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Abstract— We propose a new “smart parking” system for
an urban environment. The system assigns and reserves an
optimal resource (parking space) for a user (driver) based
on the user’s objective function that combines proximity to
destination and parking cost, while also ensuring that the
overall parking capacity is efficiently utilized. Our approach
solves a Mixed Integer Linear Program (MILP) problem at
each decision point in a time-driven sequence. The solution
of each MILP is an optimal allocation based on current state
information and subject to random events such as new user
requests or parking spaces becoming available. The allocation
is updated at the next decision point ensuring that there is no
resource reservation conflict and that no user is ever assigned
a resource with higher than the current cost function value.
Simulated case studies are included based on parking at part
of the Boston University campus showing that we can achieve
significant improvement over uncontrolled parking processes
or state-of-the-art guidance-based systems. We also describe a
laboratory setting where this system has been tested in real
time.

I. INTRODUCTION

On a daily basis, it is estimated that 30% of vehicles on
the road in the downtown area of major cities are cruising
for a parking spot and it takes an average of 7.8 minutes
to find one [5]. This causes not only a waste of time and
fuel for drivers looking for parking, but it also contributes to
additional waste of time and fuel for other drivers as a result
of traffic congestion. For example, it has been reported [14]
that over one year in a small Los Angeles business district,
cars cruising for parking created the equivalent of 38 trips
around the world, burning 47, 000 gallons of gasoline and
producing 730 tons of carbon dioxide.

Over the past two decades, traffic authorities in many cites
are building so-called Parking Guidance and Information
(PGI) systems for better parking management. PGI systems
present drivers with dynamic information on parking within
controlled areas and direct them to vacant parking spots.
Parking information may be displayed on variable-message
signs (VMS) at major roads, streets, and intersections, or
it may be disseminated through the Internet [1], [9], [15].
PGI systems are based on the development of autonomous
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vehicle detection and parking spot monitoring, typically
through the use of sensors placed in the vicinity of parking
spaces for vehicle detection and surveillance [2], [3], [7],
[12]. However, it has been found that using PGI systems,
system-wide reductions in travel time and vehicle benefits
may be relatively small [16], [17]. Building upon the ob-
jectives of PGI systems, e-parking is an innovative platform
which allows drivers to obtain parking information before
or during a trip, and reserve a parking spot [13]. Drivers
access the central system via cellular phone or Internet.
Bluetooth technology recognizes each car at entry points,
and triggers automatic reservation checking and parking
payment [10]. Researchers also find that traffic congestion
can be alleviated by controlling the parking price [15]. For
example, in San Francisco there are already time-dependent
or demand-dependent parking fees to achieve the right level
of parking availability in different areas [4].

As pointed out in [8], current guidance-based systems
have several shortcomings. For example, drivers may not find
vacant parking spots by merely following a VMS; drivers
may miss a better parking spot; parking space utilization
becomes imbalanced; it causes new traffic congestion around
the area with good parking spaces. In this paper, we propose
a new concept for a “smart parking” system. This system
explicitly allocates and reserves optimal parking spaces
to drivers, as opposed to simply guiding them to a space
that may not be available by the time it is reached. The
allocation is based on the user’s objective function that
combines proximity to destination and parking cost, while
also ensuring that the overall parking capacity is efficiently
utilized. Building on the results in [8], in this paper we
refine the allocation algorithm to incorporate features making
it suitable for real-world parking problems identified in
carrying out a case study based on parking at part of the
Boston University campus . We include extensive numerical
results from simulations under this case study that support
the feasibility of the “smart parking” idea and we compare
several performance metrics with PGI systems.

The rest of the paper is organized as follows. In Section II,
we introduce the framework of our “smart parking” system.
In Section III, we describe the dynamic resource allocation
model and formulate the MILP problem solved at every
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decision point. Simulations based on the case study at Boston
University are given in Section IV. An indoor implementation
platform is described in Section V. Finally, we conclude and
discuss future work in Section VI.

II. SYSTEM FRAMEWORK

Our proposed “smart parking” system adopts the basic
structure of PGI systems. In addition, such a system includes
a Driver Request Processing Center (DRPC) and a Smart
Parking Allocation Center (SPAC). Fig. 1 depicts this frame-
work. The Parking Resource Management Center (PRMC)
collects and updates all real-time parking information, and
disseminates it via VMS or Internet. The DRPC gathers
driver parking requests and real-time information (i.e., car
location), keeps track of driver allocation status, and sends
back the assignment results to drivers. Based on the driver
requests and parking resource states, the Smart Parking
Allocation Center makes assignment decisions and allocates
and reserves parking spots for drivers.

