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ABSTRACT | Among the many functions a smart city must support, 

transportation dominates in terms of resource consumption, 

strain on the environment, and frustration of its citizens. We study 

transportation networks under two different routing policies, 

the commonly assumed selfish user-centric routing policy and a 

socially optimal system-centric one. We consider a performance 

metric of efficiencyÐthe Price of Anarchy (PoA)Ðdefined as the 

ratio of the total travel latency cost under selfish routing over 

the corresponding quantity under socially optimal routing. We 

develop a data-driven approach to estimate the PoA, which we 

subsequently use to conduct a case study using extensive actual 

traffic data from the Eastern Massachusetts road network. To 

estimate the PoA, our approach learns from data a complete 

model of the transportation network, including origin�destination 

demand and user preferences. We leverage this model to propose 

possible strategies to reduce the PoA and increase efficiency.

KEYWORDS | Optimization; Price-of-Anarchy (PoA); sensitivity 

analysis; traffic assignment problem; transportation networks; 

variational inequalities
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I .  IN TRODUCTION

As of 2014, 54% of the earth’s population resides in urban 
areas, a percentage expected to reach 66% by 2050. This 
increase would amount to 2.5 billion people added to urban 
populations [1]. At the same time, there are now 28 meg-
acities (with population  ≥ 10 million) worldwide, account-
ing for 22% of the world’s urban dwellers, and projections 
indicate more than 41 megacities by 2030. It stands to rea-
son that the management and sustainability of urban areas 
has become one of the most critical challenges our societies 
face today, leading to a quest for “smart” cities.

Among the many functions a city supports, trans-
portation dominates in terms of resource consumption, 
strain on the environment, and frustration of its citi-
zens. Commuter delays have risen by 260% over the past 
25 years and 28% of U.S. primary energy is now used in 
transportation [2]. It is estimated that the cumulative cost 
of traffic congestion by 2030 will reach $2.8 trillion [3]—
equal roughly to the U.S. annual tax revenue. This esti-
mate accounts for direct costs to drivers (time, fuel) and 
indirect costs resulting from businesses passing these same 
costs on to consumers, but it does not include the equally 
alarming environmental impact due to a large proportion 
of toxic air pollutants attributed to mobile sources. At the 
individual citizen level, traffic congestion led to $1740 in 
average costs per driver during 2014. If unchecked, this 
number is expected to grow by more than 60%, to $2900 
annually, by 2030 [3].

A transportation network is a system with noncoopera-
tive agents (drivers) in which each agent seeks to minimize 
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her own individual cost by choosing the best route (resources) 
to reach her destination without taking into account the overall 
system performance. In these systems, the cost for each agent 
depends on the resources chosen as well as the number of agents 
choosing the same resources. This results in a Nash equilibrium, 
i.e., a point where no agent can benefit by altering its actions, 
assuming that the actions of all the other agents remain fixed [4].  
However, it is known that the user optimal policy leading to a 
Nash equilibrium is generally inefficient and results in a sub-
optimal behavior compared to the socially optimal policy that 
could be attained through a centrally controlled system [4]. 
In order to quantify this inefficiency due to selfish driving, 
we define the Price of Anarchy (PoA) as the ratio of the total 
travel latency cost under the user optimal (user-centric) rout-
ing policy versus the socially optimal (system-centric) one. The 
PoA is, therefore, a measure of the efficiency achieved by any 
transportation network as it currently operates.

The first issue addressed in the paper is how to measure the 
PoA from data. The user flow equilibrium in a transportation 
network is known as a Wardrop equilibrium [5] (an instantia-
tion of the generic Nash equilibrium). It is the solution of the 
traffic assignment problem (TAP)[6], which we call the user-
centric forward problem. To solve this TAP, we need to know a 
priori: 1) the specific travel latency cost functions involved [7]; 
and 2) the traffic demand expressed through an origin-destina-
tion (OD) demand matrix [6]. Starting from the equilibrium 
link flows (assuming they can be inferred or directly observed), 
we first estimate an initial OD demand matrix. We note that 
the OD demand estimation problem has been widely studied; 
see, e.g., [8], [9], and the references therein. Then, based on 
inverse optimization techniques recently developed in [10], 
we propose a novel user-centric inverse problem formulation. 
Specifically, given observed link flow data (Wardrop equilib-
rium), we estimate the associated travel latency cost functions. 
In other words, we seek cost functions which, when applied to 
the TAP, would yield the link flows that are actually observed. 
Once this is accomplished, based on a bilevel optimization 
problem formulation considered in [11] and [12], we develop 
an algorithmic procedure for iteratively adjusting the values of 
the OD demands so that the observed link flows are as close 
as possible to the solution of the user-centric forward problem 
(i.e., TAP). The OD demand and the user travel latency cost 
functions completely parametrize a predictive model of the 
transportation network. We use this model to calculate the 
total travel latency cost under the user optimal routing policy, 
thus obtaining the numerator of the PoA ratio.

Next, using the same predictive model, we formulate 
a system-centric forward problem [6], [13], a nonlinear 
program (NLP), in which all agents (drivers) cooperate to 
optimize the overall system performance. Its solution ena-
bles us to calculate the total travel latency cost under the 
socially optimal routing policy, i.e., the denominator of the 
PoA ratio. Thus, the combination of the inverse and forward 
optimization problems results in measuring the PoA for a 
given transportation network whose equilibrium link flows 
are observed based on collected traffic data.

Having an accurate predictive model allows us to go beyond 
estimation (of the PoA) and consider specific control actions 
that could reduce the PoA. To that end, we analyze the sensitiv-
ity of the optimal objective function value of an optimization 
problem formulation for the TAP with respect to key param-
eters, such as road capacities and free-flow travel times. The 
results can help prioritize road segments for interventions that 
can mitigate congestion. We derive sensitivity analysis formu-
las and propose their finite difference approximations.

As an illustration of our data-driven approach out-
lined above, we use actual traffic data from the Eastern 
Massachusetts (EMA) transportation network, in the form 
of spatial average speeds and road segment flow capacities. 
These data were provided to us by the Boston Region 
Metropolitan Planning Organization (MPO) and include 
average speeds over 13 000 road segments at every minute 
of 2012. By using a traffic flow model, we first infer equi-
librium flows on each road segment and then apply our 
approach to evaluate the PoA for two highway subnetworks 
of the EMA network. In addition, we derive sensitivity anal-
ysis results and conduct a meta-analysis comparing the user-
centric and socially optimal routing policies.

As a final step, we propose strategies for reducing the 
PoA. First, by taking advantage of the rapid emergence of 
connected automated vehicles (CAVs) [14]–[17], it has 
become feasible to automate routing decisions, thus solv-
ing a system-centric forward problem in which all CAVs 
(bypassing driver decisions) cooperate to optimize the over-
all system performance. Second, we propose a modification 
to existing GPS navigation algorithms recommending to all 
drivers socially optimal routes. Finally, our sensitivity analy-
sis results provide the means to prioritize road segments for 
specific interventions that can mitigate congestion.

The rest of the paper is organized as follows. We review 
the related literature in Section II. In Section III, we introduce 
models and methods we use. In Section IV, we describe the data 
sets and explain the data processing procedures for a case study 
of the EMA network. Numerical results for the case study are 
shown in Section V. In Section VI, we propose possible strate-
gies to reduce the PoA. We provide concluding remarks and 
point out some directions for future research in Section VII.

Notation: All vectors are column vectors. For economy 
of space, we write  x =  ( x 1  , …,  x dim(x)  )   to denote the column 
vector  x , where  dim(x)  is the dimension of  x . We use  0  
and  1  for the vectors with all entries equal to zero and one, 
respectively. We denote by   ℝ +    the set of all nonnegative real 
numbers.  M ≥ 0  (resp.,  x ≥ 0 ) indicates that all entries of a 
matrix  M  (resp., vector  x ) are nonnegative. We use “prime” 
to denote the transpose of a matrix or vector. Unless other-
wise specified,  ‖ ⋅ ‖  denotes the   ℓ 2   -norm. We let   ||   denote 
the cardinality of a set  , and    [[]  ]  the set   {1, …, || }  .

II .  R EL ATED WOR K

The classical static TAP [6], i.e., the user-centric forward 
problem in our terminology, has been widely studied; see, 
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e.g., [18] and [19] for the single-class (i.e., all vehicles are 
modeled as belonging to the same class) transportation net-
works and [20]–[22] for the multiclass (i.e., different types 
of vehicles, such as cars or trucks, are modeled as belong-
ing to different classes) transportation networks. The static 
TAP has also been generalized to the case that has a dynamic 
network equilibrium modeling capability; see, e.g., [23] and 
[24], among others.

