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Abstract— We study the problem of routing Connected and
Automated Vehicles (CAVs) in the presence of mixed traffic
(coexistence of regular vehicles and CAVs). In this setting, we
assume that all CAVs belong to the same fleet, and can be
routed using a centralized controller. The routing objective is
to minimize a given overall fleet traveling cost (travel time or
energy consumption). We assume that regular vehicles (non-
CAVs) choose their routing decisions selfishly to minimize their
traveling time. We propose an algorithm that deals with the
routing interaction between CAVs and regular uncontrolled
vehicles. We investigate the effect of assigning system-centric
routes under different penetration rates (fractions) of CAVs.
To validate our method, we apply the proposed routing algo-
rithms to the Braess Network and to a sub-network of the
Eastern Massachusetts (EMA) transportation network using
actual traffic data provided by the Boston Region Metropolitan
Planning Organization. The results suggest that collaborative
routing decisions of CAVs improve not only the cost of CAVs,
but also that of the non-CAVs. Furthermore, even a small CAV
penetration rate can ease congestion for the entire network.

I. INTRODUCTION

Every year Americans face more than 6.9 billion hours of
delay in traffic which costs the US more than 160 billion
dollars in urban congestion costs [1]. In addition, due to
heavy traffic congestion, an annual amount of 3.1 billion
gallons of fuel is being wasted in traffic [1].

The advent of Connected and Automated Vehicles (CAVs)
has been facilitated by the emergence of vehicle automation
technologies, as well as new forms of telecommunication
technologies, such as Dedicated Short-Range Communica-
tion (DSRC) [2]. The latter has enabled Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication
capabilities. Therefore, CAVs can help reduce traffic con-
gestion and environmental impacts of our daily commute, as
well as improve safety through collaborative decisions.

Many studies have been performed to investigate how
CAVs can transform the future of cities [3]. For instance, we
may be able to eliminate traffic lights and create unsignalized
intersections to reduce congestion and energy consumption
[4]. Another interesting area of focus is cooperative adaptive
cruise control (CACC) [5], [6].

In this paper, we seek to find how optimizing routing
decisions of CAVs affects the overall energy consumption
costs and travel times of all vehicles. We investigate the
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Fig. 1: The centralized controller is assigning routes to CAVs
entering the network. Red, blue, and green links show three different
routes for CAVs.

interaction between CAVs and regular vehicles and their
effects on total travel time and energy consumption in traffic
networks. We assume that all CAVs belong to the same fleet,
and the fleet operator is trying to minimize their costs (energy
or time) by systematically routing the fleet given their origin-
destination (O-D) demand.

Similar to this work, Mehr et al. [7] studied how the
presence of CAVs can affect mobility in traffic networks.
They assumed CAVs can benefit from CACC by creating
shorter headway which increases the road capacity. In this
context, they adopted the mixed traffic road capacity model
from [8]. Their results show that if all vehicles (CAVs and
non-CAVs) make selfish routing decisions, the presence of
CAVs might worsen traffic conditions. In contrast to [7], we
adopt the viewpoint that there is a centralized controller ca-
pable of routing all CAVs given their origin and destination.
Moreover, we do not assume the shorter headway for CAVs
which was considered in [7]. We show that optimal routing
of CAVs under these assumptions can not only benefit CAVs,
but also help non-CAVs to save time and energy.

The contributions of this paper are summarized as follows.
We first review a system-centric (socially optimal) routing
algorithm that minimizes the total travel time assuming 100%
CAVs in the system. We then propose algorithms which
assign system-centric time-optimal or energy-optimal routes
(eco-routes) to CAVs in the presence of mixed traffic (both
CAVs and non-CAVs in the system). Additionally, using the
notion of Wardrop equilibrium [9], we model the user-centric
(selfish) routing decisions of non-CAVs.

