavior in
practice and to smoother trajectories. In addition, due to the fact
that (unlike the setting in [23]) an agent must decelerate before
stopping, there is the potential of collisions or of crossing the
boundaries of the mission space, a problem that we also consider
in this paper. In particular, whereas in [23] it was shown that
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it is never optimal for agents to have trajectories that cross
each other, this is no longer generally true when second-order
dynamics are considered. This is a consequence of the implicit
cost incurred by agents whenever they have to decelerate, which
results in wasting time needed to sense one or more targets.

Based on the above-mentioned discussion, we formulate the
persistent monitoring problem as a minimization problem of a
performance metric represented as an integral function of aver-
age uncertainty over a fixed time horizon. Specifically, this paper
uses the accelerations of agents as control inputs and takes into
account the physical constraints that bound both the acceleration
and velocity. Through a Hamiltonian analysis, we obtain a nec-
essary condition for optimality. The resulting optimal controller
contains the following four modes, e.g.,

1) maximal acceleration mode;
2) maximal velocity mode;
3) maximal deceleration mode;
4) dwell mode.

Under such an optimal control structure, the agent trajecto-
ries can be fully characterized and parameterized by the starting
points of each mode and the associated dwell times. The original
optimal control problem can then be transformed to a simpler
parametric one, and thus, the search for the optimal control
is reduced from a functional space to some finite number of
parameters along the agent trajectories. Compared to [23], the
presence of four modes in the controller, instead of only two,
causes nontrivial complications in the online derivation of the
gradient information. Finally, a gradient-based algorithm is pro-
posed to minimize the performance metric and to determine the
optimal trajectories. In addition, we propose an improved opti-
mization algorithm that prevents collisions or the possibility of
an agent crossing the boundaries of the mission space resulted
by the agent’s inertia in the second-order dynamics.

This paper is organized as follows. Section II formulates
the optimal persistent monitoring problem using second-order
multiagent systems. Section III-A analyzes the optimal control
structure, Section III-B shows how to determine the optimal tra-
jectories through a gradient-based algorithm, and Section III-C
proposes an improved optimization algorithm to prevent agent
collisions and boundary crossings. Simulation results are pre-
sented in Section IV to demonstrate the effectiveness of the
proposed algorithm and to show the results of the persistent
monitoring task. Section V concludes this paper.

II. PROBLEM FORMULATION

Consider a one-dimensional (1-D) mission space [0, L]. N
cooperating agents are assigned to move on the mission space
to accomplish a persistent monitoring task over the time horizon
[0, T ].

In this paper, we control the movement of each agent through
its acceleration as opposed to the velocity in the first-order case.
The dynamics of agent i are described by

{
ṡi(t) = vi(t),
v̇i(t) = ui(t),

i = 1, 2, . . . , N (1)

where t ∈ [0, T ], si(t) ∈ [0, L] is the agent position, vi(t) is the
velocity, and ui(t) is the acceleration control input. We assume
that the velocity of each agent i is bounded by

|vi(t)| ≤ vmax
i , i = 1, 2, . . . , N (2)

and the acceleration input is bounded by

U :

{
|ui(t)| ≤ Ca

i , if ui(t)vi(t) ≥ 0,

|ui(t)| ≤ Cd
i , if ui(t)vi(t) < 0,

i = 1, 2, . . . , N (3)

where vmax
i , Ca

i , and Cd
i are the maximal velocity, the maximal

acceleration, and the maximal deceleration, respectively. Note
that in the deceleration mode, the control direction is opposite to
the motion direction (i.e., ui(t)vi(t) < 0). The agent dynamics
under boundary constraints (2) and (3) can be rewritten as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṡi(t) = vi(t)

v̇i(t) =

⎧⎪⎨
⎪⎩

0, if |vi(t)| = vmax
i

and vi(t+)ui(t+) ≥ 0
ui(t), otherwise

i = 1, 2, . . . , N.

(4)

Considering that sensors have various physical characteris-
tics, we model the sensing capability of the ith agent for de-
tecting a target located at x ∈ [0, L] by a probability function
p(si(t), x) [30] that

p(si(t), x) =

{
1 − (x−si (t))

2

r 2
i

, if |x − si(t)| < ri

0, otherwise

where ri is the effective sensing radius. The probability that
target x is sensed by all agents simultaneously can be formulated
as

P (S(t), x) = 1 −
N∏

i=1

[1 − p(si(t), x)] (5)

where S(t) = [s1(t), s2(t), . . . , sN (t)] is the position vector of
all agents.

Referring to previous research, this paper adopts the defini-
tion of uncertainty from [19] and [23]. A time-varying function
R(x, t) is defined to describe the uncertainty of target x at time
t with the following properties. If target x cannot be sensed by
any agent, R(x, t) increases with a prespecified rate I(x). Mean-
while, if x is sensed with probability P (S(t), x), then R(x, t)
increases with rate I(x) − D(x)P (S(t), x), where D(x) is the
maximal monitoring effect on R(x, t). However, if R(x, t) = 0
and I(x) − D(x)P (S(t), x) < 0, the uncertainty remains 0. In
this way, the dynamics of the uncertainty function are as follows:

Ṙ(x, t) =

⎧⎨
⎩

0 if I(x) − D(x)P (S(t), x) < 0
and R(x, t) = 0

I(x) − D(x)P (S(t), x) otherwise.
(6)

As in [23], we note that a simple stability condition for such
a system over a mission time T is that the agents have ad-
equate capacity to handle the total uncertainty input, i.e.,∫ T

0

∫ L

0 I(x, t)dxdt <
∫ T

0

∫ L

0 D(x)P (S(t), x)dxdt, where we
have used I(x, t) instead of I(x) to allow for possible time
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dependence in general. The purpose of this persistent monitor-
ing task is to minimize the performance metric that is defined
as the average uncertainty of all targets over the time horizon
[0, T ]. In light of [23], suppose there are M targets (points of
interest) in the mission space and xj is the position of target j,
j = 1, 2, . . . ,M , then the optimal control problem is formulated
as

min
U (t)∈U

J =
1
M

∫ T

0

M∑
j=1

R(xj , t)dt (7)

where U(t) = [u1(t), u2(t), . . . , uN (t)] is the acceleration vec-
tor of all agents.

Remark 1: The performance metric (7) is the average over
all target uncertainties instead of the average over the time hori-
zon in [23]. In addition, U(t) in this paper consists of the ac-
celerations of agents, which is more practical than controlling
velocities directly and makes it possible to keep the trajectory
smooth.

III. MAIN RESULTS

In this section, we focus on solving the optimal control prob-
lem (7) by finding the optimal control policy. The main challenge
lies in the following four aspects.

1) The velocity and acceleration are bounded, thus, the dy-
namics of agents are hybrid.

2) R(x, t) has nonsmooth switching dynamics as seen
in (6).

3) The performance metric (7) is not a function of U(t)
explicitly.

