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Abstract We consider a class of simulation-based optimization problems using optimality
in probability, an approach which yields what is termed a “champion solution”. Compared
to the traditional optimality in expectation, this approach favors the solution whose actual
performance is more likely better than that of any other solution; this is an alternative com-
plementary approach to the traditional optimality sense, especially when facing a dynamic
and nonstationary environment. Moreover, using optimality in probability is computation-
ally promising for a class of simulation-based optimization problems, since it can reduce
computational complexity by orders of magnitude compared to general simulation-based
optimization methods using optimality in expectation. Accordingly, we have developed an
“Omega Median Algorithm” in order to effectively obtain the champion solution and to
fully utilize the efficiency of well-developed off-line algorithms to further facilitate timely
decision making. An inventory control problem with nonstationary demand is included to
illustrate and interpret the use of the OmegaMedian Algorithm, whose performance is tested
using simulations.
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1 Introduction

In discrete event systems, we are often faced with a class of stochastic optimization prob-
lems that involve only parametric optimization and no structural changes to the underlying
systems. In such cases, optimality in expectation is commonly adopted with problems
formulated as

min
u∈�

E[J (u, ω)] (1)

where u is the decision variable, � is the feasible decision space of u, and ω is used to index
sample paths resulting from different realizations of a collection of random variables that
affect the performance J (u, ω).

In the context of discrete event systems, we commonly face a dynamic stochastic process,
in which u is an event-triggered online control action and J (u, ω) is the actual performance
of u over a certain sample path ω. For example, in the on-line inventory control problem
later considered in Section 3, u is the order quantity decided at the beginning of each period,
ω is a sample path constructed by a sequence of demands, and J (u, ω) is the corresponding
operating cost, including setup cost, holding cost and shortage cost.

Since it is typically impossible to derive the closed form of E[J (u, ω)] in Eq. 1,
simulation-based optimization methods need to be employed to obtain a near-optimal solu-
tion. In what follows, we define an “evaluation” as an operation of calculating the value
of J (u, ω) for a specific u over a specific sample path ω. In general, simulation-based
optimization methods include two major operations:

1. Solution Assessment: Implement M evaluations for a specific u over M sample paths
and estimate the expected performance of solution u, E[J (u, ω)], by sample average
approximation, i.e.,

∑M
i=1 J (u, ωi)/M;

2. Search Strategy: Use the sample average approximation in 1) to rank solutions and
search for better solutions in promising areas according to gradient information (if
possible) or certain partition structures.

Let I denote the total number of solutions explored in a simulation-based method and
C denote the complexity of an evaluation. Then, the total complexity can be measured by
the computational effort of implementing M · I evaluations, that is, O(M · I · C) (M is
not necessarily a constant throughout the entire search process). To get a near optimal (or
good enough) solution, we need to implement more evaluations to refine solution assess-
ment, i.e., larger M , and explore a greater number of solutions, i.e., larger I . Since both M

and I can be very large in solving a general simulation-based optimization problem using
optimality in expectation, this approach is computationally intensive or even intractable for
many applications in practice.

A number of simulation-based optimization methods have been developed over the past
few decades. Computational effort can be reduced by either using a smaller number M

of evaluations in assessment, such as Ordinal Optimization (Ho et al. 2008) and Optimal
Computing Budget Allocation (Chen and Lee 2011), or by reducing I in search, such as
Nested Partitions (Shi and Olafsson 2000) and COMPASS (Hong and Nelson 2006), or by
both ways, such as Perturbation Analysis (Ho and Cao 1991) and Retrospective Optimiza-
tion (Chen 1994; Jin 1998). Moreover, to further improve computational efficiency, these
methods may be applied to certain approximations of the original systems with little loss of
accuracy in the optimization solutions, such as the use of Stochastic Flow Models (Cassan-
dras et al. 2002; Yao and Cassandras 2012) and Hindsight Optimization (Chong et al. 2000;
Wu et al. 2002). Since these methods still need to employ sample average approximations to
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assess every explored solution (or estimate its performance gradient), their complexity can
still be approximated as O(M ·I ·C) with either smaller M or smaller I or both. In practice,
timely decision making is usually preferable or required in a dynamic environment. The
heavy computational burden of those methods using optimality in expectation limits their
applications in such situations.

Moreover, we argue that optimality in expectation is not truly “optimal” in certain cases
since the expected performance is not exactly the actual performance, but only a promising
guess. This kind of optimality is generally suitable for a stationary environment, in which
probability distributions remain unchanged over time and the objective value is the aver-
age performance over the long term. However, in practice we often face a nonstationary
environment, as in the inventory control problem included in the paper, in which nonstation-
ary demand is a common occurrence in industries with short product life cycles, seasonal
patterns, varying customer behavior, or other factors (Neale and Willems 2009). When we
continually or periodically make decisions, the probability distributions used are only valid
for a short term and need to be occasionally updated. Clearly, optimality in expectation does
not necessarily lead to the “best” solution in this case.

In this paper, we propose an alternative sense of optimality, “optimality in probability”,
which favors a solution that has a higher chance to get a better actual performance. The best
solution using optimality in probability, termed “Champion Solution”, is defined as the one
whose actual performance is more likely better than that of any other solution. Optimality
in probability is an alternative complementary approach to optimality in expectation, espe-
cially when facing a dynamic and nonstationary environment. Moreover, using optimality
in probability is computationally promising for a class of simulation-based optimization
problems, since it can reduce computational complexity by orders of magnitude compared
to general simulation-based optimization methods using optimality in expectation. Accord-
ingly, we develop an “Omega Median Algorithm” to obtain the champion solution without
iteratively searching for better solutions based on sample average approximations, a pro-
cess which is computationally intensive and commonly required when seeking optimality
in expectation. Furthermore, although it is quite challenging to solve many stochastic opti-
mization problems, their corresponding deterministic versions, which can be regarded as
optimization problems defined over a single sample path, have been efficiently solved
by certain off-line algorithms. The Omega Median Algorithm is able to fully utilize the
efficiency of these well-developed off-line algorithms to further facilitate timely decision
making, which is clearly preferable in a dynamic environment with limited computational
resources. It should be noted that, although an analytical solution of single sample path opti-
mization problems is quite helpful in improving computational efficiency, it is not required
for the implementation of the Omega Median Algorithm.

In the rest of the paper, we first introduce the champion solution and then develop an
efficient simulation-based optimization method, termed Omega Median Approximation in
Section 2. We then consider a nonstationary inventory control problem in Section 3. Numer-
ical results are given in Section 4 to demonstrate the performance of the champion solution.
We close with conclusions in Section 5.

