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Optimal Control of Multi-Stage Discrete Event
Systems With Real-Time Constraints
Jianfeng Mao, Student Member, IEEE, and Christos G. Cassandras, Fellow, IEEE

Abstract—We consider Discrete Event Systems involving tasks
with real-time constraints and seek to control processing times so
as to minimize a cost function subject to each task meeting its own
constraint. When tasks are processed over a single stage, it has
been shown that there are structural properties of the optimal state
trajectory that lead to very efficient solutions of such problems.
When tasks are processed over multiple stages and are subject to
end-to-end real-time constraints, these properties no longer hold
and no obvious extensions are known. We consider such a multi-
stage problem with not only stage-dependent but also task-depen-
dent cost functions over all tasks at each stage and derive several
new optimality properties. These properties lead to the idea of in-
troducing “virtual” deadlines at each stage except the last one, thus
partially decoupling the stages so that the known efficient solutions
for single-stage problems can be used. We prove that a sequence of
solutions to single-stage problems with virtual deadlines updated at
each step converges to the global optimal solution of the multi-stage
problem. This leads to a Virtual Deadline Algorithm (VDA) which
is scalable in the number of processed tasks. We illustrate the scal-
ability and efficiency of the VDA through numerical examples.

Index Terms—Discrete event system (DES), multi-stage system,
optimal control, real-time constraints.

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves the
control of resources allocated to tasks according to cer-

tain operating specifications. The basic modeling block for such
DES is a single-server queueing system operating on a first-
come-first-served basis, whose event time dynamics are given
by the well-known max-plus equation

(1)

where is the arrival time of task is the
time when task completes service, and is its service
time which may be controllable through . Examples arise in
manufacturing systems, where the operating speed of a machine
can be controlled to trade off energy costs against requirements
on timely job completion [23]; in computer systems, where the
CPU speed can be controlled to ensure that certain tasks meet
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specified execution deadlines [17]; and in wireless networks
where severe battery limitations call for new techniques aimed
at maximizing the lifetime of such a network [10], [21]. A par-
ticularly interesting class of problems arises when such systems
are subject to real-time constraints, i.e., for each task

with a given “deadline” . In order to meet such constraints,
one typically has to incur a higher cost associated with control

. Thus, in a broader context, we are interested in studying op-
timization problems of the general form

(2)

where is the minimal possible service time of task . In
general, the controls may be time-varying. How-
ever, as shown in [22], when is monotonically increasing
and convex and all , are known, then the optimal con-
trol of each task is constant during the processing time .
We will consider such cases and also assume that

is monotonically decreasing in for all .
Systems which process tasks with real-time constraints have
been extensively studied, mostly in the computer science litera-
ture: preemptive tasks are considered, for example, in [1], [24],
nonpreemptive periodic tasks in [15], [16], and nonpreemptive
aperiodic tasks in [10], [20], [21]. The latter case is of partic-
ular interest in wireless communications where nonpreemptive
scheduling is necessary to execute aperiodic packet transmis-
sion tasks which also happen to be highly energy-intensive.

Even if is constant throughout the service time ,
problem (2) is generally a hard nonlinear optimization problem,
complicated by the inequality constraints and the non-
differentiable operator involved. Although the oper-
ator can be removed by introducing auxiliary variables ,

, and adding the constraints , ,
, this makes the problem even more inefficient to solve

since it doubles its dimensionality and also introduces in-
equality constraints. A max-plus algebra formulation [2], [7],
[14] may be utilized to efficiently obtain solutions for some op-
timal control problems with real-time constraints such as the
optimal tracking problem in [6], [8], [9]. However, these prob-
lems differ from (2) in two main aspects. First, in these prob-
lems release times (arrival times) are controlled and service
times are fixed, while in (2) we control service times with ar-
rival times fixed. Second, the problem objectives are different.
In optimal tracking the optimal solution is one resulting in the
latest possible completion times prior to real-time constraints. In
our problem, the objective is to minimize some cost related to
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service times; a feasible solution resulting in the latest comple-
tion times before real-time constraints is generally not optimal.

Despite the difficulties above, it was shown in [20] that when
is convex and differentiable the optimal state trajectory in

such problems is characterized by attractive structural properties
leading to a highly efficient algorithm termed Critical Task De-
composition Algorithm (CTDA). The original CTDA assumes
that is of the form and ,
where is a task-dependent constant (typically representing
the “size” of the task). The Generalized CTDA (GCTDA) in
[21] removes this restriction on . The CTDA completely
eliminates the need for a numerical optimization problem solver
and reduces the solution of (2) to a simple scalable procedure for
identifying a set of “critical” tasks in . The efficiency
and scalability of the CTDA are crucial for applications where
small, inexpensive, often wireless devices are required to per-
form on-line computations with minimal on-board resources1.