4) We must ensure that no agent crosses the mission space
boundaries or collides with its neighbors.

The work in this section contains three parts. Section III-A
shows the characteristics of the optimal control by using a
Hamiltonian analysis. Under such optimal control policies, the
agent trajectories can be parameterized by a sequence of loca-
tions of control switches and the associated dwell times when an
agent switches its control from±Cd

i to 0. Thus, the performance
metric in (7) can be transformed into a parametric form as we
will show later in Section III-B. A gradient-based algorithm is
designed to calculate the minimal performance metric and to
determine the optimal trajectory of each agent. In Section III-C,
a collision avoidance algorithm is proposed to determine a
suboptimal trajectory that prevents an agent from crossing the
mission space boundaries or from running across its neighbors.

A. Optimal Control Policy

In this section, the optimal policy will be determined. Let the
velocity vector be denoted by V (t) = [v1(t), v2(t), . . . , vN (t)],
and the uncertainty vector by R(t) = [R(x1 , t), R(x2 , t), . . . ,
R(xM , t)]. The performance metric in (7) will be minimized
subject to the agent dynamics (1), uncertainty dynamics (6), and
control constraints (3). Introduce the associated Lagrange mul-
tipliers λu (t) = [λu1 (t), λu2 (t), . . . , λuN

(t)], λv (t) = [λv1 (t),
λv2 (t), . . . , λvN

(t)], and λR (t) = [λR1 (t), λR2 (t), . . . , λRM

(t)] with the boundary conditions λu (T ) = 0, λv (T ) = 0 and

λR (T ) = 0 separately. The performance metric is also sub-
ject to the velocity constraints (2) and we introduce μ(t) =
[μ1(t), μ2(t), . . . , μN (t)]{

μi(t) = 0, if vi < vmax

μi(t) > 0, if vi = vmax .

Then, the minimization problem (7) can be rewritten as

min
U (t)∈U

J =
1
M

∫ T

0

[
1M RT (t) + λv (t)

(
V T (t) − ṠT (t)

)

+ λu (t)
(
UT (t) − V̇ T (t)

)
+ λR (t)

(
ṘT (t) − ṘT (t)

)

+ μ(t)
(
V (t) − V max)T

]
dt (8)

where 1M = [1, 1, . . . , 1]M and V max = [vmax
1 , vmax

2 , . . . ,
vmax

N ]. The Hamiltonian is defined as

H(R, S, V, U, λ, t) = 1M RT (t) + λv (t)V T (t)

+ λu (t)UT (t) + λR (t)ṘT (t)

+ μ(t)(V (t) − V max)T . (9)

For simplicity, we write H ≡ H(R, S, V, U, λ, t) and (8) can be
rewritten as

min
U (t)∈U

J =
1
M

∫ T

0

[
H − λv (t)ṠT (t)

− λu (t)V̇ T (t) − λR (t)ṘT (t)
]
dt (10)

Furthermore, integrate the last three terms on the right side of
(10) by parts, which yields

∫ L

0 λv (t)ṠT (t)dt = λv (t)ST (t)|T0 −∫ L

0 λ̇v (t)ST (t)dt and the same result applies to
∫ L

0 λu (t)V̇ T (t)
and

∫ L

0 λR (t)ṘT (t). Hence, combining with the boundary con-
ditions of Lagrange multipliers, (10) can be rewritten as

min
U (t)∈U

J =
1
M

∫ T

0

[
H + λ̇v (t)ST (t)

+ λ̇u (t)V T (t) + λ̇R (t)RT (t)
]
dt. (11)

Based on the optimal necessary conditions of the Hamiltonian
analysis, the costates require to satisfy

λ̇R (t) = − ∂H

∂R(t)
= −1M (12)

λ̇v (t) = − ∂H

∂S(t)
= −λR (t)

∂Ṙ(t)
∂S(t)

(13)

λ̇u (t) = − ∂H

∂V (t)
= −λv (t). (14)

Based on the above-mentioned analysis, the following propo-
sition is established to reveal the relationships between the op-
timal control input and the Lagrange multipliers.

Proposition 1: For any given trajectory, the optimal control
policy satisfies

u∗
i (t) ∈

{±Ca
i ,±Cd

i , 0
}

, for all t ∈ [0, T ]. (15)



3242 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 8, AUGUST 2019

Proof: Let Γ0(t)={i|λ∗
ui

(t)=0, i=1, 2, . . . , N}, Γ1(t)=
{i|λ∗

ui
(t) > 0, i = 1, 2, . . . , N}, and Γ2(t) = {i|λ∗

ui
(t) <

0, i = 1, 2, . . . , N}. The Pontryagin Minimum Principle [31]
holds for the optimal control problem (11) and asserts that

H(R, S, V, U ∗, λ∗, t) = min
U (t)

H(R, S, V, U, λ∗, t)

where U ∗, λ∗ denote the vector of optimal controller and La-
grange multiplier, respectively. Clearly, it is necessary for the
optimal control of agent i to satisfy

u∗
i (t) = −sgn(λ∗

ui
(t)) max

ui (t)∈U
|ui(t)|.

For i ∈ Γ1(t), agent i moves toward the negative direction with
maximal acceleration or toward the positive direction with max-
imal deceleration, i.e.,

u∗
i (t) = −Ci

a , if vi(t) < 0
u∗

i (t) = −Ci
d, if vi(t) > 0.

Similarly, for i ∈ Γ2(t) the optimal control of agent i satisfies

u∗
i (t) = Ci

a , if vi(t) > 0
u∗

i (t) = Ci
d, if vi(t) < 0.

It is possible (see [32, Ch. 3]) that there are some agents i ∈
Γ0(t) at some time intervals. For these i ∈ Γ0(t), λ∗

ui
(t)ui(t) =

0 that is omitted in the above-mentioned analysis. From
(9), H(R, S, V, U, λ, t) is not an explicit function of t and
H(R, S, V, U ∗, λ∗, t) ≡ C is constant [33]. Therefore, dH

dt = 0
that gives

dH

dt
= 1M ṘT (t) +

(
λ̇v (t)V T (t) + λv (t)V̇ T (t)

)

+
(
λ̇u (t)UT (t) + λu (t)U̇T (t)

)
+

(
λ̇R (t)ṘT (t) + λR (t)R̈T (t)

)
+ μ̇(t)

(
V (t) − V max

)T + μ(t)UT (t). (16)

Meanwhile, based on the necessary conditions (12) and (14)

1M ṘT (t) + λ̇R (t)ṘT (t) = 0

λv (t)V̇ T (t) + λ̇u (t)UT (t) = 0.