Fig. 1. Smart Parking Framework Overview

The basic allocation process is described as follows.
Drivers who are looking for parking spots send requests to
the DRPC. A request is accompanied by two requirements:
a constraint (upper bound) on parking cost and a constraint
(upper bound) on the walking distance between a parking
spot and the driver’s actual destination. It also contains the
driver’s basic information such as license number, current
location, car size, etc. The SPAC collects all driver requests
in the DPRC over a certain time window and makes an over-
all allocation at decision points in time seeking to optimize
a combination of driver-specific and system-wide objectives.
An assigned parking space is sent back to each driver via
the DRPC. If a driver is satisfied with the assignment, he
has the choice to reserve that spot. Once a reservation is
made, the driver still has opportunities to obtain a better
parking spot (with a guarantee that it can never be worse
than the current one) before the current assigned spot is
reached. The PRMC then updates the corresponding parking
spot from vacant to reserved, and provides the guarantee
that other drivers have no permission to take that spot. If
a driver is not satisfied with the assignment (either because
of limited resources or his own overly restrictive parking
requirements) or if he fails to accept it for any other reason,
he has to wait until the next decision point. During intervals

between allocation decisions made by the center, drivers with
no parking assignment have the opportunity to change their
cost or walking-distance requirements, possibly to increase
the chance to be allocated if the parking system is highly
utilized (it is of course possible that no parking space is
ever assigned to a driver).

The realization of such a “smart parking” system relies
on three main requirements. First, the allocation center
has to know the status of all parking spots, the location
of all vehicles issuing requests and traffic situations. As
already mentioned, current sensing technologies make mon-
itoring parking spots implementable. Moreover, standard
GPS technology provides accurate localization and speed
estimates of vehicles [12]. The second requirement involves
effective wireless communication between vehicles and an
allocation center. This is also achievable through existing
wireless networks that may be proprietary or part of cellular
telephone service providers. Finally, the center must be
able to implement a reservation that guarantees a specific
parking spot to a driver. This is achievable through wireless
technology interfacing a vehicle with hardware that makes
a spot accessible only to the driver who has reserved it.
Examples include gates, “folding barriers,” and obstacles that
emerge from and retract to the ground under a parking spot;
these are wirelessly activated by devices on-board vehicles,
similar to mechanisms for electronic toll systems. A “softer”
scheme is to use a red/green light system placed at each
parking spot, where red indicates that the spot is reserved and
only the vehicle assigned to it may switch it back to green (a
vehicle parked when the light is red is fined.) In what follows,
we will not deal with technical details for meeting these three
implementation requirements and concentrate instead on the
methodology that enables us to make optimal parking space
allocations and reservations.

III. DYNAMIC RESOURCE ALLOCATION MODEL

For the sake of generality, we will employ the term “user”
when referring to drivers or vehicles and the term “resource”
when referring to parking spots. We adopt a queueing model
for the problem as shown in Fig. 2 (introduced in [8]),
where there are N resources and every user arrives randomly
and independently to join an infinite-capacity queue (labeled
WAIT) and waits to be assigned. At the kth decision point,
the system makes allocations for all users in both the waiting
queue and the queue (labeled RESERVE) of users who have
already been assigned and have reserved a resource from
a prior decision point. If a user in WAIT is successfully
assigned a resource, he joins the RESERVE queue, otherwise
he remains in WAIT. A user in RESERVE may be assigned
a different resource after a decision point and returns to
the same queue until he can physically reach the resource
and occupy it. A user leaves the system after occupying a
resource for some amount of time at which point the resource
becomes free again.

At the kth decision point we define the state of the
allocation system, X(k), and the state of the ith user, Si(k)
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Fig. 2. Queueing Model for Dynamic Resource Allocation

as explained next. First, we define

X(k) = {W (k), R(k), P (k)} (1)

where W (k) = {i : user i is in the WAIT queue},
R(k) = {i : user i is in the RESERVE queue}, and
P (k) = {p1(k), ..., pN (k)} is a set describing the state of the
jth resource with pj(k) denoting the number of free parking
spaces at resource j, j = 1, . . . , N .

