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1 Introduction

Managing and operating large scale communication networks is a challenging
task and it is only expected to get worse as networks grow larger. The difficul-
ties associated with network management stem from the fact that modeling
and analysis of large scale communication networks is an excessively difficult
task. On one hand, the enormous traffic volume in today’s Internet makes
packet-by-packet analysis infeasible. On the other hand, queueing systems
(the natural modeling framework for packet-based communication networks)
are largely based on Poisson processes and does not capture the bursty nature
of realistic traffic. Moreover, the discovery of self-similar patterns in the In-
ternet traffic distribution [1] and the resulting inadequacies of Poisson traffic
models [2] further complicate queueing analysis. At the same time we need to
account for the fact that the stochastic processes involved are time-varying,
i.e., no stationarity assumptions hold. In addition, we need to explicitly model
buffer overflow phenomena which typically defy tractable analytical deriva-
tions. Consequently, performance analysis techniques that do not depend on
detailed traffic distributional information are highly desirable.

An alternative modeling paradigm based on fluid models has become in-
creasingly attractive. The argument leading to the popularity of fluid models
is that random phenomena may play different roles at different time scales.
When the variations on the faster time scale have less impact than those on
the slower time scale, the use of fluid models is justified. The efficiency of
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a fluid model rests on its ability to aggregate multiple events. By ignoring
the micro-dynamics of each discrete entity and focusing on the change of the
aggregated flow rate instead, a fluid model allows the aggregation of events
associated with the movement of multiple packets within a time period of
a constant flow rate into a single rate change event. Introduced in [3] and
later proposed in [4] for the analysis of multiplexed data streams and network
performance [5], fluid models have been shown to be especially useful for sim-
ulating various kinds of high speed networks [6, 7, 8, 9]. A Stochastic Flow
Model (SFM) has the extra feature that the flow rates are treated as general
stochastic processes, which distinguishes itself from the approach adopted in
[10, 11, 12] that deal with deterministic or Markov modulated fluid rates.

On the other hand, the fluid modeling paradigm forgoes the identity and
dynamics of individual packets and focuses instead on the aggregate flow rate.
As a result, this paradigm is more suitable for network-related measures, such
as buffer levels and packet loss volumes, rather than packet-related measures
such as sojourn times (although it is still possible to define fluid-based sojourn
times [13]). A Quality of Service (QoS) metric that depends on the identity of
certain packets, for example, cannot be obviously captured by a fluid model.
Furthermore, for the purpose of performance analysis of networks with QoS
requirements, the accuracy of SFMs depends on traffic conditions, the struc-
ture of the underlying system, and the nature of the performance metrics of
interest. Moreover, some metrics may depend on higher-order statistics of the
distributions of the underlying random variables involved, which a fluid model
may not be able to accurately capture.

In this chapter, our goal is to explore the use of SFMs for the purpose
of control and optimization rather than performance analysis. In this case, it
is not unreasonable to expect that one can identify the solution of an opti-
mization problem based on a model which captures only those features of the
underlying “real” system that are needed to lead to the right solution, with-
out the need to estimate the corresponding optimal performance with accu-
racy. Even if the exact solution cannot be obtained by such “lower-resolution”
models, one can still obtain near-optimal points that exhibit robustness with
respect to certain aspects of the model they are based on. Such observations
have been made in several contexts (e.g., [14]), including recent results re-
lated to SFMs reported in [15] where a connection between the SFM and
queueing-system-based solution is established for various optimization prob-
lems in queueing systems.

Using the SFM modeling framework, a new approach for network manage-
ment is being developed which is based on Infinitesimal Perturbation Analysis
(IPA) [16, 17, 18, 19] (IPA is covered in detail in [20, 21]). In this approach, we
estimate the gradient of the performance measure of interest (e.g., packet loss
rate) with respect to the control parameters of interest (e.g., buffer thresholds)
and use them in standard stochastic approximation algorithms to determine
the optimal parameter setting. This approach has some very important ad-
vantages.
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• The gradient estimation is done on-line thus the approach can be imple-
mented on the real system: as the operating conditions change, it will aim
at continuously seeking to optimize a generally time-varying performance
metric.

• The gradient estimation process does not require any knowledge of the
system’s underlying stochastic processes; in other words, it is model free.

• The estimators are shown to be unbiased when evaluated based on SFM
sample paths5.

• It turns out that the estimators consist only of accumulators and timers
and are generally easy to implement.

It is also worth pointing out that, even though the estimators are derived
based on a SFM, their simplicity allows us to evaluate them based on the sam-
ple paths of discrete-event systems . Furthermore, simulation results indicate
that such an approach works nicely, although the SFM-based estimators evalu-
ated based on discrete event sample paths may no longer be unbiased. On-line
management is appealing in today’s computer networks and will become even
more important as high speed network technologies become popular. In such
cases, huge amounts of resources may suddenly become available or unavail-
able. Since manually managing network resources has become unrealistic, it is
critical for network components, i.e., routers and end hosts, to automatically
adapt to rapidly changing conditions.

This chapter consists of a tutorial on some of the main results that have
appeared in the literature of IPA of SFMs. Section 2 presents an overview of
the general methodology employed when analyzing such systems. The sub-
sequent sections present some specific results on different important models.
Section 3 analyzes a single node with a single class of fluid. Section 4 extends
the analysis to multiple classes of fluid, while Section 5 presents a series of
nodes but with a single class of fluid. Subsequently, Section 6 presents some
simulations examples and finally Section 7 concludes and presents plans for
future directions.

2 General Methodology

The basic SFM, used in this chapter follows the ones described in [13, 16, 17,
19, 23] where the system is characterized by a number of stochastic processes,
all defined on a common probability space (Ω,F , P ). In general, all stochas-
tic processes are classified as defining or derived ; Defining processes are all
external inflow processes (typically denoted by {α(t; θ)}) and all service pro-
cesses (denoted by {β(t; θ)}) where θ is some controllable parameter. Derived
processes are the ones that result from the defining processes, the system dy-
namics and the controllable parameters (θ); examples of such processes are the
5 This is a desirable property that allows us to reliably use them with stochastic

optimization algorithms e.g., [22].
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Fig. 1. Basic Stochastic Fluid Model (SFM)

buffer outflow (denoted by {δ(t; θ)}), buffer occupancy ({x(t; θ)}) and fluid
overflow ({γ(t; θ)}). Examples of these processes are shown in Fig. 1 for the
single node system. How the derived processes are derived from the defining
processes is considered in detail in the following sections.

The main motivation behind this research is the optimization of some cost
functions of the form

J(θ;x(0), T ) = E [L(θ;x(0), T )]

where, θ constitutes the controllable parameter (possibly a vector of param-
eters) and L(θ;x(0), T ) is some sample function of interest evaluated in the
interval [0, T ] when the initial conditions are x(0). Loss volume, loss probabil-
ity, average workload, and throughput are some of the cost functions that can
be addressed in this approach. However, to limit the length of the chapter, in
the sequel we only address the loss volume (L(θ;x(0), T )) and average work-
load (Q(θ;x(0), T )) which will be explicitly defined in the following sections.
Note that from the workload metric it is possible to obtain a delay metric
using appropriate forms of Little’s law (e.g., see [13]). The general solution
approach to the optimization problem above adopted in this chapter consists
of three main steps which are briefly described in the following subsections.

