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ABSTRACT We develop an infrastructure-free approach for anomaly detection and identification based
on data collected through a smartphone application (Street Bump). The approach is capable of effectively
classifying roadway obstacles into predefined categories using machine learning algorithms, as well as
prioritizing actionable ones in need of immediate attention based on a proposed anomaly index. We explore
some novel variants of classification algorithms that combine clustering with classification and introduce
appropriate regularization in order to concentrate on a sparse set of most relevant features, which has the
effect of reducing overfitting. Furthermore, the anomaly index we introduce combines novel metrics of
obstacle irregularity computed based on the data captured by the Street Bump smartphone application.
Results on an actual data set provided by the City of Boston illustrate the feasibility and the effectiveness of
our system in practice.

INDEX TERMS Classification, anomaly detection, machine learning, smart cities.

I. INTRODUCTION
A. A SMART CITY OVERVIEW
As of 2014, 54% of the earth’s population resides in urban
environments, a percentage that is expected to reach 66%
by 2050. This increase would amount to about 2.5B people
added to urban populations [1]. At the same time, there are
now 28mega-cities (with≥10Mpeople) worldwide, account-
ing for 22% of the world’s urban population and projections
are for more than 41 mega-cities by 2030. It stands to reason
that managing urban areas has become one of themost critical
challenges our society faces today.

The emerging prototype for a Smart City is one of an urban
environment with a new generation of innovative services for
transportation, energy distribution, health care, environmen-
tal monitoring, business, commerce, emergency response,
and social activities. The term ‘‘Smart City’’ is used to capture
this overall vision as well as the intellectual content that
supports it. From a technological point of view, at the heart
of a Smart City is a cyber-physical infrastructure with phys-
ical elements (e.g., roads, vehicles, power lines) which are
continuously monitored through various sensors to observe,

for instance, air/water quality, traffic conditions, occupancy
of parking spaces, the structural health of bridges, roads,
buildings, as well as the location and status of city resources
including transportation vehicles, police cars, police officers,
andmunicipal workers. The data collected need to be securely
communicated (mostly wirelessly) to information processing
and control points. These data may be shared and the control
points can cooperate to generate good (ideally, optimal) deci-
sions regarding the safe operation of these physical elements
(e.g., vehicles guided through the city).

It is important to emphasize that what ultimately makes
the city ‘‘smart’’ is not simply the availability of data but the
process of ‘‘closing the loop’’ consisting of sensing, commu-
nicating, decision making, and actuating. Figure 1 is a high-
level illustration of this process, which must take place while
taking into account important issues of privacy, security,
safety, and proper energy management necessitated by the
wireless nature of most data collection and actuation mecha-
nisms involved. Finally, equally important as the development
of a cyber-physical infrastructure is the necessity for Smart
Cities to engage – but not coerce – their citizens. Unlike other
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FIGURE 1. Cyber-physical infrastructure for a Smart City.

organizations (e.g., corporations or military units) which can
often assume compliance of their human constituents, cities
must resonate with their population’s goals, means, desires,
and freedom of choice. Thus, there is a crucial trade-off
between technological efficiency and user engagement and an
associated challenge of integrating a crucial social aspect into
theCyber-Physical environment that constitutes a Smart City.

Although a cyber-physical infrastructure is instrumental
in realizing the Smart City vision described above, such
infrastructure comes at a significant cost. Embedding sensors
in an urban environment (e.g., induction loops in roadways
to measure traffic flows or sensors monitoring the state of
power lines under ground) does not only entail an instal-
lation expense, but also significant maintenance costs. For
wirelessly networked sensors, for instance, battery life is
limited, so that a battery replacement plan must be in place
or additional intelligence must be present in the sensors to
manage their energy usage. As another example, to monitor
the structural health of roads, one approach is to build special-
ized vehicles heavily equipped with a variety of sophisticated
sensing devices and design patrol paths in urban environ-
ments through which such vehicles can perform this function.
Clearly, the cost of building and maintaining such vehicles is
significant, not to mention their operation cost.

An exciting feature of Smart Cities, however, is the poten-
tial to exploit the ubiquitous availability of wireless devices
and new technologies embedded in vehicles in order to meet
several Smart City goals in an infrastructure-free manner.
Themajority of urban dwellers nowadays carry a smartphone,
a device that contains three important functionalities: (i) the
ability to locate itself through GPS, (ii) an accelerometer
which can provide several forms of movement information,
and (iii) a wireless Internet connection which enables it to
communicate with other devices or with servers in an already
existing network infrastructure. Finally, the shear volume of
these devices provides the opportunity to process such ‘‘big
data’’ in ways that can bypass inaccuracies or errors. Looking

into the not-so-distant future, the connected vehicle initiative
will be transforming vehicles into mobile nodes in a network
which does not require a Smart City to build ormaintain it, but
simply to take advantage of the vast amount of data from the
vehicles which will allow them to be self-driven. The advent
of such Connected Autonomous Vehicles (CAVs) provides
the opportunity for new approaches to realize, for example,
automated vehicle intersection control based on requests and
information received from the vehicles located inside some
communication range [2]. There are several efforts recently
reported in the literature involving the coordination and opti-
mal control of multiple CAVs [3]–[7].

