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Abstract We address the traffic light control problem for multiple intersections in tandem
by viewing it in a stochastic hybrid system setting and developing a Stochastic Flow Model
(SFM) for it. Our model includes roads with finite vehicle capacity, which may lead to
additional delays due to traffic blocking. Using Infinitesimal Perturbation Analysis (IPA),
we derive on-line gradient estimators of an average traffic congestion metric with respect to
the controllable green and red cycle lengths. The IPA estimators obtained require counting
traffic light switchings and estimating car flow rates only when specific events occur. The
estimators are used to iteratively adjust light cycle lengths to improve performance and, in
conjunction with a standard gradient-based algorithm, to seek optimal values which adapt
to changing traffic conditions. Simulation results are included to illustrate the approach.
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FP Full Period
G2R GREEN light to RED light
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NFP Non-Full Period
R2G RED light to GREEN light
SCATS Sydney Coordinated Adaptive Traffic System
SCOOT Split, Cycle, and Offset Optimization Technique
SFM Stochastic Flow Model
SHA Stochastic Hybrid Automaton
TLC Traffic Light Control

1 Introduction

Traffic lights at intersections are the main traffic flow control mechanism in urban road
networks. Traffic lights were originally installed in order to guarantee the safe crossing of
antagonistic streams of vehicles and pedestrians. With steadily increasing traffic demand,
it was soon realized that their presence may also be used to regulate the efficiency of
road network operations, hence there must exist an optimal control strategy leading to the
minimization of the total time spent by all vehicles in the network (Papageorgiou et al.
2003).

The Traffic Light Control (TLC) problem aims at dynamically controlling the flow of
traffic at an intersection through the timing of green/red light cycles with the objective
of reducing congestion, hence also the delays incurred by drivers. The general problem
involves a set of intersections and traffic lights with the objective of reducing overall con-
gestion over an area covering multiple urban blocks. Control strategies employed for TLC
problems are generally classified into two categories: fixed-cycle strategies and traffic-
responsive strategies. Fixed-cycle strategies are derived off-line based on historical demand
and turning rate data for each stream; traffic-responsive strategies make use of real-time
measurements to calculate and adjust in real-time the best signal settings (Papageorgiou
et al. 2003). Recent technological developments involving better, inexpensive sensors and
wireless sensor networks have enabled the collection of data (e.g., counting vehicles in a
specific road section) which can be used for traffic-responsive strategies. Thus, methodolo-
gies that it would not be possible to implement not long ago are now becoming feasible.
The approach proposed in this paper to the TLC problem is specifically intended to exploit
these recent developments.

Traffic-responsive strategies calculate control parameters according to prevailing traffic
conditions. They typically respond to changing traffic demand by performing incremental
optimization. The most notable of these are SCATS and SCOOT. SCATS (Sydney Coor-
dinated Adaptive Traffic System) (Lowrie 1982) is a real-time control system based on a
decentralized architecture. It optimizes the length of cycle times and signal offsets, and
allows some phases to be skipped at times. SCOOT (Split, Cycle, and Offset Optimiza-
tion Technique) (Hunt et al. 1982; Robertson and Bretherton 1991) is a centralized traffic
control system, which includes a network model fed with real measurements (instead of
historical values) and runs repeatedly in real time to investigate the effect of incremental
changes in splits, offsets, and cycle time at individual intersections. If the changes turn out
to be beneficial in terms of a performance index, they are submitted to the local signal con-
trollers. Other notable methods under development over the past decade include PRODYN
(Henry and Farges 1990), OPAC (Gartner 1983) and RHODES (Sen and Head 1997). These
are all traffic-responsive optimization schemes, with various levels of traffic modeling and
network-wide optimization capabilities. These strategies do not consider explicitly splits,
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offsets, or cycles. Based on prespecified staging, they calculate in real time the optimal
values of the next few switching times over a future time horizon.

Numerous algorithms have been proposed to solve the TLC problem. Fuzzy logic is
adopted in adaptive traffic signal control to model an expert’s knowledge in the situation
where development of an exact mathematical model of the phenomenon is very difficult
or even impossible (Niittymaki et al. 2002). Pappis and Mamdani (1977) pioneered the
implementation of fuzzy logic in a single intersection of two one-way streets without turn-
ing traffic. More single-intersection TLC using fuzzy logic can be found in Murat and
Gedizlioglu (2005), Trabia et al. (1996) and Wei et al. (2001), where situations such as
four-approach streets, left-turning traffic and oversaturated intersections are considered.
Nakatsuyama et al. (1984) implemented a fuzzy logic control in two consecutive junc-
tions with one-way movements. Lee et al. presented a fuzzy traffic controller for a set of
intersections (Lee et al. 1995), each of which has its own traffic controller.

Using the techniques of Expert Systems (ES), Findler and Stapp (1992) described the
control of traffic signals by a network of distributed processors situated at street intersec-
tions. Every processor runs an identical expert system and communicates directly with the
four adjacent processors. Evolutionary algorithms are also applied in the TLC problem. For
example, an improved immunity genetic algorithm was proposed in Liu et al. (2006), a
chaos-particle swarm optimization algorithm and catastrophe-particle swarm optimization
algorithm were proposed in Dong (2004, 2006), and an ant algorithm was used in Wen and
Wu (2005).

Besides artificial intelligence techniques, a game theoretic viewpoint is given in Alvarez
and Poznyak (2010), while a hybrid system formulation is presented in Zhao and Chen
(2003). It is formulated as a Mixed Integer Linear Programming (MILP) problem in
Dujardin et al. (2011), and as an Extended Linear Complementary Problem (ELCP) in
DeSchutter (1999). In Porche and Lafortune (1999), the authors proposed an ALLONS-D
framework (Adaptive Limited Lookahead Optimization of Network Signals - Decentral-
ized), which is a decentralized method based on the Rolling Horizon (RH) concept.

Since traffic control is fundamentally a problem of sequential decision making, while at
the same time it is a task too complex for straightforward computation of optimal solutions,
it is well suited to the framework of Markov Decision Processes (MDP) (Yu and Recker
2006) and Reinforcement Learning (RL). Reinforcement learning with full state represen-
tation has been proposed in Abdulhai et al. (2003) for a single traffic junction. In Prashanth
and Bhatnagar (2011), an RL algorithm with function approximation together with certain
graded-feedback policies is proposed. More TLC approaches using RL can be found in
Thorpe (1997), Wiering et al. (2004), Bazzan (2009).

Perturbation analysis techniques were first used in Head et al. (1996) and a formal
approach using Infinitesimal Perturbation Analysis (IPA) (Cassandras and Lafortune 2008)
to solve the TLC problem was presented in Panayiotou et al. (2005) for a single intersec-
tion. A Stochastic Fluid Model (SFM) was used to capture the dynamics of the queues
formed at an intersection. Estimators of the gradient of a performance measure for traffic
congestion with respect to the control parameters were derived based on SFMs. These esti-
mators are evaluated based on observations on the actual Discrete-Event System (DES).
The resulting estimates are used with stochastic approximation algorithms to determine the
optimal timing. In Geng and Cassandras (2012b), we also studied the TLC problem for
a single intersection using a Stochastic Flow Model (SFM) and Infinitesimal Perturbation
Analysis (IPA) and in Geng and Cassandras (2012a) we extended our method to multiple
intersections in tandem, where we assumed all roads have infinite capacity so that there
is no traffic blocking. In this paper, we relax this assumption, so the upstream traffic flow
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may be blocked if the downstream road is full. Interestingly, in the case of an intersection
upstream from the blocked road section, all traffic streams that share this intersection will
be blocked, potentially propagating congestion in multiple upstream directions. Therefore,
minimizing the probability of blocking becomes much more critical than in strictly serial
network configurations.