Therefore, we have

dH

dt
= λ̇v (t)V T (t) + λR (t)R̈T (t) + λu (t)U̇T (t)

+ μ̇(t)(V (t) − V max)T + μ(t)UT (t). (17)

For those agents i ∈ Γ0(t), we have λui
(t) = 0, so

that
∑

i∈Γ0 (t) λui
(t)u̇i(t) = 0, and for those agents i ∈

Γ1(t) ∪ Γ2(t), we have ui(t) = ±Ca
i or ±Cd

i , u̇i(t) = 0 and∑
i∈Γ1 (t)∪Γ2 (t) λui

(t)u̇i(t) = 0. The above-mentioned analy-

sis suggests that λu (t)U̇T (t) = 0. According to (14), if i ∈
Γ0(t), λui

(t) = 0, λ̇ui
(t) = 0 = −λvi

(t). Thus, for any time

instant, (17) is reduced to

dH

dt
=

∑
i∈Γ1 (t)∪Γ2 (t)

λ̇vi
(t)vi(t) + λR (t)R̈T (t)

+ μ̇(t)(V (t) − V max)T + μ(t)UT (t). (18)

From (6), since Ṙ(s(t), x) is not an explicit function of t, we
have

R̈(t) =
d(Ṙ(t))
d(S(t))

ṠT (t).

From (13), it follows that for i ∈ Γ1(t) ∪ Γ2(t)

λ̇vi
(t)vi(t) + λRi

(t)
d(Ṙ(t))
d(si(t))

ṡi(t) = 0.

which provides the fact that

dH

dt
=

∑
i∈Γ0 (t)

λRi
(t)

d(Ṙ(t))
d(si(t))

ṡi(t)

+ μ̇(t)(V (t) − V max)T + μ(t)UT (t). (19)

If the state evolves in an interior arc of velocity constraint (2),
i.e., vi(t) < vmax

i and μ(t) = 0, then μ̇(t) = 0. Otherwise, the
state evolves in the boundary arc of (2), i.e., |vi(t)| ≡ vmax

i , then
ui(t) = 0. Then, it can be obtained that μ̇(t)(V (t) − V max)T +
μ(t)UT (t) = 0. From (19)

dH

dt
=

∑
i∈Γ0 (t)

λRi
(t)

d(Ṙ(t))
d(si(t))

ṡi(t). (20)

Thus, to ensure (20) holds at all t ∈ [0, T ], ṡi(t) = 0 for those
i ∈ Γ0(t) that means vi(t) = 0, ui(t) = 0.

Also note that from (4), ui(t) = 0 if |vi(t)| = vmax
i for a finite

time period. Based on the above-mentioned analysis, (15) holds,
which completes the proof. �

From Proposition 1, u∗
i (t) ∈ {±Ca

i ,±Cd
i , 0}, the optimal

control requires the agents to move with maximal acceleration
or fixed maximal velocity or maximal deceleration or remain at
rest. To be more specific, the motion of an agent, moving from
one point to another, may include the following four modes:

1) Maximal acceleration mode: the agent moves with max-
imal acceleration from one point to another, where the
control direction is agree with the motion direction.

2) Maximal velocity mode: the agent moves at a fixed max-
imal velocity for a period of time larger than zero.

3) Maximal deceleration mode: the agent moves with max-
imal deceleration, where the control direction is opposite
to the motion direction.

4) Dwell mode: the agent dwells at some points for some
time (possibly zero).

The resulting optimal agent trajectories can be fully charac-
terized by the starting points and ending points of each mode
and the dwell times associated with each dwell mode.

Remark 2: Proposition 1 reveals the agent’s optimal accel-
eration for any given trajectory. From the optimal analysis of
Proposition 1, when the maximal velocity constraint is not ac-
tive, the associated Lagrange multiplier λui

(t) > 0, < 0,= 0,
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and the agent’s optimal acceleration should be the maximal
acceleration or deceleration, or zero acceleration (with zero ve-
locity), which leads to the maximal acceleration or deceleration
mode, or dwell mode, respectively. During the period that the
maximal velocity constraint is active, i.e., v∗

i (t) = vmax
i , we have

u∗
i (t) = 0 for a given time interval, and this leads to the maximal

velocity mode.
For agent i, define a sequence of dwelling points θi =

[θi1 , θi2 , . . . , θiKi
] and the associated dwelling times ωi =

[ωi1 , ωi2 , . . . , ωiKi
]. Within each two successive dwelling

points, we further define two switching points of the agent dy-
namics, i.e., the switching points θa

iki
(ending points of max-

imal acceleration mode), and θd
iki

(starting points of max-
imal deceleration mode), θiki

< θa
iki

≤ θd
iki

< θi(ki +1) , ki =
1, 2, . . . ,Ki−1 − 1. For θa

iki
= θd

iki
being a same point, at this

point ui(t) changes from ui(t) = ±Ca
i to ui(t) = ∓Cd

i di-
rectly. For θa

iki
	= θd

iki
, agent i moves at fixed maximal veloc-

ity between θa
iki

and θd
iki

, ui(t) changes from ui(t) = ±Ca
i to

ui(t) = 0 at θa
iki

and from ui(t) = 0 to ui(t) ∓ Cd
i at θd

iki
.

Remark 3: Note that once the dwelling points θi are deter-
mined, the acceleration, deceleration, and the possibly max-
imum velocity modes between these points can be subse-
quently calculated. Therefore, if the dwelling points and the
dwelling times are determined, the trajectory of agent i will
be fully determined and represented as [θi, ωi ], and the tra-
jectories of all agents can be represented as [θ, ω] where
θ = [θ1 , θ2 , . . . , θN ], ω = [ω1 , ω2 , . . . , ωN ].

To proceed, the existence of the maximum velocity modes
can be determined using the following proposition.

Proposition 2: The maximum velocity mode exists between
θih and θi(h+1) when agent i moves from θih to θi(h+1) if and
only if

|θi(h+1) − θih | >
vmax

i

2

2Ca
i

+
vmax

i

2

2Cd
i

. (21)

Proof: Note that θih and θi(h+1) are both dwelling points at
which vi(t) = 0. The time it takes for the velocity of agent i to
increase from 0 to vmax

i with the maximal acceleration Ca
i is

vm a x
i

C a
i

and the time duration it takes for the velocity of agent i to

decrease from vmax
i to 0 with the maximal deceleration Cd

i is
vm a x

i

C d
i

. The average velocity of both the uniform acceleration and

deceleration process is vm a x
i

2 . Therefore, the shortest distance be-
tween θih and θi(h+1) for agent i to reach the maximal velocity is

vmax
i

Ca
i

vmax
i

2
+

vmax
i

Cd
i

vmax
i

2
.

Hence, the maximal velocity mode exists between θih and
θi(h+1) if and only if (21) holds. �

Section III-B is devoted to determining the optimal dwelling
points and the corresponding optimal dwelling times, so as to
determine the optimal trajectory.