While there are many examples of systems recently devel-
oped to handle chronic transportation-related problems in
urban environments, such as parking [8] and traffic light
signaling [9], these assume the existence of an infrastructure,
e.g., sensors to detect if a parking space is vacant or not
and traffic lights. In this paper, we choose to focus on an
infrastructure-free system (called Street Bump) which has
been developed in Boston to sense and classify roadway
obstacles (e.g., potholes) based exclusively on data collected
through a smartphone application, as long as the smartphone
resides in a vehicle.

B. SENSING AND CLASSIFYING ROADWAY OBSTACLES
According to the AmericanAssociation of State Highway and
Transportation Officials, as much as 50% of US roads and
highways are in bad condition, which increases the likelihood
of accidents. In the northern parts of the US, in particu-
lar, potholes are a recurring problem. As an example, the
Massachusetts State TransportationDepartment [10] received
about 1,700 pothole complaints over the first quarter of 2014
and spent more that $800,000 filling them, while the City of
Boston filled more than 10,000 potholes.

To detect road obstacles in an automated and cost-effective
manner, the City developed the smartphone application
Street Bump, which records information from the phone’s
accelerometer and GPS. This information can adequately
describe and locate ‘‘bumps’’ as a smartphone-carrying vehi-
cle drives through the streets of Boston. We use the term
‘‘bump’’ in a generic sense to describe various obstacles
which include potholes, sunk castings (manhole covers),
utility patches, catch basins (drains), train tracks and speed
bumps, all substantial enough to be clearly sensed by a driver
and potentially cause damage to the wheels or other parts of
a vehicle. An innovative component of this approach is the
collection of real data through crowd sourcing, an approach
which allows citizens to contribute to a massive and con-
tinuous data collection process without the need to build
and deploy any infrastructure. Moreover, there is the added
social benefit of reinforcing a feeling of participation in the
betterment of a local community.

Our objective in this paper is to develop an anomaly detec-
tion and decision support system that utilizes the collected
Street Bump data. Based on the setup introduced in [11], the
present paper explores a larger variety of machine learning
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classification methods, provides complete technical details
of our analysis, and validates the proposed algorithms on
an actual dataset provided to us by the City of Boston. The
raw data include both ‘‘actionable’’ and ‘‘non-actionable’’
bumps. ‘‘Actionable’’ are bumps due to potholes and sunk
castings which are caused by nature or accident and require
prompt repair. ‘‘Non-actionable’’ are bumps due to either
expected, known, or benign obstacles, such as train tracks,
speed bumps, and relatively flat castings, which do not
require immediate attention. Our goal is to accurately classify
all detected roadway obstacles into predefined categories:
actionable obstacles whose severity can be quantified and
non-actionable ones. Further, we seek to develop a way of
quantifying the severity of actionable obstacles. This can
ultimately be used to maintain a prioritized list based on
which the City can be dispatching repair crews in a timely
and economical manner.

We emphasize the infrastructure-free nature of this system,
since it relies exclusively on data collected from smartphones
located in vehicles driven throughout an urban setting. Some
may be municipal vehicles (e.g., buses, police cars) but most
are driven by citizens who can therefore become engaged
in the maintenance of their own public resources. This is
in contrast to infrastructure-dependent approaches such as
the specialized vehicles equipped with sophisticated sensing
devices that were mentioned in the previous section.

The starting point in our approach is a ‘‘labeled’’ training
set at our disposal which contains information on the type
of bumps in that set. Processing the data collected by Street
Bump, we extract features, that is, various functions of the
data computed over time-windows associated with a specific
bump. We then follow two complementary approaches. First,
we formulate a binary classification problem to differentiate
actionable from non-actionable bumps. To that end, we use
supervised learning algorithms that have been shown to be
effective in a number of applications (e.g., prediction of
heart-related hospitalizations [12]). These algorithms include
Support Vector Machines (SVM), AdaBoost, logistic regres-
sion, random forests (see [13]), and some novel variants we
introduce that combine classification with clustering. In some
instances, especially when we perform clustering and the
number of training data per cluster is small, we introduce spe-
cific sparsity-inducing regularizations that identify a subset of
most relevant features.