We assume that each resource j has a known location
associated to it denoted by yj ∈ Z ⊂ R2 in a two-
dimensional Euclidean space, and its capacity is nj . We also
define

Si(k) = {zi(k), ri(k), qi(k),Ωi(k)} (2)

where zi(k) ∈ Z ⊂ R2 is the location of user i, ri(k) ∈
R+ is the total time that user i has spent in the RESERVE
queue up to the kth decision point (ri(k) = 0 if i ∈W (k)),
and qi(k) is the reservation status of user i:

qi(k) =
{

0 if i ∈W (k)
j if user i is reserving resource j (3)

Finally, Ωi(k) is a feasible resource set for user i, i.e., Ωi(k)
⊆ {1, . . . , N} depending on the requirements set forth by
this user regarding the resource it requests. We will define
Ωi(k) in terms of two attributes associated with user i. The
first, denoted by Di, is an upper bound on the distance
between the resource that the user is assigned and his actual
destination di ∈ Z ⊂ R2. If the user is assigned a resource
j located at yj , let Dij = ‖di − yj‖ where ‖·‖ is a suitable
distance metric. Then, the constraint

Dij ≤ Di (4)

defines a requirement that contributes to the determination
of Ωi(k) by limiting the set of feasible resources to those
that satisfy (4).

The second attribute for user i, denoted by Mi, is an upper
bound on the cost this user is willing to tolerate for the
benefit of reserving and subsequently using a resource. The
actual cost depends on the specific pricing scheme adopted
by the allocation system and may include a fee dependent
on the total reservation time and subsequently a fee for
occupying the resource. Our approach does not depend on
the specific pricing scheme used, but we will assume that
each user cost is a function of the total reservation time
ri(k) and the traveling time from the user location at the kth

decision time, zi(k), to a resource location yj . Let sij(k) =
‖zi(k)− yj‖ be this distance, and define the traveling time
tij(k) = f(sij(k), ω), where ω denotes all random traffic
conditions. We use Mij(ri(k), tij(k)) to denote the total
expected cost for using resource j, evaluated at the kth
decision time. Comparing Mij(ri(k), tij(k)) to Mi, leads
to the constraint

Mij(ri(k), tij(k)) ≤Mi (5)

This defines a second requirement that contributes to the de-
termination of Ωi(k) by limiting the set of feasible resources
to those that satisfy (5). In order to fully specify Ωi(k), we
further define

Γ(k) = {j : pj(k) > 0, j = 1, . . . , N}

to be the set of free and reserved resources at the kth decision
time and set

Ωi(k) = {j : Mij(k) ≤Mi, Dij ≤ Di, j ∈ Γ(k)} (6)

where, for simplicity, we have written Mij(k) instead of
Mij(ri(k), tij(k)). Note that this set allows the system to
allocate to user i any resource j ∈ Ωi(k) which satisfies the
user’s requirements even if it is currently reserved by another
user (i.e., if pj(k) = m 6= i). If user i only provides final
destination without requirements, Ωi(k) = Γ(k).

We can now concentrate on defining an objective function
which we will seek to minimize at each decision point by
allocating resources to users. We use a weighted sum to
define user i’s cost function, Jij(k), if he is assigned to
resource j, as follows:

Jij(k) = λi
Mij(k)
Mi

+ (1− λi)
Dij

Di
(7)

where λi ∈ [0, 1] is a weight that reflects the relative
importance assigned by the user between cost and resource
quality. In the case of parking, resource quality is measured
as the walking distance between the parking spot the user is
assigned and his actual destination.

To capture the essence of “smart parking,” the objective
of the system is to make allocations for as many users as
possible and, at the same time, to achieve minimum user
cost as measured by Jij(k). Define binary control variables:

xij =
{

0 if user i is not assigned to resource j
1 if user i is assigned to resource j (8)

We can now define the allocation problem (P) at the kth
decision point as follows:

min
∑

i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij ·Jij(k)+
∑

i∈W (k)

(1−
∑

j∈Ωi(k)

xij)

(9)
s.t. ∑

j∈Ωi(k)

xij ≤ 1, ∀i ∈W (k) (10)

∑
j∈Ωi(k)

xij = 1, ∀i ∈ R(k) (11)
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∑
i∈W (k)∪R(k)

xij ≤ pj(k), ∀j ∈ Γ(k) (12)

∑
j∈Ωi(k)

xij · Jij(k) ≤ Jiqi(k−1)(k), ∀i ∈ R(k) (13)

xij ∈ {0, 1}, ∀i ∈W (k) ∪R(k), j ∈ Γ(k) (14)