2.1 Stochastic Approximation Algorithm

It is generally difficult (if at all possible) to obtain closed form expressions
for J(θ;x(0), T ). Therefore, one needs to resort to iterative methods such as
stochastic approximation algorithms (e.g., [22]) which are driven by estimates
of the gradient of a cost function with respect to the parameters of interest.
In the case of the cost minimization problem above, we are interested in
estimating dJ/dθ based on directly observed (or simulated) data. We can
then seek to obtain θ∗ such that it minimizes J(θ;x(0), T ) through an iterative
scheme of the form

θn+1 = θn − σnHn(θn;x(0), T, ωSFM
n ), n = 0, 1, · · · (1)

where Hn(θn;x(0), T, ωSFM
n ) is an estimate of dJ/dθ evaluated at θ = θn

and based on information obtained from a sample path of the SFM denoted
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Fig. 2. Typical sample path of a single SFM node

by ωSFM
n . Furthermore, {σn} is an appropriate sequence of step sizes. To

simplify the notation, in the sequel we assume that x(0) = 0 and we will omit
the initial condition, the observation interval T and the sample point ω ∈ Ω
unless it is necessary to stress the dependence. However, we emphasize that
all performance measures of interest are evaluated over a finite interval [0, T ].
Infinitesimal Perturbation Analysis (IPA) is used to obtain sample derivatives
dL/dθ. These derivatives can be used in (1) if they are unbiased estimators
of dJ/dθ. The derivation of such estimators and their unbiasedness properties
are addressed next.

2.2 IPA Derivative Estimates

In this section we show the general process for employing Infinitesimal Per-
turbation Analysis (IPA) [20, 21] to derive the sample derivatives L′(θ) =
dL(θ)/dθ. Before we present the general derivation approach, we define the
notion of events along a sample path which indicate changes in either the
defining or the derived processes. Of particular interest are what we refer to
as exogenous and endogenous events (exogenous events refer to changes in
the input (defining) processes and endogenous events refer to changes in the
output (derived) processes). The precise definition of these events depends on
the nature of the model under investigation. In general, however, for a given
fixed θ ∈ Θ, an exogenous event coincides with a point where the net inflow
(inflow minus outflow) to certain buffers changes sign either in a continuous
fashion or due to a discontinuity of the defining processes (α(t; θ) and β(t; θ)).
Endogenous events correspond to points where some buffer becomes either
full or empty or points where the buffer content crosses certain thresholds.
Fig. 2 shows a typical sample path of the buffer content of a single SFM node
with buffer capacity b. The sequence {vi : i = 1, 2, · · · } indicates examples of
such events; vi−2 and vi+2 indicate the events buffer becomes full and buffer
becomes empty respectively while, vi+1 and vi+3 indicate the events buffer
ceases to be full and buffer ceases to be empty respectively. The latter two
are exogenous events since they occur due to changes in the input processes,
while the first two are endogenous events since their occurrence depends on
the system dynamics (the detailed dynamics will be given in (2)).
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Corollary 1. Exogenous events are independent of the control parameters θ,
in other words, the event time derivatives of exogenous events are equal to
zero.

The performance measures of interest are generally functions of the de-
rived processes. Thus, obtaining sample derivatives involves the differentiation
of these processes with respect to the control parameter θ which can be done
if the sample paths are segmented into smaller intervals. It turns out that
a “convenient” segmentation is to divide the sample path at points where
some of the exogenous or endogenous events occur. For example, in Fig. 2 the
segments si = [vi, vi+1), i = 0, · · · , NT constitute such a sample path seg-
mentation where in the observation interval [0, T ] there are NT < ∞ (w.p. 1)
such segments. Such segmentation makes the sample function differentiation
easier, but the result is generally an iterative algorithm that determines the
required sample derivatives during segment si given the sample derivatives of
segment si−1. These iterative algorithms are usually sufficient to numerically
evaluate the derivatives of the sample functions of interest. However, we point
out that for certain systems it is possible to derive closed-form expressions for
these derivatives (examples of such derivations will be given in the following
sections where specific models will be investigated).

Once the sample function derivatives dL/dθ are obtained we need to in-
vestigate whether they are unbiased estimates of the required dJ/dθ so they
can be used in (1). This is done in the next section.

2.3 Unbiasedness

In this section we address the unbiasedness properties of the IPA estimators
obtained above. As IPA estimator is unbiased if the following holds

dJ(θ)
dθ

=
dE [L(θ)]

dθ
= E

[
dL(θ)

dθ

]
= E [L′(θ)] .

As mentioned earlier, this result allows us to use the derived IPA estimates
in the stochastic approximation algorithm (1). In general, the unbiasedness of
an IPA derivative L′(θ) has been shown to be ensured by the following two
conditions (see [24], Lemma A2, p.70):

Condition 1.
a. For every θ ∈ Θ (where Θ is a closed bounded set), the sample derivative

L′(θ) exists w.p.1.
b. W.p.1, the random function L(θ) is Lipschitz continuous throughout Θ,

and the (generally random) Lipschitz constant has a finite first moment.

The existence of the sample derivatives studied in this chapter is guaran-
teed by Assumption 1 shown below.

Assumption 1.
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a. W.p.1, all defining processes (e.g., arrival and service rate functions α(t) ≥
0 and β(t) ≥ 0) are piecewise analytic in the interval [0, T ].

b. For every θ ∈ Θ, w.p. 1, two events cannot occur at exactly the same time.
An exception is allowed for pairs of events such that the occurrence of one
forces the immediate occurrence of the other.

c. W.p.1, no two processes {α(t)} or {β(t)}, have identical values during any
open subinterval of [0, T ].

All three parts of Assumption 1 are mild technical conditions which hold
for all problems considered in the sequel. Regarding parts b and c, we point
out that even if they do not hold, it is possible to use one-sided derivatives
and still carry out similar analysis. However, in order to keep the analysis and
notation manageable we impose these conditions.

Consequently, establishing the unbiasedness of L′(θ), reduces to verify-
ing the Lipschitz continuity of the sample function L(θ) with appropriate
Lipschitz constants. For all estimators presented in the sequel this has been
established. The unbiasedness proofs are rather tedious and the interested
reader is referred to the appropriate reference for the details. Next, we apply
the three steps briefly described above for controlling system parameters such
as the buffer thresholds and the server processing rates for different systems.

2.4 More Notation and Preliminaries

In this section we define some of the concepts and quantities that we will use
in the sequel.