Our second approach is unsupervised and inspired by
anomaly detection problems arising in a variety of applica-
tions (see e.g., [14]–[17] and references therein). Anomaly
detection methods consist of modeling ‘‘normal’’ behavior
and detecting deviations from it, called the anomalies.
In this work, we will exploit several structural properties of
the problem and specifically the fact that most actionable
obstacles are due to natural phenomena that produce random
obstacle configurations. In contrast, non-actionable obstacles
are human-made which results in a significant degree of
regularity. As an example, driving over a flat casting produces
vibration data leading to a signal closely resembling that of

a harmonic oscillation compared to signals obtained from
vibrations due to a pothole. We are then able to quantify
such a measure of regularity through an ‘‘anomaly index.’’
We develop two methods for obtaining such an index. The
first method is based on a Mean Squared Error (MSE)
measure of a bump signal’s deviation from that of a sim-
ple harmonic oscillation. The second method relies on the
entropy [18] of a bump signal, which captures the extent of
an anomaly; in particular, a higher anomaly index is assigned
to bumps with larger entropy values.

Although our work is focused on locating and iden-
tifying street bumps, our methods have much broader
applicability. As an example, we mention the problem of
remotely detecting non-typical body motion of humans, such
as a fall. This is particularly useful in monitoring the elderly
and alert caregivers in case of a fall or other accident [19].
Once again, accelerometer and GPS data from a smartphone
carried by such individuals may be used to both detect a
potential fall and localize the incident without the presence
of an underlying infrastructure.

The remainder of the paper is structured as follows.
In Sec. II, we describe the Street Bump data and how we
extract features to be used in bump classification. In Sec. III,
we present our decision support and anomaly detection sys-
tem. In Sec. IV, we define various performance evaluation
criteria for our system. In Sec. V, we list extensive numerical
results based on actual data provided to us by the City of
Boston through controlled data collection using the Street
Bump application, thus, illustrating the feasibility and effec-
tiveness of our system. Conclusions and directions for future
work are discussed in Sec. VI.

On a notational remark, lower case bold letters correspond
to vectors. All vectors we use are column vectors and we will
write f = (f1, . . . , fn) for f ∈ Rn.

II. FEATURE EXTRACTION
A. ATTRIBUTES RECORDED BY THE SMARTPHONE
The Mayor’s Office of New Urban Mechanics in the City of
Boston, in partnership with theConnected Bits company have
developed an iPhone application which can collect roadway
obstacle data from sensors (3-axes accelerometer and GPS)
embedded in the iPhone so as to ultimately identify ‘‘bumps,’’
which the city can then fix. Drivers start up the app and
place their smartphones in a stable location in the vehicle,
such as the dashboard. While driving through the streets, the
app automatically utilizes the phone’s accelerometer andGPS
receiver and registers a ‘‘bump’’ when the speed of the car
exceeds 5 mi/hour and the accelerometer records an absolute
value reading of 0.4 g or higher along the z-axis. It then
transmits to a remote server information related to every such
bump, including a time-stamp that captures the instant when
the aforementioned ‘‘trigger’’ conditions were met.

Specifically, the information recorded and transmitted is:
(1) latitude and (2) longitude of the bump location, (3) speed
of the vehicle (meters per second), (4) course, which is the
heading of the vehicle at the time of the bump (i.e., the
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angle between the driving direction and a reference direction
taken to be North), (5) x-axis, y-axis and z-axis readings
from the accelerometer during a time window that includes
the bump time-stamp. In particular, this time window starts
0.25 seconds before the time-stamp (recalled from a buffer),
is 1 second long, and includes accelerometer readings sam-
pled at 50 Hz (i.e., 50 samples).

According to the iPhone settings, in these readings, the
x axis points North, the y axis points West and the z axis is
in the direction of gravity. We rotate this coordinate system
so that the x-axis aligns with the driving direction, the y-axis
is perpendicular to it, and the z axis is unchanged. Hence-
forth, we will refer to these three time series (one for each
coordinate) as the signatures of the bump. The x-coordinate
signature of an anomalous bump is shown in Fig. 2, where
the horizontal axis represents time in seconds and the vertical
axis measures the acceleration in the x-axis (i.e., driving)
direction.

FIGURE 2. (Left): x-coordinate signature of an anomalous (actionable)
bump. (Right): x-coordinate signature of a flat casting (non-actionable).

B. FEATURE ENGINEERING FOR THE DECISION
SUPPORT SYSTEM
Our first step is to derive a set of features from the col-
lected data which are informative, non-redundant and enable
the subsequent learning steps. We divide each of the three
n-dimensional coordinate time series into a number of K
bins of length d = bn/Kc. Because the total number
of samples varies across bumps, we truncate each time
series to maintain an identical number of samples for
each coordinate and each bump. For each bump, let x =
(x1, . . . , xdK ) and similarly y, z denote the vector of sam-
ples for the x, y, z-coordinates, respectively. Let x(k) =
(xd(k−1)+1, . . . , xdk ), and similarly y(k), z(k), k = 1, . . . ,K ,
denote the vector of samples in the k th bin of the x, y, and
z coordinate signatures, respectively. Finally, let us define the
operatorsM [·], R[·] and σ [·] to denote the average, range and
standard deviation of the elements of a vector. We derive the
following features:
• Basic bump features: From the set of bump attributes
defined above, we retain the latitude and longitude of the
bump as well as the speed of the vehicle.