Based on road traffic counts within selected time inter-
vals (i.e., road traffic flows), the problem of estimating the 
OD demand matrix of a given transportation network has 
been considered in [8], [9], [25], and references therein. 
In particular, Hazelton [26] proposed a generalized least 
squares (GLS) method to estimate the OD demand matri-
ces of uncongested networks, and Spiess [11], Lundgren and 
Peterson [12], and Yang et al. [27] considered networks that 
could include congested roads.

Sensitivity analyses of traffic equilibria were conducted 
in [23], [28], and [29], among others, by evaluating the 
directions of change that occur in the link flows with respect 
to the change of travel costs as parameters in the cost and 
demand functions.

Preliminary PoA evaluation results of this paper have 
been presented in two conferences, [30] and [31], where 
results of a case study for a much smaller subnetwork of EMA 
were reported and no PoA reduction strategies were pro-
posed. A similar topic was also discussed in [32] and the ref-
erences therein; in particular, based on real traffic data from 
the transportation network of Singapore, Monnot et al. [32] 
used a different framework from ours to quantify the PoA.

III .  MODELS A ND METHODS

A. Model for a Single-Class Transportation Network

We begin by reviewing the model of [30]. Denote a 
road network by   (, , )  , where   (, )   forms a directed 
graph with   being the set of nodes and    the set of links, 
and   =  { w i   :  w i   =  ( w si  ,  w ti  ) , i ∈ [  []  ]}   indicates the set of 
all OD pairs. Note that only nodes of the road network 
can be origin/destination of flows; we make this standard 
modeling assumption to accommodate our graph-based 
view of the transportation system. Assume the graph   

(, )   is strongly connected and let  N ∈   {0, 1,  −1}     || × ||    
be its node-link incidence matrix. Denote by   e a    the vec-
tor with an entry being 1 corresponding to link  a  and all 
the other entries being 0. For any OD pair  w =  ( w s  ,  w t  )  ,  
denote by   d   w  ≥ 0  the amount of the flow demand from   
w s    to   w t   . Let   d   w  ∈  ℝ    ||    be the vector which is all zeros, 
except for two entries  − d   w   and   d   w   corresponding to 
nodes   w s    and   w t   , respectively.

Denote by   ℛ i    the set of simple routes (a route without 
cycles is called a “simple route”) for OD pair  i . For each   
a ∈  ,  i ∈ [  []  ] ,  r ∈  ℛ i   , define the link-route incidence by 

   δ  ra  i   =  { 
1,

  
if route r ∈  ℛ i   uses link a

    
0,

  
otherwise.

     

Let   x a    denote the flow on link  a ∈   and  x =  
( x a  ;  a ∈ )  the flow vector. Denote by   t a   (x) :  ℝ  +   ||   →  ℝ +    the 
travel latency cost (i.e., travel time) function for link  a ∈  .  
If for all  a ∈ ,   t a   (x)  only dwepends on   x a   , we say the cost 
function  t (x)  =  ( t a   ( x a  ) ;  a ∈ )   is separable [6]. Throughout 
the paper, we assume that the travel latency cost functions 
are separable and take the following form [7], [10]:

   t a   ( x a  )  =  t  a  0  f (  
 x a  

 ___  m a    )   (1)

where   t  a  0   is the free-flow travel time of  a ∈  ,  f(0)  = 1 ,  f(⋅)  
is strictly increasing and continuously differentiable on   ℝ +   ,  
and   m a    is the flow capacity of  a ∈  . Note that the flow 
capacity is not a “hard” constraint;   x a    could exceed   m a    for 
various  a  at the cost of increased travel time.

Define the set of feasible flow vectors ℱ as [10]

 ℱ  def  =      {x : ∃  x   w  ∈  ℝ  +   ||    s.t. x =   ∑ 
w∈

   x   w  , 

N x   w  =  d   w , ∀ w ∈  }  

where   x   w   indicates the flow vector attributed to OD pair  w . 
In order to formulate appropriate forward and inverse opti-
mization problems arising in transportation networks, we 
next state the definition of Wardrop equilibrium.

Definition 1 [6]: A feasible flow   x   *  ∈ ℱ  is a Wardrop 
equilibrium if for every OD pair  w =  ( w s  ,  w t  )  ∈  , and any 
route connecting  ( w s  ,  w t  )  with positive flow in   x   *  , the cost 
of traveling along that route is no greater than the cost of 
traveling along any other route that connects  ( w s  ,  w t  ) . Here, 
the cost of traveling along a route is the sum of the costs of 
each of its constituent links.

B. The User-Centric Forward Problem

As in [30], here we refer to the classical static TAP as 
the user-centric forward problem, whose goal is to find the 
Wardrop equilibrium for a given single-class transportation 
network with a given travel latency cost function and a given 
OD demand matrix. It is a well-known fact that, for network   
(, , )  , the TAP can be formulated as the following opti-
mization problem [6], [18]:

  (userOpt)   min  
x∈ℱ

      ∑ 
a∈

   ∫ 
0
    x a     t a   (s) ds  .  (2)

As an alternative, we also formulate the TAP as a variational 
inequality (VI) problem.

Definition 2 [10]: The VI problem, denoted as  VI (t, ℱ)  , 
is to find an   x   *  ∈ ℱ  subject to

  t   ( x   * )    
′
  (x −  x   * )  ≥ 0    ∀ x ∈ ℱ.  (3)
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To proceed, let us first recall the definition of the strong 
monotonicity for a cost function:  t(⋅)  is strongly monotone 
[6] on ℱ if there exists a constant  η > 0  such that 

    [t (x)  − t (y) ]    ′  (x − y)  ≥ η   ‖x − y‖    2    ∀ x, y ∈ ℱ.  (4)

It is known that if  t(⋅)  is continuously differentiable 
on ℱ, then (4) is equivalent to the positive definiteness 
of the Jacobian of  t(⋅)  [6, p. 180]. Note that a strictly 
increasing  f(⋅)  in (1) would not necessarily ensure the 
strong monotonicity of  t(⋅) ; e.g.,  f(x)  def  =     x   3   and  t(x)  def    =     
( x  1  3 ,  x  2  3  )  would lead to the Jacobian of  t(x)  as 

  [ 
3  x  1  

2 
  

  0
  

0
  

  3  x  2  2 
 ]  

which is not positive definite over   ℝ   2  . We next introduce a 
key assumption.

Assumption A:  t(⋅)  is strongly monotone on  ℱ and con-
tinuously differentiable on   ℝ  +   ||   . ℱ is nonempty and con-
tains an interior point (Slater’s condition [33]).

For the existence and uniqueness of the TAP, the follow-
ing result is available.

Theorem 1 [6]: Assumption A implies that there exists a 
Wardrop equilibrium of the network   (, , )  , which is the 
unique solution to  VI(t, ℱ) .

C. The User-Centric Inverse Problem

To solve the user-centric forward problem, we need to 
know the travel latency cost function and the OD demand 
matrix. Assuming that we know the OD demand matrix and 
have observed the Wardrop equilibrium link flows, we seek 
to formulate the user-centric inverse problem (the inverse VI 
problem, in particular), so as to estimate the travel latency 
cost function. To provide some insight, given  |K|  samples of 
the link flow vector  x , one can think of them as flow obser-
vations on  |K|  different networks/subnetworks which are 
nevertheless produced by the exact same cost function. The 
inverse formulation seeks to determine the cost function so 
that each flow observation is as close to an equilibrium as 
possible. Given that the inverse problem will rely on meas-
ured flows, we should expect measurement noise which will 
prevent the flows from being an exact solution of the for-
ward VI problem  VI(t, ℱ) . Therefore, we will first define the 
notion of an approximate solution.

For a given  ϵ > 0 , we define an  ϵ -approximate solution to  
VI(t, ℱ)  by changing the right-hand side of (3) to  − ϵ .