Boundary and Non-Boundary Periods (Bk, B̄k)

These define a possible partition of a sample path. Boundary periods are
maximal intervals where the buffer level x(t; θ) is constant and equal to
some boundary or some threshold (i.e., dx(t; θ)/dt = 0). Equivalently, non-
boundary periods are intervals such that x(t; θ) is not on a boundary. In
Fig. 2, [vi, vi+1) and [vi+2, vi+3) are boundary intervals while [vi−1, vi) and
[vi+1, vi+2) are non-boundary intervals. Also, with NB and NB̄ we denote the
random number of boundary and non-boundary periods respectively observed
in the interval [0, T ].

Resetting Cycle (Ck)

A non-boundary period followed by a boundary period forms a resetting cycle
where the evaluation of event time derivatives is independent of the past
history. However, one should not confuse the concept of resetting cycle with
that of regenerating cycle because the evolution of the stochastic process itself
might not always be independent of its past history. Furthermore, the kth
resetting cycle Ck includes Rk +1 events, that is Ck = [vk,0, vk,Rk

), where vk,j
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correspond to vi defined earlier but re-indexed based on the resetting cycle
they belong to. In Fig. 2 the intervals [vi−1, vi+1) and [vi+1, vi+3) correspond
to resetting cycles each of which includes 3 events. In addition, with NC we
denote the random number of resetting cycles in the interval [0, T ].

Empty and Non-Empty Periods (Ek, Ēk)

Another sample path partitioning due to queueing theory is into busy and
idle periods. Busy periods are periods where a buffer is not empty and idle
otherwise. When using SFMs however, it is possible to have an empty buffer,
while the server is not idle (e.g., when the inflow is less than the maximum
outflow), so, we prefer to use the more appropriate terms of empty and non-
empty periods. In Fig. 2 the interval [vi−3, vi+2) corresponds to a non-empty
period while the interval [vi+2, vi+3) corresponds to an empty period. The kth
non-empty period includes Sk + 1 events, thus Ēk = [vk,0, vk,Sk

), where again
vk,j are re-indexed based on the non-empty period they belong to. Also, with
NE and NĒ we denote the random number of empty and non-empty periods
respectively observed in the interval [0, T ].

The Prime Notation (·′)

In the sequel we use the prime notation to indicate the derivative with respect
to the control parameter of interest (typically either θ or ρ). For example,
x′(t; θ) indicates the derivative of x(t; θ) with respect to θ and v′i indicates the
derivative of the event time vi again with respect to θ.

3 Single-Class Single-Node System

In this section we investigate the single-class single-node system shown in
Fig 1. We assume that the system inflow is α(t), the maximum outflow is
ρβ(t) and the buffer size is θ where, ρ and θ are the controllable parameters
of interest. The parameter ρ ∈ [0, 1] denotes the proportion of the server
capacity (i.e., β(t)) allocated to the specific queue by the resource scheduler.
The processes α(t) and β(t) are independent of both parameters θ and ρ. The
system dynamics are given by

dx(t; θ, ρ)
dt+

=





0 if x(t; θ, ρ) = 0 and α(t)− ρβ(t) < 0
0 if x(t; θ, ρ) = θ and α(t)− ρβ(t) > 0
α(t)− ρβ(t) otherwise

(2)

The performance measures of interest are the average workload Q(θ, ρ) and
the loss volume L(θ, ρ) defined in (3) and (4) respectively.
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Q(θ, ρ) =
∫ T

0

x(t; θ, ρ)dt (3)

L(θ, ρ) =
∫ T

0

γ(t; θ, ρ)dt (4)

Next we derive the sample function derivatives with respect to the pa-
rameters θ and ρ. The IPA derivation can be done using either the resetting
cycles or empty and non-empty periods. In [16, 19] the derivation is done
using empty and non-empty periods, so here we present an alternative anal-
ysis based on the resetting cycles. For this system, any resetting cycle (say
the kth one) consists of two periods [vk,0, vk,1) where the system will be in a
non-boundary period and [vk,1, vk,2) where the system will be in a boundary
period (i.e., Rk = 2 for all k). Using this sample path partitioning, we can
rewrite the objectives as:

Q(θ, ρ) =
NC∑

k=1

qk(θ, ρ) =
NC∑

k=1

∫ vk,2

vk,0

x(t; θ, ρ)dt (5)

L(θ, ρ) =
NC∑

k=1

∫ vk,2

vk,1

γ(t; θ, ρ)dt (6)

where, as mentioned earlier, NC is the random number of such cycles that
appear in the interval [0, T ] and qk(·) =

∫ vk,2

vk,0
x(·)dt, k = 0, 1, · · · .

3.1 IPA Derivative with respect to θ

In this section we assume ρ = 1 constant (so it is omitted from all expressions),
and derive Q′(θ) = dQ(θ)/dθ and L′(θ) = dL(θ)/dθ. Differentiating (5) with
respect to θ we obtain

Q′(θ) =
NC∑

k=1

q′k(θ) =
NC∑

k=1

∫ vk,2

vk,0

x′(t; θ)dt (7)

where we used the fact that cycle beginning and ending points v0 and v2

respectively are independent of θ since they correspond to exogenous events
and thus v′0 = v′2 = 0 (Corollary 1). The loss volume derivative is given by

L′(θ) =
NC∑

k=1

[
−γ(vk,1; θ)v′k,1 +

∫ vk,2

vk,1

γ′(t; θ)dt

]
.

Furthermore, the loss rate during any boundary period is

γ(t; θ) =
{

0 if x(t; θ) = 0
α(t)− β(t) if x(t; θ) = θ

, t ∈ [vk,1, vk,2), k = 1, · · · , NC .
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Both cases are independent of θ, therefore, γ′(t; θ) = 0 and thus the above
derivative simplifies to

L′(θ) = −
NC∑

k=1

γ(vk,1; θ)v′k,1 (8)

Next, we derive q′k(θ) and v′1,k by analyzing each cycle independently. Be-
fore we proceed with the four possible cases, we recognize that during a
non-boundary period the buffer content goes from one boundary to another.
Therefore,

θ1[x(vk,0) = θ] +
∫ vk,1

vk,0

(α(t)− β(t)) dt = θ1[x(vk,1) = θ]

Differentiating both sides we get

(α(vk,1)− β(vk,1)) v′k,1 = 1[x(vk,1) = θ]− 1[x(vk,0) = θ] (9)

Now, depending on the boundary where the cycle starts and ends (empty (E)
or full (F)), we identify four possible cases.

Case EE: The cycle starts and ends with an empty period. In this case,

x(t; θ) =

{∫ t

vk,0
(α(t)− β(t)) dt for t ∈ [vk,0, vk,1)

0 for t ∈ [vk,1, vk,2)

and x′(t; θ) = 0 for all t ∈ C. Also, γ(t; θ) = 0 for all t ∈ C (no loss during
the cycle), thus γ(vk,1; θ) = 0. As a result

q′k(θ) = 0 and γ(vk,1; θ)v′k,1 = 0 (10)

Case EF: The cycle starts with an empty and ends with a full period. Thus,

x(t; θ) =

{∫ t

vk,0
(α(t)− β(t)) dt for t ∈ [vk,0, vk,1)

θ for t ∈ [vk,1, vk,2)
.