In this paper, we address the problem of tasks executed in a
network environment, where each node in the network is char-
acterized by dynamics of the max-plus form (1) coupled to those
of other nodes. This is a much more challenging problem which
cannot be dealt with by merely extending the CTDA. In partic-
ular, we consider a serial multi-stage DES where tasks at the
first stage satisfy

(3)

and at the following stages :

(4)

In addition, tasks at the last stage satisfy the constraints
. In other words, tasks are processed in series at the stages

(with departures from stage becoming arrivals at stage
) with an end-to-end real-time constraint imposed at the com-

pletion of this -step process. The decomposition properties
characterizing an optimal state trajectory of (2) no longer hold
and the coupling in (4) significantly complicates any solution
methodology. Incidentally, the same complications arise even
in the absence of real-time constraints: extending such single-
stage problems solved in [5] even to two stages becomes signifi-
cantly more difficult [4], [12]. In [19] we considered a two-stage
system with homogeneous cost functions (i.e., different for each
stage but not for each task) and identified three structural prop-
erties through which we can efficiently obtain a globally op-
timal solution to the problem described above. In this paper, we
consider a multi-stage system with and with nonho-
mogeneous (i.e., different both for each stage and each task)
cost functions. We find that one of the key properties when

no longer applies when , so that extending the
approach of [19] is infeasible. As in [19], however, the main
idea of our approach is to introduce a “virtual” deadline at each
stage , so that the -stage problem is replaced
by single-stage problems of the form (2), which we know
can be very efficiently solved through the CTDA in [20]. The

1Numerical examples show [20] that standard nonlinear programming soft-
ware (e.g., NPSOL 5.0) fails to provide solutions for� � ���, while the CTDA
gives exact solutions in less than 1 sec for values of � of the order of �� . An
efficient convex programming solver such as CVX [13] is still (in its default
precision) two orders of magnitude slower.

Fig. 1. Multi-stage system.

key issue then is determining the appropriate virtual deadline
for each stage, which we will show requires the solution of ad-
ditional, but simple, -dimensional convex optimization prob-
lems that exploit what we will refer to as the “Q-chain structure”
of the system, originally presented in [19]. A complete solution
to the multi-stage problem is provided, based on constructing a
sequence of solutions to simple single-stage problems as in (2)
in which “virtual deadlines” are adjusted at each step. We show
that this sequence converges to the global optimum of the orig-
inal problem and provide an explicit Virtual Deadline Algorithm
(VDA) to implement this solution approach.

The paper is organized as follows. In Section II, we formu-
late the -stage problem with strict end-to-end real-time con-
straints. In Section III, we establish two structural properties of
the optimal solution, leading, in Section IV, to the construction
of a single-stage problem solution sequence and the proof of its
convergence to the global optimum of the multi-stage problem.
We present the VDA in Section V, followed by numerical ex-
amples in Section VI, and conclude with Section VII.

II. MULTI-STAGE PROBLEM FORMULATION

We consider a multi-stage DES, as illustrated in Fig. 1, where
a sequence of tasks arrive at known times
at stage 1 and have known hard end-to-end deadlines

. The tasks are processed on a first-come-first-served
basis by serial nonpreemptive servers. Changing the pro-
cessing order at different stages might improve performance,
but it adds a layer of complexity that cannot be handled by re-
source-limited devices. Moreover, in many applications global
order preservation is required (e.g., processing data packets
through a network requires order preservation at the receiver).
Once a task is finished at stage , it immediately enters the
queue of stage for . The dynamics describing
the process at stages are given by (3) and (4), where,
by convention, . The deadlines

are imposed so that for all .
Let denote the size of task at stage and assume the

control is the processing rate of task at stage . In the fol-
lowing, we will concentrate on controlling directly the service
times for all because can then be easily recovered
through . Let denote the cost function
of , which can be expressed as

where is the cost function of the processing rate at
stage and is assumed to be continuously differentiable, strictly
convex and monotonically increasing with respect to , which
is consistent with most applications of interest. For instance, in
manufacturing systems the cost of operating a machine is mono-
tonically increasing and convex in the processing rate of a part
[23]; in wireless devices, the processing rate of a task is a convex
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monotonically increasing function of the voltage applied to its
CPU and the energy expended is monotonically increasing and
convex in the voltage [20]. Based on this fact, is con-
tinuously differentiable, strictly convex and monotonically de-
creasing in . Moreover, tasks cannot be processed infinitely
fast, that is, , where is the maximal pro-
cessing rate at stage . This constraint can be equivalently ex-
pressed in terms of the service time as

. Finally, we can formulate the multi-stage problem
as follows:

(5)

Due to the constraints “ ”, the system cannot guar-
antee that all tasks meet their associated deadlines, that is, the
problem above may be infeasible. In this paper, we will study
the feasible case (if that is not the case, then a separate admission
control problem has to precede our analysis so as to eliminate
certain tasks and lead to a feasible problem, as described for the
single-stage case in [18]).