In our analysis, we adopt a stochastic hybrid system modeling framework (Cassandras
and Lygeros 2006), since the problem involves both event-driven dynamics in the switch-
ing of traffic lights and time-driven dynamics that capture the flow of vehicles through an
intersection. Although one can also view this as a purely Discrete Event System (DES)
with the intersection area as a “server” processing “users” (vehicles), the fact that a vehi-
cle does not exclusively occupy this area makes a flow-based viewpoint a more accurate
way to model such a process. A SFM as introduced in Cassandras et al. (2002) treats flow
models as stochastic processes. In the TLC problem, this is consistent with continuously
and randomly varying traffic flows, especially in heavy traffic conditions. With only minor
technical assumptions imposed on the properties of such processes, a general IPA theory
for stochastic hybrid systems was recently presented in Wardi et al. (2010) and Cassandras
et al. (2010) through which one can estimate on-line gradients of certain performance mea-
sures with respect to various controllable parameters. These estimates may be incorporated
in standard gradient-based algorithms to optimize system parameter settings. IPA estimates
become biased when dealing with aspects of queueing systems such as multiple user classes,
blocking due to limited resource capacities, and various forms of feedback control. The use
of IPA in stochastic hybrid systems, however, circumvents these limitations and yields sim-
ple unbiased gradient estimates (under mild technical conditions) of useful metrics (see Yao
and Cassandras 2011.) As we will also see, IPA is an event-driven method which scales with
the number of observed events over a sample path, not the number of states in the system
which is often explosive as its size increases.

The rest of this paper is organized as follows. In Section 2, we formulate the TLC prob-
lem for two intersections and construct a SFM. In Section 3, we derive an IPA estimator
for a cost function gradient with respect to a controllable parameter vector defined by green
and red cycle lengths. Based on this, we also develop a gradient-based algorithm to seek
optimal cycle lengths. Simulation-based examples are given in Section 4 and we conclude
with Section 5.

2 Problem formulation

In this paper, we concentrate on solving the TLC problem for two fully coupled intersec-
tions. The same analysis can be readily extensed to N intersections in tandem. As shown
in Fig. 1, there are four roads and four traffic lights, with each traffic light controlling the
associated incoming traffic flow. The traffic in road 1 of intersection I1 flows into road 3
of I2. For simplicity, we make the following assumptions: (i) Left-turn and right-turn traf-
fic flows are not considered, i.e., traffic lights only control vehicles going straight. (ii) A
YELLOW light is combined with a RED light (therefore, the YELLOW light duration is
not explicitly controlled).

2.1 System dynamics

The system involves a number of stochastic processes which are all defined on a common
probability space (�, F, P ). Each of the four roads is considered as a queue with a random
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Fig. 1 Two traffic intersections in tandem

arrival flow process {αn(t)}, n = 1, . . . , 4, where αn(t) is the instantaneous vehicle arrival
rate at time t. When the traffic light corresponding to road n is GREEN, the departure flow
process is denoted by {βn(t)}, n = 1, . . . , 4. Letting the GREEN light duration in a cycle
of queue n be θn, then the controllable parameter vector of interest is θ = [θ1, . . . , θ4]. We
define a state vector x(θ, t) = [x1(θ, t), ..., x4(θ, t)] where xn(θ, t) ∈ R

+ is the content of
queue n = 1, ..., 4. We use the notation xn(θ, t) to emphasize the dependence of the queue
content on θ ; however, for notational simplicity, we will write xn(t) when no confusion
arises. Let sn denote the capacity of queue n, n = 1, . . . , 4. Since we do not consider the
traffic flow (blocked or not) outside these two intersections, we set s1, s2 and s4 to be infinite
and keep only s3 finite.

We define a “clock” state variable zn(t), n = 1, ..., 4, associated with the GREEN light
cycle for queue n as follows:

żn(t) =
{

1 if 0 < zn(t) < θn or zn̄(t) = θn̄

0 otherwise

zn(t
+) = 0 if zn(t) = θn (1)

where n̄ is the index of the road perpendicular to road n at the same intersection (e.g., if
n = 1, then n̄ = 2). We set z(t) = [z1(t), ..., z4(t)]. Thus, zn(t) measures the time since the
last switch from RED to GREEN of the traffic light for queue n. It is reset to 0 as soon as the
GREEN cycle length θn is reached and remains at this value while the light is GREEN for
queue n̄; as soon as that cycle ends, i.e., zn̄(t) = θn̄, then żn(t) = 1 and the process repeats.

To simplify notation, we define Gn(z, θ) ∈ {0, 1} and set Gn(z, θ) = 1 if the Boolean
expression used in (1), i.e., [0 < zn(t) < θn or zn̄(t) = θn̄], is true (light is Green) and
Gn(z, θ) = 0 otherwise. We can now write the dynamics of each state variable xn(t), n =
1, . . . , 4, as follows:

ẋn(t) =
⎧⎨
⎩

αn(t) if Gn(z, θ) = 0
0 if xn(t) = 0 and αn(t) ≤ βn(t)

αn(t) − βn(t) otherwise
(2)
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where, for n = 2, 3, 4:

βn(t) =
⎧⎨
⎩

hn(t) if Gn(z, θ) = 1 and xn(t) > 0
αn(t) if Gn(z, θ) = 1 and xn(t) = 0
0 otherwise

(3)

In (3), {hn(t)}, defined for all n = 1, . . . , 4, describes the departure rate process if the road
is not empty. This is an external input process depending on vehicle behavior. In general,
we should write hn(xn, t), since this behavior may depend on the traffic conditions in the
road section associated with xn(t). In this paper, we will make the simplifying assumption
that hn(xn, t) is not dependent on xn(t). It will become clear from our analysis that the
IPA estimators obtained can be extended to include such more elaborate traffic dynamics.
The definition of β1(t), omitted from (3), is more complicated due to the fact that it is also
affected by x3(t), especially when x3(t) = s3. Omitting arguments from Gn(z, θ), xn(t),
hn(t), αn(t),we have:

β1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 if G1 = 1, x1 > 0, x3 < s3
or G1 = G3 = 1, x1 > 0, x3 = s3, h1 < h3

α1 if G1 = 1, x1 = 0, x3 < s3
or G1 = G3 = 1, x1 = 0, x3 = s3, α1 < h3

h3 if G1 = G3 = 1, x1 > 0, x3 = s3, h1 ≥ h3
or G1 = G3 = 1, x1 = 0, x3 = s3, α1 ≥ h3

0 otherwise

(4)

In (4), when queue 3 is not full (x3 < s3), then β1(t) is the same as (3). However, when
queue 3 is full (x3 = s3) and it has a GREEN light, then β1(t) is affected by the departure
rate of queue 3 and cannot exceed h3(t). If, on the other hand, queue 3 has a RED light,
then departures from queue 1 are blocked, i.e., β1(t) = 0.