Differentiating with respect to θ we get,

x′(t; θ) =
{

0, for t ∈ [vk,0, vk,1)
1, for t ∈ [vk,1, vk,2)

.

Substituting into (7) we get, q′k(θ) = vk,2 − vk,1. For the loss volume,
γ(vk,1, θ) = α(vk,1) − β(vk,1) and, from (9), we get that (α(vk,1) −
β(vk,1))v′k,1 = 1, therefore

q′k(θ) = vk,2 − vk,1 and γ(vk,1; θ)v′k,1 = 1. (11)
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Case FF: The cycle starts and ends with a full period. In this case,

x(t; θ) =

{
θ +

∫ t

vk,0
(α(t)− β(t)) dt for t ∈ [vk,0, vk,1)

θ for t ∈ [vk,1, vk,2)

therefore, x′(t; θ) = 1 for the entire cycle. As a result, from (7), q′k(θ) =
vk,2 − vk,0. In addition, from (9) we get that v′k,1 = 0 and therefore

q′k(θ) = vk,2 − vk,0 and γ(vk,1; θ)v′k,1 = 0. (12)

Case FE: The cycle starts with a full and ends with an empty period. In this
case,

x(t; θ) =

{
θ +

∫ t

vk,0
(α(t)− β(t)) dt for t ∈ [vk,0, vk,1)

0 for t ∈ [vk,1, vk,2)

and therefore x′(t; θ) = 1 for t ∈ [vk,0, vk,1) and 0 for t ∈ [vk,1, vk,2). As
a result, from (7) q′k(θ) = vk,1 − vk,0. For the loss volume, x(vk,1; θ) = 0
therefore γ(vk,1; θ) = 0. Hence,

q′k(θ) = vk,1 − vk,0 and γ(vk,1; θ)v′k,1 = 0. (13)

Theorem 1. The sample derivatives Q′(θ) and L′(θ) with respect to θ are

Q′(θ) =
NC∑

k=1

[(vk,2 − vk,1)1EF + (vk,2 − vk,0)1FF + (vk,1 − vk,0)1FE ]

L′(θ) = −NCEF

where NCEF is the number of EF cycles that were observed during [0, T ] and
1yy is the usual indicator function that takes the value of 1 if the cycle is of
the yy type and 0 otherwise.

Proof: Follows immediately from (10)-(13).

Corollary 2. The estimators of Theorem 1 are precisely the estimators ob-
tained in [16], in other words,

Q′(θ) =
NĒ∑

j=1

(vj,Sj − vj,1) and L′(θ) = −NCEF

where j counts the number of non-empty periods (not cycles), vj,1 indicates
the first overflow point of the jth non-empty period and vj,Sj indicates the end
of the jth non-empty period. If no overflow occurs vj,1 = vj,Sj .

Proof: Follows by recognizing that the union of a non-empty period with the
following empty period consists either of a single EE cycle or it starts with
an EF cycle, followed by m FF cycles m = 0, 1, 2, · · · , and ends with an FE
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cycle. Furthermore, note that the number of non-empty periods with at least
some loss is equal to the number of EF cycles NCEF

.
In [16] it is also shown that the above estimators are unbiased. Further-

more, we point out that the implementation of the above estimators is ex-
tremely simple; they simply accumulate the time between certain events, or
they count the number of EF cycles.

3.2 IPA Derivative with respect to ρ

In this section, we assume θ = b constant (so it is omitted from all expressions),
and derive Q′(ρ) = dQ(ρ)/dρ and L′(ρ) = dL(ρ)/dρ. Differentiating (5) with
respect to ρ we obtain

Q′(ρ) =
NC∑

k=1

q′k(ρ) =
NC∑

k=1

[
x(vk,2; ρ)v′k,2 − x(vk,0; ρ)v′k,0 +

∫ vk,2

vk,0

x′(t; ρ)dt

]
(14)

In this case, the cycle beginning and ending points vk,0 and vk,2 respec-
tively are not always due to exogenous events. The events buffer ceases to be
empty or full occur at points where a sign change of α(t)− ρβ(t) occurs. The
sign change can be due to a jump (discontinuity) in either α(t) or β(t) which
corresponds to exogenous events, or it can occur in a continuous fashion, thus
the switching time depends on ρ. Nevertheless, the following result holds.

Lemma 1. At the cycle beginning and ending points vk,0 and vk,2 respectively,

(α(vk,0)− ρβ(vk,0)) v′k,0 = (α(vk,2)− ρβ(vk,2)) v′k,2 = 0

Proof: We make the argument only for the beginning point of Ck; the argu-
ment for the ending point is the same since it coincides with the beginning
point of Ck+1. As mentioned above, vk,0 is due to a sign change of α(t)−ρβ(t)
from positive to negative or vise versa. This can happen either due to a dis-
continuity in the processes α(t) and β(t) or it can happen in a continuous
fashion. If this happens due to a discontinuity of either α(t) or β(t), then it
corresponds to an exogenous event, thus v′k,0 = 0. If on the other hand, the
sign change occurs in a continuous fashion, α(vk,0)− ρβ(vk,0) = 0. Hence, the
lemma is proved.

Next, note that the buffer content is given by

x(t; ρ) =

{
b1[x(vk,0; ρ) = b] +

∫ t

vk,0
(α(t)− ρβ(t)) dt for t ∈ [vk,0, vk,1)

b1[x(vk,1; ρ) = b] for t ∈ [vk,1, vk,2)
(15)

therefore, using Lemma 1, the derivative with respect to ρ is given by

x′(t; ρ) =
{−β̄(t, vk,0) for t ∈ [vk,0, vk,1)

0 for t ∈ [vk,1, vk,2)
. (16)
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where

β̄(t2, t1) =
∫ t2

t1

β(t)dt.

For the general case, the above integral can be evaluated numerically, however,
to simplify the analysis, in the sequel we assume the β(t) = β̄ constant, and
thus β̄(t2, t1) = β̄(t2 − t1). Therefore, the last term of (14) simplifies to

∫ vk,2

vk,0

x′(t; ρ)dt = −
∫ vk,1

vk,0

β̄(t− vk,0)dt

= − β̄

2
(
v2

k,1 − 2vk,1vk,0 − v2
k,0 + 2v2

k,0

)

= − β̄

2
(vk,1 − vk,0)

2
.

Substituting in (14), each term of the workload derivative simplifies to

q′k(ρ) = x(vk,2; ρ)v′k,2 − x(vk,0; ρ)v′k,0 −
β̄

2
(vk,1 − vk,0)

2 (17)

Similarly, the loss volume derivative is given by

L′(ρ) =
NC∑

k=1

[
γ(vk,2; ρ)v′k,2 − γ(vk,1; ρ)v′k,1 +

∫ vk,2

vk,1

γ′(t; ρ)dt

]
.