Definition 3 [10]: Given  ϵ > 0 ,    ̂  x  ∈ ℱ  is called an  
 ϵ -approximate solution to  VI(t, ℱ)  if 

  t  (  ̂  x )   ′  (x −   ̂  x ) ≥ − ϵ  ∀ x ∈ ℱ.  (5)

Assume now we are given  |K|  networks  (    (k) ,     (k) ,     (k) ), 
k ∈ [  [K ]  ]  [as a special case, these could be  |K|  replicas of the 

same network   (, , )  ], and the observed link flow data  
{ x   (k)  = ( x  a  (k) ; a ∈     (k) ); k ∈ [  [ K ]  ]} , where  k  is the network 
index and   x  a  (k)   is the flow for link  a ∈     (k)   correspondingly. 
The inverse VI problem amounts to finding a function  t  such 
that   x   (k)   is an   ϵ k   -approximate solution to  VI(t,  ℱ   (k) )  for each  
k . Denoting  ϵ = ( ϵ k  ; k ∈ [  [K ]  ]) , we can formulate the inverse 
VI problem as [10]

  min  
t,ε

     ‖ϵ‖   (6)

 s.t. t  ( x   (k) )   ′  (x −  x   (k) ) ≥ −  ϵ  k  ,  ∀ x ∈  ℱ   (k) ,  k ∈ [  [K ]  ] 

     ϵ k   > 0,  ∀ k ∈ [  [ K ]  ]  

where the optimization is over the selection of function  t  
and the vector  ϵ .

Aiming at recovering a cost function  t  that has both good 
data reconciling and generalization properties (i.e.,  t  should 
fit “old” data well but should not be overfitting; it must also 
have great power to predict “new” data), to make (6) solv-
able, we apply an estimation approach which expresses the 
function  f(⋅)  [in (1)] in a reproducing kernel Hilbert space 
(RKHS)  ℋ  [10], [34]. In particular, by [10, Th. 2], we refor-
mulate the inverse VI problem (6) as 

  (invVI-1)   min  
f,y,є

      ‖ϵ‖  + γ ‖f  ‖  ℋ  2    (7)

  s.t.   eʹ a    Nʹ k    y   w  ≤  t  a  0  f (  
 x a  

 ___  m a    )   (8)

  ∀ w ∈     (k) ,  a ∈     (k) ,  k ∈ [  [K ]  ]  

    ∑ 
a∈    (k) 

   t  a  0   x a   f (  
 x a  

 ___  m a    )   −   ∑ 
w∈    (k) 

    ( d   w )    ′   y   w   ≤  ϵ  k   , (9)

  ∀ k ∈ [  [K ]  ]   

  f (  
 x a  

 ___  m a    )  ≤ f (  
 x  a ̃     ___  m  a ̃      )   (10)

          ∀ a,   a ̃   ∈  ∪ k=1  
|K|         (k)    s.t.    

 x a  
 ___  m a     ≤   

 x  a ̃     ___  m  a ̃        

    ϵ ≥ 0,  f ∈ ℋ  (11)

  f(0) = 1  

which is a counterpart of [10, eq. (22)]. Note that  y =  
 ( y   w ; w ∈     (k) , k ∈ [  [ K ]  ])   and  ϵ = ( ϵ k  ; k ∈ [  [ K ]  ])  are decision 
vectors (  y   w   is a dual variable which can be interpreted as the 
“price” of   d   w  , in particular). Note also that  γ > 0  is a regu-
larization parameter—a smaller  γ  should result in recover-
ing a “tighter”  f(⋅)  in terms of data reconciling; a larger  γ , on 
the other hand, would lead to a “better”  f(⋅)  in terms of gen-
eralization properties. Moreover,  ‖f  ‖  ℋ  2    denotes the squared 
norm of  f(⋅)  in ℋ, (8) is for dual feasibility, (9) is the subop-
timality (primal-dual gap) constraint, (10) enforces  f(⋅)  to be 
nondecreasing, and (11) is a normalization constraint.

It can be seen that the above formulation is still too 
abstract for us to solve, because it is an optimization over 
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functions. To make it tractable, in the following, we will spec-
ify  ℋ by selecting its reproducing kernel [34] to be a polyno-
mial  φ (x, y)  =  (c + xy)   n   for some choice of  c ≥ 0  and  n ∈ ℕ   
(for the specifications of  c  and  n , see [35]). Then, writing 

 φ (x, y)  =   (c + xy)    n  =   ∑ 
i=0

  
n
   ( n  i  )   c   n−i   x   i   y   i   

by [34, eq. (3.2), (3.3), and (3.6)], we instantiate invVI-1 as 

 (invVI-2)   min  
β,y,ϵ     ‖ϵ‖  + γ   ∑ 

i=0
  

n
    

 β  i  
2 
 ________ 

 ( n  i   ) 
    

  s.t.   e  a ′      N  k ′      y   w  ≤  t  a  0    ∑ 
i=0

  
n
   β  i     (  

 x a  
 ___  m a    )    

i
    

  ∀ w ∈     (k) ,  a ∈     (k) ,  k ∈ [  [K]  ]  

    ∑ 
a∈  k  

   t  a  0   x a     ∑ 
i=0

  
n
   β  i     (  

 x a  
 ___  m a    )    

i
    −   ∑ 

w∈  k  
    ( d   w )    ′   y   w   ≤  ϵ  k   , 

  ∀ k ∈ [  [K]  ]  

      ∑ 
i=0

  
n
   β  i     (  

 x a  
 ___  m a    )    

i
   ≤   ∑ 

i=0
  

n
   β  i     (  

 x  a ̃     ___  m  a ̃      )    
i
     

  ∀ a,   a ̃   ∈  ∪ k=1  
|K|       (k)    s.t.    

 x a  
 ___  m a     ≤   

 x  a ̃     ___  m  a ̃        

  ϵ ≥ 0,  β  0   = 1  

where the function  f(⋅)  in invVI-1 is parameterized 
by  β =  ( β  i  ; i = 0, 1, …, n)  . Assuming an optimal   β   *  =  
 ( β  i  * ; i = 0, 1, …, n)   is obtained by solving invVI-2, then our 
estimator for  f(⋅)  is 

   f ̂   (x)  =   ∑ 
i=0

  
n
   β  i  

*   x   i   = 1 +   ∑ 
i=1

  
n
   β  i  

*   x   i   .  (12)

D. OD Demand Estimation

Given a network   (, , )  , to estimate an initial OD 
demand matrix, we borrow the GLS method proposed 
in [26], which assumes that the transportation network   
(, , )   is uncongested (in other words, for each OD pair 
the route choice probabilities are independent of traffic 
flow), and that the OD trips (traffic counts) are Poisson dis-
tributed. Note that such assumptions may be strong and we 
will relax them when finalizing our OD demand estimator 
by performing an adjustment procedure.

Denote by  { x   (k) ; k ∈ [  [K ]  ]}  |K|  observations of the flow 

vector. Let   
_
 x  = (1 /  | K | )  ∑ k=1  

|K|    x   (k)    be the sample mean vector 

and  S = (1 / ( | K |  − 1))  ∑ k=1  
|K|   ( x   (k)  −  

_
 x )  ( x   (k)  −  

_
 x )   ′    the sam-

ple covariance matrix. Let  P =  [ p ir  ]   denote the route choice 
probability matrix, where   p ir    is the probability that a trave-
ler associated with OD pair  i  uses route  r . Vectorize the OD 
demand matrix as  g = ( g i  ; i ∈ [  [ ]  ]) . After finding feasible 
routes for each OD pair, thus obtaining the link-route inci-
dence matrix  A , the GLS method amounts to solving the fol-
lowing optimization problem:

  (P0)    min  
P≥0, g≥0

       ∑ 
k=1

  
|K|

    ( x    (k)   − A P   ′  g)    
′
   S   −1  ( x    (k)   − A P   ′  g)    

  s.t.   p ir   = 0 ∀ (i, r)  ∈ { (i, r)  : r ∉  ℛ i   }  

         P1 = 1  

which minimizes a weighted sum of the squared errors in 
the flow observations. Directly solving (P0) is cumbersome 
due to the complicated form of the objective function, and 
we in turn decouple (P0) into two subproblems. To that 
end, we perform a variable substitution by setting  ξ =  P   ′  g  
and we let  h(P, g)  be an arbitrarily selected smooth scalar-
valued function. Then, we solve sequentially the following 
two problems [30]:

  (P1)  min  
ξ≥0

      
|K|

 ___ 2   ξ ′  Qξ −  b   ′  ξ  (13)

where  Q =  A   ′   S   −1  A  and  b =  ∑ 
k=1

  |K|    A ′    S   −1   x   (k)   , and 

  (P2)      min  
P≥0, g≥0

   h (P, g)   (14)

  s.t.   p ir   = 0, ∀ (i, r)  ∈ { (i, r)  : r ∉  ℛ i   }  

   P   ′  g =  ξ   0   

  P1 = 1,   

where   ξ   0   is the optimal solution to (P1). Essentially, (P1) 
uses the variable substitution to eliminate the constrains on  
P  and (P2) seeks to find a feasible  P  consistent with the opti-
mal solution of (P1) and the relationship  ξ =  P   ′  g . We write 
the feasibility problem (P2) as an optimization problem with 
some “dummy” cost function because this allows us to use 
an optimization solver; in fact, we can simply set  h(P, g)  ≡ 0 . 
Specifically, (P1) [resp., (P2)] is a typical quadratic program 
(QP) [resp., quadratically constrained program (QCP)]. 
Letting  ( P   0 ,  g   0 )  be an optimal solution to (P2), then   g   0   is 
our initial estimate of the demand vector.

