
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 825

Receding Horizon Control for a Class of
Discrete-Event Systems With Real-Time Constraints

Lei Miao and Christos G. Cassandras, Fellow, IEEE

Abstract—We consider discrete-event systems (DES) involving
the control of tasks with real-time constraints. When future event
time information is limited, we propose a receding horizon (RH)
controller in which only some future information is available
within a time window. Analyzing sample paths obtained under
this scheme and comparing them to optimal sample paths (ob-
tained when all event times are known), we derive a number of
attractive properties of the RH controller, including: the fact that
it still guarantees all real-time constraints; there are segments of
its sample path over which all controls are still optimal; the error
relative to the optimal task departure times is decreasing under
certain conditions. Simulation results are included to verify the
properties of the controller and show that its performance can be
near-optimal even if the RH window size is relatively small.

Index Terms—Discrete-event system, optimization, power-lim-
ited system, receding horizon control.

I. INTRODUCTION

ALARGE class of discrete-event systems (DES) involves
the control of resources allocated to tasks according to cer-

tain operating specifications (e.g., tasks may have real-time con-
straints associated with them). The basic modeling block for
such DES is a single-server queueing system operating on a
first-come-first-served basis, whose dynamics are given by the
well-known max-plus equation

(1)

where is the arrival time of task is the time
when task completes service, and is its service time. Exam-
ples arise in manufacturing systems, where the operating speed
of a machine can be controlled to trade off between energy
costs and requirements on timely job completion [1]; in com-
puter systems, where the CPU speed can be controlled to en-
sure that certain tasks meet specified execution deadlines [2];
and in wireless networks where severe battery limitations call
for new techniques aimed at maximizing the lifetime of such a
network [3]. When the th task is performed, a physical process

Manuscript received June 6, 2005; revised March 11, 2006 and September 6,
2006. Recommended by Associate Editor at Large X. Cao. This work was sup-
ported in part by the National Science Foundation under Grant DMI-0330171,
by the AFOSR under Grants FA9550-04-1-0133 and FA9550-04-1-0208, and
by the ARO under Grant DAAD19-01-0610.

L. Miao is with Nortel Networks, Billerica, MA 01821 USA (e-mail:
leimiao@nortel.com).

C. G. Cassandras is with the Department of Manufacturing Engineering
and the Center for Information and Systems Engineering, Boston University,
Boston, MA 02215 USA (e-mail: cgc@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2007.895847

takes place and a physical state is associated with the task
over . Moreover, the physical process may
be under some control defined over .
In general, this process is characterized by dynamics of the form

(2)

In this paper, we are interested in a special case of (2) where the
task dynamics are described by

(3)

For example, if a CPU task requires operations to be com-
pleted, then is the cumulative number of operations per-
formed by time (with ,) and the
task departs when the condition is met. We can now
rewrite (1) as

(4)

where can be thought of as the temporal state of task and
is its processing time which now depends on some con-

trol ; for notational ease, we write to denote a function
defined over and the same is true for .

Our goal is to study optimization problems involving an ob-
jective function defined over a set of tasks subject
to (3), (4) and real time constraints expressed as for
given , . Solving such problems requires a con-
troller determining defined over for
all . The precise form of the controller depends on
the operation mode of the system as explained next.

In an offline scheme, the sequence of task arrival times ,
, is known in advance, whereas in the case of on-

line control no such prior information is available. Moreover,
the controller is dynamic when is allowed to vary over
all , and it is called static when
is kept fixed over ; it may, however, change
with every . In either offline or online schemes,
static control is commonly used in practice, i.e., once a task be-
gins service, its processing rate is kept fixed. However, as perfor-
mance requirements increase and DES are expected to operate
in heavily constrained environments, an interesting question that
arises is: what is the benefit of varying the processing rate de-
pending on the information available to a controller that can
regulate this rate? In the offline case, this question is studied in
[4] for cost functions that are strictly convex, differentiable, and
monotonically decreasing in and with deadline con-
straints of the form for given , . The
main result in [4] is that static control is the unique optimal

0018-9286/$25.00 © 2007 IEEE

826 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

control of an offline problem of this form. The significance of
this result lies in asserting the optimality of a simple controller
that does not require any data collection or processing in en-
vironments where the cost of such actions is high. Such static
offline controllers under real-time constraints have been exten-
sively studied, mostly in the real-time scheduling literature, e.g.,
[2], [5], and in the context of dynamic voltage scaling (DVS)
techniques, e.g., [6]–[8]. The optimality of a static controller
also applies to the case of online scheduling of periodic tasks
(hence, having predictable arrival times) [9].

In this paper, we turn our attention to online control with
real-time constraints (deadlines) where task arrival times ,

, define a random sequence. We must then seek
an online controller which guarantees the required task dead-
lines and, if it is not optimal, it is possible to quantify its devia-
tion from optimal performance. Our main contribution is to de-
velop a receding horizon (RH) controller, based on the assump-
tion that some future information over a limited time window is
available or can be estimated with good accuracy (our results
also apply to the case where this time window is reduced to
zero). RH schemes of this type are often used in model pre-
dictive control (MPC) where they are normally used when sta-
bilizing feedback solutions are extremely hard or impossible to
obtain [10]. In DES, such RH schemes have seen limited use
to date and their main benefit arises when future information is
unavailable due to the stochastic nature of the event processes
involved. By using RH control, we can bypass the complexity
that would result from a stochastic analysis of the problem. In
[11], such controllers were proposed and analyzed for systems
with no real-time constraints. The online control problem with
real-time constraints that we study in this paper is clearly much
harder, since one must guarantee that all tasks meet their dead-
lines without full arrival time knowledge. In the RH approach,
the idea of using a “lookahead” window exploits the result in
[4] mentioned previously for offline control: over this window
we are actually solving an offline problem (made easier by the
knowledge that its solution is a static controller) based on the
limited future information available within it. In addition, we es-
tablish a number of attractive properties of the RH controller, in-
cluding i) the fact that it still guarantees all real-time constraints
(if the original offline optimization problem is feasible), and ii)
the fact that the error introduced relative to the optimal control
can actually be zero over segments of the sample path of the
system. Our results are general and apply to all optimal control
settings described above, as long as the cost function of interest
is strictly convex and monotonically decreasing (or increasing,
depending on the control variables we use).

In Section II, we present our system model and formulate the
optimization problem. The RH control approach is described in
Section III. Section IV discusses a number of properties of the
RH controller. Some simulation results illustrating the derived
properties are given in Section V. In addition, we present some
results of RH control without any future task information in Sec-
tion VI, and our conclusions and discussions in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system we consider is characterized by the event-driven
dynamics (4), where is the arrival time of task

, and is the time when task completes service.
We assume a first-come-first-served (FCFS) and nonpreemptive
queueing model based on several key observations: i) preemp-
tive models involve multiparty action and are generally costly
if not infeasible in some applications (such as the dynamic
transmission control (DTC) problem where one cannot preempt
a packet already in transmission [3]), ii) the FCFS policy is
the simplest among nonpreemptive models and operational
simplicity is essential in applications for power-limited devices,
and (iii) among nonpreemptive models, there is no one policy
that obviously outperforms FCFS (for example, a nonpreemp-
tive earliest deadline first policy is actually equivalent to a
FCFS nonpreemptive policy).