In this problem, the objective function focuses on user
satisfaction. One can formulate alternative versions that
incorporate system-centric objectives such as maximizing
resource utilization or total revenue without affecting the
essence of our approach. If the system fails to allocate a
resource to some user i, i.e.,

∑
j∈Ωi(k) xij = 0, a cost of

1 is added to the objective function. Therefore, the added
term

∑
i∈W (k)(1 −

∑
j∈Ωi(k) xij) in (9) is the total cost

contributed by the number of “unsatisfied” users. Since by
its definition in (7) Jij(k) ≤ 1, the added cost of value
1 is sufficiently large to ensure that a user is assigned to
a resource if there are free qualified resources left. The
constraints (10) indicate that any user in the WAIT queue
may be assigned at most one resource but may also fail to
get an assignment. On the other hand, (11) still guarantees
that each user in the RESERVE queue maintains a resource
assignment. The capacity constraints (12) ensure that every
resource is occupied by no more than pj(k) users. The
constraints (13) add a unique feature to our problem by
guaranteeing that every user in the RESERVE queue is
assigned a resource which is no worse than the one most
recently reserved, i.e., qi(k − 1).

Problem (P) is a Mixed-Integer Linear Programming
(MILP) problem [6] that can be solved using any of several
commercially available software packages (we use ILOG
CPLEX in this paper [11]). In this formulation, we can easily
prove that the problem is always feasible. Indeed, letting the
matrix X ≡ [xij ] denote a solution of (9), then the set

{X :
∑

j∈Ωi(k)

xij = 0, xmqm(k) = 1, i ∈W (k), m ∈ R(k)}

is always a feasible solution, since it implies that all users in
W (k) are not allocated and all users in R(k) simply maintain
their previous reservation (assuming that R(k) 6= ∅).

IV. CASE STUDY SIMULATION RESULTS

In this section, we describe a simulation environment
based on parking at part of the Boston University (BU) main
campus within the city of Boston, as shown in Fig. 3. There
are totally 679 on-street parking spots and 1932 off-street
parking spots in this part of the campus. We assume that all
these spots are monitored and can be used by any drivers
(student, faculty or visitor) without any time limit.

Preprocess. Even though we are facing an allocation
problem in a small district, the problem scale is still very
large. Thus, as a first step, we reduce the decision variables
and constraints of problem (P) by “grouping” parking spots.
Intuitively, all spots in the same garage or parking lot can be
treated as one resource. We also group the on-street parking
spots in the same street block. With this grouping method, we

aggregate 679 on-street parking spots to 27 groups and 1932
off-street parking spaces to 14 groups. If a driver reserves
a parking spot in one group, the system simply selects any
available spot in that group for him when he arrives.

Following the same strategy, we also aggregate driver
destinations by their locations. Buildings in the same block
are treated as one destination, and we have totally 12
destinations. Fig. 3 shows the parking configuration after
grouping, where red triangles represent destinations, blue
squares represent parking lots and darkblue bars are on-street
parking spaces.

Fig. 3. Case Study Environment

Settings. In all simulations, we assume that user arrivals
to each destination i are Poisson distributed with rate λi.
User travel times to reach their destination are exponentially
distributed with rate γ. The resource occupancy time is also
exponentially distributed with rate µ. The user cost parameter
Mi is uniformly distributed in the interval [0,Mmax], and the
walking-distance parameter Di is also uniformly distributed
in [0, Dmax].

We adopt a pricing scheme based on which the expected
cost incurred by user i when assigned resource j at the kth
decision point is

Mij(k) = Cj · (ri(k) + tij(k) + Ti) (15)

where Cj is the price of resource j, ri(k) is the time already
spent at the RESERVE queue, tij(k) is an estimate of the
driving time for i to reach j, and Ti is the expected parking
time of user i. Thus, Mij(k) combines a reservation cost
Cj(ri(k) + tij(k)) and actual parking cost CjTi.

The walking-distance cost is defined as Dij = wjdi
where

wjdi
measures the walking distance from resource j to user

i’s destination di. We obtain wjdi
by walking-time estimates

using Google Maps.
For simplicity, we adopt a constant decision interval

τ(k) = τ, k = 1, 2, . . . Note that τ(k) can be made
adjustable according to traffic conditions at the kth decision
time.

Performance Metrics. In order to assess the overall
system performance over some time interval [0, T ], we define
several appropriate metrics evaluated over a total number of
users NT served over this interval (simulation run length).