Remark 1: It is seen that each entry of   g   0   can always be 
expressed as a sum of certain entries in   ξ   0  ; in other words, 
given   ξ   0  ≥ 0 , (P2) always has a feasible solution. Thus, (P0) 
is actually equivalent to (P1) and (P2), in the sense that if   
( P   0 ,  g   0 )  is an optimal solution to (P0) [resp., (P2)], then it is 
also an optimal solution to (P2) [resp., (P0)]. In addition, we 
note that the GLS method above would encounter numeri-
cal difficulties when the network size is large, because there 
would be too many decision variables. Note also that this 
method is valid under a “no-congestion” assumption and, 
to take the congestion on the link flows into account, we 
in turn consider a bilevel optimization problem in the 
following.

Assume now the function  f(⋅)  in (1) is available. For any 
given feasible  g  ( ≥ 0 ), let  x(g)  be the optimal solution to 
the TAP (2). In the following, denote by    ~ x  = (  x ̃   a  ; a ∈ )  the 
observed flow vector. Assuming an initial demand vector   g   0   

  c   n−i  
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is given [the   g   0   obtained by solving (P1) and (P2) is a good 
candidate; we will take it as   g   0   hereafter], we consider the 
following bilevel optimization problem [11], [12]:

  (BiLev)    min  
g≥0

    F (g)   def  =       γ   1     ∑ 
i∈[  []  ]

    ( g i   −  g  i  
0 )    

2
      

  +  γ   2     ∑ 
a∈

    ( x a   (g)  −   x ̃   a  )    2    (15)

where   γ    1  ,  γ   2   ≥ 0  are two weight parameters. The first term 
penalizes moving too far away from the initial demand, and 
the second term ensures that the optimal solution to the 
TAP is close to the flow observation. Note that the BiLev 
formulation (15) is more general than the one considered 
in [31], which includes the second term only. It is worth 
pointing out that  F (g)   has a lower bound 0 which guaran-
tees the convergence of the algorithm (see Algorithm 1) that 
we will apply.

Remark 2: From now on, let us fix   γ  2   = 1  in (15). 
Intuitively, the closer the initial is   g   0   to the ground truth   
g   *  , the larger the  γ  1 we should set; otherwise the contribu-
tion of the first term to the objective function will be small. 
In practice, however, we typically do not have exact infor-
mation about how far    g   0        is from   g   *  ; we therefore have to 
appropriately tune   γ   1   . One possible criterion is that fixing 
the parameters involved in Algorithm 1, a “good”   γ   1    should 
lead to a reduction of the objective function value of the 
BiLev as much as possible.

To solve the BiLev numerically, thus adjusting the 
demand vector iteratively, we leverage a gradient-based 
algorithm (Algorithm 1). In particular, suppose that the 
route probabilities are locally constant. For OD pair  i ∈ [  [ ]  ] ,  
we consider only the fastest route   r i   (g) , where in each itera-
tion, based on the updated link flows after the previous iter-
ation, we update link travel times and assign them as cur-
rent link weights in the graph model introduced in Section 
III-A. Then, we have [11] 

    
∂  x a   (g) 

 _____ ∂  g i  
   ≈  δ   r i  (g)a   =  { 

1,
  

if a ∈  r i   (g)
   

0,
  

otherwise.
     (16)

(Note that we have assumed the partial derivatives do exist; 
a comprehensive discussion on the existence and calcula-
tion of  ∂  x a   (g)  /  ∂  g i    can be found in [29].) Thus, by (16) we 
obtain an approximation to the Jacobian matrix 

   [  
∂  x a   (g) 

 _____ ∂  g i  
  ; a ∈ , i ∈ [  [ ]  ]] .  (17)

Let us now compute the gradient of  F (g)  . We have 

  ∇F (g)  =  (  
∂ F (g) 

 _____ ∂  g i  
  ; i ∈ [  [ ]  ])    

  =  (2 γ  1   ( g i   −  g  i  
0 )  + 2 γ  2     ∑ 

a∈
   ( x a   (g)  −   x ̃   a  )    

∂  x a   (g) 
 _____ ∂  g i  

   ; 

 i ∈ [  [ ]  ] ) .  (18)

Remark 3: There are three reasons why we consider 
only the fastest routes for the purpose of calculating the 
Jacobian. 1) GPS navigation is widely used by vehicle drivers 
so that they tend to always select the fastest routes between 
their OD pairs. 2) There are very efficient algorithms for 
finding the fastest route for each OD pair. 3) If considering 
more than one route for an OD pair, then the route flows 
cannot be uniquely determined by solving the TAP (2), 
thus leading to unstable route-choice probabilities, which 
would undermine the accuracy of the approximation to the 
Jacobian matrix in (17).

We summarize the procedures for adjusting the OD 
demand matrices as Algorithm 1, whose convergence will 
be proven in the following proposition.

Algorithm 1. Adjusting OD Demand Matrices

Proposition 2: Algorithm 1 converges. 

Proof: If the initial demand vector   g   0   saisfies  F ( g   0 )  = 0 ,  
then, by Step 1, the algorithm stops (trivial case). 
Otherwise, we have  F ( g   0 )  > 0 , and it is seen from (15) 
that the objective function  F (g)   has a lower bound 0. In 
addition, by the line search and the update steps (Steps 
4.2 and 5.1, in particular), we obtain 

  F ( g   l+1 )  = F ( g   l  +  θ   l    
_

 h    l )   

  =  min  
θ∈S

    F ( g   l  + θ   
_

 h    l )  ≤ F ( g   l )   ∀ l  
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where the last inequality holds due to  0 ∈ S , indicating that 
the nonnegative objective function in (15) is nonincreasing 
as the number of iterations increases. Thus, by the well-
known monotone convergence theorem, the convergence 
of the algorithm can be guaranteed.

Remark 4: Algorithm 1 is a variant of the algorithms 
proposed in [11] and [12]. We use a different method to 
calculate the step-sizes (resp., Jacobian matrix) than that 
in [11] (resp., [12]). The optimization problem BiLev is 
not convex because of the potential nonlinearity in  x(g) . 
Thus, one would not necessarily expect Algorithm 1’s con-
vergence to a global minimum. In addition, due to inac-
curacies in the gradient calculation, one would not expect 
Algorithm 1’s convergence to a local minimum either. A 
discussion on the performance of similar heuristics can 
be found in [12]. It is worth noting that, in [12], the pro-
posed “descent” algorithm could possibly not “descend” 
in some iterations due to computational inaccuracy of 
the gradient. We will demonstrate our findings for the 
performance of Algorithm 1 by numerical experiments 
in Section V-B. We also note that, in terms of decreasing 
the objective function value of the BiLev, the performance 
of Algorithm 1 definitely depends heavily on the initial 
demand vector   g   0  .

E. Price of Anarchy

As discussed in Section I, one of our goals is to meas-
ure inefficiency in the network due to the noncoopera-
tive behavior of drivers. Thus, we compare the network 
performance under a user-centric routing policy versus 
a system-centric one. As a metric for this comparison, we 
conceptually define the PoA as the ratio between the total 
travel latency cost, i.e., the total travel time over all drivers, 
obtained under Wardrop flows (user-centric routing policy) 
and that obtained under socially optimal flows (system-
centric routing policy).