• Bump distributional features: From the x-coordinate
signature, we calculate M [x], σ [x], R[x] and M [x(k)],
σ [x(k)], R[x(k)], where k = 1, . . . ,K . We also compute:

Dx = | argmax
i
xi − argmin

i
xi|,

and use it as an additional feature. Next, we quantize the
range of x into B bins, and define the empirical measure

hBx = (hx(1), . . . , hx(B)) where

hx(b) =

∑dK
t=1 1{xt∈bth bin}

dK
, b = 1, . . . ,B,

where 1{·} is the indicator function that takes the value 1
if its attribute is true and 0 otherwise. Last, we cre-
ate a mapping: x→ xµ = (M (x(1)), . . . ,M (x(k))), and
we include M [xµ], σ [xµ], R[xµ] into the feature set.
We repeat these calculations for the y- and z-coordinate
signatures.

• Temporal dependency features: This set of features
captures the intra-coordinate correlations among bins at
different times. For the x-coordinate signature, we add
to the feature set the covariance of the signals in consec-
utive bins, i.e., cov(x(k), x(k+1)), ∀k . We also account for
covariances between bins further away by including the
following features: (a) the maximum covariance

Cxx = max
d+1≤j≤d(K−1)

cov(x(1), (xj, . . . , xj+d )),

and (b) the corresponding time lag

Lxx = arg max
d+1≤j≤d(K−1)

cov(x(1), (xj, . . . , xj+d ))− d + 1.

We also calculate corresponding features for the other
two coordinates.

• Cross-coordinate dependency features: This set of
features captures dependencies between the three
coordinates. We include cov(x(k), y(k)), cov(x(k), z(k)),
cov(y(k), z(k)), ∀k , and Cxy, Lxy, Cyx , Lyx , Cyz and Lyz,
where definitions are similar as above. For example,
Cxy = maxd+1≤j≤d(K−1) cov(x(1), (yj, . . . , yj+d )).

Let us now denote by f(i) the feature vector we have
constructed for each bump i as described above, where
i = 1, . . . ,N , and N is the total number of bumps in the
dataset. The dimensionality of the feature vector is denoted
by D. To avoid significant mismatch in the ranges of each
element of f(i), we scale appropriately so that each element is
in the [0, 1] range.

C. FEATURE CONSTRUCTION FOR THE ANOMALY
DETECTION SYSTEM
For the anomaly detection system, we pre-process the col-
lected data in a different manner. Still, we use the accelerome-
ter measurements captured in the same vectors x, y and z used
earlier. We start with the observation that simple inspection of
the bump signatures cannot reveal whether a bump is action-
able or non-actionable. This is illustrated in Fig. 3, where
the original signatures of a pothole (actionable) and that of
a flat casting (non-actionable) cannot be differentiated in any
obvious way. In order to enhance the differences between the
two bump categories, we proceed as follows.

Let ξ (k) be the original accelerometer values at sample
time k associated with a bump (in either x, y or z-axis). Let
δ(k) be the amplitude difference measured over two consec-
utive time steps:

δ(k) = ξ (k)− ξ (k − 1). (1)
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In order to magnify these amplitude increments, we fur-
ther define a differential signal, which we refer to as the
‘‘1-Signature Filter:’’

1(k) =


1(k − 1)+ δ(k), if δ(k)δ(k − 1) > 0,
δ(k), if δ(k)δ(k − 1) ≤ 0,
0, if δ(k) < c,

(2)

where we can see that 1(k) either accumulates the incre-
ments δ(k) if there is no change of sign, or it resets the value to
the latest difference otherwise. Through such accumulation,
we therefore boost the effect of continuous movement along
the same direction.

Intuitively, the sequence {δ(k)} captures the variability in
the signature and {1(k)} attempts to capture the trend in the
signal. If the signal increments δ(k) are positive or negative
over some time interval consistently, this yields a large 1(k)
value; otherwise 1(k) resets itself. Noise appears as small
random oscillations in the signature. To reduce noise, we pass
1(k) through a high-pass filter that sets its value to zero if the
signal is below a threshold c as seen in the third branch of (2)
(in our specific system seen in Fig. 3, we have used c = 0.4.)
Clearly, more obvious patterns are now revealed through the
1-filtered signature, as shown in the green curves in Fig. 3.

To further test and verify quantitatively the 1-Signature
Filter, we have conducted two additional experiments which

FIGURE 3. Top two figures: Pothole (actionable) signature and associated
1-filtered signature with fitted sinusoid. Bottom two figures: Flat Casting
(Non-actionable) signature and associated 1-filtered signature with fitted
sinusoid.

have confirmed that these filtered signatures enhance classi-
fication performance:

1) The original signature and the 1-filtered signature of
a bump are added as feature vectors and used in a
binary classification system based on Support Vector
Machines (SVMs); see Sec. III. These additional fea-
tures yielded superior classification performance.