Our results indicate that optimal routing of CAVs can
benefit both CAVs and non-CAVs in energy savings and
travel times. In addition, we study the performance of the
routing algorithms for various CAV penetration rates. We
provide evidence that even under small CAV penetration
rates, CAVs and non-CAVs benefit.
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The remainder of this paper is organized as follows. In
Section II we propose an algorithm which assigns system-
centric time-optimal routes to CAVs in the presence of mixed
traffic. In Section III, we formulate the system-centric eco-
routing problem for CAVs to minimize their overall energy
consumption costs in mixed traffic. In Section IV, we review
the Traffic Assignment Problem and propose a framework
to model non-CAV flow. In Section V, we use both a
simple example and actual historical data to validate the
performance of our routing algorithms. Finally, conclusions
and further research directions are outlined in Section VI.

II. TIME-OPTIMAL ROUTING

The objective of the Time-Optimal routing problem is to
minimize the overall travel time of CAVs. To achieve this
goal, we assume (1) the central controller for CAVs has full
information on the Origin-Destination (O-D) demand of both
CAVs and non-CAVs and (2) non-CAVs route themselves
selfishly (i.e., use the route that minimizes their individual
travel time). In Section II-A, we calculate the system-centric
(social) solution for the 100% CAV penetration rate. Subse-
quently, in Section II-B, we generalize the routing model to
find optimal routes for CAVs in mixed traffic scenarios.

A. System-Centric Time-Optimal Routing

First we assume an all-CAV network, and we can route
them using a centralized controller. The system-centric ob-
jective is to minimize total traveling time of CAVs in the
network. In particular, we seek to find the route occupancy
matrix (probabilities) for allocating vehicles to routes.

1) Problem Formulation: As in [10], we model the traffic
network as a directed graph G = (V ,A ,W ) where V is the
set of nodes, A is the set of links, and W = {wi : wi =
(wsi,wti), i ∈ [[W ]]} is the set of all O-D pairs. We assume
that all O-D pairs start and end at one of the network’s nodes.
Let the node-link incidence matrix for the strongly-connected
and directed graph G be denoted by N ∈ {0,1,−1}|V |×|A |.
Let us define dw ≥ 0 as the flow demand from ws to wt
for any O-D pair w = (ws,wt). Moreover, the route choice
probability matrix is defined as P = [pir], where pir is the
probability of taking route r while traveling through O-D
pair i. Let g = (gi; i ∈ [[W ]]) be the O-D demand vector.

Let us define the power-set of routes R = {Ri; i ∈ [[W ]]},
where Ri is the set of routes for each O-D pair i. Finally,
the link-route incidence matrix is denoted by A = {α i

a,r; i ∈
[[W ]],r ∈Ri,a ∈A } in which:

α
i
a,r =

{
1; if route r ∈Ri uses link a
0; otherwise.

Additionally, let Ai be the sub-matrix of A which includes
the columns of A where r ∈Ri. The total flow is denoted by
x = {xa;a ∈A } where xa is the flow on each link a ∈A .

Considering a ∈A , i ∈ [[W ]],r ∈Ri we can formulate the

system-centric time-optimal problem as follows:

min
P ∑

a∈A
ta(xa)xa (1a)

x = APT g (1b)

ta(xa) = t0
a

n

∑
i=1

βi(
xa

ma
)(i−1) (1c)

∑r∈Ri pir = 1; ∀i ∈ [[W ]] (1d)
pir ∈ [0,1]; ∀i ∈ [[W ]],∀r ∈Ri (1e)

where ta(xa) is the traveling time of link a as a function of
its corresponding traffic flow xa, which can be modeled as
an increasing polynomial function using (1c). t0

a , and ma are
the free flow travel time and flow capacity of link a ∈ A
respectively. Moreover, β = (βi, i = 1,2, ...,n) is the vector
of coefficient factors for calculating traveling time in (1c).
A common value is β = {1,0,0,0,0.15} which is the US
Bureau of Public Roads (BPR) travel time function [11],
[12]. The constraint (1d) enforces the requirement that the
sum of all the fractions of vehicles traveling through an O-
D pair is 1. The decision variable is the routing-probability
matrix P = [pir] that for each O-D pair i ∈ [[Wi]] assigns
fractions of vehicles to existing routes r ∈Ri between any
given O-D pair. The inputs to the problem are the link-
route incidence matrix (A), and the O-D demand vector
g. The solution of Problem 1 is often referred to as the
system-centric or social optimal solution in the transportation
literature.