Let us first briefly review the offline version of the problem
(i.e., when , is known) where a static con-
troller is optimal [4]. Task consists of a number of operations

and let be a control variable representing the processing
time per operation for task which is kept fixed
throughout . Thus, in (4) reduces to

and (3) is no longer needed in the problem formulation that
follows. We require that , ,
where and are given. We also require that each task
be completed by a given deadline and consider the optimiza-
tion problem

where the function represents the cost per operation asso-
ciated with task under control (e.g., the energy consumed).
Note that the constraints are removed in
above. This will not affect the optimal solution to the problem,
since from [4, Lemma 2], solving and substituting
for those gives the same optimal solution as the
problem with constraints included. Throughout our
work, we will also assume the following.

Assumption 1: is strictly convex, differentiable, and
monotonically decreasing in .

An interpretation for and an explicit form can be ob-
tained depending on the application of interest. For instance, in
dynamic voltage scaling (DVS) for power-limited wireless sys-
tems, such as sensor networks, represents the CPU energy
per operation [8], [12] and one controls the processing voltage.
In dynamic transmission control (DTC), is the transmis-
sion energy used per bit [3], [13] and one controls transmission
power.

Problem , even with a convex cost function, is hard
to solve due to the nondifferentiability of the max functions in
the constraints. In [14], this problem was studied without the
constraints , and a decomposition algorithm termed
the Forward Algorithm (FA) was derived. In particular, in-
stead of solving this complex nonlinear optimization problem,
we can decompose the optimal sample path to a number of
“busy periods.” A busy period (BP) is a contiguous set of

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 827

tasks such that the following three conditions are
satisfied: , , and , for every

. The FA decomposes the entire sample path
into BPs and replaces the original problem by a sequence of
simpler convex optimization problems, one for each BP; as
shown in [14], the solution is identical to that of the original
problem. In [15] it is shown that the presence of in

leads to an efficient algorithm that decomposes the
sample path even further and does not require solving any
optimization problem at all. We will also make use of the
concept of a “critical” task: a task is said to be critical if it
departs at the arrival time of the next task , i.e., .
This helps us define a block as a contiguous set ,

, such that , , and the set
contains no critical tasks.

Whereas in [15] was studied under the premise that
the offline controller is static, the main result in [4] asserts that
the unique optimal solution to this problem is indeed (under As-
sumption 1) a static control, i.e., a processing rate
constant for all . Unlike [4] and [15]
where the offline version of the problem was considered, we
will address next the more challenging online control problem.
We will make use of some results in [15] and [4] in our anal-
ysis. We will also use and , , to denote
the optimal solution of problem and the corresponding
task departure times.

III. THE RECEDING HORIZON (RH) ONLINE CONTROL SCHEME

Whereas in offline control all , , are known
in advance, the main challenge for online control is the lack
of any future task information. This leads to two difficulties in
designing an online controller: i) optimization is hard to carry
out on the fly, and ii) it is hard to guarantee real-time constraints.
Our goal is to develop an online controller that addresses both
difficulties.

In developing an RH framework, we assume the knowledge
of future task information at time is limited to a “lookahead
window” for some given , including each task’s ar-
rival time, deadline and number of operations. Task information
beyond this window is unknown. Note that is a special
case included in our analysis, where the controller acts using
only information for tasks that have already arrived and remain
unprocessed at a decision time. The RH approach works in a re-
cursive way: at each decision point, the controller solves an opti-
mization problem over the planning horizon based on all col-
lected information; control is applied to the next task only, and
the same procedure is repeated at the next decision point. Based
on [4], we know that the optimization problem over has an op-
timal solution given by static control (i.e., is fixed throughout
processing task). This implies that the natural points for in-
voking the controller are task departure times. In addition, using
task departures, rather than arrivals, as the RH decision points
has two additional practical advantages: i) As mentioned ear-
lier, adjusting controls during task execution is costly or infea-
sible for some applications, such as DTC, and ii) In periods of
high task arrival traffic, the RH controller may have to be re-
peatedly updated with every new arrival, potentially leading to
instabilities.

A. Worst-Case Estimation

Unlike cases with no real-time constraints (e.g., [11]), the
lack of future information makes it hard to guarantee the satis-
faction of the real-time constraints in our system. For example,
suppose task needs to be processed immediately upon its ar-
rival using the fastest speed possible in order to meet its dead-
line. Then, a feasible control must finish all other tasks arriving
before by the arrival time of this task. When applying RH con-
trol, if the RH window size is not large enough, the controller
will not learn this information sufficiently early; consequently,
task may fail to meet its deadline due to backlogged tasks
present when it arrives. This would not happen in an offline solu-
tion, where exact task information is known a priori and allows
to optimally plan accordingly.

The situation described above motivates us to incorporate
a worst-case estimation process into our RH controller. We
will show in Theorem 1 that doing so can guarantee all dead-
lines, provided a feasible solution exists for the offline control
problem. In particular, we will show that the RH controller
gives rise to task departures that occur no later than those on the
optimal sample path. Moreover, if no feasible solution exists
in the offline problem, the RH controller attempts to complete
task processing as early as possible.

Before explaining the worst case estimation process, we de-
fine the following. Let be the departure time of task on the
RH state trajectory, which is also a decision point when the RH
controller is invoked with lookahead window . Let be the
control associated with task as determined by the RH con-
troller. When task starts a new BP (i.e.,), then
the RH controller does not need to act until rather than ;
for notational simplicity, we will still use to represent the de-
cision point for task (i.e., the time when the control is
determined). Let denote the last task included in the window
that starts at the current decision point , i.e.,

Note that although the value of depends on , for notational
simplicity, we will omit this dependence and only write when
it is necessary to indicate dependence on . When the RH con-
troller is invoked at , it is called upon to determine , the
control associated with task for all , and let
denote the corresponding departure time of task which is given
by . The values of and are ini-
tially undefined, and are updated at each decision point for all

. Control is applied to task only. That con-
trol and the corresponding departure time are the ones showing
in the final RH sample path. In other words, for any given task ,

and may vary over different planning horizons, since opti-
mization is performed based on different available information.
It is only when task is the next one at some decision point that
its control and departure time become final.