2) The Fourier transforms of the signature and of the
1-filtered signature of the bumps have also been used
as feature vectors, which further improved classifica-
tion performance.

III. METHODOLOGY-DECISION SUPPORT AND ANOMALY
DETECTION SYSTEM
In this section, we describe the methods that comprise the
decision support and anomaly detection system. We aim at
distinguishing between the actionable and the non-actionable
(anomalous) bumps. We use two approaches: (a) a super-
vised binary classification approach, which classifies bumps
as actionable or non-actionable, and (b) an unsupervised
anomaly detection approach which attempts to identify
bumps that are significantly different from the rest. Aswewill
see, these approaches are complementary having different
strengths and weaknesses.

A. SUPERVISED CLASSIFICATION METHODS
In the first approach, we formulate the problem as a binary
supervised classification problem and experiment with vari-
ous methods. Because of the limited data set size (the labeling
of the bumps is tedious and requires human intervention)
and to avoid over-fitting, we aim at limiting the number of
variables based on which the classification decision is made,
which leads us to introduce regularizers that induce sparsity.
By combining results from the various supervised methods,
we build a unified prioritized decision support system.

1) SOFT-MARGIN SVM AND SPARSE SOFT-MARGIN SVM
Let f(i) be the D-dimensional feature vector of the ith bump.
SVMs compute a separating hyperplane w′f(i) + b, between
sample vectors (bumps) of different classes [20]. The solu-
tion to the SVM problem is the hyperplane that maximizes
the margin between the two classes, i.e., the distance from
the hyperplane surface to the closest data points. Often in
practice, the sample points are not linearly separable. For
this reason, the original space is mapped through a kernel
function into a higher dimensional space, where presumably
linear separation can be achieved [20], [21]. Furthermore,
we prefer a hyperplane that better separates the majority of
the data even if it ignores a few misclassified samples [21].
Such an SVM is called soft-margin SVM. This is achieved
through a penalty term in the objective function of the SVM
problem multiplied by a weight parameter C that controls
the trade-off between the goals of maximizing the margin
and minimizing the number of misclassified examples. The
parameters of the kernel as well as the regularization param-
eter C (cf. (5)) are selected through cross-validation.
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FIGURE 4. Sinusoid function fitting.

The soft-margin formulation of SVM is as follows:

min
w,b,ξ

1
2
||w||2 + C

N∑
i=1

ξi

s.t. vi(w′f(i) + b) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i, (3)

where ξi are slack variables and vi is the label for the bump
corresponding to feature vector f(i), taking a value of 1 if the
bump is actionable and−1 otherwise. This problem is a con-
vex quadratic programming problem with linear constraints.
There exist Lagrange multipliers ai ≥ 0 and µi ≥ 0, for
all i, for which (3) is equivalent to minimizing the Lagrangean
function Lp with respect to w, b and ξi, where

LP(w, b, ξi) =
1
2
||w||2 + C

N∑
i=1

ξi −

N∑
i=1

ai[vi(w′f(i) + b)

− (1− ξi)]−
N∑
i=1

µiξi.

Imposing the Karush-Kuhn-Tucker optimality conditions and
eliminating µi we obtain the following dual formulation of
the problem:

max
a

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajvivjf′ifj

s.t. 0 ≤ ai ≤ C, i = 1, . . . ,N ,
N∑
i=1

aivi = 0.

We observe that in the above optimization problem only
the inner products f′ifj of the original features are involved.
Employing the kernel trick to map the features from the orig-
inal feature space into a higher dimensional space where fea-
tures are closer to be linearly separable, makes the framework
more flexible and accommodates non-linear boundaries:

max
a

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajvivjK (fi, fj)

s.t. 0 ≤ ai ≤ C, i = 1, . . . ,N ,
N∑
i=1

aivi = 0, (4)

where K (fi, fj) is the kernel function. Further and in an effort
to limit the number of features used by the classifier, we
introduce a Sparse soft margin SVM (SSVM). To induce
sparsity, and in addition to the aforementioned misclassifi-
cation regularization penalty weighted by C , we impose an
`1-norm penalty

∑D
t=1 |wt | for the vector of coefficients w

that define the SVM hyperplane. The optimization problem
is formulated as follows:

min
z,w,b,ξ

1
2
||w||2 + C

N∑
i=1

ξi + P
D∑
t=1

zt

s.t. vi(w′f(i) + b) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i,

zt ≥ wt , zt ≥ −wt , t = 1, . . . ,D. (5)

In this formulation, P is a parameter that controls sparsity; the
larger P is the more of the wt will end up being zero.

2) LOGISTIC REGRESSION AND `1 REGULARIZATION
Logistic regression [22] is a linear, fairly simple classifier,
widely used in many classification applications. The basic
idea is that for each bump we model the posterior probability
of the actionable class as a logistic function with parameters θ
that weight the features f and an offset β. The parameters
(θ , β) of the model are selected by maximizing the log-
likelihood using a gradient method. For the test samples,
decisions are made by thresholding the log-likelihood ratio
of the actionable class over the non-actionable class.