B. Optimal Trajectory

Since the agent trajectories are represented as [θ, ω], combin-
ing with Proposition 1, the controller U(t) is also determined

by [θ, ω]. In other words, the problem is simplified as a para-
metric minimization problem of finding the optimal dwelling
points and the optimal dwelling times. Thus, the objective is to
determine [θ, ω] satisfying

min
U (t)∈U

J = min
[θ,ω ]

J(θ, ω).

A gradient-based iterative algorithm is designed as follows:

[θ(m), ω(m)] = [θ(m − 1), ω(m − 1)]

+ [θ̃, ω̃]∇J(θ(m − 1), ω(m − 1)) (22)

where m = 1, 2, . . . is the index of iterations, [θ̃, ω̃] is the
step-size of the iterative algorithm, and ∇J(θ(m), ω(m)) =
[ ∂J (θ(m ),ω (m ))

∂θ(m ) , ∂J (θ(m ),ω (m ))
∂ω (m ) ]T is the gradient of J with re-

spect to θ(m) and ω(m). The trajectory parameters are opti-
mized through (22) iteratively with the terminal condition

|J(θ(m + 1), ω(m + 1)) − J(θ(m), ω(m))| < ε (23)

where ε > 0 is a predetermined constant.
Therefore, we are ready to calculate ∇J(θ, ω). As seen

in the following, the four modes derived from Proposition 1
result in nontrivial complications relative to [22] in evalu-
ating this gradient information. By (6), the uncertainty dy-
namics have the switching properties. Define a time se-
quence to describe the switching instants of Ṙ(t), denoted as
τ(θ, ω) = {τl(θ, ω)}, l = 0, 1, . . . ,L − 1, with boundary con-
ditions τ0(θ, ω) = 0, τL(θ, ω) = T . Thus, the performance met-
ric (7) can be represented as

J(θ, ω) =
1
M

L−1∑
l=0

∫ τl + 1 (θ,ω )

τl (θ,ω )

M∑
j=1

R(xj , t)dt.

Then, ∇J(θ, ω) can be rewritten as

∇J(θ, ω) =
1
M

L−1∑
l=0

M∑
j=1

∫ τl + 1 (θ,ω )

τl (θ,ω )
∇R(xj , t)dt (24)

where ∇R(xj , t) = [ ∂R(xj ,t)
∂θ ,

∂R(xj ,t)
∂ω ]. Therefore, in order to

compute ∇J(θ, ω), we need to first compute ∇R(xj , t).
It is obvious that R(xj , t) is not an explicit function of

(θ, ω). Therefore, transforming the performance metric in (7)
to a function of (θ, ω) is necessary in the following analysis.
Note that from the motion law in Proposition 1, the optimal
trajectories are described by [θ, ω], therefore, the positions of
agents are also represented by [θ, ω], i.e., the position vector
is S(t) ≡ S(t, (θ, ω)). The following discussion is carried out
by three steps, in which a numerical computation method is
designed to calculate ∇R(xj , t). Let tk = kδ, k = 1, 2 . . . be
the computation time sequence in [0, T ], where the computation
step δ is sufficiently small and t0 = 0.

Step 1) For two adjacent instants tk and tk−1 , there are two
cases to be discussed.

Case 1.1: No switches between tk and tk−1 . In this case,
tk−1 , tk ∈ (τl(θ, ω), τl+1(θ, ω)) and the dynamics of target un-
certainties do not switch. According to (6), utilizing the Euler
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method ∇R(xj , tk ) = ∇R(xj , tk−1) + ∇Ṙ(xj , tk−1)δ

∇R(xj , tk ) = ∇R(xj , tk−1)

−
{

0, if Ṙ(xj , tk−1) = 0

D(xj )
∂P (S (tk −1 ),xj )

∂S (tk −1 ) ∇S(tk−1)δ, otherwise

(25)

where ∇S(tk−1) = ( ∂S (tk −1 )
∂θ , ∂S (tk −1 )

∂ω ) needs further to be cal-
culated in Steps 2) and 3).

Case 1.2: There exists a switch between tk and tk−1 . In
this case, it has tk−1 ≤ τl(θ, ω) ≤ tk . Without loss of general-
ity, we suppose j∗ switches its dynamics: Ṙ(xj ∗ , t) switches
from 0 to I(xj ∗) − D(xj ∗)P (S(t), xj ∗), or from I(xj ∗) −
D(xj ∗)P (S(t), xj ∗) to 0 at τl(θ, ω). Therefore, there are two
subcases to be discussed.

Before the analysis, we introduce the Infinitesimal Perturba-
tion Analysis method [23], [34] to specify how the arguments
θ influences the system state s(θ, t), ultimately, how they influ-
ence the performance metric that can be expressed in terms of
such arguments. Let {τl(θ)}, l = 0, 1, . . . ,L − 1, be the occur-
rence time of all events in the state trajectory. For convenience,
we set τ0 = 0 and τL = T . For t ∈ [τl−1 , τl), based on the Ja-
cobian matrix notation, we define s′(t) ≡ ∂s(θ,t)

∂θ and the state
dynamics ṡ(t) = fl(s, θ, t). In the following, we use fl(t) for
simplicity. Since t is independent on θ

d

dt
s′(t) =

∂fl(t)
∂s

s′(t) +
∂fl(t)

∂θ
(26)

with boundary condition

s′(τ+
l ) = s′(τ−

l ) + [fl−1(τ−
l ) − fl(τ+

l )]
∂τl(θ)

∂θ
. (27)

Then, let us focus on the gradient ∂τl (θ)
∂θ . If there exists

a continuously differentiable function gl(s(θ, t), θ), such that
gl(s(θ, τl), θ) = 0 for any τl (in the following, we use gl for
simplicity) holds, then lwe have

d

dθ
gl =

∂gl

∂s

[
∂s

∂θ
+

∂s

∂τl

∂τl

∂θ

]
+

∂gl

∂θ

=
∂gl

∂s

[
s′(τl) + fl(τl)

∂τl

∂θ

]
+

∂gl

∂θ

= 0.

Thus, if ∂gl

∂ s fl(τ−
l ) 	= 0, then

∂τl(θ)
∂θ

= −
[
∂gl

∂s
fl(τ−

l )
]−1 (

∂gl

∂θ
+

∂gl

∂s
s′(τ−

l )
)

. (28)

We are now ready to discuss the two subcases.
Case 1.2.1: Ṙ(xj ∗ , tk−1) < 0 switches to Ṙ(xj ∗ , tk ) = 0. In

this case, R(xj ∗ , t) satisfies the endogenous condition in [23].
From (28) with gl = R(xj ∗ , τl) = 0, we get

∇tk = − ∇R(xj ∗ , tk−1)
I(xj ∗) − D(xj ∗)P (S(tk−1), xj ∗)

and from (27)

∇R(xj ∗ , tk ) = 0. (29)

Fig. 1. Schematic for the motion of agent i.