Given road network   (, , )  , as in [30], we calculate 
its total travel latency cost as 

  L(x)  =   ∑ 
a∈

   x a     t a   ( x a  ).  (19)

The socially optimal flow vector, denoted by   x   social  =  
( x  a  social ; a ∈ ) , is the solution to the following system- 
centric forward problem, which is an NLP [6], [13]:

  (socialOpt)  min  
x∈ℱ

      ∑ 
a∈

   x a     t a   ( x a  ).  (20)

We therefore explicitly define the PoA as 

  PoA  def   =      
L( x   user )

 _______ 
L( x   social )

   =   
  ∑ 
a∈

   x  a  user    t a   ( x  a  user )
  _____________  

  ∑ 
a∈

   x  a  social    t a   ( x  a  social )
   ≥ 1  (21)

where   x   user  = ( x  a  user ; a ∈ )  is the Wardrop equilibrium 
flow vector assumed to be directly observable or indirectly 
inferrable. By the definition of   x   social  , we always have  PoA 

≥ 1 ; the larger the PoA is, the larger the inefficiency 
induced by selfish drivers. Thus, PoA quantifies the ineffi-
ciency that a societal group has to deal with due to nonco-
operative behavior of its members.

We note that the objective function in (20) is differ-
ent from its counterpart in (2); for a detailed explanation,  
see [18]. However, the two forward problem formulations 
have a very tight connection. Let us take a close look at the 
following equalities [6]:

    
_
 t  a   ( x a  )   def  =      d ___ d  x a     ( x a    t a   ( x a  ) )  =  t a   ( x a  )  +  x a     t ̇   a   ( x a  )   ∀ a ∈ .    (22)

By (22) we see that the socialOpt in (20) is equivalent to 

 (userOpt)  min  
x∈ℱ

      ∑ 
a∈

   ∫ 
0
    x a       

_
 t  a   (s) ds   . 

The remarkable implication of the above is that in order 
to find the socially optimal flows   x  a  social  ,  a ∈  , instead 
of directly solving (20), it suffices to solve (2) with   t a   (⋅)  
replaced by    

_
 t  a   (⋅) . As noted in [6], the difference between the 

social cost and the user cost is   x a     t ̇   a   ( x a  )  , which can be inter-
preted as the cost a user (driver) imposes on the other users.

Let   
_
 t (x)  def  =    (  

_
 t  a   ( x a  ); a ∈ ) . To ensure the existence and 

uniqueness of the solution to (20), we need the following 
assumption.

Assumption B:   
_
 t (⋅)  is strongly monotone on  ℱ and con-

tinuously differentiable on   ℝ  +   ||   . ℱ satisfies Slater’s condi-
tion [33].

We note that if Assumption A holds and, for all  a ∈  ,  
  t a   ( x a  )  is convex and twice continuously differentiable on   
ℝ +    [e.g.,   t a   ( x a  ) = 2  x  a  2  +  x a   + 1 ], then Assumption B holds 
as well.

F. Sensitivity Analysis

To prioritize road segments for potential conges-
tion reducing interventions by the local transportation 
authorities, we investigate the sensitivities of the optimal 
objective function value of (2) with respect to key param-
eters, specifically, free-flow travel time and flow capacity. 
In particular, we first derive two rigorous formulas, and 
then propose their finite difference approximations as an 
alternative.

Write   t   0   def  =    ( t  a  0 ; a ∈ )  ,  m  def  =    ( m a  ; a ∈ )  , and 

  V ( t   0 , m)   def  =     min  
x∈ℱ

      ∑ 
a∈

   ∫ 
0
    x a     t  a  0  f (  s ___  m a    ) ds   .  (23)

Differentiating (23), for each  a ∈  , we obtain 

    
∂ V ( t   0 , m) 

 ________ 
∂  t  a  0 

   =  ∫ 
0
   

 x  a  user   f (  s ___  m a    ) ds   (24)

    
∂ V ( t   0 , m) 

 ________ ∂  m a     =  ∫  0    
x  a  user    t  a  0  f ̇   (  s ___  m a    )  (−   s ___ 

 m  a  2 
  ) ds   (25)

where   f ̇  (⋅)  denotes the derivative of  f(⋅) .
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Note that typically we have

    
∂ V ( t   0 , m) 

 ________ 
∂  t  a  0 

   > 0  

and

    
∂ V ( t   0 , m) 

 ________ ∂  m a     < 0 

meaning a slight decrease (resp., increase) of   t  a  0   (resp.,   m a   ) 
would reduce the objective function value of (2). Based on this 
observation, for   a ′   ∈  , we define the following quantities:

    ΔV ( t   0 , m; Δ  t   a ′    
0  )     def  =     min  

x∈ℱ
      ∑ 

a∈
   ∫ 

0
      x a     t  a  0  f (  s ___  m a    ) ds    

  −  min  
x∈ℱ

     [  ∑ 
a∈,a≠ a ′  

   ∫ 
0
     x a     t  a  0  f (  s ___  m a    ) ds    

  + ∫ 
0
     x  a ′       ( t   a ′    

0   + Δ  t   a ′    
0  ) f (  s ___  m  a ′    

  ) ds ]  (26)

and 

  ΔV ( t   0 , m; Δ  m  a ′    )    def  =     min  
x∈ℱ

      ∑ 
a∈

   ∫ 
0
     x a     t  a  0  f (  s ___  m a    ) ds    

  − min  
x∈ℱ

     [  ∑ 
a∈,a≠ a ′  

   ∫ 
0
     x a     t  a  0  f (  s ___  m a    ) ds    

  + ∫ 
0
    x  a ′       t   a ′    

0   f (  s _______ 
 m  a ′     + Δ  m  a ′    

  ) ds ]  (27)

where  Δ  t   a ′    
0    def  =    − 0 . 2 × min { t  a  0 ; a ∈ }   and  Δ  m  a ′      

 def  =    0 . 2 × min { m a  ; a ∈ }  . Note that, by construction, 
for each and every  a ∈  , we approximately have  0 < ΔV 
 ( t   0 , m; Δ  t  a  0 )  ∝ ∂ V ( t   0 , m) /  ∂  t  a  0   and  0 < ΔV ( t   0 , m; Δ  m a  )  ∝  
 |∂ V ( t   0 , m) /  ∂  m a  |  .

I V.  DATA SET DESCR IP TION A ND 
PROCESSING

In this section, based on our data-driven approach outlined 
in Section III, we conduct a case study using actual traffic 
data from the EMA road network [35], [37].

A. Description of the EMA Data Set

We deal with two data sets concerning the EMA road 
network. 1) The speed data set, made available to us by the 
Boston Region Metropolitan Planning Organization (MPO), 
includes the spatial average speeds for more than 13 000 
road segments (with an average length of 0.7 miles; see Fig. 
1) of EMA, providing the average speed for every minute of 
2012. For each road segment, identified with a unique tmc 
(traffic message channel) code, the data set provides infor-
mation such as speed data (instantaneous, average and free-
flow speed) in miles per hour (mph), date and time, and 
traveling time (in minutes) through that segment. 2) The 
flow capacity (in vehicles per hour) data set, also provided by 
the MPO, includes capacity data for more than 100 000 road 
segments (with an average length of 0.13 miles) in EMA. For 
more detailed information of these two data sets, see [30].

B. Preprocessing

In [30] and [31], we investigate two relatively small 
subnetworks [denoted by   ℐ 1    and   ℐ 2    and shown in Fig. 2(a)  
and (b), respectively] of the EMA road network. Here, we 
further consider a much larger subnetwork (denoted by   ℐ 3    
and shown in Fig. 3). Performing similar preprocessing pro-
cedures as those in [30] and [31], we end up with traffic flow 
data (Wardrop equilibria) and road (link) parameters (flow 
capacity and free-flow travel time) for the three subnet-
works   ℐ 1   ,   ℐ 2   , and   ℐ 3   , where   ℐ 1    contains only interstate high-
ways,   ℐ 2    also contains state highways, and   ℐ 3    covers a much 
wider area of EMA. Note that   ℐ 1    (resp.,   ℐ 2   ,   ℐ 3   ) consists of 8 

Fig. 1. All available road segments in EMA (from [30]).