In the `1 regularized Logistic regression [23], when maxi-
mizing the log-likelihood we impose in the objective function
an extra penalty term proportional to |θ |, which has the effect
of ‘‘selecting’’ a sparse set of features. This leads to a lower
complexity model and can avoid overfitting in situations
where features are non-informative and/or we have few data
on which to train.

3) ADABOOST WITH STUMPS
Boosting is an ensemble supervised learning method that
constructs a classifier as a linear combination of simpler
weak classifiers [13]. In this work, we will use decision
stumps as the component classifiers used by AdaBoost.
A decision stump makes a prediction based on the value of
a single input feature. AdaBoost maintains a distribution of
weights for the training sample points. During each iteration,
a weak classifier is trained by focusing on the data points
that have been misclassified by the previous weak classifier,
and the weights get updated based on the misclassification
error. When these iterations terminate, AdaBoost combines
the decisions of these weak classifiers using an optimally
weighted majority vote. The number of iterations is selected
through cross-validation.

4) RANDOM FORESTS
Bagging is a technique for reducing variance of an estimated
predictor by averaging many noisy but approximately unbi-
ased models. A random forest is an ensemble of de-correlated
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trees [13]. Each decision tree is grown on a training set
constructed by sampling (with replacement) a random subset
of the original data. On each split, among the full set of the
original variables only a subset of fixed size is considered and
the best split using these is selected to split the node. Each tree
is fully grown until a minimum size is reached, i.e., there is
no pruning. While the predictions of a single tree are highly
sensitive to noise in its training set, the average of many
trees is not, as long as the trees are not correlated. Bootstrap
sampling achieves de-correlating the trees by constructing
them using different training sets. To make a prediction at a
new point, random forests take the majority vote among the
outputs of the grown trees in the ensemble. Random forests
run very efficiently on large data sets, do not have the risk of
overfitting as AdaBoost does and can handle data sets with
unbalanced classes. The number of trees in the ensemble is
selected through cross-validation.

5) A HIERARCHICAL APPROACH OF CLUSTERING
AND CLASSIFICATION
Because bumps naturally fit into different categories with
distinct signatures, we introduce a new hierarchical approach
that first clusters the bumps into a pre-determined number
of clusters L and then trains a different classifier for each
cluster. For clustering, we use the widely used method of
k-means++ [24] that is based on a heuristic to find cen-
troid seeds for k-means clustering. For clustering, we employ
Sparse Support Vector Machines (SSVMs), that base the
classification decision on a subset of features only. Due to
the limited size of the data set we have in our disposal, the
use of a sparsity-inducing classifier is critical; a classifier
that uses all features (like SVM) would not be able to learn
all its parameters from a small training set. We will use the
notation C-SSVM to refer to this clustering and classifica-
tion method. We conduct various experiments to select the
optimal number of clusters L. For clustering, a correlation-
based distance metric yielded the best results. Specifically,
for any two bumps i, j with feature vectors f(i), f(j) we use
1−cov(f(i), f(j))/(σ (f(i))σ (f(j)) as their distance metric, where
σ (f(i)) is the sample variance of the feature vector f(i).

6) A DECISION SUPPORT SYSTEM FOR
PRIORITIZING ANOMALIES
All the methods we have outlined in this subsection, classify
a test bump by comparing a decision function of its fea-
tures g(f(i)) to a threshold ε. The bump is classified as action-
able if g(f(i)) ≥ ε. The distance g(f(i))− ε can in fact be used
to prioritize among actionable bumps; the larger this distance
the more confident we are about the bump being actionable.
From themethodswe considered, logistic regression provides
explicitly the likelihood of a bump being actionable, which
can then be used to order actionable bumps. Another way to
make more robust predictions is to informally combine sev-
eral methods, seeking for instance consensus among various
classifiers in order to declare a bump as actionable.

B. UNSUPERVISED ANOMALY DETECTION METHODS
In the second approach, which focuses on anomaly detection
methods, we define a ‘‘normal’’ bump signature in two differ-
ent ways: (i) a normal signal with a sinusoidal pattern, or (ii) a
normal signal with an expected range of amplitude. We then
propose metrics to measure how different a test bump is from
a normal pattern.

1) SINUSOIDAL FITTING AND A MEAN
SQUARED ERROR METRIC
The key idea is that the 1-filtered signature defined in (2)
exhibits a pattern very similar to a sinusoidal function for non-
actionable bumps, whereas actionable bumps do not exhibit
this behavior. To explore this apparent separation, we fit a
sine (or cosine) function (see Fig. 4) the 1-filtered signature
of a bump (see the red curves in Fig. 3) and calculate aMean
Squared Error (MSE) as a goodness-of-fit metric. Specifi-
cally, the lower the MSE is, the more actionable we expect a
bump to be.