2 Champion Solution

The “Champion Solution” is the best solution using optimality in probability and defined
for general stochastic minimization problems as follows, where Pr[·] is the usual notation
for “probability”:



38 Discrete Event Dyn Syst (2018) 28:35–61

Definition 1 The champion solution is a solution uc such that

Pr
[
J (uc, ω) ≤ J (u, ω)

] ≥ 0.5, ∀ u ∈ �, (2)

where J (u, ω) is the actual performance of u over a certain sample path ω.

Remark A natural question which immediately arises is “why do we select 0.5?” rather
than some q > 0.5 and define the champion solution as u′ below such that

Pr
[
J (u′, ω) ≤ J (u, ω)

] ≥ q, ∀ u ∈ �, (3)

which looks even better than uc in Eq. 2. However, a definition using q > 0.5 is not
meaningful for the large majority of stochastic problems with continuous random variables.
Generally speaking, if the sample path ω is constructed with continuous random variables
ω and continuous functions J (u, ω), we can have for u′ �= uc:

Pr
[
J (u′, ω) < J (uc, ω)

] = Pr
[
J (u′, ω) ≤ J (uc, ω)

]
. (4)

From Eq. 3, we have Pr
[
J (u′, ω) ≤ J (uc, ω)

] ≥ q. Combining it with Eq. 4, we have

Pr
[
J (uc, ω) ≤ J (u′, ω)

] ≤ 1 − q,

which contradicts Eq. 2 if q > 0.5. Even if there might exist some u′ that satisfies Eq. 3,
it will be still the same as uc defined in Eq. 2. Therefore, we will set 0.5 instead of some
q > 0.5 in the definition of champion solution.

The NBA Finals can be used as an example to illustrate the champion solution. The
champion team (the champion solution) will be determined from two teams (solutions)
based on the results in 7 games (sample-paths). The champion solution is the team (solution)
that wins more games (performs better in more sample-paths). Ideally, if there is an infinite
number of games (sample-paths), then the champion solution is the team with winning ratio
of more than 50%.

For cases with more than two solutions, we interpret the champion solution through
the example of presidential elections originally used for Arrow’s Impossibility Theorem
in social choice theory (Arrow 1963). Imagine we have three candidates (solutions) A, B
and C. Each voter (sample-path) will rank the three candidates according to his or her own
preference. Now, we randomly pick three voters’ preference lists (sample-paths) as shown
in the following table, where A � B means A is preferred over B.

Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � B � A

Based on the the three voters’ preferences, we can estimate that

– A : Pr[A � B] = 33%, Pr[A � C] = 33%;
– B : Pr[B � A] = 67%, Pr[B � C] = 67%;
– C : Pr[C � A] = 67%, Pr[C � B] = 33%.

Clearly, B should be the president (the champion solution) because B gets a higher prefer-
ence (performs better) than all the other candidates (solutions) from the majority of voters
(sample-paths).
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2.1 Optimality in expectation vs. optimality in probability

The champion solution favors the winning ratio instead of the winning scale. That is why
we call it “Champion Solution”. We can still use the example of NBA Finals to illustrate the
new sense of optimality and compare it with the traditional one. Imagine it was finished in
6 games and the results are shown in the following table.

Game 1 Game 2 Game 3 Game 4 Game 5 Game 6

A 107 103 84 106 90 98
B 100 97 103 104 101 95

Team A is the champion (the champion solution) because Team A won more games than
Team B. However, we can also find out that the average score of Team B, 100, is higher
than 98, the one of Team A, which implies that Team B is actually better than Team A in
the sense of “Optimality in Expectation” commonly adopted in the literature.

Clearly, the champion solution is the best solution in a different sense of optimality,
termed “Optimality in Probability” here, which may be a better optimality sense than the
traditional “Optimality in Expectation” in some applications, such as the NBA Finals.

Generally, the champion solution and the traditional optimal solution are not the same,
but they coincide under the following “Non-singularity Condition” as shown in Mao and
Cassandras (2010):

Pr
[
J (u′, ω) ≤ J (u′′, ω)

] ≥ 0.5 =⇒ E
[
J (u′, ω)

] ≤ E
[
J (u′′, ω)

]
, ∀u′, u′′ ∈ �

The interpretation of the Non-singularity Condition is that if u′ is more likely better than
u′′ (in the sense of resulting in lower cost), then the expected cost under u′ will be lower
than the one under u′′. This is consistent with common sense in that any solution A more
likely better than B should result in A’s expected performance being better than B’s. Only
“singularities” such as J (u′, ω) 
 J (u′′, ω) with an unusually low probability for some
(u′, u′′) can affect the corresponding expectations so that this condition may be violated. It
is straightforward to verify this Non-singularity Condition for several common cases. For
example, consider J (u, ω) = (u − ω)2, where ω is a uniform random variable over [a, b].
The function satisfies the Non-singularity Condition and the solution (a + b)/2 achieves
both optimality in probability and in expectation.

In addition, even though decision makers may prefer “optimality in expectation” in their
applications, the champion solution still has a very promising performance if the corre-
sponding problem does not exhibit significant singularities because it can beat all the other
solutions with a probability greater than 0.5.

2.2 A condition for the existence of a champion solution

A champion solution may not always exist for a general stochastic optimization problem.
If there are only two feasible solutions, as in the NBA Finals, a champion solution can
be obviously guaranteed. However, this is not the case even for as few as three feasible
solutions. Recalling the example of presidential elections, what if Voter 3 changes his or her
preference as shown in the following table?
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Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � A � B

This time we have

– A : Pr[A � B] = 67%, Pr[A � C] = 33%;
– B : Pr[B � A] = 33%, Pr[B � C] = 67%;
– C : Pr[C � A] = 67%, Pr[C � B] = 33%.

No candidate can be elected as president (the champion solution) because no one can be pre-
ferred over all the other candidates (solutions) from the majority of voters (sample-paths);
this is in fact the case addressed in Arrow’s paradox (Arrow 1963).

In the following, we will establish a sufficient existence condition, which can be utilized
later in the inventory problem considered in the next section. To accomplish that, we first
define the concepts of “ω-problem”, “ω -solution” and “ω -median” for the class of stochas-
tic optimization problems in Eq. 1. (As these definitions are based on or related to a single
sample-path ω, we name their initials as ω-.)

Definition 2 An ω-problem is the deterministic optimization problem defined over a single
sample-path ω, i.e.,

min
u∈�

J (u, ω).

where � ⊆ R is the constraint set of u and J (·, ω) : � �→ R is a scalar function of u.