As already pointed out, the -stage problem above is not
a simple extension of the single-stage problem studied in [20]
or even the two-stage problem in [19]. It is much more diffi-
cult to solve for three main reasons: (i) it inherits the difficul-
ties of the single-stage problem (described in [20]), (ii) there
is an -fold increase in the dimensionality of the control vari-
ables, and (iii) the coupling among the stage dynamics
causes the failure of the structural properties exploited in single
or two-stage problems. We note that Dynamic Programming
(DP) can, in principle, be utilized to reduce the dimensionality
of the multi-stage problem (5) by focusing on a portion of the
control variables through the introduction of a cost-to-go func-
tion. However, the recursion of the cost-to-go function in this
problem is too complicated to lead to a closed-form solution.
Thus, we have found DP to be quite inefficient in obtaining the
optimal solution. In order to overcome these difficulties and ob-
tain efficient solutions to problem (5), we introduce and analyze
two structural properties of such -stage systems in the next
section.

III. OPTIMALITY PROPERTIES

A. Virtual Deadline Property

The first structural property we identify is one leading to a
partial decoupling of the stages by introducing a “virtual”
deadline for tasks at stages and show that we can replace
problem (5) by a set of much simpler problems with a weaker
form of coupling between stages.

We begin by defining -dimensional vectors
, , and

for , as well as the matrix
. In what follows, inequalities involving

vectors should be understood to apply componentwise. Next,
we transform problem (5) into an equivalent problem below
by setting the control variables to be the entries of and
incorporating the dynamics into the objective function. In what
follows, we will omit the subscripts from the function

only to simplify the unavoidable notational burden
necessitated by indexing tasks and nodes. It will be seen that
this causes no loss of generality, as all subsequent proofs do
not depend on any differences among cost functions associated
with tasks or nodes as long as all such functions remain convex
and monotonic. The transformed problem (5) becomes

(6)

where for notational consistency.
We can see that the stages in the problem above are

strongly coupled because of the end-to-end real-time con-
straints. Now, imagine that there exist virtual deadlines for
all tasks at each stage , denoted by ,
and that every stage can independently optimize its control to
meet these virtual deadlines. Then, the multi-stage problem
(6) would be reduced to single-stage problems of the form
studied in [20], where the arrival time vector at stage is just
the departure time of stage , . Define

(7)

and formulate a single-stage problem for each stage as

(8)

where the feasible space is defined as

(9)

Thus, in (8) we fix the vector with all arrival times at stage
and control the departure times in . Since these single-stage

problems can be efficiently solved by the CTDA [20] or its gen-
eralized version, the GCTDA, solving separate single-stage
problems is much easier than solving the multi-stage problem
(6). If we can obtain the optimal solution of (6) by solving
single-stage problems above, then the complexity of (6) will be
greatly reduced. We show through Theorem 1 that this is indeed
possible.

Theorem 1: Let denote the optimal
solution of Problem (6) and , for

. Then, for

Proof: We only consider the case where ; the case
where can be similarly proved. Proceeding through
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a contradiction argument, let
and assume that for some

Then

(10)

Since is the solution of (8), it must satisfy
and the following inequality holds for all :

Because of the inequality above and the fact that is mono-
tonically decreasing, we have for all

Using this inequality, it follows from (7) that:

(11)

Let . Note that the
only difference between and is the departure time vector
at stage which only affects the cost functions of stages and

. Therefore, in evaluating the only terms
remaining are

Combining this with (10) and (11), we have

which contradicts the optimality of and completes the proof.

Based on Theorem 1, it is possible that the whole multi-stage
system reaches optimality when each single stage
reaches its own optimality by setting its virtual deadlines to

. However, for arbitrary , the optimality for each
stage does not correspond to the optimality of the whole multi-
stage system. Thus, this decomposition applies only at the op-
timal point , making the theorem of little apparent use. How-
ever, we will see that combining this result with an additional
property discussed in the next section leads to an efficient it-
erative process which still reduces the solution of the original
problem to solving partially coupled single-stage problems.