From the system’s point of view, we consider resource
utilization as a performance metric and break it down into
two parts: ur(T ) is the utilization of resources by reservation
(i.e., the fraction of resources that are reserved) and up(T )
is the utilization by occupancy (i.e., the fraction of resources
that are physically occupied by a user).

982



1/λi Heavy Traffic Normal Traffic
SP G NG SP G NG

up(T )-ons 0.690 0.874 0.795 0.546 0.589 0.552
ur(T )-ons 0.294 0.193
up(T )-offs 0.406 0.491 0.487 0.328 0.318 0.410
ur(T )-offs 0.188 0.122
w(T ) 0.130 0.203 0.668 0.003 0.086 0.439
J̄(T ) 0.292 0.319 0.462 0.255 0.344 0.385
tp(T ) 35.34 70.85 119.77 31.35 36.16 43.20

TABLE I
PERFORMANCE METRICS UNDER DIFFERENT TRAFFIC INTENSITY

From the users’ point of view, we first define a satisfaction
metric for those users that actually occupy a resource. Let
P (T ) be the set of such users over [0, T ], and q∗i ∈
{1, . . . , N} be the resource ultimately assigned to user
i ∈ P (T ). Then J̄(T ) = 1

|P (T )|
∑

i∈P (T ) Jiq∗i
measures

the average cost of users served. Another metric we will
use is the wandering ratio w(T ) defined as follows. Let
AW (k) = {i : i ∈ W (k), ‖zi(k)− di‖ ≤ ε} be the set of
users who reach the vicinity of their destination, measured
by ε ≥ 0, but are still in the WAIT queue at the kth decision
point. Letting kT denote the last decision point within the
time interval of length T , we then define w(T ) = |AW (kT )|

NT
.

Finally, we consider the average time-to-park tp(T ),
which is the time from the instant a user “arrives” (i.e., issues
a parking request) to the instant he physically occupies a
parking resource. (tp(T ) − 1/γ) is the average wandering
time. Notice that tp(T ) is different from the traditional
waiting time (from “arrival” to “allocation”), which is not
of particular interest in the “smart parking” problem because
the waiting time is partially due to a driver’s requirements.

Results. We seek to quantify the improvement of the
“smart parking” (SP) approach over an uncontrolled setting
where users park without any guidance (NG) and the case
of parking with guidance to free parking spaces (G). In both
cases, we assume users start to look for parking when they
reach regions defined by their walking distance. If there is
guidance, users know exactly the location of free resources;
otherwise, they search for free resources by themselves. We
assume drivers always pick the nearest and cheapest available
spot as their first choice.

In all simulations, we set 1/γ = 30 min, 1/µ = 60 min,
Mmax = $8, Dmax = 8 min, τ = 1 min and ε = 0. On-
street parking price is 0.25 $ per 12 minutes, while off-
street parking price is 2 $ per 30 minutes. Every result
is generated by the average of 5 simulations, with each
lasting for T = 3000 min. We will examine all performance
metrics we have defined under different traffic intensities by
changing the interarrival times 1/λi

In Table I, the performance metrics show that SP pro-
vides significant benefits over the G and NG approaches,
where “-ons” indicates the on-street parking metrics and
“-offs” indicates the off-street parking metrics. From the
system point of view, the total resource utilization (ur +up)
increases compared to both G and NG approaches. On-

t0 2 10 20 30 50 ∞
up(T )-ons 0.839 0.789 0.771 0.742 0.708 0.690
ur(T )-ons 0.014 0.110 0.198 0.239 0.277 0.294
up(T )-offs 0.495 0.461 0.443 0.439 0.428 0.406
ur(T )-offs 0.008 0.065 0.116 0.147 0.174 0.188
w(T ) 0.012 0.070 0.066 0.068 0.095 0.131
J̄(T ) 0.286 0.276 0.297 0.302 0.302 0.292
tp(T ) 30.38 31.00 34.14 35.40 35.44 35.34

TABLE II
PERFORMANCE METRICS WITH DIFFERENT t0

street parking utilization generally exceeds off-street parking,
which indicates that the system allocates first resources with
low cost to users. From a user’s point of view, we see
decreases in both w(T ) and J̄(T ), while average time-to-
park is reduced by as much as half (from 70.85 to 35.34)
compared to the G method under heavy traffic. For the G
and NG methods, w(T ) is defined as the fraction of users
who fail to obtain a parking spot on their first try. Thus,
w(T ) basically shows the fraction of users who are simply
wandering around in search of parking, while (tp(T )−1/γ)
indicates the average searching time. We can see that SP not
only dramatically decreases the number of wandering drivers,
but it also decreases their searching time. At the same time,
the smaller J̄(T ) shows that users who ultimately parked
obtained better-quality spots, either cheaper or nearer to
their destination. Notice that w(T ) can be further decreased
by using “immediate allocation” policy for users who are
approaching their destination with no resource assigned, as
detailed in [8].