Definition 3 The ω-solution is the solution uω such that

uω = min
û

{

û : J (û, ω) = min
u∈�

J (u, ω)

}

. (5)

Remark Although û is a minimizer of J (u, ω) and may not be unique. uω is defined
as the smallest one picked from these minimizers to guarantee the uniqueness of uω. We
will impose the regularity assumptions that the minimizer û of J (u, ω) exists and uω is
measurable. Then uω is a random variable related to sample-path ω.

Definition 4 An ω-median is a median of the probability distribution of ω-solution uω, i.e.,
the solution um such that

Pr[uω ≤ um] ≥ 0.5 and Pr[uω ≥ um] ≥ 0.5 (6)

Remark The two probabilities in Eq. 6 are the cumulative distribution function (cdf ) and
complementary cumulative distribution function (ccdf ) of uω respectively. Both probabili-
ties can be strictly more than 0.5 at the same time if uω is not continuous. Moreover, the
ω-median may not be unique for cases such that the pdf or pmf of uω is 0 for some values
of uω.

Theorem 1 If J (u, ω) is a scalar unimodal function of u for any ω, then an ω-median is a
champion solution.

Proof Since J (u, ω) is a scalar unimodal function of u for any ω, we have

J (u′, ω) ≤ J (u′′, ω), for any u′′ < u′ < uω; (7)
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and
J (u′, ω) ≤ J (u′′, ω), for any uω < u′ < u′′. (8)

Assume um is the ω-median. For any solution u > um, we have

Pr[J (um, ω) ≤ J (u, ω)]
= Pr[J (um, ω) ≤ J (u, ω)|uω ≤ um] Pr[uω ≤ um]

+Pr[J (um, ω) ≤ J (u, ω)|uω > um] Pr[uω > um] (9)

From Eq. 8, if u > um and um ≥ uω, then J (um, ω) ≤ J (u, ω), which implies that

Pr[J (um, ω) ≤ J (u, ω)|uω ≤ um] = 1 (10)

Since um is the ω-median, we have Pr[uω ≤ um] ≥ 0.5. Combining it with Eqs. 9 and 10,
we have

Pr[J (um, ω) ≤ J (u, ω)]
≥ 0.5 + Pr[J (um, ω) ≤ J (u, ω)|uω > um]Pr[uω > um]
≥ 0.5

The case of u < um can be similarly proved. Therefore, um satisfies the definition of
champion solution

Pr[J (um, ω) ≤ J (u, ω)] ≥ 0.5, for any u ∈ �.

which implies um is a champion solution.

2.3 A condition for the uniqueness of a champion solution

The champion solution may not be unique in general. The uniqueness can be guaranteed if
the following conditions can be satisfied as shown in Theorem 2.

Theorem 2 Let J (u, ω) be a scalar strictly unimodal function of u for any ω, i.e.,

J (u′, ω) < J (u′′, ω), ∀uω < u′ < u′′ and J (u′, ω) < J (u′′, ω), ∀u′′ < u′ < uω,

where uω = argminu∈� J (u, ω). If there exists some um such that

Pr[uω ≤ um − ε] < 0.5 and Pr[uω ≥ um + ε] < 0.5 for every ε > 0 (11)

then the champion solution is um and unique.

Proof We will only prove the result for cases such that uω is a continuous random variable.
The discrete case can be similarly proved. The uniqueness of a champion solution can be
shown by proving the following two parts: [a] the champion solution must be some um

satisfying Eq. 11; [b] the solution um satisfying Eq. 11 is unique.
Part [a]: Assume on the contrary that there exists some champion solution u′ such that

Pr[uω ≤ u′ − ε] ≥ 0.5 or Pr[uω ≥ u′ + ε] ≥ 0.5 for some ε > 0; (12)

which implies that

Pr[uω ≥ u′] < 0.5 or Pr[uω ≤ u′] < 0.5. (13)

From Eq. 13, without loss of generality, assume Pr[uω ≥ u′] < 0.5. Then there exists some
δ > 0 such that

Pr[uω ≥ u′ − δ] < 0.5 (14)
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It holds that

Pr[J (u′, ω) ≤ J (u′ − δ, ω)]
= Pr[J (u′, ω) ≤ J (u′ − δ, ω)|uω ≥ u′ − δ]Pr[uω ≥ u′ − δ]

+Pr[J (u′, ω) ≤ J (u′ − δ, ω)|uω < u′ − δ] Pr[uω < u′ − δ] (15)

From the definition of uω and J (u, ω) is a scalar strictly unimodal function of u for any ω,
it must satisfy that J (u′, ω) > J (u′ − δ, ω) if uω < u′ − δ < u′, which implies that

Pr[J (u′, ω) ≤ J (u′ − δ, ω)|uω < u′ − δ] = 0

Combining this with Eqs. 14 and 15, we have

Pr[J (u′, ω) ≤ J (u′ − δ, ω)]
= Pr[J (u′, ω) ≤ J (u′ − δ, ω)|uω ≥ u′ − δ]Pr[uω ≥ u′ − δ]
≤ Pr[uω < u′ − δ] < 0.5 (16)

Since u′ is a champion solution that should have

Pr[J (u′, ω) ≤ J (u, ω)] ≥ 0.5, for any u ∈ �. (17)

which contradicts Eq. 16. Therefore, the champion solution must be some um satisfying
Eq. 11.

Part[b]: Without loss of generality, assume on the contrary that there exists some u′ >

um that also satisfies Eq. 11. From Eq. 11, we have

Pr[uω < um + ε] ≥ 0.5 for every ε > 0.

Combining this with u′ > um, there exists some ε > 0 such that

Pr[uω < u′ − ε] ≥ Pr[uω < um + ε] ≥ 0.5

which contradicts the assumption that u′ also satisfies Eq. 11. Thus, the solution um that
satisfies Eq. 11 is unique.

The result follows from Part [a] and Part [b] above.

2.4 Multinomial optimal solution vs. champion solution

From Theorems 1 and 2, the champion solution can be obtained using the ω-median if the
corresponding conditions are satisfied. For example, if uω is integer-valued and satisfies the
probability mass function (pmf) and cumulative density function (cdf) as shown in Fig. 1,
then the champion solution is 49, the ω-median marked as the bold line labeled with “CS”
in this case.