Fig. 2. (a) An interstate highway subnetwork of EMA (  I 1   ) (the 
blue numbers indicate node indices). (b) An extended highway 
subnetwork of EMA (  I 2   ) (the red numbers indicate node  
indices). (See [35] for the correspondences between nodes and 
link indices.)
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(resp., 22, 74) nodes and 24 (resp., 74, 258) links. Assuming 
that each node could be an origin and a destination, then 
there are  8 × (8 − 1)  = 56  (resp.,  22 × (22 − 1)  = 462 )  
OD pairs in   ℐ 1    (resp.,   ℐ 2   ). For   ℐ 3   , we simplify the analy-
sis by grouping nodes within the same area, assigning them 
the same zone label, thus obtaining 34 zones (as opposed 
to 74 nodes). Assuming that each zone could be an origin 
and a destination, then there are  34 × (34 − 1)  = 1122  OD 
pairs in   ℐ 3   . It is worth pointing out that nodes 18, 19, 20, 
21, and 22 (resp., 72, 73, and 74) in   ℐ 2    (resp.,   ℐ 3   ) are intro-
duced for ensuring the identifiability of the OD demand 
matrices. More specifically, to “recover” uniquely an OD 
demand matrix from observed link flow data, the link-route 
incidence matrix  A  is required to satisfy certain structural 
properties; see [26, Lemma 2].

C. Estimating Initial OD Demand Matrices

Operating on   ℐ 1   , we solve the QP (P1) [cf., (13)] and the 
QCP (P2) [cf., (14)] using data corresponding to five differ-
ent time periods [AM, MD (middle day), PM, NT (night), 
and WD (weekend)] of four months (January, April, July, and 
October) in 2012, thus obtaining 20 different OD demand 
matrices for these scenarios. Expanding each and every of 
the 20 OD demand matrices of   ℐ 1    by setting the demand for 
any OD pair that belongs to   ℐ 2    but does not belong to   ℐ 1    to 
zero, we obtain “rough” initial demand matrices for   ℐ 2   .

On the other hand, for the much larger subnetwork   ℐ 3   , 
to obtain initial OD demand matrices corresponding to the 

same 20 scenarios, we perform a different simplification 
procedure. In particular, we only consider the shortest route 
for each OD pair of   ℐ 3   , thus leading to a deterministic route 
choice matrix  P  and significantly reducing the number of 
decision variables in the QCP (P2).

As noted in [30], the GLS method assumes the traffic 
network to be uncongested. It follows that the estimated 
OD demand matrices for nonpeak periods (MD/NT/WD) 
are relatively more accurate than those for peak periods  
(AM/PM). After obtaining estimates for travel latency cost 
functions in Section IV-D, based on the observed Wardrop 
flows and the initial estimates for the OD demand matrices, 
we will conduct demand adjustment procedures for   ℐ 2    and   
ℐ 3    in Section IV-E.

D. Cost Function Estimation and Sensitivity Analysis

First, to validate the effectiveness and efficiency of the 
cost function estimator (12), we conduct numerical experi-
ments over the Anaheim benchmark network [37], whose 
ground truth cost functions, OD demand matrices, and all 
necessary road parameters are available. Next, operating 
on   ℐ 1    using the flow data and the OD demand matrices 
obtained in Sections IV-B and IV-C, respectively, we esti-
mate the travel latency cost functions,  f(⋅)  in particular, for 
20 different scenarios, via the estimator (12), by solving the 
QP invVI-2 accordingly. As in [30], to make the estimates 
reliable, for each scenario, we perform a threefold cross vali-
dation. Note that [30] applied a different estimator, which is 
numerically not as stable.

We assume that such estimates for  f(⋅) , as obtained from   
ℐ 1   , can be shared by all the three subnetworks   ℐ 1   ,   ℐ 2   , and   ℐ 3   ;  
this makes sense, because the function  f(⋅)  is common for all 
links and, when estimating it through   ℐ 1   , we have already 
made use of a large amount of data (note that there are 24 
links in   ℐ 1    and the flow data and the corresponding OD 
demand matrices that we use have covered 120 different time 
instances for each of the 20 scenarios; for details, see [35]).

To illustrate our method of analyzing sensitivities for the 
TAP formulation (2), we again conduct numerical experi-
ments on   ℐ 1   . In particular, we investigate a scenario corre-
sponding to the AM peak period of April 2012.

E. OD Demand Adjustments

First, we demonstrate the effectiveness of Algorithm 1 
using the Anaheim benchmark network. Then, assuming 
the per-road travel latency cost functions are available (we 
take the travel latency cost functions derived from   ℐ 1    as in 
Section IV-D), we apply Algorithm 1 to   ℐ 2   , which contains   ℐ 1    
as one of its representative subnetworks. Note that the main 
difference between   ℐ 1    and   ℐ 2    is the modeling emphasis; spe-
cifically,   ℐ 1    only takes account of interstate highways, while   
ℐ 2    also encompasses state highways, thus containing more 
details of the real road network of EMA. We can think of   

Fig. 3. A wider EMA highway subnetwork (  I 3   ); details on the 
correspondences between nodes and link indices are in [35]. 
(ªnodes:zoneº pairs� {1}: Seabrook (NH); {2, 4, 5}: NH; {3}: Haverhill; 
{6, 8}: Lawrence; {7, 9}: Georgetown; {10, 11}: Lowell; {12, 15}: Salem; 
{13, 14}: Peabody; {16, 17, 18, 19}: Burlington; {20}: Littleton; {21}: 
Lexington; {22}: Boston; {23, 24, 25, 26, 27, 28}: Waltham; {29}: 
Quincy; {30, 31, 32, 33, 34}: Marlborough/Framingham; {35, 71}: 
Milford; {36}: Franklin; {37, 38, 39, 40, 41}: Westwood/Quincy; {42}: 
Dedham; {43, 44, 45, 46, 47}: Foxborough; {48, 74}: Taunton; {49, 
73}: Plymouth; {50, 51}: Cape Cod; {52}: Dartmouth; {53}: Fall River; 
{54, 68, 70}: RI; {55, 56}: VT; {57}: Westminster; {58}: Leominster; 
{59, 60, 72}: Worcester; {61}: Amherst; {62, 63, 64, 65, 66}: CT; {67}: 
Webster; {69}: Uxbridge.)
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ℐ 1    as a “landmark” subnetwork of   ℐ 2   . Based on the initially 
estimated demand matrices for   ℐ 1   , we will implement the 
following generic demand-adjusting scheme so as to derive 
the OD demand matrices for   ℐ 2   .

Given a network (  ℐ 2    in our case) of any size we can 
select its “landmark” subnetworks (  ℐ 1    in our case) (based on 
the information of road types, preidentified centroids, etc.) 
with acceptably smaller sizes; say we end up with  N  ( N = 1  
in our case) such subnetworks. Then, for each subnetwork, 
we estimate its demand matrix by solving sequentially the 
QP (P1) and the QCP (P2) (cf., Section IV-C). Setting the 
demand for any OD pair not belonging to this subnetwork 
to zero, we obtain a “rough” initial demand matrix for the 
entire network (  ℐ 2    in our case). Next, we take the average of 
these initial demand matrices. Finally, we adjust the average 
demand matrix based on the flow observations of the entire 
network.

Next, taking again the travel latency cost functions 
derived from   ℐ 1   , we apply Algorithm 1 to   ℐ 3   , based on 
the initial OD demand matrices estimated from   ℐ 3    (see 
Section IV-C) and the Wardrop flows inferred from   ℐ 3    (see 
Section IV-B).

As noted in Remark 1, the reason for not directly solving 
(P1) and (P2) for the larger networks (  ℐ 2    and   ℐ 3    in our case) 
is that there are too many decision variables in (P2) and this 
would lead to numerical difficulties.

F. PoA Evaluation and Meta-Analysis

We calculate the PoA values for   ℐ 2    and   ℐ 3    for the PM 
period of April 2012. For each day, in (21) we take the aver-
age observed link flows over the PM period as the “user 
flows,” and obtain the “social flows” by solving the NLP 
(20) using the estimated cost functions and demand matrix 
exclusively for the PM period. To solve (20), we use the 
IPOPT solver [38] which implements a primal–dual interior 
point method [39].

To better understand the performance of the road net-
work under the user-centric versus the system-centric rout-
ing policy, we conduct a meta-analysis on   ℐ 3   . In particular, 
under the two policies, we compare congestion for various 
zones of the network, the maximum/minimum link flows, 
and link-specific congestion.

V. Numerical Results

For economy of space, we will not show the detailed 
results for the initial estimation of OD demand matrices. 
However, we report in Table 1 the entries of the route 
choice probability matrix  P  derived for   ℐ 1    for some specific 
OD pairs (the complete results can be found in [35]). It is 
seen from Table 1 that we cannot always expect a higher 
probability for a shorter/faster route; randomness exists. 
However, this is not necessarily counterintuitive, because 
the selected routes for the same OD pair have close lengths/

travel times. We note here that when identifying (and refin-
ing) the feasible routes for each OD pair of   ℐ 1   , we consider 
at most three shortest routes (ranked #1–#3) and discard 
all the routes with a length larger than that of the shortest 
route (ranked #1) by more than 50%. Note also that since 
this initial OD estimation procedure does not involve real-
time updates of traffic conditions, we may use either travel 
times or lengths as weights for links in the graph model.