Let us now focus on the dynamics of queues 1,3 since they are directly coupled with
each other. Clearly the arrival process of queue 3 is determined by the departure process of
queue 1:

α3(t) = β1(t) (5)

Combining (2) and (4), we get the dynamics of queue 1 and of queue 3 as follows:

ẋ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 if G1 = 0 or G1 = 1, x3 = s3, G3 = 0
α1 − h1 if G1 = 1, x1 > 0 and

(x3 < s3 or x3 = s3,G3 = 1, h1 < h3)

α1 − h3 if G1 = G3 = 1, x3 = s3 and
(x1 = 0, α1 ≥ h3 or x1 > 0, h1 ≥ h3)

0 otherwise

(6)

ẋ3(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 if G3 = 0,G1 = 1, x1 > 0, x3 < s3 (7.1)

α1 if G3 = 0,G1 = 1, x1 = 0, x3 < s3 (7.2)

h1 − h3 if G3 = G1 = 1, x1 > 0 and
(0 < x3 < s3 or x3 = s3, h1 < h3) (7.3)

α1 − h3 if G3 = G1 = 1, x1 = 0 and
(0 < x3 < s3 or x3 = s3, α1 < h3) (7.4)

−h3 if G3 = 1,G1 = 0, x3 > 0 (7.5)

0 otherwise (7.6)

(7)
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Fig. 2 The Stochastic Hybrid Automaton for queue 4

Finally, taking into account the fact that the whole intersection I1 is blocked when queue
3 is full, we have:

ẋ2(t) =
⎧⎨
⎩

α2 if G2 = 0 or G2 = 1, x3 = s3
α2 − h2 if G2 = 1, x2 > 0 and x3 < s3
0 otherwise

(8)

2.2 Stochastic hybrid automaton

The operation of the intersection can be viewed as a hybrid system with the time-driven
dynamics described by (1)–(8) and event-driven dynamics, which are dictated by GREEN-
RED light switches, by events causing xn(t) to switch from positive to zero or vice versa,
and by events causing queue 3 to become full or not full.

Using the standard definition of a Stochastic Hybrid Automaton (SHA) (e.g., see
Cassandras and Lafortune 2008), we may obtain a SHA model for each queue. We only
present the SHA for queue 4 (Fig. 2) which has the simplest dynamics, and queue 3 (Fig. 3)
which has the most complicated state transitions. The labeling of the six modes in Fig. 3
corresponds to the six cases with the same labels in (7). The SHA for the other two queues
can be similarly obtained. We note that the IPA analysis that follows is based on the formal
SFM described by (1)–(8) and does not explicitly involve their SHA counterparts.

A typical sample path of any one of the queue contents (as shown in Fig. 4) consists of
intervals over which xn(t) > 0, which we call Non-Empty Periods (NEPs), followed by
intervals where xn(t) = 0, which we call Empty Periods (EPs). Thus, the entire sample
path consists of a series of alternating NEPs and EPs. For any NEP, the queue may become
full for some intervals, which we call Full Periods (FPs); we call the remaining intervals
Non-Full Periods (NFPs). In this model, FPs only arise in the case of queue 3.
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Fig. 3 The Stochastic Hybrid Automaton for queue 3

The event set that affects queue n is defined as �n = {e1, e2, e3, e4, e5, e6, e7} where e1

is a switch in the sign of αn(t) − βn(t) from non-positive to strictly positive; e2 is a switch
in the sign of αn(t) − βn(t) from non-negative to strictly negative; e3 is a switch in the sign
of αn(t) from 0 to strictly positive; e4 is the event terminating a NEP (and initiating an EP),
i.e., a transition form xi > 0 to xi = 0; e5 is the event initiating a FP, i.e., a transition form
xi < si to xi = si ; e6 is a light switch from RED to GREEN; and e7 is a light switch from
GREEN to RED. For easier reference, we label e4 as “En” for the end of NEP events, e5 as
“SFn” for the start of FP events, e6 as “R2Gn” and e7 as “G2Rn” for the light switching
events. The start of a NEP is an event “induced” by either e1 or e3 or e7 which we will refer
to as an “Sn” event. The end of a FP is an event “induced” by either e2 or e6 which we will
refer to as an “EFn” event.

The event set associated with queue 3 includes all those events that cause a jump in the
value of ẋ3(t) in (7). As we can see from Fig. 3, every event in �1 also affects the dynamics
of queue 3 and similarly for queue 1. Thus, we have

�3 = {S1, E1, R2G1,G2R1, S3, E3, R2G3,G2R3, SF3, EF3} (9)

�1 = {S1, E1, R2G1,G2R1, SF3, EF3} (10)

Note that there are no SF1 or EF1 events since we consider s1 to be infinite.
Returning to Fig. 4, the mth NEP in a sample path of queue 3, m = 1, 2, . . ., is denoted by

[ξ3,m, η3,m), i.e., ξ3,m, η3,m are the occurrence times of the mth S3 and E3 event respectively
at this queue. During the mth NEP, t

j

3,m, j = 1, . . . , J3,m, denotes the time when an event
in �3 occurs.
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Fig. 4 A typical sample path of traffic light queue 3

2.3 Objective function

Our objective is to select θ so as to minimize a cost function that measures a weighted mean
of the queue lengths over a fixed time interval [0, T ]. In particular, we define the sample
function

L(θ; x(0), z(0), T ) = 1

T

4∑
n=1

∫ T

0
wnxn(θ, t)dt (11)

where wn is a cost weight associated with queue n and x(0), z(0) are given initial conditions.
It is obvious that since xn(t) = 0 during EPs of queue n, we can rewrite (11) in the form

L(θ; x(0), z(0), T ) = 1

T

4∑
n=1

Mn∑
m=1

∫ ηn,m(θ)

ξn,m(θ)

wnxn(θ, t)dt (12)

where Mn is the total number of NEPs during the sample path of queue n. For convenience,
we also define

Ln,m(θ) =
∫ ηn,m(θ)

ξn,m(θ)

xn(θ, t)dt (13)

to be the cost associated with the mth NEP of queue n. We can now define our overall
performance metric:

J (θ; x(0), z(0), T ) = E[L(θ; x(0), z(0), T ] (14)

Since we do not impose any limitations on the processes {αn(t)} and {βn(t)}, it is infeasible
to obtain a closed-form expression of J (θ; x(0), z(0), T ). The only assumption we make
is that αn(t), βn(t) are piecewise continuous w.p. 1. The value of IPA as developed for
general stochastic hybrid systems in Cassandras et al. (2010) lies in providing an estimate
of the performance metric gradient ∇J (θ), by evaluating the sample gradient ∇L(θ). These
estimates are unbiased under mild technical conditions as discussed in Cassandras et al.
(2010). Moreover, an important property of IPA estimates is that they are often independent
of the unknown processes {αn(t)} and {βn(t)} or they depend on values of αn(t) or βn(t) at
specific event times only. One can then use this information to either improve performance
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or, under appropriate conditions, solve an optimization problem and determine an optimal
θ∗ through an iterative scheme:

θi,k+1 = θi,k − γkHi,k(θk, x(0), T , ωk), k = 0, 1, ... (15)

where Hi,k(θk, x(0), T , ωk) is an estimate of dJ/dθi (in our case, the IPA derivative esti-
mate) based on the information obtained from the sample path denoted by ωk , and γk is the
stepsize at the kth iteration. Next we will focus on obtaining dL/dθi , i = 1, ..., 4. We may
then also obtain θ∗ through (15), provided that the random processes {αn(t)} and {βn(t)}
are stationary over [0, T ]. We will assume that the derivatives dL/dθi , exist for all θi ∈ R

+
w.p. 1.