Another interesting solution with a different optimality type can also be derived based
on the pmf of uω, that is, the solution obtained using multinomial selection (Goldsman and
Nelson 1998; Miller et al. 1998; Vieira et al. 2014). For convenience, this solution is termed
as Multinomial Optimal Solution (MOS) in the rest of paper. The MOS is a solution with
the highest probability of being the actual best among all the solutions, that is, the solution
uMOS such that

uMOS = argmax
û∈�

{
Pr

[
J (û, ω) ≤ J (u, ω), ∀u ∈ �

]}
(18)

According to the definition of ω-solution uω in Eq. 5, if uω is a discrete random variable
and J (u, ω) is strictly unimodal, we have

Pr
[
uω = û

] = Pr
[
J (û, ω) ≤ J (u, ω), ∀u ∈ �

]
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Combining it with Eq. 18, we have

uMOS = argmax
û∈�

Pr
[
uω = û

]
. (19)

As shown in Fig. 1, since uω can only be integer-valued and it achieves the highest proba-
bility of 4.2% at uω = 41, the MOS is 41 (marked as the bold line labeled with “MOS”).
Clearly, MOS is not the same as CS for general cases. Their performance difference will be
demonstrated in the section of numerical results below for the inventory control problem.

Furthermore, it should be noted that the pdf and cdf of uω in Fig. 1 can only be estimated
through many replications. More replications is needed for a more accurate estimation of
MOS and CS. Since MOS is the solution with the highest probability of Pr [uω] as in Eq. 19,
a good estimation of MOS requires a good estimation of entire probability distribution of
uω, which consume a great number of Monte Carlo simulations. Moreover, the estimation
of MOS is sensitive and may vary considerably as the number of replications increases.

The champion solution can be estimated through the median of the probability distribu-
tion of uω if the conditions in Theorem 1 can be satisfied. A good estimation of CS does not
require a good estimation of the entire pdf of uω. Besides, the estimation of CS is not sensi-
tive and gradually changes as the number of replications increases. In the following section,
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we will develop an algorithm to obtain an estimation of CS and prove that this estimation
can approach an actual CS exponentially fast as the number of replications increases.

2.5 Omega Median Algorithm

Theorem 1 provides a sufficient existence condition for a champion solution for a class
of simulation-based optimization problems. If it is satisfied, then a champion solution is
guaranteed and can be efficiently obtained by computing the ω-median. We can efficiently
obtain an estimate of the ω-median using the Omega Median Algorithm (OMA) in Table 1
even though the closed form of the cdf and ccdf of uω cannot be derived in the class of
stochastic optimization problems in Eq. 1.

The median solution ûm derived in Step 3 of OMA is an estimator of the ω-median. Let
1(·) denote an indicator function and

GM(u) ≡ 1

M

∑M

j=1
1(uωj ≤ u);

ḠM(u) ≡ 1

M

∑M

j=1
1(uωj ≥ u).

Then, GM(u) and ḠM(u) are the unbiased estimates of the cdf and ccdf of uω respectively.
It can be easily verified that the median solution ûm is the solution that satisfies

GM(ûm) ≥ 0.5 and ḠM(ûm) ≥ 0.5.

For any given u, based on the strong law of large numbers, GM(u) and ḠM(u) converge to
Pr[uω ≤ u] and Pr[uω ≥ u] respectively w.p.1 (with probability 1) as M → +∞. Thus, ûm

also converges to an ω-median um w.p.1 as M → +∞.
Furthermore, ûm can approach an ω-median um exponentially fast as M increases as

shown in Theorems 3 and 4 below, which enables us to estimate the ω-median with a smaller
number M of sample paths.

Let Um denote the set of ω-medians satisfying Eq. 6 and Ûm
M denote the set of medians

based on estimated cdf and ccdf as shown below:

Um = {um : Pr[uω ≤ um] ≥ 0.5, Pr[uω ≥ um] ≥ 0.5}
Ûm

M = {ûm : GM(ûm) ≥ 0.5, ḠM(ûm) ≥ 0.5}

Theorem 3 If infum∈Um Pr(uω = um) > 0, then there always exists some constant C such
that

Pr[Ûm
M ∩ Um �= ∅] ≥ 1 − 2e−CM

Proof Without loss of generality, assume infum∈Um Pr(uω = um) = c > 0, Pr(uω < um) =
p1 and Pr(uω > um) = p2. From the definition of ω-median, we have p1 + c ≥ 0.5 and
p2 + c ≥ 0.5 for any um ∈ Um. Combining it with p1 + c + p2 = 1 and c > 0, we have

p1 < 0.5, p2 < 0.5.

Table 1 Omega Median
Algorithm Step 1: Randomly generate M sample-paths ω1, ..., ωM ;

Step 2: Obtain the ω-solutions, uωi , by solving the deterministic

ω-problems minu∈� J(u, ωi) for i = 1, ...,M;

Step 3: Find the median solution ûm from uω1 , ..., uωM .
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The event [Ûm
M ∩ Um �= ∅] is equivalent to the event [GM(um) ≥ 0.5 and ḠM(um) ≥

0.5|um ∈ Um], which can be further equivalently reduced to [LM(um) <

0.5 and L̄M(um) < 0.5|um ∈ Um], where

LM(u) = 1

M

M∑

j=1

1(uωj < u),

L̄M(u) = 1

M

M∑

j=1

1(uωj > u).

Therefore, we have

Pr[Ûm
M ∩ Um �= ∅]

= Pr[LM(um) < 0.5 and L̄M(um) < 0.5|um ∈ Um]
= 1 − Pr[LM(um) > 0.5 or L̄M(um) > 0.5|um ∈ Um]
= 1 − (

Pr[LM(um) > 0.5|um ∈ Um] + Pr[L̄M(um) > 0.5|um ∈ Um]) (20)

Clearly, 1(uωj < um), j = 1, ..., M are i.i.d. 0-1 random variables and E[1(uωj <

um)|um ∈ Um] = p1. Then, based on the Chernoff-Hoeffding Theorem (Hoeffding 1963),
we have for any ε > 0

Pr[LM(um) ≥ p1 + ε|um ∈ Um] ≤ e−D(p1+ε||p1)M

where D(x||y) = x log x
y

+ (1 − x) log 1−x
1−y

. Similarly, we can also have

Pr[L̄M(um) ≥ p2 + ε|um ∈ Um] ≤ e−D(p2+ε||p2)M

Combining the two inequalities above with p1 < 0.5 and p2 < 0.5, we further have

Pr[LM(um) > 0.5|um ∈ Um] ≤ Pr[LM(um) ≥ 0.5|um ∈ Um] ≤ e−D(0.5||p1)M

Pr[L̄M(um) > 0.5|um ∈ Um] ≤ Pr[L̄M(um) ≥ 0.5|um ∈ Um] ≤ e−D(0.5||p2)M

Combining them with Eq. 20, we can finally have

Pr[Ûm
M ∩ Um �= ∅] ≥ 1 − e−D(0.5||p1)M − e−D(0.5||p2)M

≥ 1 − 2e−CM

where C = min (D(0.5||p1),D(0.5||p2))

Theorem 4 If Pr(uω = um) = 0 for um ∈ Um, then for any ε > 0, there always exists
C > 0 such that

Pr
[ |GM(um) − 0.5| < ε

∣
∣um ∈ Um

] ≥ 1 − 2e−CM,

Pr
[ |ḠM(um) − 0.5 |< ε| um ∈ Um

] ≥ 1 − 2e−CM.