We notice that in Table I the actual utilization by occu-
pancy, up(T ), is smaller than G (however, up(T ) + ur(T )
is still higher under SP.) This is because a considerable
fraction of resources is utilized by user reservations, no
matter how far they are from the destinations. This benefits
users since they can receive a quick response from the system
and have guaranteed reservations. However, it also has two
shortcomings. First, users who are close to their destination
may fail to obtain an assignment because available resources
may have been reserved by users still far away, whereas
such users might agree with later assignments. Second,
there is a high fraction of resources left physically vacant
because of reservations, which may cause user discontent.
This points to a tradeoff in “smart parking” between a
reasonable reservation scheme and parking space utilization.
This can be achieved by restricting the number of users in
the waiting queue who are assigned a resource. Thus, we
introduce a threshold t0: users within t0 minutes away from
their destination are considered for assignment, otherwise
they are kept in the waiting queue. Therefore, the waiting
set W (k) in (P) is replaced with W̃ (k), defined as

W̃ (k) = {i : i ∈W (k), tij(k) ≤ t0} (16)

Table II shows all performance metrics with different t0
values under heavy traffic. As we can see, up(T ) indeed
increases as t0 decreases, while w(T ) and tp(T ) generally
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become smaller compared to allocations without a time
threshold. However, the total average user cost increases if
we set t0 too small. With this additional t0 regulation, the
system gives higher priority to users who are approaching
their destinations, so that they have a smaller chance to be
wandering and tp(T ) approaches 1/γ. However, since only a
smaller group of users is now considered for allocation, the
results are optimal for them but not for all users in the waiting
queue; users farther away from their destinations generally
end up with a parking spot of worse quality than closer users
and the overall average cost increases. Moreover, if we set t0
too small, drivers have less time to adjust their requirements
when they fail to be allocated. In short, the choice of the
threshold t0 requires careful consideration. For the example
in Table II, t0 = 10 appears to be a good choice. By setting
t0 = 10, we have obtained additional simulation results
summarized in Fig. 4 under different traffic intensities. We
find that as the traffic intensity increases, the improvement
offered by the SP approach becomes more significant.

Fig. 4. Simulation Results Under t0 = 10

V. LABORATORY IMPLEMENTATION

To check the implementability of the “smart parking”
approach, we have built an urban-like testbed as shown
in Fig. 5. This contains the basic elements of an urban
traffic environment, such as roads, vehicles, traffic lights,
urban blocks, etc. To meet the three main requirements of
“smart parking,” we include the following features. First,
vehicle locations and parking spot status are detected by
overhead cameras, which serve as a GPS. Second, vehicles
communicate with the central allocation system (a computer)
by Wifi. We use KheperaIII robots as vehicles, which have
a wireless communication capability. Third, we use wireless
controllable parking barriers to guarantee a reservation. The
computer periodically executes the optimal allocation algo-
rithm and makes assignments, sends the assignment results
to vehicles, and controls the opening and closing of each
parking barrier.

Due to space limitations, we only have 5 parking spots and
4 vehicles. However, the “smart parking” concept is clearly
illustrated in the implementation, including allocations dy-
namically updated when random events occur, e.g., a vehicle
joining the system or delays due to traffic lights. One can
also see how vehicles access reserved parking spots that meet
their requirements without blindly competing.

Fig. 5. Urban-like Laboratory Testbed

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a “smart parking” system that exploits
technologies for parking space availability detection and for
driver localization and which optimally allocates and reserves
parking spots to drivers instead of only supplying guidance
to them. Based on a general dynamic resource allocation
framework, we have focused on efficiently determining an
optimal allocation strategy for both users and the system.
Our simulation results on a case study of parking at Boston
University show significant performance improvements over
existing parking behavior, including guidance-based systems.
Ongoing research focuses on selecting proper decision inter-
vals and threshold parameters, and on the use of dynamic
pricing control.
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