Theorem 1 also provides us an opportunity to simplify the
lower bound constraints in the multi-stage
problem (5). From Theorem 1 we know the optimal solu-
tion can be obtained by solving single-stage problems
with the introduction of virtual deadlines. Since the original
multi-stage problem is assumed to be feasible, the corre-
sponding single-stage problems must also be feasible. Then,
from Proposition 3 in [20], we know that if a single-stage

problem is feasible, then the lower bound constraints can be
equivalently replaced by simple nonnegativity constraints. In
particular, Proposition 3 in [20] asserts that if (8) is solved
without the constraints and its solution results
in some , then the single-stage problem is in fact
infeasible, hence (5) is infeasible. Therefore, we can replace
the lower bound constraint in (5) by
and we only need to consider these nonnegativity constraints in
the rest of the paper.

B. Q-Chain Property

As already mentioned, the virtual deadline property can
partially decompose the multi-stage problem (6) into single
stage problems (8), but this property alone cannot decouple
the whole multi-stage system into single-stage problems. In
this section, we will introduce what we refer to as the Q-chain
property, which can decompose the multi-stage problem into a
sequence of partially coupled problems, referred to as Q-prob-
lems. This property leads to the main result of this section,
Theorem 2, where we show that the solution of the multi-stage
problem is equivalent to solving all Q-problems.

To fully understand the Q-chain property, we begin with the
single-stage problem, where

(12)

Define

and introduce the Q-problem for this simple scalar case for
as follows:

where and are “dummy variables.” In order to elim-
inate the influence of these dummy variables, we set and

to be arbitrary constants larger than , that is, we force
the “dummy” task to arrive after so as to decouple
them from tasks .

Observe that in the Q-problem is controllable while ,
are treated as fixed. There are such Q-problems. Each

one is a small piece of the single-stage problem (12) and is only
coupled to its two neighboring Q-problems,
and . We refer to these Q-problems collec-
tively as the “Q-chain”.

Let denote the directional derivative of
at along a feasible direction and let

denote the directional derivative of
at along a feasible direction (the defini-

tion of the directional derivative can be found in [3] and is also
given in the Appendix; its use is motivated by the presence of
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the nondifferentiable function in our problem). It can be
easily verified that

(13)

Assume is the optimal solution of the single-stage
problem (12). From Theorem 4.3.2 in [11] (quoted in the
Appendix), optimality for a convex programming problem such
as (12) means that for any feasible direction
at . Suppose we can obtain solutions to all Q-problems and
define a vector such that

Then, combining this condition with (13), we have

which implies that is also the optimal solution of the single-
stage problem (12). Each Q-problem above is a scalar problem
which is much easier to solve than (12). This relationship pro-
vides an opportunity to obtain the optimal solution of a large-
scale problem by solving a set of much simpler Q-problems.

Based on this analysis, we see that the key to establishing the
equivalence between the optimality of Q-problems and the orig-
inal problem in the single-stage case is the summation form in
(13) satisfied by directional derivatives. If we can similarly ex-
press the directional derivative of the multi-stage problem (6)
as the summation of the directional derivatives of cost functions
for some properly defined Q-problems, then we can establish a
similar equivalence of the multi-stage problem and a set of sim-
pler Q-problems. Towards this goal, we define the natural exten-
sion of the single-stage Q-problem for the multi-stage system
(6) as follows. Introducing the shorthand notation

, let

and define a potential Q-problem

Unfortunately, we can easily verify that the definition of
above cannot satisfy the summation form in (13) with

and for ,
that is

(14)
Thus, even if all Q-problems above reach optimality simulta-
neously, the corresponding multi-stage problem (6) may not

be optimized. This failure is due to the presence of the func-
tion which introduces a coupling between

and for any . To satisfy a summation form as in
(13), we have to include both and as controllable
variables when defining the Q-problem. With this motivation,
define

We then formulate, for , the Q-problem

(15)

Note that , and are only defined for .
Therefore, for or , , and are “dummy
variables”. In order to eliminate the influence of these dummy
variables, we set for and let be arbitrary
constants smaller than for all such that ; that is, we
force all “dummy” tasks before task 1 to leave before so as
to decouple them from . Similarly, we set and
to be arbitrary constants larger than for all , that is,
we force all tasks after to arrive after so as to decouple
them from tasks .

In problem (15), the control vector includes all
pairs coupled through , which, as
shown next, makes it possible to satisfy a summation form such
as (13). To simplify notation, we define the -dimensional
vector for

(16)

Then, the Q-problem becomes

where is its corresponding feasible space. Fig. 2
provides a visual representation of a Q-problem structure in
terms of its controllable vector and the fixed vectors
and that its solution will depend on.