Proof From Pr(uω = um) = 0 and the definition of Um, we have

Pr[uω ≤ um|um ∈ Um] = 1 − Pr[uω ≥ um|um ∈ Um] = 0.5

which implies that

E
[
GM(um)|um ∈ Um

] = 0.5
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Since 1(uωj ≤ um), j = 1, ..., M are i.i.d. 0-1 random variables and E[1(uωj < um)|um ∈
Um] = 0.5, based on the Chernoff-Hoeffding Theorem (Hoeffding 1963), we have for any
ε > 0

Pr[GM(um) ≥ 0.5 + ε|um ∈ Um] ≤ e−D(0.5+ε||0.5)M and

Pr[GM(um) ≤ 0.5 − ε|um ∈ Um] ≤ e−D(0.5−ε||0.5)M

where D(x||y) = x log x
y

+ (1 − x) log 1−x
1−y

. Therefore, we have

Pr
[ |GM(um) − 0.5| < ε

∣
∣um ∈ Um

]

= 1 − Pr[GM(um) ≥ 0.5 + ε|um ∈ Um] − Pr[GM(um) ≤ 0.5 − ε|um ∈ Um]
≥ 1 − e−D(0.5+ε||0.5)M − e−D(0.5−ε||0.5)M

≥ 1 − 2e−CM.

where C = min (D(0.5 + ε||0.5),D(0.5 − ε||0.5)).
It can be similarly proved that Pr

[ |ḠM(um) − 0.5 |< ε| um ∈ Um
] ≥ 1 − 2e−CM .

Theorem 3 corresponds to the case that uω is discrete and Theorem 4 is mainly for the
case that uω is continuous. Theorem 3 has a stronger sense of convergence than Theorem 4,
which implies that ûm converges faster in discrete cases than in continuous ones.

3 An application: inventory control with nonstationary demand

To illustrate and interpret the use of the Omega Median Algorithm, we consider an on-
line periodic review inventory control problem with nonstationary demand as depicted in
Fig. 2 as a discrete event system (DES), in which fixed setup cost and full backlogging are
adopted. The following notation will be used in the rest of the paper:

– xi = Inventory level in period i;
– di = Demand in period i;
– ui = Order quantity in period i;
– h = Holding cost rate for inventory;
– p = Penalty cost rate for backlog;
– K = Fixed setup cost per order;

– δ(ui) =
{
1 ui > 0
0 ui = 0

.

The one-period demand di is nonstationary, i.e., its corresponding probability distribution
is arbitrary and allowed to vary and correlate over periods i.

An ordering event may be triggered at the beginning of a period, namely, an order of
ui items may be placed in period i. A fixed setup cost K will be triggered if ui > 0. The
inventory level xi is counted after the one-period demand di , i.e., xi = xi−1+ui −di , which
results in the maintenance cost of period i (either holding or shortage cost) defined below,

H(xi) = h · max(xi, 0) + p · max(−xi, 0). (21)

The average operating cost in each period, including both maintenance cost and setup cost,
determines the system performance.

The static (s, S) policy is an optimal policy for the cases with stationary demands using
optimality in expectation, which has been extensively studied for the inventory systems with
setup cost (Scarf 1959; Iglehart 1963; Veinott 1966; Zheng 1991; Beyer and Sethi 1999;
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Axsäter 2006). Once the two thresholds (s, S) are optimally determined, the corresponding
optimal ordering quantity can be simply derived as ui = S − xi−1 if xi−1 ≤ s and ui = 0
otherwise. Several efficient methods have been developed in Veinott and Wagner (1966),
Zheng and Federgruen (1991), and Fu (1994) to find the optimal static (s, S) policy for the
stationary cases. When nonstationary demand processes arise, the static (s, S) policy is not
optimal (Axsäter 2006): the optimal order decisions cannot be simply derived by optimizing
the two static thresholds (s, S). Even though for several special classes of nonstationary
demand in Zipkin (2000), Gallego and Özer (2001), the two-threshold policy can still be
optimal but no more static, i.e., the optimal policy becomes (si , Si) varying over period
i. The specialty and computational inefficiency limit the application of the two-threshold
policy for the nonstationary cases.

Some efforts have been made toward the nonstationary inventory control with fixed setup
cost (Askin 1981; Bookbinder and Tan 1988; Bollapragada and Morton 1999; Hua et al.
2009) and without setup cost (Treharne and Sox 2002; Levi et al. 2007; Neale and Willems
2009). A heuristic similar to Silver-Meal heuristics (Silver and Meal 1973) is proposed in
Askin (1981) and requires to explicitly compute the probability distributions of cumulative
demands, which is not plausible for demands with complicated patterns. In Bookbinder and
Tan (1988), Hua et al. (2009), static-dynamic uncertainty approaches were developed for
a class of nonstationary demand that still require the assumption of mutually independent
demands over periods. In Bollapragada and Morton (1999), nonstationary cases are approx-
imated by averaging demands over periods and then a stationary policy is computed by
utilizing the algorithm in Zheng and Federgruen (1991), which will be benchmarked against
the proposed Omega Median Algorithm in the numerical results section below.

Although general simulation-based methods can still be utilized to determine the best
order decision using optimality in expectation, they are computationally intensive or even
intractable as analyzed in Section 3.3. Instead, we pursue the best solution in the sense
of optimality in probability, namely, the “Champion Solution” , which is a very attractive
alternative when facing a nonstationary environment.