In the following, we will focus on presenting the results 
for the estimates of the travel latency cost functions (derived 
for the Anaheim benchmark network and   ℐ 1   ), the demand 
adjustment procedure (derived for the Anaheim benchmark 
network; note that we will not show the detailed demand 
adjustment results for   ℐ 2    and   ℐ 3   , because we do not have 
the ground truth for a comparison), the PoA evaluations 
(derived for   ℐ 2    and   ℐ 3   ), the sensitivity analysis (derived for   
ℐ 1   ), and the meta-analysis (derived for   ℐ 3   ).

A. Results From Estimating the Cost Functions

1) Results for the Anaheim Benchmark Network: The 
Anaheim network contains 38 zones [hence  38 × (38 − 1)  =  
1406  OD pairs], 416 nodes, and 914 links. The ground truth  
f (⋅)   is taken as  f (z)  = 1 + 0 . 15  z   4 , z ≥ 0 . Fig. 4 shows the 
estimation results for  f(z)  by solving invVI-2 correspond-
ing to different parameter settings. In particular, Fig. 4(a) 
shows the curves of the ground truth  f(z)  and the estimator   
f ̂  (z)  corresponding to  n  taking values from  { 3, 4, 5, 6}  while 
keeping  c  and  γ  fixed to 1.5 and 0.01 respectively; it is seen 
that except for the case  n = 3 , all estimation curves are very 
close to the ground truth. Note that the ground truth  f(z)  is a 
polynomial function with degree 4, which is greater than 3. 
This suggests the use of a value  n ≥ 4  in recovering the cost 
function  f(⋅) . The intuition here is that we can use a higher 
order polynomial with appropriate coefficients to approxi-
mate a lower order polynomial, but not vice versa. Fig. 4(b) 
shows the curves of the ground truth  f(z)  and the estimator   
f ̂  (z)  corresponding to  c  taking values from  { 0 . 5, 1 . 0, 1 . 5}  
while keeping  n  and  γ  fixed to 6 and 1.0 respectively; it is 
seen that except for the case  c = 0 . 5 , the estimation curves 
are very close to the ground truth. This suggests that setting  
c  reasonably larger should give better estimation results.  
Fig. 4(c) plots the curves of the ground truth  f(z)  and the 

Table 1 Selected Route Choice Analysis Results for   I 1    (Corresponding 

to the PM Peak Period of April 2012)
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estimator   f ̂  (z)  corresponding to  γ  taking values from  { 0 . 01, 
0 . 1, 1 . 0, 10 . 0, 100 . 0}  while keeping  n  and  c  fixed to 5 and 
1.5 respectively; it is seen that as  γ   is set smaller and smaller, 
the estimation curve gets closer and closer to the ground 
truth. This suggests that choosing a smaller regularization 
parameter  γ   should give tighter estimation results in terms 
of data reconciling.

2) Results for   ℐ 1   : We show the comparison results of 
the cost functions in Fig. 5, where in each subfigure, we plot 
the curves of the estimated  f(⋅)  corresponding to five differ-
ent time periods. For economy of space, we will not list the 
parameter setting details of  n ,  c , and  γ , which were selected 
by conducting a threefold cross validation.

We observe from Fig. 5(a)–(d) that the costs for peak 
periods (AM/PM) are more sensitive to traffic flows than for 
nonpeak periods (MD/NT/WD). This can be explained as 
follows: during rush hour, it is very common for vehicles to 
pass through a congested road network while during nonrush 
hour, drivers mostly enjoy an uncongested road network.

In addition, it is seen that, for different months, the cost 
curves for nonpeak periods differ more significantly than 
for peak periods. Aside from the observation and modeling 

errors, this can also be explained by seasonal traveling 
patterns.

B. Results From OD Demand Adjustment

We now present the OD demand adjustment results 
from the Anaheim network. For each OD pair, the initial 
demand is taken by scaling the ground truth demand using 
a random factor with uniform distribution over  [ 0.8, 1.2 ] .  
The ground truth  f (⋅)   is taken as  f (z)  = 1 + 0 . 15  z   4 , ∀ z ≥ 0 ,  
and is assumed directly available. When implementing 
Algorithm 1, we set   γ   1   = 0 ,   γ   2   = 1 ,  ρ = 2 ,  T = 10 ,   ε  1   = 0 ,  
and   ε  2   =  10   −20  . Fig. 6(a) shows that, after seven itera-
tions, the objective function value of the BiLev (15) has 
been reduced by more than 50%. Fig. 6(b) shows that the 
distance between the adjusted demand and the ground 
truth demand keeps decreasing with the number of itera-
tions, and the distance changes very slightly, meaning the 
adjustment procedure does not alter the initial demand 
much. Note that in Fig. 6(a), the vertical axis corresponds 
to the normalized objective function value of the BiLev, i.e.,  
 F( g   l ) / F( g   0 )  and, in Fig. 6(b), the vertical axis denotes the 

Fig. 4. Estimations for cost function  f(⋅)  by solving invVI-2 
corresponding to different parameter settings (Anaheim).  (a) Vary 
n (c and γ fixed). (b) Vary c (n and γ fixed). (c) Vary γ (n and c fixed).

Fig. 5. Estimates for  f(⋅)  corresponding to different time periods 
[AM, MD (middle day), PM, NT (night), WD (weekend)], derived from 
data over   I 1    for 2012. (a) Jan. (b) Apr. (c) Jul. (d) Oct.
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normalized distance between the adjusted demand vector 
and the ground truth, i.e.,  ‖  g   l  −  g   *  ‖ / ‖  g   *  ‖ , where   g   *   is the 
ground-truth demand vector.

C. Results for PoA Evaluation

After implementing the demand adjusting scheme, we 
obtain the demand matrices for   ℐ 2    and   ℐ 3    on a daily basis, as 
opposed to those for   ℐ 1    on a monthly basis. Note that, even 
for the same period of a day and within the same month, 
slight demand variations among different days are possible; 
thus, our PoA results for   ℐ 2    and   ℐ 3    would be more accurate 
than those for   ℐ 1    (shown in [30]).

The PoA values for   ℐ 2    shown in Fig. 7(a) have larger 
variations than those for   ℐ 1    in [30] and for   ℐ 3    shown in  

Fig. 7(b); some are closer to 1 but some go beyond 2.2, mean-
ing we have larger potential to improve the road network. It 
is also seen that, although   ℐ 2    is extracted from   ℐ 3   , there is no 
obvious correlation between the PoA values estimated for   ℐ 2    
and   ℐ 3   . To explain this, one should note the fact that   ℐ 2    is 
only a small subnetwork of   ℐ 3   , where the latter contains many 
more nodes/links/OD pairs [see Figs. 2(b) and 3]. Specifically, 
in Fig. 3, many more links have been added which signifi-
cantly alter the feasible routing patterns relative to Fig. 2(b). 
Thus, even though there may be correlations at the individual 
link flow level, once we add links and then aggregate over all 
links, any correlation is likely weakened or lost. Moreover, 
the social optimization problems solved to obtain the denomi-
nator of the PoA ratio in (21) are very different since the sub-
network topologies are different. However, when taking the 
average of the PoA values for all 30 days of April 2012, all   ℐ 1   ,  
  ℐ 2   , and   ℐ 3    result in an average PoA approximately equal to 
1.5, meaning we can gain an efficiency improvement of about 
50%; thus, the results are consistent.

D. Results From Sensitivity Analysis

Investigating the AM peak period of April 2012 for   ℐ 1   ,  
instead of directly applying (24) and (25), we calculate the 
two quantities defined in (26) and (27), and plot the results 
in Fig. 8, where the blue (resp., red) curve indicates the 
quantity  ΔV ( t   0 , m; Δ  t  a  0 )   (resp.,  ΔV ( t   0 , m; Δ  m a  )  ) for each 
and every link of   ℐ 1   . It is seen from Fig. 8 that the larg-
est four values of  ΔV ( t   0 , m; Δ  t  a  0 )   (resp.,  ΔV ( t   0 , m; Δ  m a  )  )  
correspond to links 10, 19, 9, and 5 (resp., 10, 19, 9, 
and 1). This suggests that, during the AM peak period of 
April 2012, the transportation management department 
could have most efficiently reduced the objective func-
tion value of the TAP (2), thus mitigating congestion, by 
taking actions with priorities on these links (e.g., improv-
ing road conditions to reduce the free-flow travel time for 
links 10, 19, 9, and 5, and increasing the number of lanes 
to enlarge the flow capacity for links 10, 19, 9, and 1).