B. System-Centric Time-Optimal Routing in the Presence of
Mixed Traffic

In this section, we address the system-centric time-optimal
routing of CAVs in the presence of mixed traffic (CAVs and
non-CAVs). In this case, only a portion of vehicles are CAVs
and can be controlled through a centralized controller. As a
result, instead of finding a routing scheme that minimizes
total costs for all vehicles in the system, we focus on
minimizing travel time for the CAV portion of traffic. We
consider all CAVs as belonging to the same fleet and that
we are trying to minimize total traveling time of the fleet.
In order to solve this problem we make four assumptions:
(1) The non-CAV traffic flow equilibrium is inferred from
data (more details in Sec. IV). (2) There exists a centralized
controller which can route the CAV portion of traffic. (3)
Up to m number of routes are chosen for every O-D pair.
(4) Travel time functions t(·) are strongly monotone and
continuously differentiable.

1) Problem Formulation: Let us define the CAV pen-
etration rate γ , as the portion of traffic that consists of
CAVs (fraction of CAVs in the system). As in the system-
centric case, we define Pc = [pc

ir] to be the route choice
probability matrix for the CAV portion of traffic. Moreover,
gc = {gc

i ; i ∈ [[W ]]} is the O-D demand vector for CAVs.
As mentioned before, we assume that the non-CAV traffic
flow equilibrium is inferred from data, and is known. Let us
define xc = {xc

a;a ∈A } and xnc = {xnc
a ;a ∈A } as the flow

of CAVs and non-CAVs in the system respectively, where xc
a
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and xnc
a are the CAV and non-CAV flow on each link a∈A .

As a result, using the same notation as in Section II-A.1, the
optimization problem can be written as:

min
Pc

∑
a∈A

ta(xa)xc
a (2a)

x = xc +xnc (2b)

xc = APT
c gc (2c)

ta(xa) = t0
a

n

∑
i=1

βi(
xa

ma
)(i−1) (2d)

∑r∈Ri pc
ir = 1; ∀i ∈ [[W ]] (2e)

pc
ir ∈ [0,1]; ;∀i ∈ [[W ]],∀r ∈Ri (2f)

Constraint (2b) states that the total flow in the network is
the summation of CAV flow (xc) and non-CAV flow (xnc).
Since we are minimizing the travel time for the CAV share
of traffic, in (2a) the traveling time of each link is multiplied
only by the flow of CAVs (xc

a). The inputs to the optimization
problem are the link-route incidence matrix A, O-D demand
vector gc, and non-CAV flow xnc.

By solving Problem 2, we find optimal flows of CAVs
over each O-D pair (route-probability matrix Pc). In other
words, when a CAV enters the network at an origin O given
its destination D, the algorithm gives it the desired socially
optimal route to follow in terms of a sequence of links.

As stated in Section 2.4 of [13] the system-centric problem
can be reformulated as a user-centric problem by slightly
changing the travel cost function. Therefore, the results on
the existence and uniqueness of the solution for the user-
centric problem (Section IV-A) extend to the system-centric
case. As a requirement for such a result we need positive
and strictly increasing travel time functions on P which is
achieved by having increasing polynomial functions.

III. SYSTEM-CENTRIC ECO-ROUTING IN THE PRESENCE
OF MIXED TRAFFIC

Eco-routing refers to the procedure of finding the optimal
route for a vehicle to travel between two points which
utilizes the least amount of energy costs. This problem shares
similar properties to (2), with the difference that we minimize
energy instead of time. In this section, we first review an
energy model for conventional vehicles and then formulate
the system-centric eco-routing problem for CAVs.