It should be clear that not only can we construct from the
matrix , but the converse is also true. In
particular, we construct in (16) through

(17)

and, conversely, we obtain the elements of from the matrix
, through

(18)



MAO AND CASSANDRAS: OPTIMAL CONTROL OF MULTI-STAGE DISCRETE EVENT SYSTEMS 113

Fig. 2. Illustration of Q-problem.

For convenience, we will make use of an operator such that

(19)

where each element of is defined through (17) and each
element of is defined through (18).

In what follows, Lemma 1 shows that the definition of the
Q-problem in (15) satisfies a desirable summation form sim-
ilar to (13) relating the directional derivatives of and of

. Let , where
for all or .

Lemma 1: The directional derivatives of and of
satisfy

Proof: Applying Lemma 6 in the Appendix to
, we have

Therefore, from (6), the directional derivative of along
is given by

(20)

and, similarly

It follows that:

Using Lemma 7 in the Appendix and the facts that
, and , we have

Combining this with for all or , we get
���

���

��� �� ���� ������ ������

�

�

���

���

�����

�������
�

������ �������������� ���������

�

�

���

�����

���

��� �� ���������������� �������

� �� �������� ���������������� ������� �

Letting and in the two inner sums above,
we have

where we have used (20). This completes the proof.
Lemma 1 can only guarantee local optimality for the multi-

stage problem (6). To establish global optimality, we need to
ensure the convexity of problems (6) and (15), as shown in the
next lemma.

Lemma 2: The multi-stage problem (6) is strictly convex in
and the Q-problem (15) is strictly convex in .

Proof: Starting with the multi-stage problem (6), we first
show that the feasible set is convex. Let
and be two arbitrary distinct feasible
solutions of the multi-stage problem, that is

(21)
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and for

(22)

It follows from (21) that for any
and . Next, we can write

(23)

Combining (22) and (23)

Thus, the feasible set is convex.
Second, we prove that the multi-stage problem (6) is strictly

convex in over the feasible set. Since is strictly convex,
we have, for any and

Since is also monotonically decreasing, combining this fact
with (23) and the inequality above, we have

which implies that the multi-stage problem (6) is strictly convex
in . The Q-problem (15) can be similarly proved to be strictly
convex in .

Using Lemmas 1 and 2, we can finally obtain the following
necessary and sufficient condition for global optimality.

Theorem 2: Let . is the unique global op-
timum of the multi-stage problem (6) if and only if it holds for

that

Proof: “ ”: Using Lemma 1, we have for any feasible
direction

(24)

Since is the optimal solution of the Q-problem (15) with
fixed and for , we have

Combining this inequality with (24), we have
for any feasible direction . Based on Lemma 2, the multi-stage
problem (6) is strictly convex in . It follows from this fact and

that is the unique global optimum of the
multi-stage problem (6) based on Theorem 4.3.2 in [11].

“ ”: Assume on the contrary that for some

Then, we can always find some

such that

(25)

Let
for and . Then, recalling the
definition of in (7), we have

By the equation above and (25), it follows that ,
which contradicts the optimality of .

Theorem 2 provides a way to determine the optimality of
the multi-stage problem (6) by solving a set of -dimensional
convex optimization problems. The final remaining question,
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Fig. 3. Generating the sequence �� �, � � �� �� � � �.

which is addressed in the next section, is how to exploit this
property in order to efficiently determine .

IV. CONVERGENCE ANALYSIS OF SINGLE-STAGE

SOLUTION SEQUENCES

As shown in the previous section, we can partially decompose
the original multi-stage problem into single stage problems
or into Q-problems. Although the optimal solution

of the multi-stage problem still cannot be directly obtained
by solving these two types of problems, together they can be
utilized to solve the multi-stage problem through a sequence
of single-stage problem solutions. We will describe next how
to construct such a sequence and prove that it monotonically
converges to .

Consider a sequence of single-stage problems of the form (8)
with solutions defined by

(26)
This gives rise to a sequence , with

and dependent on the virtual deadline vector
. Let us initialize these vectors so that for all

and define a sequence , of
virtual deadline vectors as follows. Let using the
definition of in (19) and define to be the solution of the
Q-problem for

(27)

Finally, we use the definition of in (19) to obtain
. This process is illustrated in Fig. 3 where we see

that is the input to a collection of Q-problems (after being
transformed to ) and consists of the solutions of these
problems (after being inverse-transformed from ), which
are then input to single-stage problems with virtual deadlines
given by .

In the following, we show that as . We
begin with some auxiliary results, i.e., Lemma 3 and Lemma 4,
which establish monotonicity properties satisfied by the solu-
tions of the single-stage virtual deadline problems and the
solutions of the Q-problems, respectively.

Lemma 3: Let

(28)

(29)

If, for any , and , then
.