A typical sine (or cosine) function

f (t) = A sin(ωt − θ0)+ b

is characterized by the four parameters A, ω, θ0, and b
which have to be determined in order to perform a sinu-
soid curve fitting. Traditionally, one can use nonlinear least
squares optimization or sinusoid regression tools to determine
the parameters. However, given the fact that all sampling
points are approximately equally distributed around zero,
we can determine the parameters through a much simpler
computation procedure based on the1-filtered signature of a
bump 1(k) in (2).
We begin the fitting process by identifying time intervals

such that 1(k) = 0 over more than one continuous sample
points. Since they contain no valuable information, such
intervals can be eliminated and we can concentrate on a
typical interval [t0, t0+Td ] over which the continuous signal
1(t) (see the green curves in Fig. 3) satisfies 1(t) 6= 0
except, possibly, at a finite number of points ti ∈ [t0, t0+Td ],
i = 0, 1, . . . ,N , with tN = t0+Td . The steps for fitting1(t)
to a sinusoid function are as follows.

Step 1: Determine A, the amplitude of the function.
Let zj be the jth zero crossing of 1(t) in [t0, tN ] and

there are N + 1 zero crossings in total. Define 1max
j =

maxt∈(zj−1,zj) ‖1(t)‖, j = 1, . . . ,N , which represents the
extreme values between each pair of zero crossings. Then,
we have

A =
1
N

N∑
i=1

‖1max
j ‖. (6)

Step 2: Determine b, the vertical shift (or mean level) of
the function.

The parameter b is simply the mean of all the extreme
values in [t0, tN ]:

b =
1
N

N∑
i=1

1max
j . (7)
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Step 3: Determine the frequency ω, measuring the time a
sinusoid function takes to repeat a cycle.

Since we have N +1 zero crossings, there are N
2 periods in

total. Therefore, recalling the definition of Td above, we have

ω =
Nπ
Td
. (8)

Step 4: Determine the phase θ0 (or horizontal shift) of the
function.

This is simply given by

θ0 = ωt0 =
Nπ t0
Td

. (9)

Solving for these four parameters, the fitting sinusoid
function f (t) = A sin(ωt − θ0) + b is fully determined.
There are several approaches to measure how good the fit is,
including R2, defined as the coefficient of determination or
proportion of variance explained by the model, or the p-value
based on an F test [25]. Here, we utilize a Mean Squared
Error (MSE) metric. Given the sinusoid function f (t), we
discretize it based on the sampling points ti ∈ [t0, t0 + Td ]
and obtain the values f (ti) corresponding to1(ti). Comparing
f (ti) with 1(ti), the MSE is defined as

MSE =

√
1
N

∑N
i=1[f (ti)−1(ti)]2. (10)

The MSE can be interpreted as a measurement of the prox-
imity of 1(t) to f (t) = A sin(ωt − θ0) + b. We expect that
non-actionable bumps have a better fit to a sinusoid, hence,
lowerMSE. Therefore, bumpswith largerMSE, are identified
as anomalies (see the green and red curves in Fig. 3).

2) A BUMP ENTROPY METRIC
In this approach, we resort to basic information theory where
systems are modeled by a transmitter, channel, and receiver.
Messages are sent from the transmitter through the channel,
which in turn will modify the message in some way. The
receiver attempts to infer the information contained in each
message. Entropy (more specifically, Shannon entropy) is
a measure of the expected value of the information [18].
Generally, entropy refers to disorder or uncertainty.

Messages can be modeled by any flow of information.
In our context, the bump signature (original message) can
be modeled as a smooth signal modified by actionable/non-
actionable bumps (different channels). Since entropy is a
measure of unpredictability of information content, we expect
that more regular signatures are more predictable and contain
less information, which means lower entropy. This suggests
that one way to measure the degree of irregularity of a
1-filtered signature is through the concept of entropy.

The simplest definition of entropy H is to associate
it to a discrete random variable X taking on values
x = (x1, x2, · · · , xN ) with a probability mass function PX (x).
Letting IX (x) = E[− log(PX (x)] be the information content
of X , we define

HX (x) = E[IX (x)] = E[− logPX (x))], (11)

which can be also written as:

HX (x) = 6iPX (xi)IX (xi) = −6iPX (xi) logPX (xi). (12)

FIGURE 5. Amplitude partition of 1-filtered signatures.