A. Energy Consumption Modeling

Energy consumption of vehicles depends on many dif-
ferent factors including velocity and acceleration [14] of
the vehicle, as well as the power-train’s architecture. Since
in eco-routing we are making high-level decisions that can
affect the energy consumption, a low-fidelity model can be
sufficient for our needs. Moreover, when solving the eco-
routing problem, we are dealing with a large number of
decision variables. Having a model with a simple mathe-
matical function would allow us to speed up the calculation
for practical purposes. Hence, we are looking for an energy
model which can estimate the energy consumption as a
function of the average speed of a vehicle. We adopt the

TABLE I: Energy cost coefficients [15]

θ0 θ1 θ2 θ3 θ4 θ5
6.80 -1.4e-1 3.92e-3 -5.20e-5 2.57e-7 1.37e-1

empirical energy model for conventional vehicles proposed
by Boriboonsomsin et al. [15]. This model is a polynomial
function of of the average speeds of links. According to this
empirical model), the average fuel consumption in grams per
mile for every link a ∈A can be calculated as follows:

ln(ea) =
4

∑
i=0

θi(va)
i +θ5Ra (3)

in which ea is the average energy consumption on link a in
g/mi, va is the average speed of the link in mph, Ra is the
road grade (in percentage), and θ = (θi, i = 0,1, ...,5) is the
vector of coefficients for calculating the energy cost. Typical
values of θ are given in Table I. Average fuel consumption
per mile using (3) and θ values in Table I is shown in Fig.
2. In [16] we also reviewed a charge depleting(CD)/charge
sustaining(CS) energy model [17] which can be used for
PHEVs, HEVs, and EVs.

B. Eco-routing Problem Formulation for Conventional Vehi-
cles

In order to formulate the eco-routing problem for conven-
tional vehicles, we use energy model (3). This problem is
almost the same as (2), with the only difference that ta(xa)
should be replaced with ea(xa), which is the average fuel
consumption per mile for traveling link a ∈A . Considering
this, we formulate the eco-routing problem of CAVs for
conventional vehicles as follows:

min
Pc

∑
a∈A

cgaslaea(va(xa))xc
a (4a)

x = xc +xnc (4b)

xc = APT
c gc (4c)

ta(xa) = t0
a

n

∑
i=0

βi(
xa

ma
)i (4d)

va(xa) =
la

ta(xa)
(4e)

ln(ea) =
4

∑
i=0

θi(va)
i +θ5Ra (4f)

∑r∈Ri pc
ir = 1; ∀i ∈ [[W ]] (4g)

pc
ir ∈ [0,1]; ∀i ∈ [[W ]],∀r ∈Ri (4h)

where cgas is the cost of gas ($/gal), and la is the length of
link a∈A . Moreover, ea is the average energy consumption
per link’s length ∀a ∈ A , and θ = (θi, i = 0,1, ...,5) is the
energy cost coefficient (Table I).

IV. NON-CAV FLOW MODELING

One of our assumptions is that the non-CAV flow is an
input to our models, and can be inferred from actual traffic
data. However, since we currently do not have CAVs in cities,
we model the non-CAV flow by considering how non-CAVs
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Fig. 2: Average fuel consumption of conventional vehicles using
Boriboonsomsin model (Ra = 0)

react to the optimal decisions made by CAVs. To achieve this
task, we assume non-CAVs act selfishly by minimizing their
travel time. This modeling framework has been extensively
studied and is often referred to as the Traffic Assignment
Problem (TAP) [13]. As a result, we propose an iterative
method for finding non-CAV flow considering the routing
decisions of CAVs. The basis of this methodology is that
whenever CAVs change their routing decisions, non-CAVs
adjust theirs and vice versa. For this particular problem, we
consider an iterative procedure to find an equilibrium for
mixed traffic flow of CAVs and non-CAVs.

In order to obtain the non-CAV flow for a given CAV
penetration rate γ , we first consider only non-CAVs in the
network and the O-D demand of non-CAVs is given by:

gnc = (1− γ)g (5)

Even though we choose a uniform demand distribution for
non-CAVs, without loss of generality, we can use any other
given demand for both CAVs and non-CAVs.

Considering a non-CAV demand gnc, we solve the selfish
(user-centric) routing problem which minimizes their travel
time. In this respect, we use the Method of Successive Aver-
ages (MSA) [18]. After finding xnc using the MSA, we solve
the time optimal (2) or energy optimal (4) routing problem
for the CAV portion of traffic considering its demand to be:

gc = γg (6)

Since non-CAVs were unaware of CAVs in the system while
solving the TAP, we re-solve the problem considering CAV
flow on each link. Hence, we re-iterate by considering the
CAV solution xc. Furthermore, the TAP is solved again
for non-CAVs. Re-iteration of this process continues until
convergence (Figs. 3).