The loss rate during any boundary period is

γ(t; ρ) =
{

0 if x(t; ρ) = 0
α(t)− ρβ(t) if x(t; ρ) = b

, t ∈ [vk,1, vk,2), k = 1, · · · , NC . (18)

Therefore, γ′(t; ρ) = −β(t) if x(vk,1; ρ) = b and 0 otherwise. Also, from
Lemma 1, the term γ(vk,2; ρ)v′k,2 = (α(vk,2) − ρβ(vk,2))v′k,2 = 0. As a re-
sult, the above derivative simplifies to

L′(ρ) =
NC∑

k=1

λ′k(ρ) =−
NC∑

k=1

[
γ(vk,1; ρ)v′k,1+ β̄(vk,2 − vk,1)1[x(vk,1; ρ) = b]

]
(19)

Next, we focus on a single cycle and derive q′k(ρ) and λ′k(ρ), but first we
recognize that during any non-boundary period x(t; ρ) goes from one boundary
to another, thus

b1[x(vk,0; ρ) = b] +
∫ vk,1

vk,0

(
α(t)− ρβ̄

)
dt = b1[x(vk,1; ρ) = b] .

Differentiating both sides with respect to ρ, and using Lemma 1, we get
(
α(vk,1)− ρβ̄

)
v′k,1 − β̄ (vk,1 − vk,0) = 0 (20)

Depending on the boundary where the cycle starts and ends (empty (E) or
full (F)), we identify four possible cases.
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Case EE: The cycle starts and ends with an empty period. In this case,
x(vk,0; ρ) = x(vk,2; ρ) = 0, and, from (17), q′k(ρ) = −β̄ (vk,1 − vk,0)

2
/2.

Also, γ(t; ρ) = 0 for all t ∈ Ck (no loss during the cycle), thus, from (19)
λ′k(ρ) = 0. Summarizing,

q′k(ρ) = − β̄

2
(vk,1 − vk,0)

2 and λ′k(ρ) = 0 (21)

Case EF: The cycle starts with an empty and ends with a full period. In this
case, x(vk,0, ρ) = 0 and x(vk,2, ρ) = b so, in (17) the term x(vk,0, ρ)v′k,0 =
0. Next, from (20) we get,

γ(vk,1; ρ)v′k,1 =
(
α(vk,1)− ρβ̄

)
v′k,1 = β̄ (vk,1 − vk,0) .

Substituting in (17) and (19), we get

q′k(ρ) = bv′k,2 −
β̄

2
(vk,1 − vk,0)

2 and λ′k(ρ) = −β̄(vk,2 − vk,0) (22)

Case FF: The cycle starts and ends with a full period. In this case, x(vk,0, ρ) =
b and x(vk,2, ρ) = b. Using (20) we get

γ(vk,1; ρ)v′k,1 =
(
α(vk,1)− ρβ̄

)
v′k,1 = β̄ (vk,1 − vk,0) ,

and again, substituting in (17) and (19), we get

q′k(ρ) = bv′k,2−bv′k,0−
β̄

2
(vk,1 − vk,0)

2 and λ′k(ρ) = −β̄(vk,2−vk,0) (23)

Case FE: The cycle starts with a full and ends with an empty period. In this
case, x(vk,0, ρ) = b and x(vk,1, ρ) = x(vk,2, ρ) = 0, so that in (17) the term
x(vk,2, ρ)v′k,2 = 0. Also, from (20) we arrive at

γ(vk,1; ρ)v′k,1 =
(
α(vk,1)− ρβ̄

)
v′k,1 = β̄ (vk,1 − vk,0) ,

and again, substituting in (17) and (19), we get

q′k(ρ) = −bv′k,0 −
β̄

2
(vk,1 − vk,0)

2 and λ′k(ρ) = −β̄(vk,1 − vk,0) (24)

Theorem 2. The sample derivatives of Q(ρ) and L(ρ) are given by

Q′(ρ) = − β̄

2

NC∑

k=1

(vk,1 − vk,0)
2

L′(ρ) = −
NC∑

k=1

[(vk,2 − vk,0)(1EF + 1FF ) + (vk,1 − vk,0)1FE ]
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Proof: The theorem follows by combining (21)-(24). For Q′(ρ) note also that
vk,2 = vk+1,0 and that every EF cycle is followed by either an FF or an FE
cycle and every FF is followed by another FF or FE cycle. As a result all
terms of the form bv′k,2 are cancelled by bv′k+1,0.

Corollary 3. Theorem 2 gives precisely the estimators obtained in [19].

We do not present the estimators explicitly since they require the introduction
of some new notation. In any case, the proof of this corollary follows along
the lines of the proof of Corollary 2. In [19] it is also shown that the above
estimators are unbiased. Furthermore, we point out that the implementation
of the above estimators is extremely simple; they simply accumulate the time
between certain events. Finally, before we leave the single-node single-class
flow model we mention that [19] also derives IPA estimators with respect to
parameters of the arrival process α(t; θ).

4 Multiple Classes

In this section, we enrich the modeling framework introduced earlier by in-
troducing multiple classes of flows which are merged into a First Come First
Serve (FIFO) buffer. The various classes of flows are differentiated according
to a Threshold Policy [25] which works as follows: When fluid from class m
arrives, it is accepted in the buffer if the state x(t; θ) < Tm, otherwise the
fluid is rejected. Threshold Tm, m, m = 1, ...,M , is associated with the class
m flow and we assume 0 = T0 < T1 < · · · < Tm < · · · < TM . In this way,
class M has the highest priority and class 1 the lowest priority. This policy
has been shown to provide good protection to the higher priority classes [25]
and was proposed for the Differentiated Services (DS) architecture [26]. The
inflow rate of class m at time t is denoted by αm(t) and the corresponding
loss rate by γm(t; θ). As in the previous section, the service rate is denoted
by β(t), and x(t; θ) is the buffer level at time t. For the purpose of our anal-
ysis, we choose any one of the thresholds, say, Tm, as the one with respect
to which we wish to carry out sensitivity analysis and denote this parameter
by θ. We also assume that the processes {αm(t)}, m = 1, ..., M , and {β(t)}
are independent of θ and Assumption 1 holds. For notational economy we
define:

Am(t) ≡
M∑

n=m

αn(t)− β(t), m = 1, · · · ,M (25)

and observe that Am(t) ≥ Am+1(t), m = 1, ..., M − 1.
Fig. 3 depicts the SFM described above. Furthermore, we assume that the

parameter θ is confined to a bounded (compact) interval Θ = (Tm−1, Tm+1).
In what follows, again we consider two performance metrics, the Cumulative
Workload(or just Work) Q(θ) and the mth class Loss Volume Lm(θ), m =
1, ..., M defined as follows:
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…

…

Tm

Fig. 3. M-Class Stochastic Fluid Model (SFM)

Q(θ) =
∫ T

0

x(t; θ)dt, Lm(θ) =
∫ T

0

γm(t; θ)dt. (26)

For this system, we identify the following two event types. Event type e1

is an event where the buffer content leaves the value x(t; θ) = Tm, for some
m = 0, · · · ,M , after it has maintained it for some finite length of time. This
is an exogenous event since it is caused by a sign change of Am(t) in (25)
for some m = 1, ...,M . Event type e2 is defined to occur whenever the buffer
content reaches or crosses the value x(t; θ) = Tm, for any m = 0, · · · ,M .
The interval between two consecutive events of type e1 define a cycle (say
Ck). These events are assumed to occur at time instants vk,0, k = 1, · · · , NC
where NC is the random number of such cycles in the interval [0, T ]. During
the kth cycle Ck, we observe Rk − 1 endogenous (e2) events, at time instants
vk,i i = 1, · · · , Rk − 1. (see Fig. 4 for examples of such events). Thus, the Ck

cycle is divided into Rk periods

pk,i ≡ [vk,i, vk,i+1) , i = 0, · · · , Rk−1.