In the on-line inventory control process depicted in Fig. 2, we make an order decision
at the beginning of each period. The rolling horizon method can be applied, in which we
look ahead N periods and the actual performance over a specific N -period sample path
ω = {d1, d2, ..., dN } can be defined as the total cost:

JN(u1, u2, ..., uN , ω) =
∑N

i=1
(H(xi) + K · δ(ui))

s.t. xi = xi−1 − di + ui, i = 1, ..., N. (22)

Fig. 2 On-line inventory control process
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where H(xi) + K · δ(ui) is the operating cost in period i, including maintenance cost and
setup cost.

Since only the immediate-period order decision, u1, is required each time, we will focus
on u1 and optimally determine u2, ..., uN based on the choice of u1. Then, the actual per-
formance over a specific N -period sample path ω becomes solely associated with u1 as
follows:

JN(u1, ω) = (H(x1) + K · δ(u1))

+ min
u2,...,uN

∑N

i=2
(H(xi) + K · δ(ui))

s.t. xi = xi−1 − di + ui, i = 1, ..., N. (23)

In the ideal case of looking ahead for an infinite horizon, the actual performance over a
specific sample path ω can be formulated as the infinite-horizon average cost:

J (u1, ω) ≡ lim
N→+∞

1

N
{JN(u1, ω)} (24)

We aim at the champion solution using the actual (as opposed to expected) performance
function in Eq. 24.

3.1 Existence of champion solution

The inventory control problem can be solved by sequentially answering the two questions
below:

Question 1: Whether to order (Yes or No);

Question 2: How many items to order if “Yes” to Question 1.

Since Question 1 has only two options, its champion solution can be guaranteed and
easily obtained as follows,

{
Yes if Pr[uω

1 > 0] ≥ 50%
No otherwise.

where uω
1 is the ω-solution of minimizing J (u1, ω) in Eq. 24 and Pr[uω

1 > 0] is the
probability to place a positive order.

Question 2 is conditioned on “Yes” to Question 1, which implies that u1 > 0 in Question
2. In the following, we will verify the existence of a champion solution for u1 > 0 with the
help of the lemma below.

Lemma 1 JN(u1, ω) in Eq. 23 is strictly K-convex in u1 for u1 > 0, that is, for any
0 < u1 < u′

1 < u′′
1 , it holds that

K + JN(u′′
1, ω) > JN(u′

1, ω) +
(

u′′
1 − u′

1

u′
1 − u1

)

(JN(u′
1, ω) − JN(u1, ω)).

Proof It can be proved that LN(x1, ω) is K-convex in x1 using a similar way as shown
in Section 4.2 in Bertsekas (2000) (The definition of K-convex can be found in Bertsekas
2000, Scarf 1959). Combining it with x1 = u1 + x0 − d1, LN(u1 + x0 − d1, ω) is also
K-convex in u1.
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From the definition of H(x) in Eq. 21, H(x1) is strictly convex in x1, which implies
H(u1 + x0 − d1) is also strictly convex in u1.

Recalling the definition of JN(u1, ω) in Eq. 23. From u1 > 0, we have

JN(u1, ω) = H(u1 + x0 − d1) + K + LN(u1 + x0 − d1, ω)

Combining it with the fact that H(u1 + x0 − d1) is strictly convex in u1 and LN(u1 + x0 −
d1, ω) is K-convex in u1, we have JN(u1, ω) is strictly K-convex in u1 for u1 > 0.

Based on Lemma 1 and the definition of J (u1, ω) in Eq. 24, we prove the following
theorem.

Theorem 5 J (u1, ω) is strictly convex in u1 for u1 > 0.

Proof From Lemma 1, JN(u1, ω) is strictly K-convex in u1 for u1 > 0, that is, it satisfies
that for any 0 < u1 < u′

1 < u′′
1

K + JN(u′′
1, ω) > JN(u′

1, ω) +
(

u′′
1 − u′

1

u′
1 − u1

)

(JN(u′
1, ω) − JN(u1, ω)).

Then we apply limit operator at both sides and can have

lim
N→+∞

K+JN(u′′
1, ω)

N
> lim

N→+∞
JN(u′

1, ω)

N
+

(
u′′
1−u′

1

u′
1− u1

)

lim
N→+∞

(JN(u′
1, ω)− JN(u1, ω))

N

which implies that for any 0 < u1 < u′
1 < u′′

1,

J (u′′
1, ω) > J (u′

1, ω) +
(

u′′
1 − u′

1

u′
1 − u1

)

(J (u′
1, ω) − J (u1, ω)).

The inequality above is equivalent to the definition of strictly convex function, that is,
J (u1, ω) is strictly convex in u1 for u1 > 0.

Theorem 5 implies that J (u1, ω) is strictly unimodal for u1 > 0, which satisfies the
sufficient existence condition identified in Theorem 1 and paves the way to the uniqueness
of a champion solution using Theorem 2. Therefore, a champion solution can be guaranteed
to address Question 2 and can be obtained using OMA, which may be also unique if the
probabilistic condition in (999) can be verified in the simulation results.

3.2 Implementation of OMA

Although di , i = 1, 2, . . ., is nonstationary, we can still estimate their probability distribu-
tions based on the most recently updated information. Sample paths can then be randomly
generated in Step 1 of OMA using these estimates.

Step 2 of OMA determines the major portion of its computational complexity, which can
be largely reduced if we manage to find an efficient algorithm to solve the corresponding
ω-problems. In the context of this inventory control problem, the ω-problem is to find the
ω-solution uω

1 of minimizing J (u1, ω) in Eq. 24. This ω-solution uω
1 can be well approx-

imated by minimizing JN(u1, ω) in Eq. 23 with a large enough N . Furthermore, it can
be easily verified that, if u∗

1, ...u
∗
N can minimize JN(u1, ..., uN , ω) in Eq. 22, then u∗

1 can
also minimize JN(u1, ω) in Eq. 23. Therefore, we can finally obtain the ω-solution uω

1 by
minimizing JN(u1, ..., uN , ω) in Eq. 22 with a sufficiently large N .
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The problem of minimizing JN(u1, ..., uN , ω) in Eq. 22 is closely related to the fol-
lowing problem in Eq. 25, which is a dynamic lot-sizing problem with backlogging as
defined in the literature. Several methods have been developed to solve this type of prob-
lems. The seminal work was the one developed in Wagner and Whitin (1958) to solve the
case without backlogging. Then in Zangwill (1966), although backlogging is considered,
it is required to generate dominant set and its size grows exponentially with respect to N .
Finally, in Federgruen and Tzur (1991), Federgruen and Tzur (1993), highly efficient algo-
rithms were developed to solve the dynamic lot-sizing problem for both cases without and
with backlogging.

min
u1,...,uN

∑N

i=1
{H(xi) + K · δ(ui)}

s.t. xi = xi−1 − di + ui, i = 1, ..., N;
∑N

i=1
ui + x0 =

∑N

i=1
di . (25)

The only difference between the two problems results from the second constraint, which
can be interpreted as the condition of “zero inventory at last”. Since profits earned from
sales are not included in the objective, it would never be optimal to place a new order at the
last period which would mostly end up with a negative inventory level. The terminal effect
of “ordering nothing at last” and “ending with negative inventory” are quite undesirable.
Solving the problem in Eq. 25 instead with the extra second constraint can be very helpful
in approximating the ω-solution when using a relatively small N . Since the problem in
Eq. 25 has been well studied in Federgruen and Tzur (1993), we can efficiently solve each
ω-problem with complexity O(N logN) for general cases.