Case 1.2.2: Ṙ(xj ∗ , tk−1) = 0 switches to Ṙ(xj ∗ , tk ) > 0. In
this case, Ṙ(xj ∗ , t) is continuous, so that fl(τ+

l ) = fl(τ−
l ) in

(27). Along with the definition of s′(t), we have

∇R(xj ∗ , tk ) = ∇R(xj ∗ , tk−1). (30)

Note that it is impossible for the uncertainty dynamics to
switch from Ṙ(xj ∗ , tk−1) > 0 to Ṙ(xj ∗ , tk ) = 0; this is because
if Ṙ(xj ∗ , tk−1) > 0, Ṙ(xj ∗ , tk ) > Ṙ(xj ∗ , tk−1) > 0, the uncer-
tainty dynamics remain Ṙ(xj ∗ , tk ) > 0 and switching does not
take place. Also, it is impossible for the dynamics to switch
from Ṙ(xj ∗ , tk−1) = 0 to Ṙ(xj ∗ , tk ) < 0.

Step 2) In this step, case 1.1 will be further discussed.
Based on (25), the remaining work is to calculate ∇S(tk ).

From the agent dynamics (4), S(t) is a continuously differ-
entiable function. According to the optimal control structure in
Proposition 1, the dynamics of S(t) fall into four cases. Between
each adjacent dwelling points [θih , θih+1], we define tih as the
time instant when agent i leaves from θih and taih , tuih , tdih are the
time intervals that agent i spends in the hth acceleration mode,
maximal velocity mode, and deceleration mode, respectively.
Then, we have

tih =
h−1∑
q=1

[
ωiq + taiq + tuiq + tdiq

]
+ ωih . (31)

To proceed, the mode of agent i will first be discussed from the
hth dwelling point θih to the (h + 1)th dwelling point θi(h+1) ,
which is illustrated in Fig. 1 (in the figure, the case of θih <
θi(h+1) is illustrated; the opposite case is similar).

According to the kinematic laws of uniformly variable motion
and uniform motion, the motion of agent i between θih and
θi(h+1) is obtained as follows.
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Case 2.1: For the hth maximal acceleration mode, si(t) ∈
[θih , θa

ih), t ∈ [tih , tih + taih), then

si(t) = θih + sgn(θi(h+1) − θih)
1
2
Ca

i (t − tih)2 (32)

∇si(t) = ∇θih − sgn(θi(h+1) − θih)vi(t)∇tih . (33)

Case 2.2: For the hth maximal velocity mode, the exis-
tence depends on the length of |θih+1 − θih | as presented in
Proposition 2. If the hth maximal velocity mode exists, the
two points θa

ih and θd
ih are not the same and tuih > 0. Thus, for

si(t) ∈ [θa
ih , θd

ih), t ∈ [tih + taih , tih + taih + tuih)

si(t) = θa
ih + sgn(θi(h+1) − θih)vmax

i (t − tih − taih) (34)

∇si(t) = ∇θa
ih − sgn(θi(h+1) − θih)vmax

i ∇(tih + taih).
(35)

Case 2.3: For the hth maximal deceleration mode, si(t) ∈
[θd

ih , θi(h+1)), t ∈ [tih + taih + tuih , ti(h+1) − ωi(h+1)), then

si(t) = θd
ih + sgn(θi(h+1) − θih)[vmax

i (t − tih − taih − tuih)

− 1
2
Cd

i (t − tih − taih − tuih)2 ] (36)

∇si(t) = ∇θd
ih − sgn(θi(h+1) − θih)vi(t)

×∇(tih + taih + tuih). (37)

Case 2.4: For the hth dwell mode, si(t) = θih , t ∈ [tih −
ωih , tih), then

∇si(t) = ∇θih . (38)

Step 3) In (33), (35), (37), and (38), ∇taih , ∇tuih , ∇θih , ∇θa
ih ,

∇θd
ih , and ∇tih remain to be calculated. From (31)

∇tih =
h−1∑
q=1

∇ [
ωiq + taiq + tuiq + tdiq

]
+ ∇ωih (39)

and obviously

∂ωh

∂θiq
= 0 (40)

and {
∂ωi h

∂ωi h
= 1

∂ωi h

∂ωq
= 0 for q = 1, . . . , h − 1, h + 1, . . . , Ki.

(41)

From Proposition 2, the existence of the maximum velocity
modes is determined by the length of |θi(h+1) − θih |. Thus,
the motion between θih and θi(h+1) can be divided into two
categories according to Proposition 2.

Case 3.1: If tuih > 0, the maximal velocity mode exists at a
time interval [tih + taih , tih + taih + tuih)(refer to Fig. 1) when
agent i moves from θih to θi(h+1) .

In this case, agent i first moves from θih to θa
ih with fixed

acceleration Ca
i , then moves to θd

ih with fixed velocity vmax
i , and

finally moves to θi(h+1) with fixed deceleration Cd
i . According

to the kinematics law, the following conditions hold:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

taih = vmax
i

C a
i

tdih = vmax
i

C d
i

tuih =
|θi (h + 1 )− θi h | −

(
ta
i h

v max
i
2 + td

i h

v max
i
2

)

vmax
i

.

(42)

Therefore, taking the derivative with respect to the parameters,
we obtain: {

∇taih = 0
∇tdih = 0

(43)

⎧⎪⎪⎨
⎪⎪⎩

∂ tu
i h

∂ θi (h+1)
= sgn(θi (h+1)− θi h )

vmax
i

∂ tu
i h

∂ θi h
= − sgn(θi (h+1)− θi h )

vmax
i

∂ tu
i h

∂ θi q
= 0, q = 1, . . . , h − 1, h + 2,Ki

(44)

and

∂tuih
∂ωiq

= 0, q = 1, . . . , Ki. (45)

In addition, the associated control switching point from max-
imal acceleration mode to maximal velocity mode is θa

ih and
from maximal velocity mode to maximal deceleration mode
is θd

ih that can be calculated as follows. The switching points
between θih and θi(h+1) are θa

ih , θd
ih , where

θa
ih = θih + sgn(θi(h+1) − θih)taih

vmax
i

2

θd
ih = θi(h+1) − sgn(θi(h+1) − θih)tdih

vmax
i

2
. (46)

Subsequently{ ∂θa
i h

∂ θi h
= 1

∂θa
i h

∂ θi q
= 0, q = 1, . . . , h − 1, h + 1, . . . , Ki

(47)

∂θa
ih

∂ωiq
= 0, q = 1, . . . , Ki (48)

⎧⎨
⎩

∂θd
i h

∂ θi (h+1)
= 1

∂θd
i h

∂ θi q
= 0, q = 1, . . . , h, h + 2, . . . , Ki

(49)

and

∂θd
ih

∂ωiq
= 0, q = 1, . . . , Ki. (50)

Case 3.2: If tuih = 0, the maximal velocity mode does not
exist when agent i moves from θih to θi(h+1) . The velocity of
agent i does not have enough time to accelerate to vmax

i or it can
increase to vmax

i but then decrease immediately.
In this case, agent i leaves from θih with acceleration Ca

i

until θa
ih (θa

ih = θd
ih ) and then moves with deceleration Cd

i until
θi(h+1) . According to the kinematics law of uniformly variable
motion, the following conditions hold:{

Ca
i taih = Cd

i tdih
1
2 Ca

i (taih)2 + 1
2 Cd

i (tdih)2 = |θi(h+1) − θih |.
(51)
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Solving (51) in terms of control switching time taih and tdih , we
have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

taih =
√

2C d
i

C a
i (C a

i +C d
i ) |θi(h+1) − θih |

tdih =
√

2C a
i

C d
i (C d

i +C a
i ) |θi(h+1) − θih |

tuih = 0.