The corresponding open interval (vk,i, vk,i+1) is denoted by po
k,i. For the pur-

pose of our analysis, we view each threshold as a boundary, thus any period
pk,i where x(t; θ) = Tm, t ∈ pk,i, m = 0, · · · ,M , is considered as a bound-
ary period. Otherwise, pk,i is a non-boundary period. We emphasize that each
cycle ends with a boundary period pk,Rk−1 and thus the cycle definition is
consistent with the definition of Section 2. A typical sample path for the case
of M = 3 with three cycles Ci, Ci+1 and Ci+2 is shown in Fig. 4. In the figure,
note also that vi,0 = vi−1,Ri , i = 1, · · · , NC .

During a boundary period pk,Rk−1, the buffer content dynamics are

dx(t; θ)
dt+

= 0. (27)

On the other hand, during a non-boundary period pk,i, i = 0, ..., Rk − 2, if
Tm−1 < x(t; θ) < Tm for t ∈ po

k,i, the buffer content dynamics are

dx(t)
dt+

= Am(t). (28)
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tvi,4vi,3 …

T3

T2=θ
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tvi,4vi,3 …

T3

T2=θ

vi,0 vi,1
vi+1,2vi+1,0 vi+1,1

vi+2,0vi+2,1vi,2

Fig. 4. Typical sample path segment (M = 3)

4.1 IPA with Respect to Thresholds

Our objective here is to estimate the sample derivatives Q′ = dQ(θ)/dθ and
L′m = dLm(θ)/dθ, m = 1, ..., M . We proceed by first evaluating the sample
derivatives Q′(θ) and L′m(θ) in terms of event time derivatives v′k,i = dvk,i/dθ,
and then provide an algorithm for evaluating these event time derivatives
based on observable quantities along a given sample path. Again for notational
convenience, similar to our definition of Am(t) in (25), let us define

Am,k,i ≡
M∑

n=m

αn(vk,i)− β(vk,i) (29)

Work IPA Derivative

Using the sample path partition into cycles, we write (3) as

Q(θ) =
NC∑

k=1

qk(θ) =
NC∑

k=1

∫ vk,Rk

vk,0

x(t; θ)dt. (30)

where, as earlier, qk(θ) =
∫ vk,Rk

vk,0
x(t; θ)dt. Thus,

Q′(θ) =
NC∑

k=1

q′k(θ) =
NC∑

k=1

d

dθ

∫ vk,Rk

vk,0

x(t; θ)dt =
NC∑

k=1

∫ vk,Rk

vk,0

x′(t; θ)dt (31)

where we use the fact that vk,0 and vk,Rk
are independent of θ since they

correspond to exogenous events.

Theorem 3. The sample derivative of Q(θ) with respect to θ is given by

Q′(θ) =
NC∑

k=1

Rk−1∑

j=0

x′k,j (vk,j+1 − vk,j)

where x′k,Rk−1 = 1[x(vk,Rk−1; θ) = θ] and for j = 0, · · · , Rk − 2

x′k,j =
{

1[x(vk,j ; θ) = θ]−Am+1,k,jv
′
k,j if ∀t ∈ po

k,j , Tm < x(t; θ) < Tm+1

1[x(vk,j ; θ) = θ]−Am,k,jv
′
k,j if ∀t ∈ po

k,j , Tm−1 < x(t; θ) < Tm
,
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The proof follows easily from (31) by writing the expression of x(t; θ) in any
interval pk,j and subsequently differentiating with respect to θ (see [23] for
details). In [23] it is also shown that the estimator is unbiased. In order to eval-
uate Q′(θ) one simply needs to observe the net inflow rates Am,k,i at specific
points in time and measure the intervals (vk,j+1 − vk,j). In addition, one also
needs the event time derivatives v′k,j which are determined in a subsequent
subsection.

Class m Loss IPA Derivatives

Again, using the sample path partition into cycles, we may write Lm(θ) from
(26) as follows:

Lm(θ) =
NC∑

k=1

λm,k(θ) =
NC∑

k=1

∫ vk,Rk

vk,0

γm(t; θ)dt (32)

For the purpose of our analysis, a useful way of grouping periods pk,i, k =
1, . . . , NC within a typical cycle is by defining sets associated with each class
m = 1, · · · ,M as follows:

Partial Loss Period Set Um. For any pk,i ∈ Um, the buffer content is x(t; θ) =
Tm for all t ∈ pk,i, and class m traffic experiences partial loss. In particular,
the traffic flows satisfy

Am(t) > 0 and Am+1(t) < 0 (33)

so that the processing capacity β(t) can accommodate the cumulative
incoming flow

∑M
n=m+1 αn(t) due to classes m + 1, · · · ,M , but not the

flow
∑M

n=m αn(t) that includes the next lower priority class m. In this
case, the system accepts only the portion of the class m traffic that can
be accommodated and incurs a “partial” loss with rate γm(t; θ) = Am(t).
Formally, we define Um as follows:

Um := {pk,i : x(t; θ) = Tm, t ∈ pk,i}. (34)

Note that the starting point vk,i of such a period corresponds to an en-
dogenous event e2, whereas the ending point vk,i+1 corresponds to an
exogenous event e1 and is, therefore, locally independent of θ. Also note
that the elements of Um set are always the last interval of a cycle. In
addition, the last interval of a cycle, pk,Rk−1, if during it x(t; θ) 6= 0, it
must be an element of Um for a some m ∈ {1, · · · ,M}.

Full Loss Period Set Vm. During such periods, the buffer content is x(t; θ) >
Tm (excluding the starting point vk,i) and all class m traffic is lost, i.e.,
γm(t; θ) = αm(t). Formally, we define Vm as follows:

Vm := {pk,i : x(t; θ) > Tm, t ∈ po
k,i} (35)
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No Loss Period Set Wm. During such periods the buffer content is x(t; θ) <
Tm (excluding the starting point vk,i) and no class m loss occurs, i.e.,
γm(t; θ) = 0. Formally, we define Wm as follows:

Wm := {pk,i : x(t) < Tm, t ∈ po
k,i} (36)

Note that each of the sets above is locally independent of θ, and that for
any m, Um ∪ Vm ∪Wm = [0, T ) with all sets being mutually exclusive.