E. Results From Meta-Analysis

We conduct meta-analysis for   ℐ 3   , under the user-centric 
routing policy versus the system-centric one. Our analysis 
includes the zone costs, the maximum/minimum link flows, 
and the link-specific congestion.

Fig. 6. Key quantities versus number of iterations (Anaheim).   
(a) F( gl ) / F( g0 ) vs. # of iterations. (b) ‖  g   l  −  g   *  ‖ / ‖  g   *  ‖  vs. # of 
iterations.

Fig. 7. Daily PoAs for   I 2    and   I 3    (PM period for April 2012): (a) for   I 2   ;  
(b) for   I 3   .

Fig. 8. Sensitivity analysis (finite difference approximation) results 
for   I 1   ; AM period of April 2012.
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1) Meta-Analysis for Zone Costs: Let     3  i    denote the set 
of links related to zone  i  of   ℐ 3    (each link in     3  i    has at least 
one node contained in zone  i ). Then, the total users’ travel 
latency cost for zone  i  is defined as 

  C i   =   ∑ 
a∈   3  i  

   x a    t a   ( x a  )  . 

We consider two scenarios, one corresponding to the 
PM peak period of a typical weekday (Wednesday, April 
18, 2012) and the other the PM period of a typical weekend 
(Sunday, April 15, 2012). The zone costs under the user-
centric (resp., system-centric) routing policy are visualized 
in Fig. 9(a) [resp., Fig. 9(b)]. Three observations can be 
made. 1) Overall, most zone costs would be reduced when 
switching from the user-centric routing policy to the system-
centric one. 2) In general, the zone costs for weekends are 
less than their counterparts for weekdays; this is consistent 
with intuition. 3) The decrease seems more consistent for all 
zones during weekends than during weekdays, suggesting it 
is easier to optimize the network during weekends; this is 
again consistent with intuition.

2) Meta-Analysis for Maximum/Minimum Link Flows 
The maximum/minimum link flows for the PM peak period 
of each and every day of April 2012 are plotted in Fig. 10(a), 

and the corresponding link indices are shown in Fig. 10(b). 
A major observation, based on Fig. 10(a), is that the maxi-
mum link flow values would increase for most of the days 
when switching the routing policy from the user-centric 
one to the system-centric one, which is desirable. In addi-
tion, it is seen that, among the entire month (April 2012), 
both the maximum link flows under the two routing policies 
have a weekly periodic distribution; this is consistent with 
intuition.

3) Meta-Analysis for Link Congestion: For any given 
link  a , we define its congestion metric (CM) [40] as the ratio 
of the travel time to free-flow travel time

   CM a    def  =      
 t a   ( x a  ) 

 ____ 
 t  a  0 

   = f (  
 x a  

 ___  m a    )   (28)

where  f(⋅)  is the cost function that we have estimated. By 
this definition, we always have   CM a   ≥ 1 .

We first consider a PM peak period scenario for a typi-
cal workday (Wednesday, April 18, 2012). The CM values of 
all the 258 links are plotted in Fig. 11 in a logarithmic scale 
(base 2). It is seen that, for some links (indexed with 79, 
92, and 86) the CM value is significantly higher ( gap > 1 )  
under the user-centric routing policy than under the sys-
tem-centric one. There are some links for which we have 

Fig. 9. Zone costs under user-centric versus system-centric routing 
policy (PM period of April 2012).  (a) weekday (4/18/2012).  
(b) Weekend (4/15/2012).

Fig. 10. Maximum/minimum link flows and the corresponding link 
indices under user-centric versus system-centric routing policy (PM 
period of April 2012).  

Fig. 11. Link congestion under user-centric versus system-centric routing policy (PM period of April 18, 2012).
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the opposite, but, overall, the CM peak is reduced under the 
system-centric policy. We then investigate a PM period sce-
nario for a typical weekend (Sunday, April 15, 2012), and find 
that all the CM values for this scenario are very close to 1,  
meaning there was almost no congestion for all links; we 
have omitted the weekend CM plot for economy of space.

V I.  STR ATEGIES FOR POA R EDUCTION

After quantifying the PoA, a natural question we must 
answer is the following: How can we reduce the PoA for a 
given transportation network? We propose three practical 
strategies for reducing the PoA, especially when  PoA ≫ 1 .

First, by taking advantage of the rapid emergence of 
CAVs, it has become feasible to automate routing decisions, 
thus solving a system-centric forward problem [cf., (20)] in 
which all CAVs (bypassing driver decisions) cooperate to 
optimize the overall system performance.

Second, we propose a modification to existing GPS 
navigation algorithms recommending to all drivers socially 
optimal routes, which could be implemented by making 
use of (22). In particular, we can solve the user-centric for-
ward problem (2), embedded in a typical GPS navigation 
 application, with   t a   (⋅)  replaced by    

_
 t  a   (⋅) , whose common cor-

nerstone part  f(⋅)  is estimated using (12). It is worth pointing 
out that some existing work simply took  f(⋅)  to be the Bureau 
of Public Roads (BPR)’s [7] empirical polynomial function  
f(z)  = 1 + 0 . 15  z   4 , ∀ z ≥ 0 , which would not be as accurate.

Finally, our sensitivity analysis results provide the means 
to prioritize road segments for specific interventions that 
can mitigate congestion.

V II.  CONCLUSION A ND F U T U R E WOR K

In this paper, we assess the efficiency of transportation net-
works under a selfish user-centric routing policy as opposed 
to a socially optimal system-centric routing policy. To that 
end, we define and quantify the PoA and propose possible 
strategies to reduce it. All the procedures involved are data 
driven, thus having the capability of dynamically optimiz-
ing any given transportation network (by using the data col-
lected in real-time manner), in terms of reducing the PoA 
(especially when  PoA ≫ 1 ) such that it gets as close to 1 as 
possible.

We must keep in mind that, due to unavoidable inaccu-
racies in data and modeling, all the numerical results shown 

in Section V are only estimates. In particular, the speed-to-
flow conversion model that we use (Greenshield’s model) is 
a macroscopic model with naturally limited accuracy, the 
GLS method that we leverage also is based on an approxima-
tion, and the MSA subroutine in Algorithm 1 is an approxi-
mate scheme.

In terms of the computational challenges of our proposed 
approaches, we encountered numerical difficulties when 
solving (13) and (14) to obtain OD demands for large-sized 
(say a network like   ℐ 3   ) networks. However, we subsequently 
developed a simplification procedure by considering only 
the fastest route for each OD pair, thus successfully resolv-
ing this issue. We conducted case studies on a workstation 
with 24-GB memory and a 12-core Intel Core i5 CPU, and 
for the largest network (  ℐ 3   ) that we investigated, the total 
CPU time (including estimating OD demands, recovering 
link latency cost functions, adjusting OD demands, solving 
for socially optimal flows, and finally calculating PoA values) 
is about 10 h. The total CPU times for   ℐ 1    and   ℐ 2    are about 
30 min and 2 h, respectively. We note that the most time-
consuming task is adjusting OD demands using Algorithm 1.  
However, it is seen that Steps 2–4 of Algorithm 1 and the 
MSA subroutine can easily benefit from parallel computing. 
Thus, scalability can be further improved through parallel 
computation. Moreover, following an approach of “divide 
and conquer,” several decomposition methods could pos-
sibly also be leveraged as we move to larger networks; the 
difficulty lies in how to reasonably “merge” results derived 
for subnetworks so as to obtain the final result for the whole 
network.

Our ongoing work includes extending the PoA analysis 
and reduction framework from single-class to multiclass 
transportation networks. We have recently obtained results 
for the multiclass user-centric inverse problem [41], which 
paves the way for data-driven PoA estimation in these net-
works. We are also considering alternative models/methods 
to improve the accuracy in the PoA evaluation. In addition, 
it is of interest to consider jointly estimating/adjusting the 
OD demand matrices and recovering the travel latency cost 
functions.
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