(52)

Taking the derivative we obtain

∇tuih = 0 (53)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ ta
i h

∂ θi (h+1)
=

√
2C d

i

C a
i (C a

i +C d
i )

sgn(θi (h+1)− θi h )

2
√

|θi (h+1)− θi h |
∂ ta

i h

∂ θi h
= −

√
2C d

i

C a
i (C a

i +C d
i )

sgn(θi (h+1)− θi h )

2
√

|θi (h+1)− θi h |
∂ ta

i h

∂ θi q
= 0, q = 1, . . . , h − 1, h + 2, . . . , Ki

(54)

∂taih
∂ωiq

= 0, q = 1, . . . , Ki (55)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ td
i h

∂ θi (h+1)
=

√
2C d

i

C a
i (C a

i +C d
i )

sgn(θi (h+1)− θi h )

2
√

|θi (h+1)− θi h |
∂ td

i h

∂ θi h
= −

√
2C d

i

C a
i (C a

i +C d
i )

sgn(θi (h+1)− θi h )

2
√

|θi (h+1)− θi h |
∂ td

i h

∂ θi q
= 0, q = 1, . . . , h − 1, h + 2, . . . , Ki

(56)

and

∂tdih
∂ωiq

= 0, q = 1, . . . , Ki. (57)

Moreover, in this case, θa
ih = θd

ih

θa
ih = θih + sgn(θi(h+1) − θih)

1
2
Ca

i taih
2

∇θa
ih = ∇θih + sgn(θi(h+1) − θih)Ca

i taih∇taih . (58)

Replacing ∇taih with (54) and (55)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θa
i h

∂ θi h
= 1 − C d

i

(C a
i +C d

i )

∂θa
i h

∂ θi (h+1)
= C d

i

(C a
i +C d

i )
∂θa

i h

∂ θi q
= 0, q = 1, . . . , h − 1, h + 1, . . . , Ki

(59)

∂θa
ih

∂ωiq
= 0, q = 1, . . . , Ki. (60)

This ends the analysis of Step 3) in which
∇taih ,∇tuih ,∇θih ,∇θa

ih ,∇θd
ih , and ∇tih are obtained. In

addition, for k 	= i and ∂si (t)
∂θk

= 0, it has ∂si (t)
∂ωk

= 0.
In summary, Steps 2) and 3) show the calculation of ∇S(t).
Based on the above-mentioned analysis,∇J(θ, ω) is obtained

and the gradient-based iterative algorithm is designed as illus-
trated in Algorithm 1.

Remark 4: Note that our gradient-based solution depends
on the initial trajectories of the agents and the time horizon.
Moreover, for a certain trajectory of agent i, the total number
of dwelling points Ki is related to the time horizon T . Based
on the analysis of Step 3), the dwelling points and correspond-
ing dwelling time will be updated constantly until the optimal

Algorithm 1: Gradient-Based Iteration Algorithm.
Initialization: The maximal velocities, accelerations and

decelerations of agents, vmax
i , Ca

i , Cd
i . The initial

trajectories of all agents [θ(0), ω(0)], a given terminal
condition ε, a sufficient small computation step δ, and
the index of iterations m = 1.

1: repeat
2: Calculate S(t) using (4)(15) and [θ(m), ω(m)];
3: for j = 1 : M do
4: Calculate Ṙ(xj , t) according to (6);
5: if Ṙ(xj , t) switches then
6: Calculate ∇R(xj , t) according to (29) and (30);
7: else
8: if Ṙ(xj , t) does not switch then
9: Calculate ∇R(xj , t) according to (25) by

activating Algorithm 2 to calculate ∇S(t);
10: end if
11: end if
12: end for
13: Calculate ∇J according to (24);
14: Update [θ(m), ω(m)] according to (22) and set

m = m + 1;
15: until |J(θ(m + 1), ω(m + 1)) − J(θ(m), ω(m))| < ε;
16: The optimal trajectory: [θ̌, ω̌] = [θ(m), ω(m)];

Algorithm 2: Calculation of ∇S(t).
Input: Time t, trajectories [θ(m), ω(m)] and S(t).

1: for i = 1 : N do
2: Get the length of vector θi(m), denoted by H;
3: for h = 1 : H do
4: if |θi(h+1) − θih | >

vm a x 2
i

2C a
i

+ vm a x 2
i

2C d
i

then

5: Calculate ∇taih ,∇tuih ,∇tdih ,∇θih ,∇θa
ih ,∇θd

ih

according to (43), (44), (45), (47), (48), (49), (50);
6: else
7: if |θi(h+1) − θih | ≤ vm a x 2

i

2C a
i

+ tdih
vm a x 2

i

2C d
i

then

8: Calculate ∇taih ,∇tuih ,∇tdih ,∇θih ,∇θa
ih ,∇θd

ih

according to (53), (54), (55), (56),(57), (59), (60);
9: end if

10: end if
11: Calculate ∇ωih according to (40),(41);
12: Calculate ∇tih according to (39);
13: end for
14: end for
15: Calculate ∇S(t) according to (33), (35), (37), (38).

trajectory is obtained. Therefore, the total number of dwelling
points Ki will change during the iterative process of specifying
the optimal trajectory.

C. Collision Avoidance

In [23], since the agent can change its velocity instantly,
the optimal trajectory will never visit the boundary points and
avoid collisions as shown in [23, Propositions III.1 and III.4].
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However, in this paper, the agent will endure a deceleration
process before it can fully stop and change its moving direction,
which will affect the optimal trajectory. Therefore, theoretically
it may be a better strategy for the agent to cross the boundary
points or its neighbor rather than stopping before crossing.

Note that in some 1-D application settings, collisions are
inherently avoided, e.g., in a transportation network where ve-
hicles move in parallel lanes or in a waterway where multiple
agents can move along the same 1-D mission space. However,
in some cases the physical system does not allow an agent to
exceed the boundary points 0 and L of the mission space or
to cross its neighbor by running in different lanes. Therefore,
in this section, we will present a modified algorithm to avoid
boundary crossing and collisions.