Given these definitions, we are now ready to discuss the worst
case estimation process to be used. If , then the optimiza-
tion process is finalized, so let us only consider the more inter-
esting case when . Then, our worst case estimation per-
tains to the characteristics of task , the first one beyond the
current planning horizon determined by , i.e., its arrival time,

828 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

deadline, and number of operations which are unknown. We de-
fine task arrival times and task deadlines for
as follows:

if
if

(5)

if
if

(6)

In (5), the arrival times of tasks are known
and we introduce a “worst case” estimate for the first unknown
task beyond , i.e., we set it to be the earliest it could
possibly occur. In (6), the deadlines of tasks
are known and we introduce a “worst case” estimate for the first
unknown task’s deadline to be the tightest possible, since
is the minimum feasible time per operation. Note that is in
fact unknown at time , but we will see that this does not affect
our optimization process as the value of is not actually
required for analysis purposes. We point out that we do not have
to worry about estimates for the unknown tasks beyond
(this is because of the FCFS nature of our system).

Therefore, the optimization problem the RH controller faces
at time is over tasks with the added constraint
that they must all be completed by time . This
is equivalent to redefining as

if
if

(7)

Our online RH control problem at decision point will be de-
noted by and is formulated as follows:

known

Note that setting and yields the offline problem
defined earlier. In fact, we can see that is

just an offline optimization problem with exact information pro-
vided for tasks . The optimal solution to
gives the controls over the planning horizon at decision point .
The corresponding departure times are , , for
all tasks within the planning horizon. It should be clear that, un-
like , in we do not have at our disposal any
task arrival information beyond , therefore, the departure
times obtained by the RH controller are clearly suboptimal and
influenced by the worst-case estimation necessitated by the re-
quirement to satisfy all real-time constraints. However, we em-
phasize again that at decision point , although
is solved for all tasks , control is applied to
task only. As we will see, this provides opportunities
to subsequently adjust the controls and possibly achieve some
that coincide with the optimal ones obtained through offline
optimization.

Fig. 1. Example of worst-case scenario.

Let us now formulate a problem to be the same
as except that we relax the constraints

known

Recall that is the minimum time per operation the
controller can take. In problem , can take any
value that is nonnegative. The following lemma asserts that at
decision point we only need to solve the simpler problem

instead of (the proof of this lemma as
well as all other proofs can be found in the Appendix).

Lemma 1: If has feasible solutions, then
and have the same solutions.

The lemma implies that if the solution to satis-
fies constraints , then the solution is also the one for

. Otherwise, does not have a feasible so-
lution and the RH controller will apply to task , i.e.,
the highest possible processing speed. Note that is
always feasible, as long as , . As a matter
of fact, it is introduced solely to make the point that explicitly
solving can be accomplished by solving the easier
problem using the highly efficient CTDA algorithm
in [15]. Thus, the actual optimization problem of interest at de-
cision point remains (which can be feasible or
infeasible) and our analysis in what follows applies to it.

B. Relaxing Worst-Case Estimation

Problem evaluated at decision point is essen-
tially an offline optimization problem since the information of
tasks is known. As already mentioned, it is pos-
sible that is not feasible, due to either the worst-case
estimation described above or the infeasibility of the original of-
fline problem . In both cases, the RH controller has to
apply the maximum feasible rate to task (best effort). In the
former case, nevertheless, the performance of the RH controller
can be further improved as described next.

Consider the case shown in Fig. 1: the RH controller is in-
voked at (which is different from the optimal departure time
of task ,) and the last arrival time contained in the RH
window is . In this example, and are so
close to each other that even if task is processed at the highest
possible speed right after its arrival time , it still cannot be

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 829

finished by time . Therefore, there is no way for
to be feasible. Note that in this case the infeasibility

of is a result of worst case estimation; may in
fact be much larger than and the offline problem
may in fact be feasible. In this case, the controller will apply
the highest possible speed to process task . However, this
is not really necessary if we can find a task within the
RH window such that all tasks can be fin-
ished by , i.e., . The reason
is that we are using worst case estimation to guarantee that the
deadline of task is met, but as long as some task and all
tasks before it are completed by the arrival time of its next task
(not necessarily the last one within the RH window), this is suf-
ficient to guarantee that future tasks can meet their deadlines. In
other words, there is no need to use all future task information,
if using partial information is more beneficial.

To formalize the previous idea, we define for all

and observe that is the departure time of task (over the plan-
ning horizon starting at decision time) obtained by applying
the “fastest” possible control to all tasks such that

. We also define

for all

if
otherwise

(8)

The th task is defined in such a way that the RH controller
has a choice, when is infeasible, of formulating the
associated RH control problem with a window ending at
instead of . As was the case with the definition
of , the value of also depends on , but for notational sim-
plicity we will omit this dependence and only write when it
is necessary to indicate dependence on . Using this definition,
we also redefine task deadlines in (7) as

.
(9)

At decision point , the proposed RH controller solves an op-
timization problem (whose solution was shown to be efficiently
obtained in [15]) over the planning horizon based on the current
available task information and a worst case estimate of the next
unknown task. The optimization problem is with
given in (8). By defining , the performance of the RH controller
can be improved when is infeasible due to a very
conservative estimate for , since a lower cost is obtained by
allowing longer processing times compared to the shorter ones
imposed by this conservative estimate; formally, this will be
shown in the results of the next section. Solving gives
us the solution over the planning horizon, but we only apply it
to task . The same procedure is performed when the con-
troller moves to the next decision point . We reiterate that
it is entirely possible that the offline control problem
is infeasible (some real-time constraints cannot be met) due to

heavy arrivals and tight deadlines. In this case, the RH controller
occasionally applies the maximum processing speed.

IV. PROPERTIES OF THE RH CONTROLLER

Clearly, the RH sample path and the optimal sample path are
generally different. Recalling that , , is the op-
timal solution of the offline problem which we assume
to be feasible, and is the corresponding task departure time
sequence, we introduce the error in departure times evaluated by
the RH controller relative to the optimal controller as follows:

Definition 1: The departure time error for task is
.
When applying RH control, we would like to be as small as

possible and possibly have for at least some segments of
the RH sample path. In this section, we explore the properties of
the RH controller by addressing the following questions: i) What
is the relationship between and ? ii) Can we identify some
departure points on the RH sample path such that ? iii)
What are the properties of the error ? Before we get into the
detailed analysis, we summarize the main properties of the RH
controller to be established.

1) Departure times on the RH sample path are bounded by
those on the optimal sample path, i.e., , for all
(Lemma 5 and Theorem 1).

2) At certain decision points, when the RH window size is
large enough, controls and task departure times over the
planning horizon are optimal, i.e., , for some

(Lemmas 6 and 7).
3) Two ways are established to find departure points such that

(Lemmas 8 and 9 and Theorem 2).
4) If and with tasks and both within

the planning horizon, then for all
(Theorem 3).

5) At any decision point , once we identify some such that
over the planning horizon, then all the decision

points between and can be skipped (Theorem 4). More-
over, the corresponding errors of these tasks are non-in-
creasing (Theorem 5).

6) The errors are nonincreasing in the RH window size
(Theorem 6).