Theorem 4. The sample derivatives L′m(θ), m = 1, · · · , M are given by

L′m(θ) =
NC∑

k=1

λ′m,k(θ)

where

λ′k,m(θ) =
Rk−1∑

j=0

[
1[pk,j ∈ Vm]

(
αm(vk,j+1)v′k,j+1 − αm(vk,j)v′k,j

)

−1[pk,Rk−1 ∈ Um] ·Am,k,Rk−1v
′
k,Rk−1

]
.

Again the proof follows easily by differentiating (32) and writing the loss
volume during each interval pk,j . For details see [23] where it is also shown
that the above estimators are unbiased. We also point out that as with Q′(θ),
evaluating this estimator we only need some rates at specific points in time
and the event time derivatives v′k,j which are determined next.

Event Time Derivatives

Theorems 3 and 4 provide estimators of the sample derivatives Q′(θ) and
L′(θ) respectively. Both estimators require the event time derivatives v′k,j ,
j = 1, · · · , Rk−1 and k = 1, · · · , NC . As already discussed, the beginning and
end points of Ck are independent of θ because they correspond to exogenous
events (e1), so v′k,0 = v′k,Rk

= 0. The following theorem provides an itera-
tive algorithm for determining the event time derivative v′k,i+1 given v′k,i. To
simplify the notation we also use

xk,i = x(vi,k; θ)

Theorem 5. The event time derivative of any endogenous event occurring at
time vi+1, i = 0, · · · , Rk − 1, is given by

v′k,i+1 = Fk,i · v′k,i + Gk,i,

where Fk,i and Gk,i and are given below
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Fig. 5. Tandem two-node network

Fk,i =





Sk,i
Am+1,k,i

Am+1,k,i+1
if xk,i = Tm and xk,i+1 = Tm+1

Sk,i
Am,k,i

Am,k,i+1
if xk,i = Tm and xk,i+1 = Tm−1

Am+1,k,i

Am+1,k,i+1
if xk,i = xk,i+1 = Tm and x(t; θ) > Tm, t ∈ po

k,i
Am,k,i

Am,k,i+1
if xk,i = xk,i+1 = Tm and x(t; θ) < Tm, t ∈ po

k,i

Gk,i =





− 1
Am+1,k,i+1

if xk,i = Tm = θ and xk,i+1 = Tm+1

− 1
Am,k,i+1

if xk,i = Tm = θ and xk,i+1 = Tm−1
1

Am,k,i+1
if xk,i = Tm−1 and xk,i+1 = Tm = θ

1
Am+1,k,i+1

if xk,i = Tm+1 and xk,i+1 = Tm = θ

0 otherwise

where Sk,i = 1 if xk,i+1 6= θ and Sk,i = −1 if xk,i+1 = θ.

Recall that Am,k,i is given by (29). Also note that Gk,i 6= 0 only for the
intervals i that either start or end at threshold θ. For the proof the interested
reader is referred to [23]. We point out that unlike the estimators of the
previous section, where we were able to determine a closed-form expression,
these estimators are evaluated using the iterative algorithm of Theorem 5. An
exception is the two-class case, where again it is possible to obtain a closed-
form expression (see [17] and [23]).

5 Tandem Networks

In this section, we describe how perturbations in a buffer threshold propa-
gate in a network. For simplicity, we limit ourselves to the two-node network
of Fig. 5; for the general m-node network the reader is referred to [27]. The
control parameter of interest is θ, the buffer size of node 1, and we are in-
terested in the sample derivatives of the workload and loss volume of node 2;
recall that the corresponding sample derivatives for node 1 were obtained in
Section 3.

For notational convenience, let as focus on node 2 and use x(t; θ) = x2(t; θ)
and y(t; θ) = x1(t; θ). Also, let γ(t; θ) = γ2(t; θ) and define the net inflow rate
to node 2
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Fig. 6. A typical sample path for the tandem two-node network

A(t; θ) = δ1(t; θ)− β2(t) (37)

where, δ1(t; θ) is the outflow from node 1 and is equal to α(t) if y(t; θ) = 0 or
β1(t) if y(t; θ) > 0. Using this notation, the objective functions of interest are

Q(θ) =
∫ T

0

x(t; θ)dt, and L(θ) =
∫ T

0

γ(t; θ)dt (38)

A typical sample path of this system is shown in Fig. 6. Following the
practice of the previous sections, we again partition the sample path of x(t; θ)
into boundary and non-boundary periods and form cycles consisting of a non-
boundary period and the following boundary period. The kth non-boundary
period starts at vk,0 with either one of the events x(t; θ) ceases to be empty or
x(t; θ) ceases to be full, and ends at vk,rk

with the events x(t; θ) becomes either
empty or full. During this interval we also observe rk−1 buffer y(t; θ) becomes
empty events. Similarly, the kth boundary period starts at vk,rk

and ends at
vk,Rk

= vk+1,0 (the beginning of the next cycle). During the boundary period
we observe Rk − rk − 1 buffer y(t; θ) becomes empty events which in [27] are
referred to as active switchover points; these are important because they are
the only points that propagate the effect of perturbing θ downstream.

Theorem 6. The workload and loss volume sample derivatives are given by

Q′(θ) = −
NC∑

k=1

rk−1∑

j=1

(vk,rk
− vk,j)ψk,j −

NC∑

k=1

(vk,rk
− vk,0)φk

L′(θ) = −
NC∑

k=1

Rk∑

j=1
j 6=rk

1[xk]ψk,j +
NC∑

k=1

φk

where 1[xk] = 1[x(vk,rk
; θ) = b] and

ψk,j =
(
A(v+

k,j ; θ)−A(v−k,j ; θ)
)

v′k,j = (α(vk,j)− β1(vk,j)) v′k,j

φk = A(v+
k,0)v

′
k,0
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Fig. 7. System topology for the two-stage network

At this point, it is worth pointing out that v′k,Rk
= v′k+1,0 = 0 if the end

(or beginning) of a cycle does not coincide with a buffer y becomes empty
event; note that in this case, the end of a boundary period of x corresponds
to an exogenous event. For the general case, when there are m nodes in series,
refer to [27] where it is also shown that these estimators are unbiased (under
Assumption 1). It is also worth pointing out that in order to evaluate the
above estimators, one simply needs a number of timers that measure the
intervals (vk,rk

−vk,j) for j = 1, · · · , rk−1 and k = 1, · · · , NC . In addition, one
needs some rate information at specific points in time and such information is
generally easy to get. Finally, the only remaining information is the event time
derivatives v′k,j . But these are precisely the event time derivatives evaluated
in (9).