Proof: Assume on the contrary that there exists some
such that . From Proposition 1 in [20], we have

and (this is a simple consequence
of the monotonicity of , implying that any
would result in a higher cost, hence cannot be optimal). Since

, it follows that . Moreover,
and are dummy variables that can be regarded as equal
to a common constant. Thus, it holds that and

. Therefore, to satisfy for some , there
must exist some such that for any :

and

Let

We can easily verify that by establishing
the following inequalities:

Next, let , that is

otherwise
(30)

Since and is convex, the
direction at the point is feasible in .

Let

We can similarly prove that . Since
and and

is convex, the direction at the point is feasible in
.

It follows from (29) and that
. Then, from the convexity

of the single-stage problem (8), must be a decreasing direc-
tion at , i.e.,

(31)
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Using Lemma 6 (see Appendix) and (30), we can compute
as follows:

Moreover, from Lemma 7 (see Appendix) and the fact that
for in (30) we have for

Combining the last two equations, we have

(32)

We can similarly derive

(33)

Let us now compare each term of (33) with the corre-
sponding term in (32). First, since , ,

, (because is monotonically
decreasing), and is monotonically nondecreasing (because

is convex), we have

(34)

Similarly, since for , ,
, and , we have

(35)

Third, since for ,
and , we have

(36)

Finally, since , , ,
and is monotonically nondecreasing, we have

(37)

Comparing (32) to (33) in view of (34) through (37), we have

(38)

Recalling (28) and the fact that is a feasible direction at
in , it follows that:

Combining this inequality with (38), we have

which contradicts (31) and completes the proof.
Lemma 4: Let

(39)

(40)

If, for any , and ,
then .

Proof: The proof is along the same lines as that of Lemma
3, but we provide it in full for the sake of completeness. As-
sume on the contrary that there exists such that

, i.e., recalling (17), . Since
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and are dummy vari-
ables which can be regarded as the same constant, it naturally
holds that and .
Therefore, there must exist some such that

Let

We can easily verify that by following a
procedure similar to the one at the beginning of Lemma 3.

Next, let , that is

otherwise
(41)

Since and is convex,
is a feasible direction at in .
Let

We can similarly prove that . Since
and and is

convex, is also a feasible direction at in .
It follows from (40) that

. From the convexity of the Q-problem,
is a decreasing direction at , that is

(42)

We can compute by using Lemma 6 and
Lemma 7 (see Appendix) together with (41) as follows:

(43)

Similarly, we can obtain

(44)

Let us now compare each term of (44) with the corresponding
term in (43). First, since for ,

, , (because is
monotonically decreasing), and is monotonically nonde-
creasing (because is convex), we have

(45)

Second, since
(because and ), ,
and is monotonically nondecreasing, we have

(46)

Third, since , ,
, and is monotonically nondecreasing,

we have

(47)

Finally, since , ,
, and is monotonically nondecreasing,

we have

(48)

Comparing (43) to (44) in view of (45) through (48), we get

(49)
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Recalling (39) and the fact that is a feasible solution at in
, it follows that

Combining this inequality with (49), we get

, which contradicts (42) and completes the proof.
Before getting to the main convergence result regarding the

sequence , we establish one more monotonicity property
which applies to the sequence ,

Lemma 5: The sequence , , is monotoni-
cally nonincreasing.

Proof: We use an induction argument over For
, recall the initial condition for .

Thus, must be no larger than for , that
is, . Assume that . Next, we prove that

.
Since , we have for all

. Beginning with stage 1, since ,
and (26) holds for , , we have

based on Lemma 3. Then, proceeding to stage 2, from
, and (26) for , , we can

similarly apply Lemma 3 to get . Repeating this
process over all stages , we finally have

.
Recalling (19), we have ,

and since it follows that for
. Combining this with (27) and applying

Lemma 4, we get for , that
is, . Finally, since and

, we have which com-
pletes the proof.

Theorem 3: The sequence , , is monotoni-
cally nonincreasing and

Proof: For convenience, we divide the proof into three
parts. First, we prove the inequality for all

Next, we show that for all ,
where is the solution of the original multi-stage problem.
Combining these two results, we finally complete the conver-
gence proof.

Part 1: We will prove the inequality below for all

(50)

Since in (9) for , we
immediately get . Thus, it remains to prove that

, or equivalently for
. We can prove , that is, recalling (17),

for , by the following inductive argument
over . Since , the inequality obviously holds
for . If we can prove that, for

(51)

then we can conclude . In what follows, we establish
(51). Looking at , there are two possible cases: (i)

and (ii) .
For case (i), from Lemma 5, we have . Com-

bining this with , we have as
desired.