Relationship between the optimal and the RH sample
paths. We formulate a generalized optimization problem

, which is convenient in deriving the results that
follow:

Note that is given and is a general-
ization of problems we have already defined. For example, the
offline problem is identical to and the
RH controller’s optimization problem is identical to

. We will use to denote the
optimal cost of processing tasks , from time to

830 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

if is feasible. If the problem does not have a fea-
sible solution, is undefined.

Lemma 2: Under Assumption 1, has a unique
optimal solution for any , .

While it has been shown in [14] that the optimal sample path
of the system we are considering, but without real-time con-
straints, can be decomposed into busy periods and blocks as de-
fined in Section II, the next lemma shows another decomposi-
tion property of the optimal sample path of .

Lemma 3: Let be the optimal departure time of task
in . For any , such that

, the unique optimal solution to is ,
and the corresponding optimal departures are .

This lemma shows that the optimal sample path of
can be decomposed by optimal departure

points. Solving this control problem is equivalent to combining
the optimal solutions to the sub-problems obtained by parti-
tioning through these optimal departure points. Obviously, this
decomposition cannot be used to calculate the optimal sample
path directly, since , are unknown; it is, however, very
helpful in our ensuing analysis. In addition, note that because

is the general form of the optimization prob-
lems we are dealing with, the results above apply to ,

as well.
The next lemma is an auxiliary one which is crucial in our

analysis.
Lemma 4: Let and be the optimal departure time of

task in and re-
spectively, where , . Suppose , and

. Then, , for all .
With the help of Lemmas 2–4, we can characterize the rela-

tionship between departure times on the RH sample path and
the optimal sample paths as follows.

Lemma 5: At any decision point , ,
.

This lemma shows that the departure times evaluated by the
RH controller at are upper bounded by the optimal depar-
ture times. Recall, however, that at we solve an optimization
problem over all tasks in the current planning horizon, but only
apply control to the next task . Thus, this result does not
imply that all departure times in the final RH sample path satisfy
this relationship. This more general result is established next.

Theorem 1: , .
This result shows that the RH controller is more conservative

than the optimal controller. Therefore, our RH controller can
guarantee all task deadlines, provided feasible solutions exist
for .

Identification of optimal departure points on the RH
sample path. We shall next address the second issue men-
tioned at the beginning of this section: how to identify possibly
optimal departure points on the RH sample path. As we will
see, accomplishing this has three major benefits: i) obtain
optimal controls over segments of the RH sample path, ii)
prevent departure time errors from accumulating, and iii) save
considerable computation time in our RH optimization process.
We begin by showing that under certain conditions, and when
the RH window size is large enough, the RH controller yields
optimal controls.

Lemma 6: Let be a BP on the optimal sample path and
be the current decision time on the RH sample path with

. Let , , be the optimal solution
to , and be the corresponding departure time. Then

and for all .
Lemma 7: Let be a block on the optimal sample path

and be the current decision time on the RH sample path
with . Let , , be the optimal solution
to , and be the corresponding departure time. Then

, , for all .
These results show that at certain decision points, when the

RH window size is large enough, our control over the plan-
ning horizon is error-free. In Lemma 6, the condition that
is a BP on the optimal sample path can be easily checked by
the fact that established in [15]. Therefore,
the RH controller may apply all controls determined at
to all , instead of applying control to task only. In
Lemma 7, recall that a block may end with a critical task, i.e.,

on the optimal sample path, but the RH controller
cannot identify such points. However, as shown next, even if the
RH controller operates one task at a time, the RH controls for
the block are still optimal in the final RH sample path.
In fact, we show that even when is not large enough, the RH
planning horizon can still contain departure times that coincide
with the optimal ones.

The next lemma is very helpful in further decomposing the
optimal sample path from the viewpoint of the RH controller.

Lemma 8: At any decision point , let ,
, be the optimal solution to and

be the corresponding departure time. If there exists some
such that , then .

Thus, as long as we find a task within the current planning
horizon which departs at its deadline, this task must also depart
at its deadline on the optimal sample path. This lemma helps
us prevent errors from accumulating on the RH sample path.
Moreover, by knowing this future optimal departure time, we
will see that we do not have to perform any further computation
until that time.

Lemma 8 provides one way to identify optimal departure
points on the RH planning horizon. In what follows, we will
determine another way, based on critical tasks on the optimal
sample path, i.e., tasks such that . Therefore, if we
can find a task which is critical on the optimal sample path,
then we can identify its optimal departure point which is given
by . As we will see, under some conditions and at the ex-
pense of some extra work, we can indeed identify a critical task
on the optimal sample path. Let us start with an auxiliary lemma.

Lemma 9: At any decision point , let , ,
be the optimal solution to and be the corre-
sponding departure times. If i) for all , and ii)
task is critical on the optimal sample path of ,

, then .
This lemma helps us establish the following result which pro-

vides an alternative to Lemma 8 for identifying departure times
on the planning horizon that are optimal.

Theorem 2: At any decision point , let ,
, be the optimal solution to and be the

corresponding departure times. Suppose , for

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 831

all . Then, the necessary condition for task , , to
be critical on the optimal sample path is that . A suf-
ficient condition for task to be critical on the optimal sample
path is that and task is critical on the optimal sample
path of .

This theorem shows that once we find some tasks are crit-
ical over the planning horizon and the current decision point
coincides with the corresponding optimal departure, we have a
chance to identify critical tasks on the optimal sample path at
the expense of solving : if a task is critical
on the optimal sample path of then it is also
critical on the optimal sample path.

We now have two ways to identify optimal departure points
on the RH planning horizon. One way is to find a departure
point in the planning horizon such that . The
other way is to find a critical task on the optimal sample path
of when .

The next theorem shows that if a decision point is such that
, then, regardless of how large the RH window is, if we

can identify some such that , then
the optimal controls for tasks are immediately
obtained over the current planning horizon.

Theorem 3: At any decision point , let ,
, be the optimal solution to and be the

corresponding departure times. If i) , and ii) there exists
some such that , then ,

, for all .
One advantage of identifying these optimal departure points

is that we can prevent errors from accumulating. Another advan-
tage is that once two such points are identified we do not need to
perform any computation between them, thus saving time and
computational effort. In energy-constrained applications (such
as in wireless sensor networks), this can become quite critical.
However, a question still remains: although we can identify a set
of optimal controls over the planning horizon, will these con-
trols remain the same over future planning horizons? Before we
answer this question, let us introduce to be the RH de-
parture time of task evaluated at . At decision point , let

, , be the optimal solution to
and be the corresponding departure times. Then, we can
write . We will start with an auxiliary lemma below
which will help us establish Theorem 4.

Lemma 10: At any decision point , suppose there exists
some such that or some

such that . Then
at decision point , .

Theorem 4: At any decision point , suppose there exists
some such that or some

such that . Then
, for , .