Finally, it is worth pointing out that the choice of cost function in (11) does not restrict
our analysis. This is because the IPA estimators we derive are for state and event time sen-
sitivities, therefore, any cost or performance criterion expressed in terms of these variables
can be accommodated in this framework subject only to some technical conditions (see
Cassandras and Lafortune 2010).

3 Infinitesimal perturbation analysis

Consider a sample path of the system over [0, T ] and let τk(θ) denote the occurrence time
of the kth event (of any type), where we stress its dependence on θ . To simplify notation,
we define the derivatives of the states xn(t, θ) and event times τk(θ) with respect to θi ,
i = 1, . . . , 4, as follows:

x′
n,i(t) ≡ ∂xn(θ, t)

∂θi

, τ ′
k,i ≡ ∂τk(θ)

∂θi

(16)

Taking derivatives with respect to θi in (12), we obtain

dL(θ)

dθi

= 1

T

4∑
n=1

Mn∑
m=1

[∫ ηn,m(θ)

ξn,m(θ)

wnx
′
n,i(t)dt

+wnxn(ηn,m)
∂ηn,m

∂θi

− wnxn(ξn,m)
∂ξn,m

∂θi

]

Since, at the start and end of a NEP xn(ξn,m) = xn(ηn,m) = 0, this reduces to

dL(θ)

dθi

= 1

T

4∑
n=1

Mn∑
m=1

∫ ηn,m

ξn,m

wnx
′
n,i(t)dt (17)

≡ 1

T

4∑
n=1

Mn∑
m=1

wn

dLn,m(θ)

dθi

where the last equality follows from the definition (13).

3.1 IPA review

Before proceeding, we provide a brief review of the IPA framework for general stochastic
hybrid systems as presented in Cassandras et al. (2010). Let {τk(θ)}, k = 1, . . . , K , denote
the occurrence times of all events in the state trajectory. For convenience, we set τ0 = 0 and
τK+1 = T . Over an interval [τk(θ), τk+1(θ)), the system is at some mode during which the
time-driven state satisfies ẋ = fk(x, θ, t). An event at τk is classified as (i) Exogenous if
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it causes a discrete state transition independent of θ and satisfies dτk

dθ
= 0; (ii) Endogenous,

if there exists a continuously differentiable function gk : Rn ×  → R such that τk =
min{t > τk−1 : gk(x (θ, t), θ) = 0}; and (iii) Induced if it is triggered by the occurrence of
another event at time τm ≤ τk . IPA specifies how changes in θ influence the state x(θ, t) and
the event times τk(θ) and, ultimately, how they influence interesting performance metrics
which are generally expressed in terms of these variables.

Given θ = [θ1, . . . , θ�]T, we use the Jacobian matrix notation: x′(t) ≡ ∂x(θ,t)
∂θ

, τ ′
k ≡

∂τk(θ)
∂θ

, k = 1, . . . , K , for all state and event time derivatives. It is shown in Cassandras et al.
(2010) that x′(t) satisfies:

d

dt
x′(t) = ∂fk(t)

∂x
x′(t) + ∂fk (t)

∂θ
(18)

for t ∈ [τk, τk+1) with boundary condition:

x′(τ+
k ) = x′(τ−

k ) + [
fk−1(τ

−
k ) − fk(τ

+
k )

]
τ ′
k (19)

for k = 0, . . . , K . In addition, in (19), the gradient vector for each τk is τ ′
k = 0 if the event

at τk is exogenous and

τ ′
k = −

[
∂gk

∂x
fk(τ

−
k )

]−1 (
∂gk

∂θ
+ ∂gk

∂x
x′(τ−

k )

)
(20)

if the event at τk is endogenous (i.e., gk (x (θ, τk) , θ) = 0) and defined as long as
∂gk

∂x
fk(τ

−
k ) 
= 0.

In our problem, according to (2), (6) and (7), we have ∂fn,k

∂xn
= ∂fn,k

∂θi
= 0 between two

events, and we get d
dt

x′
n,i(t) = 0 in (18). Therefore, x

′
n,i(t) remains constant over all t ∈

[τk, τk+1):

x′
n,i(t) = x′

n,i(τ
+
k ), t ∈ [τk, τk+1) (21)

3.2 State and event time derivatives

In what follows, we focus on each event type at queue 3, identified in the set �3 in (9), and
derive the corresponding event time derivatives. Based on these, we can then also derive
x′

3,i (t) and hence dL3,m/dθi . This analysis also covers all cases for queues 1, 2 and 4,
which have simpler dynamics. Thus, we will not consider them separately (original deriva-
tions of these simpler cases were first given in Geng and Cassandras 2012b). However, due
to the blocking effects considered in this paper, there are some cases where x′

1,i (t) and
x′

2,i (t) are different from the original analysis in Geng and Cassandras (2012b). When these
cases arise based on the dynamics in (6) and (8), we will also derive x′

1,i (t) and x′
2,i (t).

(1) Event E1 ends a NEP of queue 1. This is an endogenous event that occurs when
gk(x(θ, t), θ) = x1(θ, t) = 0. Using (20) and observing that f1,k−1(τ

−
k ) = α1(τ

−
k )−

h1(τ
−
k ) from (2), we get

τ ′
k,i = −x′

1,i (τ
−
k )

α1(τ
−
k ) − h1(τ

−
k )

Looking at (7), we have either f3,k−1(τ
−
k ) = h1(τ

−
k ) − h3(τ

+
k ) and f3,k(τ

+
k ) =

α1(τ
−
k ) − h3(τ

+
k ) when G3(z, θ) = 1, or f3,k−1(τ

−
k ) = h1(τ

−
k ) and
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f3,k(τ
+
k ) = α1(τ

−
k ) when G3(z, θ) = 0. In both cases, f3,k−1(τ

−
k ) − f3,k(τ

+
k ) =

h1(τ
−
k ) − α1(τ

−
k ). Using these values in (19) along with τ ′

k,i above we get

x′
3,i (τ

+
k ) = x′

3,i (τ
−
k ) + x′

1,i (τ
−
k ), i = 1, . . . , 4 (22)

As we can see, x′
3,i (τ

+
k ) explicitly depends on x′

1,i (τ
−
k ). This indicates that a “pertur-

bation” in the content of queue 1 “propagates” downstream to queue 3 whenever an
EP at queue 1 takes place.

(2) Event E3 ends a NEP of queue 3. This is an endogenous event occurring when

x3(θ, t) = 0. Using (20), we get τ ′
k,i = −x′

3,i
(τ−

k )

f3,k−1(τ
−
k )

. According to (7), we have

f3,k(τ
+
k ) = 0. Using these values in (19) along with τ ′

k,i above we get

x′
3,i (τ

+
k ) = x′

3,i (τ
−
k ) − f3,k−1(τ

−
k )

x′
3,i (τ

−
k )

f3,k−1(τ
−
k )

= 0, i = 1, . . . , 4 (23)

This indicates that these state derivatives at queue 3 are always reset to 0 upon ending
a NEP of queue 3.