For case (ii), let such that

otherwise

We can compute using Lemma 6 and Lemma 7 (see
Appendix) as follows:

(52)

Since , the direction is feasible in
. Then, from (27), we have

(53)

Now let and

such that

otherwise
(54)

We can similarly obtain using Lemma
6 and Lemma 7 (see Appendix):

(55)

Since we have already established the first inequality in (51), we
know that which implies that

and since (because is monotonically decreasing),
we have

(56)

Combining (52) through (56) and the fact that , we
have for :

(57)

It follows from (57) that is not a decreasing direction at
when minimizing . Recalling (27) and
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the convexity of the Q-problem, cannot be obtained by
searching along the direction , that is, for
any . By the definition of in (54), this implies that

that is, , which completes the proof of (51) and,
hence, the proof of (50).

Part 2: We will now prove the inequalities below for

(58)

We will use an induction argument over We begin
with . Since and for ,
it follows that for , that is, .
Let and recall Theorem 1, based on which we have

(59)
Recall that . Using , (59) and
(26), we can apply Lemma 3 to get . Then, proceeding
to stage 2, from , , (59) and (26),
we can similarly obtain from Lemma 3. Repeating
the process above over all stages , we can finally
obtain for , that is, .

Next, assume that and . We shall prove
that and . From Theorem 2, we know
for that

(60)

Since , or equivalently from (19) for
, and since (27) holds, we can apply

Lemma 4 to get for , that is,
. Since , we have . Similar

to the process above, we start with stage 1 and apply Lemma
3 with , , (59) and (26), to
obtain . Then, repeating the process over all stages

, we finally get for all ,
that is, .

Part 3: We now finally prove that

(61)

Let and . In view of (50), is a
monotonically nonincreasing sequence. Combining it with (58),

must converge to some vector such that as
, that is

(62)

Let and
. Then, from (27), we have for

that

TABLE I
VIRTUAL DEADLINE ALGORITHM

Combining this with (62), we get for that

(63)

Using (63) and Theorem 2, it follows that for
, or equivalently from (19) . It then

follows from (62) that the sequence monotonically con-
verges to . Since is a subsequence of , (61) in-
deed holds.

V. VIRTUAL DEADLINE ALGORITHM

Based on the analysis above, the Virtual Deadline Algorithm
(VDA) in Table I is a direct implementation of the sequence
construction in (26)–(27) also illustrated in Fig. 3. The VDA
provides a computationally efficient way to obtain by ex-
ploiting the fact that each single-stage problem in Step 2 can
be very efficiently solved with the CTDA in [20] (or its gen-
eralized version GCTDA [21]), while solving each Q-problem
in Step 3, an -dimensional convex optimization problem, is a
relatively simple task. Theorem 3 guarantees that the VDA pro-
vides some arbitrarily close to the global optimum of our
original problem.

Moreover, the VDA can be further improved. Although each
-dimensional convex optimization problem in Step 3 is quite

easy to solve, there are such problems we need to
solve in each iteration, a considerable effort, especially when
is very large. Proposition 4 below provides us a way to reduce
the number of these problems by utilizing an optimality prop-
erty of the single-stage problem, which reduces it to a simple
procedure of identifying “critical tasks.” As in [20] and [21], a
“critical task” is defined as some task such that

where and is the arrival time of
task .

Proposition 4: If task is not a critical task when solving
the single-stage problem (8) for all in the th
iteration, then .

Proof: Since, by assumption, task is not critical when
solving the single stage problem (8) for all in the

th iteration, then, from the definition of a critical task above,
we have for all that

(64)
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where and
is the departure time of task from stage and regarded
as the arrival time of task at stage .

Proceeding by contradiction, assume that . Let
. From (27), we have

(65)

Since in (64), we can
compute using Lemmas 6 and 7 in the
Appendix as

(66)

where

Using Part 1 in Theorem 3, we have , which
implies that . Combining this with the definition of

, we have

(67)

Since is monotonically decreasing, . Moreover,
in (64), which implies

that

(68)

Using (67) and (68), we have

that is

Combining this with (66), we get

which contradicts (65) and completes the proof.
Based on Proposition 4, we only need to solve those Q-prob-

lems that involve critical tasks. Qualitatively, looser deadlines
cause fewer critical tasks, which results in fewer Q-problems we
need to solve. In the extreme case that all tasks share a common
arrival time, deadline, and number of operations, we only need
to solve Q-problems in each iteration, independent of

. Furthermore, even if the condition in Proposition 4 can not
be satisfied when solving (27), can still be used as a very
good initial point because it is feasible and close to the optimal
solution .

Fig. 4. Optimal sample path obtained by the VDA.