This theorem shows that once an optimal departure point is
identified over the RH planning horizon by Lemma or Theorem
2, all the RH controls between the current decision point and
this optimal departure point will be the ones in the final RH
sample path. This implies two nice properties of our RH con-
trol: i) Once an optimal departure point is identified over the
RH planning horizon by Lemma 8 or Theorem 2, we can apply
the RH controls to all tasks and skip the

optimization procedures for all tasks , and ii) As in
Lemma 7 where the RH window size is larger than a block on
the optimal sample path and the RH controller does not know
this fact, we can still obtain optimal controls for all tasks within
the block.

Error Properties of the RH Controller. So far, we have
shown how to identify departure times on the RH sample path
that are optimal. Our next step is to study the departure error
properties of the RH controller.

It has been shown that when the RH controller happens to act
at the starting point of a block on the optimal sample path, there
are conditions under which the error is monotonically nonde-
creasing over the planning horizon [16, Lemma 4.10]. However,
since we only apply at decision time , it is possible that
the error may decrease at the next execution point of the RH
controller. The next theorem shows that under some conditions,
the error will in fact be nonincreasing.

Theorem 5: At any decision point , let ,
, be the optimal solution to and be

the corresponding departure times. If there exists some
, then for all

.
This theorem asserts that once an optimal departure is

identified by the RH controller, the error will be nonincreasing
from the current decision point to on the RH sample path.

Finally, we will also show that when applying RH control the
departure error of each task is a nonincreasing function of the
RH window size .

Theorem 6: Suppose we have two RH controllers with
window sizes , . Let , be the corresponding de-
parture times of task , , the corresponding RH controls
of task , and , the corresponding departure errors of
task . If , then and , for

.
In practice, the information within the RH window is usually

associated with resources such as memory or communication
energy. In general, the larger the RH window size, the more
resources are required; it is natural to expect the performance
of the RH controller to improve with larger RH window size, as
confirmed by Theorem 6.

V. SIMULATION RESULTS

In this section, we present some numerical results obtained
by applying our RH control approach to some simulated sys-
tems. We begin by establishing some notation associated with
different controllers we will compare: i) Optimal: Offline con-
troller (assumed to be feasible) with exact task information, ii)
RH1: RH controller with , iii) RH2: RH controller with

, iv) RH3: RH controller with and
decision point skipping (recalling Theorem 4, once an optimal
departure point is identified over a planning horizon, the con-
troller does not have to be invoked until this point. RH3 skips
all decision points between the current one and an optimal de-
parture point identified over the current planning horizon).

Experiments were performed for two different traffic pat-
terns: a Poisson arrival process and a bursty arrival process. The
deadline of each task is uniformly distributed in .
We also consider two deadline settings for all tasks: one with

832 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

Fig. 2. Bursty arrivals, tight deadlines.

“tight” deadlines, the other with “loose” deadlines. By letting
in the former setting, we expect multiple

BPs on the optimal sample path; in the latter setting with
, the probability of the optimal sample

path being a single BP is very high. The mean interarrival time
of the Poisson arrival process is set to 5s. For bursty arrivals, the
length of a burst is randomly chosen among integers ranging
from 10 to 20, the interval between two adjacent bursts is
uniformly distributed in [50,100]s, the interval between two
adjacent tasks within the same burst is uniformly distributed in
[1,2]s and [0,1]s for tight deadline setting and loose deadline
setting, respectively.

Figs. 2 and 3 show the relative cost error as a function of the
RH window size in the case where tasks arrive in a bursty
fashion. Similar results are obtained for the Poisson arrival
process and are omitted. The relative cost error is defined as:
(cost under controller RHi-optimal cost)/optimal cost with

. The results are from 10 simulation runs with 500
tasks in each run. It can be seen that all RH controllers approach
the optimal offline controller with increasing , but RH2 and
RH3 (whose performance is virtually indistinguishable as
expected by Theorem 4) are significantly superior to the more
conservative RH1. When the deadlines are loose, that is, the
optimal sample path is very likely to contain only one BP,
all RH controllers need a larger RH window to approach the
optimal offline controller. In Fig. 3, note that the performance
of RH1 deteriorates after . This is because when
is around 25s, is more likely to fall into the idle period
between two sets of bursty tasks for the particular parameter
settings; when is smaller or larger, is more likely to
fall into a set of bursty tasks. Due to worst-case estimation, the
latter case is more likely to make infeasible, and
then force the RH controller to apply to task .

Figs. 4, 5 are plots of the departure errors . In this case,
the results are obtained with a Poisson arrival process over 100
tasks. It is worth observing that there exist several intervals over
which .

Fig. 3. Bursty arrivals, loose deadlines.

Fig. 4. Poisson arrivals, tight deadlines, H = 10 s.

Based on these numerical results: i) We verify that RH con-
trollers using the window boundary clearly out-
perform those using the original window boundary , ii) We
observe that the performance of our RH controllers rapidly ap-
proaches the optimal one when using and increasing , and
iii) We confirm Theorem 4, i.e., the property that using the
window boundary , once an optimal departure point is identi-
fied in the current planning horizon, deactivating the controller
up to that point does not downgrade performance, while accel-
erating RH control.

VI. RH CONTROL WITHOUT FUTURE TASK INFORMATION

The RH controller we proposed in Section III relies on exact
task information within the RH window. An interesting question
is “what is the performance of the RH controller without exact
future task information?” In some cases, for example, only sta-
tistical information about future tasks is available (e.g., the ar-
rival rate). In general, hard deadline satisfaction cannot be 100%

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 833

Fig. 5. Poisson arrivals, tight deadlines.

guaranteed if future task information is unavailable and we want
to avoid an overly conservative worst-case approach as in Sec-
tion III. The goal then becomes the minimization of the fraction
of tasks that violate their deadlines.

In what follows, we present some numerical results when
future task information is unavailable and the RH controller
does not know the task arrival process. We define RH4 to be an
RH controller with future task estimation as follows: the con-
troller assumes that future tasks arrive periodically with period

, where is an estimated arrival rate. For example, suppose
, ; then at any decision point , the controller

assumes that 10 tasks will arrive at time
respectively. Note that at each decision point, the optimization
process includes not only estimated future tasks, but also back-
logged ones. Controller RH4 works exactly the same as RH2 and
RH3 do, i.e., the controller performs optimization over the plan-
ning horizon, and applies control to the next task only. The only
difference is that future task information is totally unknown to
RH4. Specifically, RH4 will use an estimated arrival rate

in the following experiments.
In the first example shown in Figs. 6 and 7, we consider equal

sized tasks with and a bursty arrival process (de-
scribed in Section V). For example, these tasks can be equal
sized audio/video packets which must be processed or trans-
mitted over a certain fixed interval after their arrivals to guar-
antee a Quality-of-Service (QoS) requirement.