(3) Event G2R1. This is an endogenous event that occurs when z1(τk) = θ1. The
following lemma allows us to determine τ ′

k,i .

Lemma 1 Let ζ1,k be the total number of G2R1 events that have occurred before or
at τk , and ρ1,k be the total number of R2G1 events that have occurred before or at
τk . Then, τ

′
k,1 = ζ1,k , τ

′
k,2 = ρ1,k , τ

′
k,3 = 0 and τ

′
k,4 = 0

Proof Since the event at τk is the ζ1,kth occurrence of a G2R1 event, we can write
τk = ζ1,kθ1 + ρ1,kθ2 − K(z(0)) where K(z(0)) is a constant (independent of θ1)
dependent on the initial conditions z1(0), z2(0). It immediately follows that τ ′

k,1 =
ζ1,k . A similar argument yields τ ′

k,2 = ρ1,k and τ ′
k,3 = τ ′

k,4 = 0.

According to (7), we have either f3,k−1(τ
−
k ) − f3,k(τ

+
k ) = h1(τ

−
k ) (from (7.1)-

(7.6), or (7.3)-(7.5)), or f3,k−1(τ
−
k ) − f3,k(τ

+
k ) = α1(τ

−
k ) (from (7.2)-(7.6), or

(7.4)-(7.5)). Using (3), we can combine these two situations so that f3,k−1(τ
−
k ) −

f3,k(τ
+
k ) = β1(τ

−
k ). It then follows from (19) that

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) + β1(τ

−
k )ζ1,k i = 1

x
′
3,i (τ

−
k ) + β1(τ

−
k )ρ1,k i = 2

x
′
3,i (τ

−
k ) i = 3, 4

(24)

It is worth pointing out that if G2R1 occurs while x3 = s3, the value of ẋ2(t) in
(8) does not change due to blocking, i.e., f2,k−1(τ

−
k ) = f2,k(τ

+
k ) = α2(τk). Thus,

using (19) we get x
′
2,i (τ

+
k ) = x

′
2,i (τ

−
k ) for all i = 1, . . . , 4.

(4) Event G2R3. This is an endogenous event that occurs when z3(τk) = θ3. τ ′
k,i is

determined by the following lemma whose proof is similar to that of Lemma 1.

Lemma 2 Let ζ3,k be the total number of G2R3 events that have occurred before or
at τk , and ρ3,k be the total number of R2G3 events that have occurred before or at
τk . Then, τ

′
k,3 = ζ3,k , τ

′
k,4 = ρ3,k , τ

′
k,1 = 0 and τ

′
k,2 = 0
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From (7), if x3(τ
−
k ) > 0, we have f3,k−1(τ

−
k ) − f3,k(τ

+
k ) = −h3(τ

−
k ) (from

(7.3)-(7.1), or (7.4)-(7.2), or (7.5)-(7.6)). According to (19),

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) i = 1, 2

x
′
3,i (τ

−
k ) − h3(τ

−
k )ζ3,k i = 3

x
′
3,i (τ

−
k ) − h3(τ

−
k )ρ3,k i = 4

(25)

If x3(τ
−
k ) = 0, f3,k−1(τ

−
k )−f3,k(τ

+
k ) = −β1(τ

+
k ) (from (7.6)–(7.1), or (7.6)–(7.2)).

Then,

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) i = 1, 2

x
′
3,i (τ

−
k ) − β1(τ

+
k )ζ3,k i = 3

x
′
3,i (τ

−
k ) − β1(τ

+
k )ρ3,k i = 4

(26)

In this case, we see that the value of x
′
3,i (τ

+
k ) depends on whether the G2R3 event

occurs when there is any traffic waiting at the light or not.
(5) Event R2G1. This is similar to case (3) and we obtain x

′
3,i (τ

−
k ) without giving

details:

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) − β1(τ

+
k )ζ1,k i = 1

x
′
3,i (τ

−
k ) − β1(τ

+
k )ρ1,k i = 2

x
′
3,i (τ

−
k ) i = 3, 4

(27)

Similar to case (3), if R2G1 occurs while x3 = s3, we also have f2,k−1(τ
−
k ) =

f2,k(τ
+
k ) = α2(τk). Hence, using (19), x

′
2,i (τ

+
k ) = x

′
2,i (τ

−
k ) for all i = 1, . . . , 4.

(6) Event R2G3. This is similar to case (4) and we obtain x
′
3,i (τ

−
k ) without giving

details:

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) i = 1, 2

x
′
3,i (τ

−
k ) + h3(τ

+
k )ζ3,k i = 3

x
′
3,i (τ

−
k ) + h3(τ

+
k )ρ3,k i = 4

(28)

(7) Event S1 starts a NEP of queue 1 As already mentioned, this is an event induced
by e5, e2, or e1(see Fig. 5). Consequently, there are three possible cases to consider
as follows.

Case (7a) A NEP of queue 1 starts right after a G2R1 event. This is an endoge-
nous event and was analyzed in Case (3). Since x1(τ

−
k ) = 0, we have

β1(τ
−
k ) = α1(τ

−
k ) in (3) and we get in (24):

x
′
3,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
3,i (τ

−
k ) + α1(τ

−
k )ζ1,k i = 1

x
′
3,i (τ

−
k ) + α1(τ

−
k )ρ1,k i = 2

x
′
3,i (τ

−
k ) i = 3, 4

(29)

Case (7b) A NEP of queue 1 starts while z1(τk) = 0, z2(τk) > 0. This is an
exogenous event occurring during a RED cycle for queue 1 and is due
to a change in α1(τk) from zero to a strictly positive value. Therefore,
τ ′
k,i = 0. We then have from (19):

x
′
3,i (τ

+
k ) = x

′
3,i (τ

−
k ), i = 1, 2, 3, 4 (30)

Case (7c) A NEP of queue 1 starts while z2(τk) = 0, z1(τk) > 0. This is an
exogenous event occurring during a GREEN cycle for queue 1 due to a
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Fig. 5 Three ways for starting a NEP

change in α1(τk) or β1(τk) that results in α1(τk)−β1(τk) switching from
a non-positive to a strictly positive value. The analysis is exactly the same
as Case (7b) above and (30) applies.

(8) Event S3 starts a NEP of queue 3. This is similar to Case (7), and there are also
three possible cases.

Case (8a) A NEP of queue 3 starts right after a G2R3 event. This is an endogenous
event and was analyzed in Case (4). In particular, since x3(τ

−
k ) = 0, (26)

applies. Suppose that this is the mth NEP, i.e., τk = ξ3,m. We have already
shown in (23) that x′

3,i (η
+
n,m−1) = 0. In addition, we have x3(t) = 0 over

the interval [η3,m−1, ξ3,m), thus x′
3,i (t) = 0 for all t ∈ [η3,m−1, ξ3,m) and

we get x
′
3,i (τ

−
k ) = x

′
3,i (ξ

−
k ) = 0. Therefore, x

′
3,i (τ

+
k ) in (26) becomes

x
′
3,i (τ

+
k ) =

⎧⎨
⎩

0 i = 1, 2
−β1(τ

+
k )ζ3,k i = 3

−β1(τ
+
k )ρ3,k i = 4

(31)

Case (8b) A NEP of queue 3 starts while z3(τk) = 0, z4(τk) > 0. This may hap-
pen in two ways. First, α3(τk) becomes positive because a R2G1 event
occurs. Then (27) applies, where x

′
3,i (τ

−
k ) = 0. Second, β1(τk) becomes

positive because either h1(τk) or α1(τk) switches from 0 to a strictly
positive value, either being an exogenous event. Therefore,

x
′
3,i (τ

+
k ) = x

′
3,i (τ

−
k ) = 0, i = 1, 2, 3, 4 (32)

Case (8c) A NEP of queue 3 starts while z4(τk) = 0, z3(τk) > 0. This may
also happen in two ways. First, x3(τ

+
k ) becomes positive because a

R2G1 event occurs, which makes α3(t) larger. Then (27) applies, where
x

′
3,i (τ

−
k ) = 0. Second, it is due to a change of value in either h1(τk) or

α1(τk) or β3(τk), which are all exogenous events. Therefore, x
′
3,i (τ

+
k ) is

the same as in (32).