A. Traffic Assignment Problem (TAP) and Wardrop equilib-
rium

The objective of the Traffic Assignment Problem is to
find link flows in a transportation network given the O-
D demands and cost functions. A standard solution to this
problem is to find travel flows that minimize their travel
times. Such a solution individually optimizes every vehicle’s
travel time based on network conditions. This leads to a Nash
Equilibrium that in transportation networks is known as the

(a) (b)

Fig. 3: (a) Procedure for solving the system-centric routing problem;
(b) Convergence plot for iterating through TAP and social problem

Wardrop Equilibrium [9]. The resulting flows x∗ (equilibrium
flows) require that for every O-D pair w, and any route r
connecting (ws,wt), the associated travel time is not greater
than the traveling time from any other route. Formally

ta(x∗a)≤ ta(x∗a′) ∀a,a′ ∈A (7)

or equivalently

ta(x∗r )≤ tr(x∗r′) ∀r,r′ ∈Ri, ∀i ∈ [[W ]] (8)

To obtain such flows, we can solve

min
x∈F

Φ(x) = ∑
a∈A

xa∫
0

ta(s)ds (9)

where F is the set of feasible flow vectors defined by

F =
{

x : ∃xw ∈R|A |+ s.t. x = ∑
w∈W

xw, Nxw = dw, ∀w∈W
}
,

(10)
and where xw is the flow vector attributed to O-D pair w.
Recall that ta(·) in (2d) is continuous. Since F is a compact
set, the Weierstrass Theorem [9] implies that there exists a
solution to this minimization problem. Moreover, since cost
functions are non-decreasing (by assumption), then Φ(·) is
convex and therefore a unique solution exists [9].

Now, let us write the TAP in terms of non-CAV flows
and take into account the presence of the CAV flow in the
network.

min
xnc ∑

a∈A

xc
a+xnc

a∫
xc

a

ta(s)ds (11a)

s.t xnc = ∑
w∈W

xnc,w (11b)

Nxnc,w = dnc,w, ∀w ∈W (11c)
xnc,w ≥ 0 (11d)

V. NUMERICAL RESULTS

In order to validate the proposed routing algorithms we
perform two case studies. First we analyze the widely
explored Braess network (Fig. 4), and study the effect of
the CAV penetration rate on the total time savings and
energy savings in this network. As an alternative benchmark,
we applied the algorithms to a sub-network of the Eastern
Massachusetts interstate highways (Fig. 5b). For finding the
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energy optimal routes, we assume the road grade is zero
(Ra = 0 in (3)), and we assume the cost of gas is 2.75 $/gal.
We solve the NLP problems using IPOPT [19] in Julia [20].

We solve the eco-routing problem for conventional vehi-
cles using the energy model discussed in Section III-A. As
mentioned before, eco-routing results are extremely sensitive
to the energy model. Given a more accurate energy model
which is convex, smooth and differentiable we may get
different results. Hence, the eco-routing results shown in this
paper should only be considered as preliminary results which
show the potential of saving energy using centralized routing
of CAVs.

A. Braess Network Example

To demonstrate how optimal routing of CAVs under dif-
ferent penetration rates can affect both CAVs and non-CAVs,
we first apply algorithm 2 to the well-known Braess network
(Fig. 4). Note that in this case instead of using the BPR
function (2d), we use the travel time functions shown on
each link of the Braess network in Fig. 4. We consider
a demand of 4000 veh/hr travels from node 1 to node 4,
the lengths of links 1,2,3 and 5 equal to 30.5 miles and
the length of link 4 equal to zero (by definition of Braess
network). First we solve the time-optimal routing of CAVs
under different penetration rates. Using the obtained flows,
and energy model (3) we calculate energy costs for traveling
through the network. Time-optimal results are shown in Figs.
6a, in which we compare traveling time of CAVs with non-
CAVs under different penetration rates. The energy cost for
traveling through the optimal routes are also shown in Fig.
6c. As shown in Fig. 6, introducing CAVs into the system not
only improves the time saving of CAVs, but also helps non-
CAVs to save time. This is because smart routing decisions
of CAVs reduce the traffic intensity in the highly congested
roads, which consequently helps non-CAVs to travel faster.
As we inject CAVs into the system, we see that travel
time (as well as energy cost) per vehicle of CAVs starts
decreasing compared with the uncontrolled traffic. Moreover,
the traveling time of commuting through the fastest route
decreases as we inject more CAVs to the system. Typically,
we expect a trade off between time saving and energy saving
in routing problems [21], [22]. However, in Fig. 6 we see that
time and energy follow the same trend. In other words, time
savings result in energy savings. The reason for this behavior
is the energy model used in the eco-routing problem 3. As
we can see in Fig. 2, based on this model, the higher the
speed, the better fuel efficiency. As a result, we get similar
results for energy and time.