Fig. 6 shows the relative cost of RH4 compared to RH1 and
RH2 . It can be seen that RH4 has a lower cost than both RH1 and
RH2 . This is because RH1 and RH2 are aiming at minimizing
the cost and guaranteeing hard deadline satisfaction at the same
time, while RH4 does not account for deadline satisfaction be-
fore a task actually arrives. In this setting, task deadlines are
easily met so it is not surprising that RH4 incurs the lowest cost.
Fig. 7 shows the relationship between task departure times and
deadlines when RH window size is . It turns out that
RH4 operates close to the deadlines, while RH1 and RH2 are far
from them. This implies that although RH4 incurs less cost, it

Fig. 6. Bursty arrivals, fixed loose deadlines.

Fig. 7. Bursty arrivals, fixed loose deadlines, H = 10.

may not be able to guarantee hard deadline satisfaction in some
cases.

In the next example shown in Figs. 8 and 9, we consider a
Poisson arrival process with , deadlines uniformly
distributed between , where and are con-
stants, and the RH4 controller uses to es-
timate task ’s deadline. In this setting, task deadlines are tight.
Therefore, as shown in Fig. 9, RH4 cannot guarantee hard dead-
line satisfaction. What happens is that RH4 uses a low speed
to process tasks initially; noticing that certain tasks’ deadlines
are hard to be met after their arrivals, RH4 will then use a high
speed to compensate. This kind of strategy will incur a higher
cost than RH1 and RH2 .

VII. CONCLUSION AND DISCUSSION

We have proposed an RH controller for a class of DES with
real-time constraints in order to overcome the absence of future
information in online control settings. The RH controller has

834 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

Fig. 8. Poisson arrivals, tight deadlines.

Fig. 9. Poisson arrivals, tight deadlines, H = 10.

several attractive properties, including i) the fact that it still guar-
antees all real-time constraints (if the original offline optimiza-
tion problem is feasible), ii) the error introduced relative to the
optimal control can actually be zero over segments of the sample
path of the system, and iii) the error relative to the optimal task
departure times is decreasing under certain conditions.

Some practical issues need to be considered when imple-
menting the RH controller. Consider the case of heavy arrival
traffic with tight deadlines. If the controller is not sufficiently
fast, it is possible that the task queue will build up. However,
there is also no need for optimization in such cases, since the
system must operate at its maximum processing rate, i.e., the
controller simply applies the maximum possible control at its
disposal. In addition, the controller may have the option to drop
tasks with extremely tight deadlines that cannot be met anyway.

The RH window size is a system design parameter which
highly depends on the specific application at hand. As indicated

by Theorem 6, it is possible for the system performance to be
improved by choosing a larger . However, with a larger RH
window size, the optimization problem the RH controller needs
to solve at each decision point has a higher dimensionality as
well. Clearly, trade-offs exist when determining the RH window
size. Fortunately, it has been shown in [15] that the CTDA algo-
rithm, which is used by the RH controller to solve the problem
at each iteration, has a modest complexity of (is the
number of tasks evaluated).

Our future work is focused on answering the following ques-
tions: i) How can we design a good RH controller if the task
information within the RH window is not accurate? ii) Can we
use RH control when there is no future information available at
all? iii) How can we adapt the RH controller to incorporate sto-
chastic characterizations of the task processes?

APPENDIX

Proof: [Lemma 1]: Without loss of generality, we assume
the optimal sample path of problem contains several
BPs. From [15, Lemma 1], a BP is identified by the deadline-
arrival information, i.e., task starts a BP, if and task

ends a BP if . Let contiguous tasks form
a BP on the optimal sample path of . We formulate
the optimization problem for this BP as follows:

We also define to be the same as except that
we replace the first constraint by , . Because,
by assumption, is feasible, is also feasible.
From Proposition 4 in [15], and have the same
solutions. The same result is also applicable to all BPs on the
optimal sample path of . Since solving is
equivalent to combining the solutions to these BPs,
and have the same solutions.

Proof: [Lemma 2]: The proof is similar to the one for
[4, Lemma 1]. From [15, Lemma 3], iff

. Therefore, the BP structure of the optimal sample path of
is unique, since it depends entirely on and

. Suppose we have a BP starting from task and fin-
ishing at task . The set of all feasible controls is
a convex set and the cost function of is a strictly
convex function by Assumption 1. Therefore, the optimal solu-
tion within a BP is unique and has a unique op-
timal solution.

Proof: [Lemma 3]: We use a contradiction argu-
ment to prove is the unique optimal solution to

. Suppose is an optimal solution
instead, therefore

(10)

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 835

Replacing the optimal controls by ,
is a feasible solution of

. Its cost can be written as

Invoking (10)

This contradicts the fact that is the unique optimal
solution of proven in Lemma 2. Therefore, the
unique optimal solution of is , and
the corresponding optimal departures must be .

The following lemma will be used in the proof of Lemma 4.
Lemma 11: Let be the optimal cost of

processing tasks in . Suppose
, , and

are all feasible, and . Then

Proof: Based on Assumption 1, is convex
and differentiable in both and and it satisfies

(11)

and

(12)

We can write the left-hand side of the desired result as

(13)

and the right-hand side as

(14)

Using (11), (12) and assumption ,

(15)

Combining (13)–(15) yields

Proof: [Lemma 4]: In , tasks
are processed from time to , while in ,

tasks are processed from time to . Since
, recalling the definition of , we

have , and . Also, since there
is no constraint in and ,
we have , and .

Invoking Lemma 2, each of and
has a unique optimal solution. From Lemma

3, problem can be decomposed by solving
and respectively, and

then combining the optimal solutions. Similarly, problem
can be decomposed into subproblems
and . Recalling that

is defined as the cost of , we obtain

(16)

and

(17)

Summing the two inequalities above and rearranging terms, we
get

(18)

Next, we use a contradiction argument to prove the lemma.
Thus, suppose there exists some , such
that . Let , , ,

. Since , , and
are all feasible, invoking Lemma 11, we obtain

(19)

Similarly, let , , , .
, , and
are all feasible. Using Lemma 11 again, we have

Rearranging items, we get

(20)

Under (19) and (20), we can see that (18) is violated, leading to
a contradiction of our assumption .

Proof: [Lemma 5]: To prove the lemma, we first show an
auxiliary result: at decision point , , if ,
then , for all . We consider two cases.

836 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

Case 1) At decision point , the RH problem
has no feasible solutions. Then, ,

. Since and , it follows that
, .

Case 2) At decision point , the RH problem has
a feasible solution. Since there are no upper bound
constraints on when solving , we must
have , where the last
equality comes from (9). We consider two cases:
i) If , then since , we
have . From Lemma 1 in [15], it follows
that . Since ,
we obtain . ii) If , we have

. When ,
from Lemma 2 in [15], we have and
recall that , so that .
On the other hand, when , from [15,
Lemma 1], we have .