Introduce two virtual agents with indexes 0 and N + 1
where s0(t) = 0 and sN +1(t) = L, ∀t ∈ [0, T ]. Let {tck}, k =
1, 2, . . ., denote the crossing time instance of all agents in the
resulting trajectory of Algorithm 1, which satisfies

N∏
i=0

[si(tck ) − si+1(tck )] = 0 (61)

and let ζ be the safe distance between two agents. In (61), the
case of border exceeding corresponds to i = 0 and i = N , and
the case of trajectory collision between agents corresponds to
i = 1, 2, . . . , N − 1.

We propose Algorithm 3 that checks and finds the earliest
crossing time tc1 of the trajectory if there is any, and adjusts
the trajectory by adding a safety distance to the corresponding
dwelling points that cause the collision. By repeating the check
and update procedure, eventually we will obtain a suboptimal
but collision-free trajectory. Note that Algorithm 3 is an ad hoc
mechanism for avoiding collisions and boundary crossings; a
more rigorous treatment of this issue remains the subject of
continuing research.

IV. ILLUSTRATIVE EXAMPLES

In this section, three simulation examples are presented for
persistent monitoring in a 1-D space, to show the normal case,
the boundary crossing case and agent collision case. These ex-
amples aim at, respectively,

1) illustrating the optimal trajectory under second-order dy-
namics with physical constraints;

2) verifying the result of Proposition 1;
3) demonstrating the effectiveness of the gradient-based it-

eration algorithms and the collision avoidance algorithm.
In the simulation, there are three aspects that should be paid

attention to the following.
1) The overflow problem. Since it is impossible to know

the number of optimal dwelling points in advance, the
dimensions of both θi(m) and ωi(m) are unknown; it
is, therefore, necessary to choose the dimensions large
enough and use 0 entries to fill in the vectors as needed.

2) The step-sizes [θ̃, ω̃]. Diminishing step-size should be
applied as the performance metric is approaching to the
optimal value.

3) The calculation of derivative. In the numerical simu-
lations, in order to calculate Ṙ(s(t), xj ) in Algorithm

Algorithm 3: Collision Avoidance Algorithm.

Input: The parametric trajectory [θ̌, ω̌] obtained by
Algorithm 1 and a safety distance ζ.

1: repeat
2: Calculate the agent physical trajectory S(t) using

(4), (15) and [θ̌, ω̌];
3: According to (61), calculate the first collision time

tc1 and find the corresponding colliding agents ĩ and
ĩ + 1.

4: if tc1 ∈ (t̃ih ĩ
, t̃i(hĩ +1)] and tc1 ∈

(t( ĩ+1)hĩ + 1
, t( ĩ+1)(hĩ + 1 +1)] then

5: Set θ̌ĩ(hĩ +1) = sĩ(tc1) − ζ/2 for ĩ 	= 0.

6: Set θ̌( ĩ+1)(hĩ + 1 +1) = sĩ+1(tc1) + ζ/2 for ĩ 	= N .

7: Update the trajectory [θ̌, ω̌] based on the above
adjustment.

8: end if
9: Execute Algorithm 1 to optimize the updated

trajectory [θ̌, ω̌] but replace step 13 in Algorithm 1
with following steps from 10 to 21.

10: for i = 1 : N do
11: Calculate hi satisfying tc1 ∈ (tihi

, ti(hi +1)]
12: for h = 1 : hi + 1 do
13: ∂J

∂ (θi h ,ωi h ) = 0.
14: end for
15: if i = ĩ or i = ĩ + 1 then
16: Calculate ∂J

∂ωi (h i + 1 )
according to (24).

17: end if
18: for h = (hi + 2) : Ki do
19: Calculate ∂J

∂ (θi h ,ωi h ) according to (24).
20: end for
21: end for
22: until (61) does not hold for any t ∈ [0, T ] along the

agent trajectories.
23: The sub-optimal collision-free trajectory: [θ∗, ω∗] =

[θ̌, ω̌].

1, (6) is modified as follows. If R(xj , tk ) = 0 and
I(xj ) − D(xj )P (xj , tk ) < 0, Ṙ(xj , tk+1) = 0. Other-
wise, Ṙ(xj , tk+1) = I(xj ) − D(xj )P (xj , tk+1).

In the following examples, the uncertainty dynamics of sam-
pling points remain the same, and the initial value of its uncer-
tainty is R(xj , 0) = 0, j = 1, 2 . . . , M . For the agents used in
the examples, the effective sensing ranges are ri = 1, the max-
imum acceleration and deceleration are Ca

i = 0.5, Cd
i = 0.5,

and the maximum velocity vmax
i = 1.5, i = 1, 2, . . . , N . The er-

ror tolerance ε = 1.0 × 10−4 in the termination condition (23).
The persistent monitoring time horizon is 55 s.

Example 1. The normal case: In the normal case, the inter-
ested targets are evenly distributed. The persistent monitoring
task is executed by one or two agents, respectively. The sim-
ulation results of the two persistent monitoring examples are
shown in Figs. 2 and 3, respectively.

First, in Fig. 2, the persistent monitoring task is exe-
cuted by single agent. The mission space is [0,10] and the
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Fig. 2. Persistent monitoring task executed by single agent. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Optimal velocity (blue solid) and acceleration (red dash-
dotted) of agent 1. (c) Performance metric J1 (decreases as the number
of iterations increases).

set of target points of interest is X = {xj}, xj = 0 + 0.5j,
j = 1, 2, . . . ,M , M = 20 with the increasing and decreas-
ing rates I(xj ) = 0.1 and D(xj ) = 0.5, respectively. The
step-sizes [θ̃, ω̃] = [0.02, 0.01] for the 1st seven iterations,
[θ̃, ω̃] = [0.01, 0.005] between the 8th and the 17th iterations
and [θ̃, ω̃] = [0.002, 0.001] after the 17th iteration. The initial

Fig. 3. Persistent monitoring task executed by two agents. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Optimal velocity (blue solid) and acceleration (red dash-
dotted) of agent 1. (c) Performance metric J2 (decreases as the number
of iterations increases).

trajectory is θ(0) = [0, 10, 0, 10, . . .], ω(0) = [0.2, 0.2, . . .]
shown by the green dashed line in Fig. 2(a).

As we can see, the optimal trajectory is found and shown by
the blue solid line in Fig. 2(a). Comparing with the simulation
results in [23], the obtained optimal trajectory is smooth in this
paper, and the velocity of agent is continuous [see the veloc-
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Fig. 4. Persistent monitoring task executed by single agent. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Performance metric J1 (decreases as the number of
iterations increases).

ity profile: blue solid line in Fig. 2(b)]. This demonstrates that
our second-order model better approximates the agent behavior
in practice. The optimal velocity and acceleration are shown in
Fig. 2(b). u(t) = ±1 in the acceleration/deceleration modes and
u(t) = 0 in the maximal velocity and dwell modes that is consis-
tent with Proposition 1. Moreover, there exists the maximal ve-

locity mode in Fig. 2(b) since |θ1(h+1) − θ1h | >
vmax

1
2

2C a
1

+ vmax
1

2

2C d
1

,
which verifies the conclusion of Proposition 2. According to Al-
gorithm 1, the performance metric decreases as the number of
iterations increases in Fig. 2(c), which demonstrates the effec-
tiveness of our gradient-based algorithm. At the 28th iteration,
the performance metric J1(θ(28), ω(28)) = 63.72 satisfies the
terminal condition |J1(θ(28), ω(28)) − J1(θ(27), ω(27))| < ε.