6 Simulation Results

For illustration purposes, in this section, we present some simulation results
(also reported in [28]), where we use the estimators obtained in the earlier
sections to control the buffer thresholds of a two-node network. The main
objective is to optimize a cost function that consists of the weighted sum
of loss and workload in the two-queue tandem system shown in Fig. 7. We
emphasize that the setting of Fig. 7 may correspond to a “real system”, so
that it is best captured by a discrete-event model (not the fluid models that
were considered so far). However, the simple form of the estimators obtained
allows us to evaluate them using information readily available from the sample
paths of discrete-event systems. Recall that all estimators consist only of some
timers and counters. They simply count the number of cycles with overflow, or
measure the interval between the occurrence of certain events (typically events
that make a buffer become full or empty and events that make the buffer cease
to be full or empty). Even though there is no guarantee that the estimators
are still unbiased when evaluated using information from the discrete-event
sample path, our simulation results indicate that such estimators can be used
to solve practical optimization problems.

In the system of Fig. 7, intended to represent the operation of a communi-
cation network, the inflow process at the first queue consists of n1 multiplexed



Control of Communication Networks using IPA on SFM 23

on–off data sources generating bursty traffic. When in the on state, each
source generates a continuous data stream at the rate of α bits per second.
These data streams are used to construct UDP packets which are forwarded
to the buffer at the first queue and thence across the rest of the network.
Each UDP packet consists of a 42-byte header (including UDP, IP, and IEEE
802.3 headers) and a 512 information (data) field, for a total of 554 bytes.
The sources provide the content of the information field, and the header is
prepended whenever that field becomes full. If the information field is not full
at the time the state of a source changes from on to off, then the incomplete
packet waits until the source changes back to the on state and completes the
information field. In other words, all packets have 554 bytes. The on times
and off times are i.i.d. random variables sampled from the exponential dis-
tribution with mean 0.1 seconds. The channel transporting packets from the
first queue to the second queue has a capacity of β1 bps. The inflow process
to the second queue consists of the outflow process from the first queue and
of traffic from the background generator. The background traffic consists of
n2 independent sources. Each one of these sources has the same statistical
characteristics as the sources to the first queue. The outgoing channel from
the second queue has a capacity of β2 bps.

Note that the average bit rate from either one of the independent sources
is α/2 bps, since the expected durations of the off periods and the on periods
are identical. Therefore, the expected bit rate of the aggregate flow to the first
queue is (n1α/2)× (554/512), where the latter term accounts for the insertion
of the headers. Consequently, the traffic intensity at the first queue, denoted
by ρ1, is given by

ρ1 = n1 × α

2
× 554

512
× 1

β1
. (39)

Similarly, the traffic intensity of the second queue is denoted by ρ2. All of
the experiments were performed using the Georgia Tech Network Simulator
(GTNetS ) [29], modified to include the requisite IPA derivative calculations.
In our simulation experiments we set n1 = n2 = 100, β1 = 10 Mbps, and
β2 = 20 Mbps. For the simulation results, we set ρ1 = 0.95 and calculated α
according to (39).

Let θ = [θ1, θ2] denote the two-dimensional parameter vector consisting of
the buffer limits at the first and second queue respectively. The loss volumes
and workloads at the two queues are denoted by Lj(θ) and Qj(θ), j = 1, 2
(see (3), (4) and (38)). Let us define the cost function J(θ) as the weighted
sum of the average loss rate and workload rate.

J(θ) =
1
T

[L1(θ) + 10Q1(θ) + L2(θ) + 20Q2(θ)] .

Recall that T is the observation interval over which the objective function
is defined and it is set to T = 1 second. We seek to minimize E[J(θ] us-
ing a standard stochastic approximation technique (1) which defines a se-
quence of points θn = [θn

1 , θn
2 ]. However, we substitute the gradient of J(θ),
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Hn(θn;x(0); ωSFM
n ) with Hn(θn;x(0);ωDES

n ) to indicate that the gradient
evaluation is done based on data observed from a discrete-event sample path.
The required gradient is evaluated through the IPA algorithms described in
the previous sections (specifically Theorems 1 and 6). In addition, although
all our analysis is based on the assumption that all observed sample paths
start with all queues at the empty state, we have nonetheless applied the
IPA estimates at the nth iteration of the optimization algorithm using the
ending state of the (n − 1)th iteration. Furthermore, we adopt the step
size sequence σn = 10/n0.6. Finally, we used a simple heuristic to bound
the displacement θn+1 − θn along each coordinate by modifying the vector
Hn = [hn

1 , hn
2 ] as follows. We first computed the partial derivatives ∂J(θ)

∂θi
,

i = 1, 2. If |σn
∂J(θ)

∂θi
| ≤ 5 then we set hn

i = ∂J(θ)
∂θi

, and if |σn
∂J(θ)

∂θi
| > 5, then

we set hn
i = 5sgn(∂J(θ)

∂θi
)/σn. The parameters θn

i (i = 1, 2) were considered
as real numbers, but the simulation runs were performed at the respective
integer values closest to them.
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Fig. 8. Evolution of θn
1 and θn

2

We ran the optimization algorithm twice, with two different initial param-
eters: first with θ1 = [5, 5], and then with θn = [40, 40]. In either case we
ran the algorithm for 100 iterations (i.e., 100 seconds). For each experiment,
we plotted the evolution of θn

1 and θn
2 as a function of iteration n, and show

the results in Fig. 6 respectively. Each of the figures shows one trajectory for
the θn = [5, 5] initial condition, and a second one for the θn = [40, 40] ini-
tial condition. The results indicate asymptotic convergence to approximately
θ∗

n = [15, 14] within approximately 20 seconds.
Finally, to add validity to these results, we plotted the graph of J(θ1, θ2) as

shown in Fig. 9. Each point on the plot is the average of 10 separate simulation
experiments with T = 100 seconds, each with a different seed for the random
number generators. However, each set of the 10 simulation experiments uses
the same set of 10 random seeds as all other sets of experiments. This graph
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Fig. 9. Cost function J(θ1, θ2)

clearly corroborates the results obtained by the optimization runs, i.e., it
shows that θ∗

n = [15, 14] is indeed optimal.

7 Conclusions and Future Work

In this chapter we used the stochastic fluid modeling paradigm and derived
IPA sensitivity estimates of some performance measures of interest with re-
spect to the control parameters θ (or ρ). Subsequently, these estimators were
evaluated from data observed in a discrete-event sample path and they were
used in stochastic optimization schemes to solve non-linear stochastic opti-
mization problems. For all problems considered in this chapter, there was no
feedback involved, in other words, the inflow processes where independent
of the control parameters. Such models are appropriate for User Datagram
Protocol (UDP) traffic, however, they do not capture the Transport Control
Protocol (TCP) traffic. The difficulty of TCP stems from the delayed feedback
mechanisms that are embedded in this scheme. As a result, models with feed-
back are still being developed (see for example [30]). Closing, another open
question is whether the IPA evaluation process using data observed from a
discrete-event sample path still produces unbiased estimators. In general, this
process does introduce some bias; however, our experience so far indicates
that the estimators obtained are adequate for practical network management
and optimization problems.
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