The remaining Step 3 of OMA can be trivially fulfilled once we have M ω-solutions.

3.3 Complexity analysis

Clearly, the complexities of Step 1 and 3 of OMA are O(MN) andO(M) respectively. With
the help of the algorithm in Federgruen and Tzur (1993), the complexity of Step 2 is O(M ·
N logN). Thus, we can finally efficiently obtain a champion solution of the nonstationary
inventory control problem in complexity O(M · N logN) by applying OMA.

If we try a general simulation-based optimization method using optimality in expec-
tation, then we need to solve the following stochastic optimization problem (26) at each
decision point:

min
u1

J̄N (u1) = E

{

(H(x1) + K · δ(u1))

+ min
μ2,...,μN

E

{∑N

i=2
(H(xi) + K · δ(ui))

}}

s.t. xi = xi−1 − di + ui, i = 1, ..., N;
ui = μi(xi−1), i = 2, ..., N. (26)

where μi(·) is the feedback control policy to determine ui based on the state xi−1. Clearly,
even for a given u1, computing J̄N (u1) is a notoriously hard dynamic programming prob-
lem. Although a heuristic termed “Hindsight Optimization” (Chong et al. 2000) can be
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employed to approximate the second term in the objective of Eq. 26 as the expected
hindsight-optimal value below,

E

{

min
u2,...,uN

∑N

i=2
(H(xi) + K · δ(ui))

}

,

still requires a complexity of O(M · N logN) to assess a specific choice of u1. Moreover,
it needs to go through a search process to get a near optimal u1. If there are a total of
I solutions explored in the process, then the total computational complexity is O(M · I ·
N logN), which is an order of magnitude higher than that of OMA.

4 Numerical results

We illustrate the performance of champion solution through numerical examples. The
following parameters are identical to those used in Zheng (1991):

– Fixed Setup Cost K = 64;
– Holding Cost Rate h = 1;
– Penalty Cost Rate p = 9.

The mean value μi will be randomly picked from a set of numbers between 10 and 75
in increments of 5, that is, {10, 15, 20, ..., 70, 75}. The champion solution will be bench-
marked against the (s, S) policy and the multinomial optimal solution for both stationary
and nonstationary cases. Before proceeding to the comparisons, we will first demonstrate
the approximation of ω-median and its convergence rate with respect to the number of
replications.

4.1 ω-median approximation

An example of estimating the ω-median is shown in Fig. 3, in which M = 200 sample-
paths are generated. The ω-solutions are obtained by solving 200 corresponding ω-problems
through the algorithm in Federgruen and Tzur (1993). The solid line in Fig. 3 is the cdf
function of the ω-solution constructed based on these sample-paths. The estimate of the
ω-median is um = 78, which is indicated through the dashed line.

4.2 Convergence of ω-median in M

The convergence of the ω-median in the number of sample-paths M is shown in Fig. 4, in
which M varies from 10 to 1000 in increments of 10. It can be seen that the estimate of the
ω-median quickly converges within 100 replications, which supports the result in Theorem
3.

4.3 Stationary cases

We set μ = 20 to simulate stationary cases. Then the optimality in expectation can be
achieved using the optimal static policies (s∗, S∗), which have been exactly derived by
using the algorithm in Zheng and Federgruen (1991) for stationary cases with different μ.
This provides us an opportunity to benchmark the performance of the champion solution
against the best solution in the sense of “optimality in expectation”. In the following, we will
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compare the actual performance of the three methods described below in 1000 randomly
generated instances.

1. Method SS: Order decisions are directly obtained according to the optimal static policy
(s∗ = 14, S∗ = 62) as obtained in Zheng and Federgruen (1991);

2. Method MS: Order decisions are derived by using multinomial selection with M =
1000 sample paths at the beginning of each period, namely, the estimates of multinomial
optimal solutions;

3. Method CS: Order decisions are obtained by using the ω-median approximation with
M = 1000 sample paths at the beginning of each period, namely, the estimates of
champion solutions.

Pairwise comparisons are carried out between these methods. The comparison between
CS and SS is depicted in Fig. 5. The upper plot shows the percentage of instances that CS is
no worse than SS changes as more instances are simulated. The percentage is 55.30% after
finishing 1000 instances. The lower plot shows that the mean fractional actual cost differ-
ence changes along with more instances simulated. The fractional actual cost difference is
calculated as (Ccs−Css)

Css
, where Css and Ccs are the costs of using the methods SS and CS

respectively. Within 1000 instances, the mean cost of CS is 1.51% less than the one of SS.
Based on the numerical results above, the performance difference between CS and SS is
very small and the champion solution can perform as well as the optimal (s∗, S∗) policy in
the stationary cases.

The comparison between CS and MS is depicted in Fig. 6. Its upper and lower plots
and the ones in the following figures are similarly defined as in Fig. 5. Based on the 1000
instances simulated, the percentage of instances that CS is no worse thanMS is 68.80% and
the mean cost of CS is 5.21% less than the one of MS. Therefore, the champion solution
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(CS) more likely performs better than the multinomial optimal solution (MOS) and CS is
also about 5% better than MOS in cardinal value.