In Fig. 3, the persistent monitoring task executed by
two agents. The mission space is [0,5] and the set of

Fig. 5. Persistent monitoring task executed by single agent. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Evolution of the Performance metric J .

target points of interest is X = {xj}, xj = 0 + 0.25j, j =
1, 2, . . . ,M , M = 20 with the increasing and decreasing rates
I(xj ) = 0.1 and D(xj ) = 0.5, respectively. The step-sizes
are [θ̃, ω̃] = [0.06, 0.03] for the 1st three iterations, [θ̃, ω̃] =
[0.008, 0.004] between the 4th and the 10th iterations and
[θ̃, ω̃] = [0.002, 0.001] after the 10th iteration. The initial
trajectories are θ1(0) = [0, 2.4, 0, . . .], ω1(0) = [0.2, 0.2, . . .]
and θ2(0) = [5, 2.6, 5, . . .], ω2(0) = [0.2, 0.2, . . .] shown by the
green dashed line in Fig. 3(a).

The optimal trajectories are shown by the blue solid line
in Fig. 3(a) and the optimal velocity (blue solid) and accel-
eration (red dash-dotted) of agent 1 are shown in Fig. 3(b).
Please note that the distances between the switching points
do not satisfy condition in Proposition 2, then the maximal
velocity mode does not exist and the velocity of agent 1
cannot increase to vmax

1 . The performance metric decreases
as the number of iterations increases in Fig. 3(c) with the
final cost J2(θ(13)ω(13)) = 4.709 and terminal condition
|J2(θ(13), ω(13)) − J2(θ(12), ω(12))| < ε.
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Fig. 6. Persistent monitoring task executed by two agents. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Performance metric J2 (decreases as the number of
iterations increases).

Example 2. The border exceeding case: In this simula-
tion, the persistent monitoring task is executed by one sin-
gle agent. An extreme case is considered in this task. The
mission space is [0, 6], the set of target points of inter-
est is X = [0, 0.1, 5.9, 6] with the increasing and decreasing
rates I(X) = [0.5, 0.1, 0.1, 0.5] and D(X) = [1, 0.5, 0.5, 1], re-
spectively. The step-sizes [θ̃, ω̃] = [0.006, 0.002] for the first
7 iterations, [θ̃, ω̃] = [0.003, 0.001] between the 8th and the
20th iterations and [θ̃, ω̃] = [0.001, 0.0005] after the 20th itera-
tion. The initial trajectory is θ1(0) = [1, 5, 1, . . .] and ω1(0) =
[0.3, 0.3, . . .] shown by the green dashed line in Fig. 4 (a).

The optimal trajectory obtained by Algorithm 1 is shown in
Fig. 4(a) and the performance metric is shown in Fig. 4(b), the
final cost J1(θ(50), ω(50)) = 205.9, and the terminal condition
|J1(θ(50), ω(50)) − J1(θ(49), ω(49))| < ε.

From Fig. 4(a), we can see that the agent will exceed the bor-
der of mission space (shown by red dash-dotted line). However,
for cases where border crossing is not allowed, the strategy de-
scribed in Algorithm 3 is applied. The corresponding simulation
result is shown in Fig. 5(a), in which the agent never exceeds

Fig. 7. Persistent monitoring task executed by two agents. (a) Initial
trajectory (green dashed) and optimal trajectory (blue solid) obtained by
Algorithm 1. (b) Evolution of Performance metric J .

the border of the mission space. In order to show the evolu-
tion of the performance metric, let round i be the result of each
round when an border exceeding is found and Algorithm 1 is
called to obtain a trajectory for this round in Algorithm 3. From
Fig. 5(b), it is obvious that the value of J increases as more col-
lision incidents are detected and eliminated (note that a total of
seven such incidents were detected as shown in the figure). This
is quite reasonable since we modify the optimal trajectory by
keeping a safety distance to avoid exceeding border constraints.

Example 3. The agent collision case: In this simulation,
the persistent monitoring task is executed by two agents. The
mission space is [−1, 14] and the set of interested targets is
X = [0, 0.2, 0.4, 0.6, 6.2, 12, 12.2, 12.4, 12.6] with the increas-
ing and decreasing rates I(X) = [0.1, 0.1, 0.1, 0.1, 0.5, 0.1, 0.1,
0.1, 0.1] and D(X) = [0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5],
respectively. The step-sizes [θ̃, ω̃] = [0.008, 0.004] for the 1st
two iterations, [θ̃, ω̃] = [0.002, 0.001] for the 3rd iteration
and [θ̃, ω̃] = [0.0006, 0.0003] after the 3rd iteration. The ini-
tial trajectories are θ1(0) = [1, 7, 1, . . .], ω1(0) = [0.1, 0.1, . . .]
and θ2(0) = [13, 6, 13, . . .], ω2(0) = [0.1, 0.1, . . .], which are
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shown by the green dashed lines in Fig. 6(a). The optimal tra-
jectories obtained by Algorithm 1 are shown by the blue solid
lines in Fig. 6(a) and the cost as a function of iteration is shown
in Fig. 6(b). The final cost J2(θ(15), ω(15)) = 56.95, and the
terminal condition |J2(θ(15), ω(15)) − J2(θ(14), ω(14))| < ε.

From Fig. 6(a), we can see that the trajectories of the two
agents cross each other. However, if this is not allowed, the col-
lision avoidance algorithm (see Algorithm 3) is applied to solve
this trajectory collision problem. The corresponding simulation
result is shown in Fig. 7(a), in which the agents never collide
with each other. From Fig. 7(b), the value of J increases as more
collision incidents are detected and eliminated (note that a total
of four such incidents were detected in this example), a behavior
similar to that observed in Example 2.

V. CONCLUSION

In this paper, optimal persistent monitoring tasks are per-
formed via second-order multiple agents. The results of this
paper bring persistent monitoring one step closer to realistic
applications in the sense that the existing results are improved
in the following three aspects:

1) the physical constraints on both the velocity and the ac-
celeration are taken into consideration;

2) the control is on the acceleration leading to smooth agent
trajectories;

3) a collision avoidance algorithm is proposed to solve po-
tential collision and boundary-crossing problems.

Our future work is to extend this model to 2-D spaces [35]
considering the presence of obstacles and the possibility of con-
trolling agents in a distributed manner.
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