Thus, we have established that . Now consider
problems and . Invoking
Lemma 4, the solution to the first problem is also the one
to , and the solution to the latter problem is also
the one for tasks on the optimal sample path.
Therefore, and are the optimal departure times of task

in and
respectively. We can now apply Lemma 4 with ,

, , , , , since ,
because . In addition, because
by assumption and (recall that, by conven-

tion, if ends a BP). Finally, because
as shown previously and . Thus, Lemma 4

implies

(21)

Next, we use induction over to complete the proof of the
lemma. At the initial step , . Using the result
obtained in (21), we get , (note that here
we use to emphasize that the RH controller is at decision
point). Now consider the general step at decision point ,
and suppose , . After the RH controller
applies control to task and comes to decision point ,
we get . Applying the above auxiliary result in
(21) again, we obtain that at decision point , ,

. This completes the induction proof and
we conclude that at any decision point , for all

.
Proof: [Theorem 1]: We prove the theorem using an in-

duction proof similar to that in Lemma 5. Note that Lemma 5
considers the case when ; for the special case, where

, for all can be proven similarly.
At the initial step, . Suppose that at decision point
we have . Then, invoking Lemma 5, we obtain
for all . After the RH controller applies control
to task , we get on the RH sample path, thus
completing the proof.

Proof: [Lemma 6]: Since task ends a BP on the optimal
sample path, from [15, Prop. 2], . Because

, the RH controller can detect that task ends the BP
on the optimal sample path. From Lemma 1 in [15], .
Because task starts the BP, . From Theorem 1, we
have . Since is a decision point, by our
convention we set . Invoking Lemma 3, we obtain

Invoking Lemma 2, has a unique optimal so-
lution. Therefore, , , for all .

Proof: [Lemma 7]: Since , the RH problem
becomes . We consider two cases.
Case 1) is the last block of the BP on the optimal

sample path. The proof is identical to that of Lemma
6, the only difference being that , since
starts a block rather than a BP.

Case 2) is not the last block of the BP on the optimal
sample path. Because task is critical on the op-
timal sample path, . Invoking Lemma 2
in [15] for the optimal sample path, we get

. Since, by assumption, , we have
. We then also have . In-

voking Lemma 2 in [15] over the planning horizon,
we obtain . From Lemma
5, . Therefore, . Because
task starts the block, . From Theorem
1, we have . Invoking Lemma 3,
we obtain

Invoking Lemma 2, has a unique
optimal solution. Therefore, , , for
all .

Proof: [Lemma 8]: According to Lemma 5, at any decision
point , , for all . Because ,
if , then we must have .

Proof: [Lemma 9]: Define to be the optimal depar-
ture time of task in .
Since is the general form of static control prob-
lems, Lemmas 3 and 2 apply to . Problem

is equivalent to . So the solu-
tion to is also the one to , and

is the optimal departure time of task in
. We can now apply Lemma 4 to problems
and with ,

, , , , since because
and since . In addition,

because (by convention, if ends a BP).
Finally, because (obtained from Lemma
5) and . Also note that since there are no upper bound
constraints on when solving , we must have

. Thus, Lemma 4 implies

(22)

Because , from Lemma 2 in [15],

(23)

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 837

Therefore, since by assumption ii) of the lemma ,
from (22) applied to and (23), we must have .

Proof: [Theorem 2]:
Necessity: By assumption, , .
Since , for all , we have

, for some . Invoking
[15, Lemma 2] on the optimal sample path, we get

. Invoking [15, Lemma 2] over the planning horizon,
we get . Suppose task is critical on
the optimal sample path, i.e., . From Lemma
5, . Combining the last two inequalities
implies that .
Sufficiency: Define to be the corresponding departure
time of task in . Con-
sider problems and
and apply Lemma 4 with , , ,

, , . Observe that
because and since . In addi-
tion, since by assumption and

(by convention, if ends a BP). Fi-
nally, because . Thus, Lemma 4
implies

(24)

Now consider problems and
. It follows from Lemma 5 directly that

(25)

By assumption , so that from Lemma 9 we get
. Applying (24) and (25) to , it follows that
.

Proof: [Theorem 3]: Because and ,
from Lemma 3, has a unique optimal so-
lution and it is the same as the corresponding one for tasks

on the optimal sample path.
The following lemma will be used in the proof of Lemma 10.
Lemma 12: Let be the window boundary the RH

controller uses at decision point . Then ,
for all .

Proof: Let be the RH window boundary the RH con-
troller uses at decision point . Clearly, . Re-
calling that at decision point , we apply control to task ,
it follows that . We consider two cases.
Case 1) . From Lemmas 2 and 3, we get

, for all .
Case 2) . From Lemmas 2 and 3, for any

can be obtained by solving
and can be

obtained by solving .
Recall that

(26)

where is the worst-case estimate of the arrival
time of task . From [15, Lemmas 1 and 2], we
know that

when

when .
(27)

Because , , the arrival time of task
, is known to the RH controller at decision

point and recall that . Com-
bining (26) and (27), we obtain

(28)

Now, consider problems
and and apply Lemma
4 with , , ,

, . Observe that
and because by assumption.
In addition, since (by
convention, if ends a BP). Finally,

from (28). Thus, Lemma 4 implies
, for all .

Proof: [Lemma 10]: We only prove the result at decision
point . The remaining cases can be obtained inductively.
From Lemma 12

for all

and we consider two cases.
Case 1) If , then invoking Lemma 8, we have

. Because
, we get .

Case 2) If , then invoking Lemma 5,
. Since

, we obtain .
Proof: [Theorem 4]: We only need to show that when

, , for all .
Cases when can be proven induc-
tively. Because we apply control to task at decision
point , . From Lemma 2,

. Therefore, and
are identical. Invoking Lemma

2, for task , and are
optimal departure times in
and , respectively, therefore

, for all .
The following lemma will be used in the proof of Theorem 5.
Lemma 13: Let be a single BP on the optimal

sample path of and let , , be the
optimal solution with corresponding departures .

i) If , then . ii) If , then
.

Proof: The proof of the lemma relies on Proposition 3 in
[15] which states that the solution of the optimization problem

838 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

(29) below satisfies the following, for all : i) If
, then . ii) If , then .

(29)

Since is a BP, we can write as follows:

Note that the equations in the last line of simply
specify the values of and , so that removing them does not
change the structure of . Since, by assumption,

has feasible solutions, invoking Proposition 4 in
[15], we conclude that problem (29) and have the
same optimal solutions. Then, it follows that [15, Prop. 3] also
applies to , i) if ,
then ; ii) if , then .

By the definition of , . We
will show next that if , then ,

. We use a contradiction argument. If
and , we have . This implies that

, , which contradicts the assump-
tion that has feasible solutions. Therefore, for
problem , if , then ,

. Using a similar argument, part ii) of the
lemma can be obtained.

Proof: [Theorem 5]: When , the theorem is
obviously true. We discuss the more interesting case when

. From Theorem 1 we have , so that there are two
cases to consider: and .
Case 1) . From Lemma 3, , hence , for

all over the planning horizon. From
Theorem 4, for all on the RH
sample path.