We can zoom in on a certain instance to get a more detailed analysis about the perfor-
mance difference between MOS and CS. Figure 1 is actually an example of the estimated
pmf and cdf of uω based on 1000 replications for the inventory control problem. As shown
before, CS is 49 and MOS is 41 in this case. We start with the comparison between the
MOS, i.e., 41 and its neighboring solution of 42. Since the inventory control problem sat-
isfies the condition in Theorems 1 and 2, we can use the similar reasoning adopted in the
proof of theorems to derive the following two probability:

Pr
[
J (uMOS, ω) < J(42, ω)

]
= Pr

[
uω ≤ uMOS = 41

]
= 31.6%

Pr
[
J (42, ω) < J (uMOS, ω)

]
= Pr

[
uω ≥= 42

] = 68.4%

which means that the solution of 42 is better than MOS with a probability of 68.4% and
worse than MOS with a probability of 31.6%. However, Pr [uω = 42] = 2.1%, which is a
lot smaller than Pr

[
uω = uMOS = 41

] = 4.2% as shown in Fig. 1. Therefore, the solution
û with inferior performance based on the probability of Pr

[
J (û, ω) ≤ J (u, ω), ∀u ∈ �

]

may still be better than MOS in the majority of cases. The comparisons can be furthered.
Although 42 seems better than MOS in more cases, we can similarly derive that

Pr [J (42, ω) < J (43, ω)] = Pr
[
uω ≤ 42

] = 33.7%

Pr [J (43, ω) < J (42, ω)] = Pr
[
uω ≥ 43

] = 66.3%

Pr
[
J (43, ω) < J (uMOS, ω)

]
≥ Pr

[
uω ≥ 43

] = 66.3%
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which implies that the solution of 43 is better than both MOS and 42 with probability
greater than or equal to 66.3%. Similar comparison results can be derived until the champion
solution of 49, which can be better than all of these solutions in more cases.

The comparison between MS and SS is depicted in Fig. 7. Based on the 1000 instances
simulated, the percentage of instances thatMS is no worse than SS is 39.80% and the mean
cost of MS is 3.91% higher than the one of SS. Therefore, the (s∗, S∗) policy more likely
performs better than MOS and MOS is also about 4% worse than the (s∗, S∗) policy in
cardinal value.

To summerize, for the stationary cases, the (s∗, S∗) policy and the champion solution
perform similarly and they are all better than the multinomial optimal solution.

4.4 Nonstationary cases

Based on historical data, practitioners can usually observe and estimate some demand pat-
tern over periods, that is, a sequence of different expected demand μi for period i, before
placing orders. We set different μi for each period to simulate the situation in the nonsta-
tionary cases. In particular, to reflect different demand pattern observed, we randomly select
μi from the values listed in {10, 15, 20, ..., 70, 75}. We again generate 1000 instances to
compare the three methods:

1. Method SS: Order decisions are directly obtained according to a heuristic nonstationary
policy (si , Si) for each period i. A common heuristic method is to determine (si , Si)

according to μi in the corresponding period i as if demands are stationary with the
mean value of μi . For example, if μ1 = 15, μ2 = 30, μ3 = 20, ..., then we can
look up the table obtained in Zheng and Federgruen (1991) to find their corresponding
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optimal values, choose (s1 = 10, S1 = 49), (s2 = 23, S2 = 66), (s3 = 14, S3 =
62), ...,to apply in period 1, 2, 3, ...,respectively. Clearly, this heuristic (si , Si) policy
is not optimal for the nonstationary case.

2. MethodMS: Order decisions are similarly obtained based on the multinomial solutions
as theMS used for stationary cases.

3. Method CS: Order decisions are similarly obtained based on the champion solutions as
the CS used for stationary cases.

The comparison between CS and SS is shown in Fig. 8. Based on the 1000 instances
simulated, the percentage of instances that CS is no worse than SS is 95.30% and the mean
cost of CS is 16.43% less than the one of SS. Therefore, the champion solution performs
better than the heuristic (s, S) policy in almost all of the instances and CS is also about 16%
better than the heuristic (s, S) policy in cardinal value.

The comparison between CS and MS is depicted in Fig. 9. Based on the 1000 instances
simulated, the percentage of instances that CS is no worse thanMS is 72.40% and the mean
cost of CS is 5.03% less than the one of SS. Therefore, CS much more likely performs
better than MOS and it is also about 5% better than MOS in cardinal value.

The comparison betweenMS and SS is depicted in Fig. 10. Based on the 1000 instances
simulated, the percentage of instances thatMS is no worse than SS is 88.40% and the mean
cost of MS is 12.00% less than the one of SS. Therefore, MOS performs better than the
heuristic (s, S) policy in most of the instances and MOS is also about 12% better than the
heuristic (s, S) policy in cardinal value.
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To summarize, for the nonstationary cases, the champion solution still performs better
than the multinomial optimal solution and they are all much better than the heuristic (s, S)

policy.

5 Conclusion

An alternative optimality sense, optimality in probability, is proposed in this paper. The
best solution using optimality in probability is termed a “Champion Solution” whose actual
performance is more likely better than that of any other solution. A sufficient existence and
uniqueness condition for the champion solution are proved for a class of simulation-based
optimization problems. A highly efficient method, the Omega Median Algorithm (OMA), is
developed to compute the champion solution without iteratively exploring better solutions
based on sample average approximations. OMA can reduce the computational complexity
by orders of magnitude compared to general simulation-based optimization methods using
optimality in expectation.

The champion solution becomes particularly meaningful when facing a nonstationary
environment. As shown in the application of inventory control with nonstationary demand,
the solution using optimality in expectation is not necessarily optimal and is computation-
ally intractable in a dynamic environment. The champion solution is a good alternative and
computationally promising. Its corresponding solution algorithm, OMA, can fully utilize the
efficiency of existing well-developed off-line algorithms to further facilitate timely decision
making, which is preferable in a dynamic environment with limited computing resources.
Moreover, even for some stationary scenarios as shown in the numerical results, the “Cham-
pion Solution” can still achieve a performance comparable to the one using optimality in
expectation.

It is nontrivial to show the existence of a champion solution and OMA cannot be directly
applied when facing general cases with multiple decision variables. Some partial decom-
position methods can be utilized to reduce the original problem into scalar optimization
problems, which is quite common for dynamic programming problems with separable cost
functions. Nonetheless, the existence issue is still troublesome and limits the application of
champion solutions. A possible generalized version of champion solution is one defined as
the solution uc that achieves the maximum of q(·):

q(uc) = max
û

{

q(û) = max
q

{
q : Pr [J (û, ω) ≤ J (u, ω)

] ≥ q, ∀ u ∈ �
}
}

or equivalently,

q(uc) = max
û

{

q(û) = min
u∈�

{
Pr

[
J (û, ω) ≤ J (u, ω)

]}
}

It can be easily verified that the champion solution defined in Eq. 2 is a special case of this
generalized version. Moreover, the existence of this generalized champion solution can be
guaranteed for general cases. We will aim at generalizing the concept of champion solution
and extend it to a wider class of multidimensional stochastic optimizat ion problems in
future work.
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