Author's personal copy



Discrete Event Dyn Syst (2015) 25:7–30 21

(9) Event SF3 starts a FP of queue 3. This is an endogenous event that occurs when
gk(x(θ, t), θ) = x3(θ, t) − s3 = 0. Using (20), we get

τ ′
k,i = −x′

3,i (τ
−
k )

f3,k−1(τ
−
k )

(33)

This event may happen either (i) when queue 3 has a RED light and queue 1 has
a GREEN light, or (ii) both queues 1 and 3 have a GREEN light but the departure
rate of queue 1 exceeds that of queue 3.

Looking at (7), in case (i), ẋ3(t) switches from (7.1) to (7.6) or from (7.2) to
(7.6). In case (ii), we have either h1(t) > h3(t) or α1(t) > h3(t), so that ẋ3(t)

switches either from (7.3) to (7.6) or from (7.4) to (7.6). In all such cases, we have
f3,k(τ

+
k ) = 0, hence f3,k−1(τ

−
k ) − f3,k(τ

+
k ) = f3,k−1(τ

−
k ). Combining this with

(33), it follows from (19) that

x′
3,i (τ

+
k ) = 0, i = 1, . . . , 4 (34)

Observe that this event also affects the dynamics of queue 1 in (6) and queue 2
in (8) due to the presence of the condition x3 = s3, which was not encountered in
our earlier work (Geng and Cassandras 2012a) where blocking was ignored. We first
derive x′

1,i (τ
+
k ) as follows.

Looking at (6), let us consider once again cases (i) and (ii) above. In case (i), if
x1(t) > 0, then ẋ1(t) switches from α1(t)−h1(t) to α1(t) and we have: f1,k−1(τ

−
k )−

f1,k(τ
+
k ) = −h1(t) and f3,k−1(τ

−
k ) = h1(t). Thus, according to (19) x′

1,i (τ
+
k ) =

x′
1,i (τ

−
k ) + x′

3,i (τ
−
k ). Similarly, if x1(t) = 0, then ẋ1(t) switches from 0 to α1(t) and

we have: f1,k−1(τ
−
k ) − f1,k(τ

−
k ) = −α1(t), and f3,k−1(τ

−
k ) = α1(t), leading again

to x′
1,i (τ

+
k ) = x′

1,i (τ
−
k ) + x′

3,i (τ
−
k ). In case (ii), while x1(t) > 0, ẋ1(t) switches

from α1(t) − h1(t) to α1(t) − h3(t), so that f1,k−1(τ
−
k ) − f1,k(τ

+
k ) = h3(t) − h1(t),

and f3,k−1(τ
−
k ) = h1(t) − h3(t). Thus, (19) gives x′

1,i (τ
+
k ) = x′

1,i (τ
−
k ) + x′

3,i (τ
−
k ).

Similarly, this equation also applies while x1(t) = 0. To conclude, in all cases we
have:

x′
1,i (τ

+
k ) = x′

1,i (τ
−
k ) + x′

3,i (τ
−
k ), i = 1, . . . , 4

This is the dual of (22) where we can see, that x′
1,i (τ

+
k ) explicitly depends

on x′
3,i (τ

−
k ). In this case, a “perturbation” in the content of queue 3 “propagates”

upstream to queue 1 whenever an FP at queue 3 takes place.
Similarly, we derive x′

2,i (τ
+
k ). Since an SF3 event occurs only when queue 1 has a

GREEN light, queue 2 must then have a RED light at τk . Looking at (8), f2,k(τ
+
k ) =

f2,k−1(τ
−
k ) = α2(τk). Thus x′

2,i (τk) does not change:

x′
2,i (τ

+
k ) = x′

2,i (τ
−
k ), i = 1, . . . , 4 (35)

(10) Event EF3 ends a FP of queue 3. Looking at the case in (7) where ẋ3 = 0 with
x3 = s3, we can see that this event occurs because the inflow rate of queue 3, β1,
becomes lower that the outflow rate β3. There are four possible cases to consider.

Case (10a) FP ends when queue 3 has a RED light and a R2G3 event occurs. In this
case, the departure rate at queue 3 switches from 0 to h3 > 0. This is an
endogenous event which was analyzed in Case (6). According to (34),
x′

3,i (t) is reset to 0 when the FP starts. During the FP, we have x3(t) =
s3, therefore x′

3,i (t) = 0 holds during the whole FP and x′
3,i (τ

−
k ) = 0.
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Thus, (28) becomes

x
′
3,i (τ

+
k ) =

⎧⎨
⎩

0 i = 1, 2
h3(τ

+
k )ζ3,k i = 3

h3(τ
+
k )ρ3,k i = 4

(36)

For queue 1, if G1(τk) = 1, we have f1,k−1(τ
−
k ) = α1(τk) because

the departure process is blocked, and f1,k(τ
+
k ) = α1(τk) − h1(τk)

because the queue 1 departure process is resumed and h1(τk) < h3(τk).
Hence we have f1,k−1(τ

−
k ) − f1,k(τ

+
k ) = h1(τk). Based on Lemma 2,

we have τ
′
k,3 = ζ3,k , τ

′
k,4 = ρ3,k , τ

′
k,1 = 0 and τ

′
k,2 = 0. Thus, according

to (19) we get

x
′
1,i (τ

+
k ) = x

′
1,i (τ

−
k ) +

⎧⎨
⎩

0 i = 1, 2
h1(τ

+
k )ζ3,k i = 3

h1(τ
+
k )ρ3,k i = 4

(37)

If, on the other hand, G1(τk) = 0, we have f1,k−1(τ
−
k )−f1,k(τ

+
k ) = 0,

so that

x
′
1,i (τ

+
k ) = x

′
1,i (τ

−
k ) i = 1, 2, 3, 4 (38)

Similarly, we derive x′
2,i (τ

+
k ). If G2(τk) = 1, we have f2,k−1(τ

−
k ) =

α2(τk) because the departure process is blocked, and f2,k(τ
+
k ) =

α2(τk) − h2(τk) because the queue 2 departure process is resumed.
Hence, we have f2,k−1(τ

−
k ) − f2,k(τ

+
k ) = h2(τk). Therefore,

x
′
2,i (τ

+
k ) = x

′
2,i (τ

−
k ) +

⎧⎨
⎩

0 i = 1, 2
h2(τ

+
k )ζ3,k i = 3

h2(τ
+
k )ρ3,k i = 4

(39)

If G2(τk) = 0, x′
2,i (τk) does not change and (35) applies.