Case 2) . Since
, from Lemma 8, , .

From [15, Lemma 1], , .
Invoking [15. Lemma 2] over the planning horizon,

, . By definition, and
we have , . Therefore,

, . Invoking Lemma 2 in
[15] on the optimal sample path

(30)

We conclude that all tasks from to must
be within one BP over the planning horizon of the
RH controller as well as on the optimal sample path.
Thus

This implies that we only need to show
for all , , i.e. , for all ,

. Let us first consider and .
Since

we have

Using Lemma 5, . Therefore, from
the previous equation, we have . Given this
inequality, we proceed to show that if , then

, (we use a recursive
proof letting initially, and then decrease by
1 at each step until).

As we have shown before, task belongs to a BP over
the planning horizon as well as on the optimal sample path.
Therefore, and . We first show that

using a contradiction argument. Suppose ,
from Lemma 5

Because task is within a BP over the planning horizon, we
have

Combining the above two inequalities, we obtain

which contradicts the definition of . Next, we show that
using a contradiction argument. Suppose

, from Lemma 8, we can get ,
which contradicts the definition of .

Since we have shown that , we can use a simple
contradiction argument in part i) of Lemma 13 applied to

: if , we should have which
contradicts . Thus, it follows that

Similarly, since , a contradiction argument in part
ii) of Lemma 13 applied to , implies that

Combining the previous two inequalities and using our assump-
tion , we finally obtain and complete the
proof.

MIAO AND CASSANDRAS: RECEDING HORIZON CONTROL FOR A CLASS OF DISCRETE-EVENT SYSTEMS 839

Proof: [Theorem 6]: We use induction to prove the result.
Initially, . Suppose , .
Then, we need to prove . Let the RH window
boundary at decision point be . Consider problems

and .
From Lemma 3, the solution to the latter problem is also the
one to tasks at decision point . Because

, , we have . Let
, , , . Because

, , ,
and , from Lemma 4, we obtain .
This completes the induction proof. Then from the definition of

, we get .

REFERENCES

[1] D. L. Pepyne and C. G. Cassandras, “Optimal control of hybrid sys-
tems in manufacturing,” Proc. IEEE, vol. 88, no. 7, pp. 1108–1123,
Jul. 2000.

[2] J. W. S. Liu, Real—Time Systems. Upper Saddle River, NJ: Prentice-
Hall, 2000.

[3] L. Miao and C. G. Cassandras, “Optimal transmission scheduling for
energy-efficient wireless networks,” in Proc. IEEE INFOCOM, 2006,
pp. 732–742.

[4] L. Miao and C. G. Cassandras, “Optimality of static control policies in
some discrete event systems,” IEEE Trans. Autom. Control, vol. 50, no.
9, pp. 1427–1431, Sep. 2005.

[5] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications. Norwell, MA: Kluwer,
1997.

[6] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling
on a low-power microprocessor,” in Proc. 7th Annu. Int. Conf. Mobile
Comput. Netw., 2001, pp. 251–259.

[7] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” in Proc. 36th Annu. Symp. Foundations Computer Science,
1995, pp. 374–382.

[8] T. Pering, T. Burd, and R. Brodersen, “Dynamic voltage scaling and the
design of a low-power microprocessor system,” in Proc. Power Driven
Microarchitecture Workshop, 1998, pp. 107–112, ser. ISCA98.

[9] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive sched-
uling of periodic and sporadic tasks,” in Proc. IEEE Real-Time Systems
Symp., 1991, pp. 129–139.

[10] D. Q. Mayne and L. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Trans. Autom. Control, vol. 35, no. 7, pp. 814–824, Jul.
1990.

[11] C. G. Cassandras and R. Mookherjee, “Receding horizon control for a
class of hybrid systems with event uncertainties,” in Proc. Amer. Con-
trol Conf., Jun. 2003, pp. 413–418.

[12] G. Qu, “What is the limit of energy saving by dynamic voltage
scaling?,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design,
Nov. 2001, p. 560.

[13] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal, “Energy-effi-
cient packet transmission over a wireless link,” IEEE/ACM Trans.
Networking, vol. 10, no. 4, pp. 487–499, Aug. 2002.

[14] Y. C. Cho, C. G. Cassandras, and D. L. Pepyne, “Forward decomposi-
tion algorithms for optimal control of a class of hybrid systems,” Int. J.
Robust Nonlinear Control, vol. 11, no. 5, pp. 497–513, 2001.

[15] J. Mao, Q. Zhao, and C. G. Cassandras, “Optimal dynamic voltage
scaling in power-limited systems with real-time constraints,” in Proc.
43rd IEEE Conf. Decision Control, Dec. 2004, pp. 1472–1477.

[16] L. Miao and C. G. Cassandras, “Receding horizon control for a class of
discrete event systems with real-time constraints,” in Proc. 44th IEEE
Conf. Decision Control Eur. Control Conf., Seville, Spain, 2005, pp.
7714–7719.

Lei Miao received the B.S. and M.S. degrees from
Northeastern University, Shenyang, Liaoning, China,
and the Ph.D. degree from Boston University, Boston,
MA, in 1998, 2001, and 2006, respectively.

He is currently with the Carrier Ethernet Group
in Nortel Networks, Billerica, MA. His research
interest include control and optimization of dis-
crete-event systems, stochastic optimization, and
real-time systems, with applications to communica-
tion networks, sensor networks, and metro Ethernet
networks.

Christos G. Cassandras (S’82–M’82–SM’91–
F’96) received the B.S. degree from Yale University,
New Haven, CT, the M.S.E.E. degree from Stanford
University, Stanford, CA, and the S.M. and Ph.D.
degrees from Harvard University, Cambridge, MA,
in 1977, 1978, 1979, and 1982, respectively.

From 1982 to 1984, he was with ITP Boston, Inc.,
where he worked on the design of automated manu-
facturing systems. From 1984 to 1996, he was a Fac-
ulty Member with the Department of Electrical and
Computer Engineering, University of Massachusetts,

Amherst. Currently, he is a Professor of Manufacturing Engineering and Pro-
fessor of Electrical and Computer Engineering at Boston University, Boston,
MA, and a founding member of the Center for Information and Systems Engi-
neering (CISE). He specializes in the areas of discrete-event and hybrid systems,
stochastic optimization, and computer simulation, with applications to computer
networks, sensor networks, manufacturing systems, transportation systems, and
command-control systems. He has published over 200 papers in these areas, and
two textbooks, one of which was awarded the 1999 Harold Chestnut Prize by
the IFAC.

Dr. Cassandras is currently Editor-in-Chief of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL and has served on several editorial boards and as Guest
Editor for various journals. He is a member of the IEEE Control Systems Society
Board of Governors and a recipient of several awards, most recently the IEEE
Control System Society’s 2006 Distinguished Member Award. He is a member
of Phi Beta Kappa and Tau Beta Pi.