It is interesting to see that when a small percentage of
CAVs are in the system, there is no improvement for anyone.
This happens because CAVs are optimizing over their own
small fraction of overall traffic and this fraction is not
sufficient to change the network conditions. However, as we
increase the penetration rate, CAVs create a more balanced
flow distribution in the network from which both CAVs and
non-CAVs can benefit. In the Braess network example, it can
be seen that if all the cars in the system are replaced with

1

2

3

4

t(x3) = 45t(x1) =
x

100

t(x2) = 45 t(x5) =
x

100

t(x4) = 0

Fig. 4: Simple 5 link directed graph (Braess’s network)

(a) (b)

Fig. 5: (a) All available road segments in the road map of Eastern
Massachusetts [10] ; (b) Interstate highway sub-network of eastern
Massachusetts

CAVs, we can save 18.9% in terms of travel time. This value
is often referred to as the Price of Anarchy (PoA) [10].

In addition to the time-optimal case, we also solve the
eco-routing (energy-optimal) problem for CAVs using the
Braess network. As we can see in Figs. 6b and 6d, energy-
optimal results follow the same trend as time-optimal result.
In other words, centralized eco-routing of CAVs can benefit
both CAVs and non-CAVs. The maximum energy savings
happens at the 100% CAV penetration rate (19.1%).

B. EMA Interstate Highway Network

To obtain more realistic results, we perform a data-driven
case study using the actual traffic data from the Eastern
Massachusetts (EMA) road network. These data were col-
lected by INRIX and provided to us by the Boston Region
Metropolitan Planning Organization. The sub-network in-
cluding the interstate highways of EMA (Fig. 5b) is chosen
for the case study. For this network, we use the O-D demand
which has been estimated using an inverse optimization
framework in [10]. In order to solve the problem we consider
56 O-D pairs, and allow up to 3 routes between each origin
and destination (top 3 shortest routes). We then solve (2)
and (4) to find the time optimal and energy optimal paths
for CAVs respectively. Time optimal results are shown in
Figs. 7a, and 7c, and the energy optimal results are shown
in Figs. 7b and 7d. Note that the results for both the EMA
and Braess networks are averaged over all the cars and O-D
pairs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed system-centric optimal routing
algorithms for a fleet of CAVs in the presence of mixed
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(a) (b)

(c) (d)

Fig. 6: Braess network routing results under different penetration
rates by solving system-centric time-optimal problem (a), (c) and,
system-centric energy-optimal problem (b), (d).

(a) (b)

(c) (d)

Fig. 7: EMA network routing results under different penetration
rates by solving system-centric time-optimal problem (a), (c) and
system-centric energy-optimal problem (b), (d).

traffic. We consider two objectives for routing: (1) mini-
mizing travel time (2) minimizing energy consumption cost.
Moreover, in order to model the routing behavior of regular
vehicles, we assume that they make selfish decisions by
minimizing their own travel time. Then, by iteratively solving
the TAP, and finding optimal routes for CAVs we estimate
the non-CAV flow in the network. Historical traffic data
and a simple illustrative example were used to validate the
models. The results indicate that optimal routing of CAVs
can not only benefit CAVs, but the smart routing decisions
of CAVs helps ease traffic congestion in the network which
helps regular vehicles as well. Additionally, we empirically
showed that even a small CAV penetration rate has significant
impact on the overall traveling cost of the network.

In ongoing work, we are considering multiple fleets of
CAVs, in which each fleet is trying to minimize its own

cost.
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