Case (10b) FP ends when both queues 1,3 have a GREEN light, and a G2R1 event
occurs. In this case, β1(t) decreases from a positive value to 0. This is
an endogenous event which was analyzed in Case (3) and (24) applies
for x′

3,i (τ
+
k ) where x′

3,i (τ
−
k ) = 0 since, x3(t) = s3 during the whole FP,

therefore x′
3,i (t) = 0. For x′

1,i (τ
+
k ), we have (see Geng and Cassandras

2012b):

x
′
1,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
1,i (τ

−
k ) − β1(τ

−
k )ζ1,k i = 1

x
′
1,i (τ

−
k ) − β1(τ

−
k )ρ1,k i = 2

x
′
1,i (τ

−
k ) i = 3, 4

(40)

Similarly for x
′
2,i (τ

+
k ), we have f2,k−1(τ

−
k ) − f2,k(τ

+
k ) = β2(τk), and

x
′
2,i (τ

+
k ) =

⎧⎪⎨
⎪⎩

x
′
2,i (τ

−
k ) + β2(τ

+
k )ζ1,k i = 1

x
′
2,i (τ

−
k ) + β2(τ

+
k )ρ1,k i = 2

x
′
2,i (τ

−
k ) i = 3, 4

(41)

Case (10c) FP ends when both queues 1,3 have a GREEN light, and a E1 event
occurs. In this case, β1(t) decreases from h1(t) to α1(t) or 0. This is also
an endogenous event analyzed in Case (1) and (22) applies for x′

3,i (τ
+
k )
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Fig. 6 Transition diagram summarizing x
′
3,3 updated after each event

where x′
3,i (τ

−
k ) = 0. For x′

1,i (τ
+
k ), we have (see Geng and Cassandras

2012b):

x′
1,i (τ

+
k ) = 0, i = 1, . . . , 4 (42)

Finally, since E1 must occur while G2(t) = 0, (35) applies for x
′
2,i (τ

+
k ).

Case (10d) FP ends when both queues 1,3 have a GREEN light, and the sign of
β1(t) − h3(t) randomly switches from non-negative to strictly negative.
This occurs because either h3(t) increases or β1(t) decreases. In the
former case, h3(t) increasing is obviously an exogenous event, hence
τ ′
k,i = 0. What causes β1(t) to decrease could also be an exogenous

event, e.g., either α1(t) or h1(t) randomly decreases in (3). In this case,
it follows from (19) that

x
′
3,i (τ

+
k ) = x

′
3,i (τ

−
k ) i = 1, 2, 3, 4 (43)

x
′
1,i (τ

+
k ) = x

′
1,i (τ

−
k ) i = 1, 2, 3, 4 (44)

x
′
2,i (τ

+
k ) = x

′
2,i (τ

−
k ) i = 1, 2, 3, 4 (45)

This completes the derivation of all state and event time derivatives required to evalu-
ate the sample performance derivative in (17). Figure 6 is used to illustrate all transitions
involved in the evaluation of x

′
3,3 after each event, using the notation Sa

3 to represent event
S3 corresponding to case a in (31) as opposed to cases b, c in (32). Similar notation applies
for Sb

3 , Sc
3, EFa

3 , EFb
3 , EF c

3 , EFd
3 . Similar transition diagrams can be used to summarize

the evaluation of all other state derivations based on the above results (22)–(45). It is worth
pointing out in Fig. 6 that there is only one case where x

′
3,3 is coupled to another state

derivatives: when E1 or EFc
3 occurs.

Using the definition of Ln,m(θ) in (13), note that we can decompose (17) into its NEPs
and evaluate the derivatives dLn,m(θ)/dθi as shown next.
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3.3 Cost derivative

By virtue of (21), x′
n,i(t) is piecewise constant during a NEP and its value changes only at

an event point t
j
n,m, j = 1, ..., Jn,m. Therefore, we have

dLn,m(θ)

dθi

= x′
n,i(ξ

+
n,m)

(
t1
n,m − ξn,m

)
+ x′

n,i

(
(t

Jn,m
n,m )+

) (
ηn,m − t

Jn,m
n,m

)

+
Jn,m∑
j=2

x′
n,i

(
(t

j
n,m)+

) (
t
j
n,m − t

j−1
n,m

)

Clearly, x′
n,i at each event point is determined by (19) which in turn depends on the event

type at t
j
n,m, j = 1, ..., Jn,m and is given by the corresponding expression in (22) through

(45). An explicit closed-form expression of dLn,m(θ)/dθi may be obtained in this manner
but becomes complicated. However, an algorithm that updates dLn,m(θ)/dθi after every
observed event is simple to implement.

More importantly, note that this IPA derivative depends on the following information:

i) the number of events in each NEP Jn,m

ii) the number of total G2Rn events ζn,k

iii) the number of total R2Gn events ρn,k

iv) the event times ξn,m, ηn,m and t
j
n,m

v) the arrival and departure rates αn(τk), βn(τk) at G2Rn and R2Gn event times only.

The quantities in (i) − (iv) are easily observed through counters and timers. The rates
in (v) may be obtained through simple rate estimators. We emphasize that they are only
needed at G2Rn and R2Gn event times, which are deterministic and pre-determined once
the control parameter θ is chosen.

It is important to point out that IPA is an event-driven method, scalable in the number of
observed events over a sample path. Moreover, each step of an IPA estimator processes a
specific event in the event set, so that many of the observed events trigger the same form of
computation. As the complexity of a system grows in the number of states, the cardinality

Fig. 7 Sample trajectories of J and θ using IPA

Author's personal copy



Discrete Event Dyn Syst (2015) 25:7–30 25

Table 1 IPA vs BF method
results: s3 = 1000,
1/α = [4, 4, 4]

w BF IPA

θ∗ J ∗ θ∗ J ∗

[1,1,1,1] [15,15,15,15] 5.4 [15,15,15,15] 5.4

[10,1,1,1] [27,15,15,29] 16.6 [28.8,15,15,27.8] 17.5

[1,5,5,1] [15,23,17,21] 12.6 [15.1,18.6,15.6,18.5] 13.2

[5,1,1,10] [25,15,15,25] 22.0 [22.1,15,15,22.9] 22.5

[1,10,1,1] [15,29,15,29] 16.3 [15, 31.2,18.1,26.6] 17.2

of the event set generally grows at a much lower rate and, on occasion, may not even change
since new state transitions may be caused by the same types of events already included in the
event set �n. Thus, even though the complexity of the hybrid automata shown in Figs. 2 and
3 may rapidly increase with the number of traffic flows and intersections, the IPA estimator
depends only on the events causing state transitions and not the states themselves.

4 Simulation examples

In this section, we describe how the IPA estimators derived for the SFM can be used to
determine optimal light cycles for two intersections modeled as a DES. We apply the IPA
estimators using actual data from an observed sample path of the system (in this case, by
simulating it as a pure DES).

We assume cars arrive according to a Poisson process with rate ᾱn, n = 1, 2, 4 (as already
emphasized, our results are independent of this distribution.). We also assume cars depart at
a rate hn(t) which we fix to be a constant Hn when the road is not empty. We also constrain
θi, i = 1, ..., 4, to take values in an interval [θmin, θmax].