To make this improvement, we need to exploit and store the
index of critical tasks when solving single stage problems
in Step 2. Since the CTDA solves the single-stage problem by
identifying critical tasks, the only extra effort made in Step 2 is
only to store their indices. Then, in Step 3, we only need to in-
troduce a check to determine whether the Q-problem involves
critical tasks or not. If so, we solve it by using as the initial
point; otherwise, we directly set . Therefore, the
overhead involved is minor and can drastically reduce the com-
plexity of Step 3.

VI. NUMERICAL RESULTS

A. Example

We have applied the VDA to a 3-stage system with ,
arrival time vector and deadline vector

. Each task is characterized
by a number of operations at stage with corresponding
vectors , ,

. The cost functions are

where . The termination condition in step 4
of the VDA is set so that

The optimal sample path obtained by the VDA is shown in
Fig. 4, plotting the number of tasks in each stage as a function
of time. Fig. 5 shows the optimal processing rates, where the
length of a block is the service time of the corresponding task
and the block label is its number of operations.
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Fig. 5. Optimal processing rate obtained by the VDA.

Fig. 6. VDA versus CVX.

B. Complexity

We proceed to a more complicated example with and
test the complexity of the VDA in terms of CPU time compared
to CVX, an efficient convex programming solver [13]. In these
tests, the VDA was programmed using Matlab 7.0 on an Intel
Pentium4 3.06 GHz, 1.0 GB RAM machine. We tested cases
where varied from 1000 to 4500 in increments of 500. We
randomly generated 20 samples for each . For each case, we
recorded the elapsed CPU time when both reached the same
precision, finally averaging them to obtain the corresponding
performance.

Fig. 6 shows the average CPU time (in seconds) as a function
of the number of tasks , where the dash and solid lines rep-
resent the results of CVX and VDA respectively. We observe
that the VDA’s complexity scales with while CVX does not
possess this property. This is because the VDA only needs to

solve an -dimensional ( in this example) convex opti-
mization problem no matter what is and the CTDA (utilized
in the VDA) also scales with . Furthermore, CVX could not
guarantee finding a solution in this example (i.e., its obtained so-
lution may be “NaN” for some sample paths) when increases
to 3000 and beyond, while the VDA can always derive the op-
timal solution because of the robustness of the CTDA and the

-dimensional convex programming solver.

VII. CONCLUSION

As pointed out in the Introduction, it is difficult to extend op-
timal control problems for DES with real-time constraints from
a single stage to stages. We have derived two opti-
mality properties that lead to the idea of introducing “virtual”
deadlines at stage , and then solving partially de-
coupled single-stage problems whose solutions are known to be
efficiently obtained. Based on this idea, we have shown that a se-
quence of solutions to simpler problems converges to the global
optimum of the original problem and have developed an itera-
tive Virtual Deadline Algorithm (VDA) implementing this ap-
proach. In practice, task arrival times may not be known at the
time problem (5) needs to be solved, in which case one must
proceed by repeatedly solving the problem as new arrival infor-
mation is obtained, by estimating future arrivals, or by relying
on stochastic optimization techniques making use of distribu-
tional information regarding the arrival process. Our ongoing
work is focusing on such cases, while also exploring general-
izations of the system setting to arbitrary networks rather than
the serial multi-stage case considered in this paper.

APPENDIX

Theorem 4.3.2 in [11]: Let be a convex function, be a
convex set and be a feasible point. Then
is a (global) minimum point of the problem ( ) if and only if
the following condition hold:

Remark: denotes the domain of function and
is the set of interior points of . Problem

is the convex nonlinear programming problem:

where is a convex set and is a convex function with re-
spect to . is the directional derivative of the function

at along the direction , which is equivalent to de-
fined in this paper. represents a cone defined below:

which can be equivalently regarded as the set of feasible direc-
tions at in the convex optimization problems (6) and (15)
because their feasible sets are polyhedral.
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Lemma 6: Let , where and are
scalar functions, is differentiable and is continuous.
Then it holds for any feasible direction that

Proof: By the definition of the directional derivative [3],
we have

(69)

Let , , and let
denote the right derivative of and respec-

tively. Using (69), we can easily verify that

(70)

By the definition of and , we have
. Since is continuous and is a feasible direction,

the right derivative always exists, which implies that

Since is differentiable, we have

where . Then,

where . Observe that as ,
and , thus . Therefore,

Combining it with (70), we have .
Lemma 7:

Proof: By the definition of directional derivative, we have

There are three possible cases when computing
. Case 1: . There always exists some

such that

Therefore

Case 2: . There always exists some such that

Therefore

Case 3: . It follows that:

Therefore

Combining these three cases, the lemma immediately follows.
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