For the simulated DES model, we use a brute-force (BF) method to find an optimal θ∗
BF :

we discretize all real values of θi and for θi, i = 1, ..., 4 combinations we run 10 sample
paths to obtain the average total cost. The value of θ∗

BF is the one generating the least
average cost, to be compared to θ∗

IPA, the IPA-based method where a standard gradient-
based iteration in θ is used. In our simulations, we estimate αn(τk) at an event time τk

through Na/tw by counting car arrivals Na over a time window tw around τk: [τk−tw/2, τk+
tw/2].

In our first example, we set ᾱn = 1/4, n = 1, 2, 4, Hn = 1, n = 1, . . . , 4, θmin = 15sec,

θmax = 40sec, T = 1000sec, initial queue content X0 = [5, 1, 5, 1] and initial GREEN
light starting at queue 1 and 3, i.e., z1(0) = z3(0) = 0 and ż1(0) = ż3(0) = 1. We first

Table 2 IPA vs BF method
results: s3 = 10, 1/α = [4, 4, 4] w BF IPA

θ∗ J ∗ θ∗ J ∗

[1,1,1,1] [15,15,15,15] 5.5 [15,15,15,15] 5.5

[10,1,1,1] [29,15,24,15] 18.5 [27.3,15,255.5,15] 17.7

[1,5,5,1] [15,23,17,21] 13.3 [15,20.2,15,21.6] 13.6

[5,1,1,10] [21,15,15,31] 24.8 [23.2,15,15,32.1] 22.9

[1,10,1,1] [15,29,15,29] 17.0 [15, 31.2,15,28.7] 17.3
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Fig. 8 J ∗
IPA at different red + green cycle length T2

set s3 = 1000, which is long enough to avoid blocking. Figure 7 shows typical sample
trajectories of J and θ using the IPA-based method where w = [10, 1, 1, 1] and initial
θ0 = [25, 30, 30, 25]. The light cycles are adjusted after every iteration whose duration is
T. More results are shown in Table 1. We then set the capacity of queue 3 at s3 = 10.
Simulation results in this case are shown in Table 2 using the same settings. As we can see,
θ∗
IPA is numerically close to the best values obtained by the BF method. Note that the BF

method becomes impractical when the number of controllable parameters or their range is
large. However, the IPA method is scalable and still effective in such situations. In addition,
we observe that the optimal cost obtained in all cases in Table 2 is slightly larger compared
to Table 1, which is due to the blocking effect at queue 3, as expected.

An interesting observation is that the value of (θ3 + θ4) ≡ T1 is approaching that of
(θ1 + θ2) ≡ T2 if T is sufficiently large. This indicates that the two intersections tend to
have the same traffic light switching cycle to balance traffic flows. For example, in Fig. 8,
we set w = [1, 10, 1, 1] and change T2 to obtain J ∗

IPA while keeping T1 = 44. As we can
see, the minimum J ∗

IPA is achieved when T1 = T2, which also matches the observations
under independent θi .

Based on this observation, we carry out additional simulation examples by setting the
“GREEN plus RED” cycle to a fixed value for each intersection. With this constraint, we
only need to find optimal θ∗

1 and θ∗
3 , since θ∗

2 = T1 − θ∗
1 and θ∗

4 = T2 − θ∗
3 . We let T1 =

T2 = 40, which restricts the two intersections to have the same traffic light switching cycle.
Table 3 shows the simulation results obtained under different traffic intensities, with w =
[1, 1, 1, 1] and T = 3000. We make the following observations: (1) if queue 1 has a larger

Table 3 IPA vs BF method
under different traffic intensities 1/α BF IPA

[θ∗
1 , θ∗

3 ] J ∗ [θ∗
1 , θ∗

3 ] J ∗

[2,2,3] [19, 23] 72.8 [19.9, 20.0] 56.9

[2,3,3] [23, 23] 18.5 [22.5, 23.0] 16.1

[3,3,2] [17, 17] 15.9 [17.5, 17.0] 14.5

[4,4,3] [15, 15] 7.1 [16.1, 15.8] 7.1

[3,3,5] [21, 21] 8.9 [19.0, 19.6] 8.5
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Table 4 IPA vs BF method
under different X0 X0 1/α BF IPA

[θ∗
1 , θ∗

3 ] J ∗ [θ∗
1 , θ∗

3 ] J ∗

[8,1,8,1] [1.5,3,2] [21,21] 229 [25.9,25.5] 207

[8,1,3,1] [1.5,3,2] [22,21] 222 [25.4,25.2] 199

[3,1,8,1] [1.5,3,2] [21,22] 223 [24.4,24.1] 197

[100,1,3,1] [1.5,3,2] [23,23] 312 [24.7,24.2] 293

[100,1,2,1] [5,3,2] [17,17] 23.3 [16.1,17.5] 22.0

incoming traffic rate than queue 4, then queue 3 has a longer GREEN cycle than queue 4;
(2) if queue 4 has a larger incoming traffic rate than queue 1, then queue 2 has a longer
GREEN cycle than queue 1 even if they have the same arrival rate. All these observations
are reasonable because the optimal traffic light settings seek to coordinate two intersections
to avoid traffic blocking.

We are also interested to see the optimal control parameters under different initial traffic
conditions, as shown in Table 4. Clearly θ∗ depends on the initial queue content. An inter-
esting case is when X0 = [100, 1, 2, 1]. Even though there is high traffic at queue 1 initially,
the future incoming traffic flow is relatively low. Thus the GREEN cycle at queue 1 is still
less than queue 2 over T = 3000.

Figure 9 shows the optimal cost and GREEN cycle length when the capacity of queue
3 varies, where we set 1/α = [2, 3, 2] and initial GREEN light at queue 1 and 4, i.e.,
z1(0) = z4(0) = 0 and ż1(0) = ż4(0) = 1. Now the GREEN light starting times of
queue 1 and queue 3 do not match, thus more blocking events may occur; this suggest that
such traffic light offset is another controllable parameter which may be used to improve
performance. As we can see, there is less blocking (less cost) with larger queue 3 capacity.

It must be pointed out that the BF method does not provide a “true” optimal, since the
DES model of the traffic system is as much an approximation as the SFM based on which
IPA operates. Thus, the comparative results should be interpreted accordingly.

Fig. 9 Optimal parameters at different s3
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5 Conclusion

We have developed a SFM for a traffic light control problem with two coupled intersections,
based on which we derive an IPA gradient estimator of a cost metric with respect to the
green and red cycle lengths. The estimators are used to iteratively adjust light cycle lengths
to improve performance and, under proper conditions, obtain optimal values. The analysis
in the paper can be readily extended to N intersections in tandem. We also observe that in
the model presented here, we assume there is no travelling delay between two intersections,
i.e., α3(t) = β1(t), which is not realistic especially if road 3 is very long. Future work will
consider a delay �t(x) so that α3(t) = β1(t − �t(x)), where �t(x) generally depends on
the content of queue 3. It is also worth incorporating more accurate dynamics for departure
processes hn(t); this involves the accelerating rate right after a R2G event and a decelerating
rate right before a G2R event. Moreover, hn(t) should also depend on the content of the
associated downstream queue. Other future work includes controlling the offset of traffic
light cycles (in addition to cycle length), adding left and right turn traffic, and extending the
analysis to multiple junctions in a road network.
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