The question now is how to define the discrete random
variable X and its corresponding probability mass function.
Since wewant to concentrate on different amplitude ranges of
1(t), we set amaximal range [1min,1max], where1min is the
global minimum (lower bound) of all 1(t) in the dataset and
1max is the global maximum (upper bound). Then, we parti-
tion [1min,1max] into sub-intervals [ui−1, ui], i = 1, . . . , n
(see Fig. 5), so that u0 = 1min and un = 1max. Regarding
1(t) as a continuous-time signature, we then define X as the
index of the interval into which1(t) falls, and the probability
pi ≡ PX (xi) is defined as the fraction of time during which
1(t) ∈ [ui−1, ui]. Therefore, bump entropy is defined as

H = −
n∑
i=1

pi log(pi). (13)

Letting1−1(·) the inverse of the mapping1(·), it follows that

pi =
1
Td

∑
i

∣∣∣1−1(ui+1)−1−1(ui)∣∣∣ , (14)

where Td is the length of the time interval considered (sim-
ilar to that of the sinusoid fitting approach). Finally, and in
effort to further amplify the effect of extreme amplitudes, i.e.,
unusually large positive (near 1max) or negative amplitudes,
we modify H for our purpose to

H = −
n∑
i=1

log(pi). (15)

In this manner, a small number of extreme amplitudes can
increase the bump entropy.

IV. PERFORMANCE EVALUATION
A. SUPERVISED CLASSIFICATION
We evaluate the performance of the learning algorithms by
measuring two standard probabilities of error. The prob-
ability of miss detection corresponds to the fraction of
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actionable bumps that are classified as non-actionable. The
probability of false alarm corresponds to the fraction of the
non-actionable bumps that are erroneously classified as
actionable. By altering the decision threshold when classi-
fying samples from a test set, we produce multiple pairs
of the two error rates. We visualize the performance of the
classifier by plotting the detection rate (1 minus the miss-
detection rate) versus the false alarm rate. This produces the
so called Receiver Operating Characteristic (ROC) curve.
The point (0, 0) on the curve corresponds to a decision
rule which predicts all bumps as non-actionable, leading
to 0% detection rate and 0% false alarm rate. Similarly, the
point (1, 1) on the ROC curve corresponds to a rule that
predicts all bumps as actionable, leading to 100% detection
rate and 100% false alarm rate. The ideal ROC curve, which
would correspond to the best possible prediction method, is
a piecewise linear curve that passes through points (0, 0),
(0, 1) and (1, 1). In contrast, the worst possible ROC curve,
which corresponds to random guessing about the label of each
bump, is a line that passes through points (0, 0) and (1, 1).
All other classifiers produce ROC curves that lie between
these two extreme curves. Depending on the tolerable false
alarm rate (or detection rate), one can operate the classifier
at a specific point of an ROC curve. We also report the Area
Under the ROC Curve (AUC) (with values between 0 and 1),
which is a summary statistic and is often used for model
comparison. The AUC of the ideal classifier is 1, so the higher
the AUC value of a classifier, the better.

B. ANOMALY DETECTION
The MSE metric in (10) and bump entropy in (15) both
measure the degree of irregularity of a bump. Even though
they are implemented in different ways, they share a common
property: the larger the MSE/entropy, the more irregular a
bump is. Therefore, it is simple to combine the MSE metric
and bump entropy. Hence, we define the following Anomaly
Index (AI ):

AI = λ(MSE)+ (1− λ)H (16)

associated with each bump, where the parameter λ ∈ [0, 1]
is selected to place more or less emphasis on the MSE or
the entropy. Since we have signatures from the x, y and z
accelerometer axis respectively, we can can possibly combine
MSE and entropy metrics for each axis into an aggregate
AI, or simply focus on a specific axis (z in our experimental
results) which contains the most relevant information.

Based onAI , we can generate a prioritized list, such that the
entries on the top of the list are the most likely to be action-
able bumps requiring immediate attention, while those at the
bottom of the list are the most likely to be non-actionable.
The importance of this list lies in the fact that it provides
simple information to the City Department of Public Works
based on which it can prioritize bumps and dispatch limited
resources (in the form of repair crews) where repairs are
actually needed, while preventing unnecessary dispatching to
non-actionable bump locations.

C. CLASSIFICATION AND ANOMALY DETECTION
SYSTEM COMPARISON
The decision support and the anomaly detection systems
can be seen as complementary but distinct approaches to
the same problem. The first distinction is goal-oriented: the
decision support system focuses on differentiating action-
able bumps from non-actionable ones, while the anomaly
detection system concentrates on identifying the most urgent
actionable bumps.

Another key distinction relates to how these systems can be
used. The first (decision support) system is based on machine
learning/classification methods which are supervised, that is,
they require a ‘‘labeled’’ training set to learn the various
classifier parameters and thresholds. The anomaly detection
system, on the other hand, is unsupervised; it simply ranks
bumps based on the anomaly index we introduced. It provides
no guarantees but suggests that higher ranked bumps aremore
likely to be actionable.

The consistency of the results of the two methods can be
assessed by comparing whether the bumps at the top of the
ranked anomaly detection list are also classified as actionable
based on the decision support system. Moreover, as we dis-
cussed in Sec. III-A6, the supervised classification methods
can also provide a metric of confidence the classifier has in
a positive decision and this can be used to evaluate the top
ranked bumps from the anomaly detection system.

V. EXPERIMENTAL RESULTS
Our results are based on an actual dataset with 813 bumps
collected by the City of Boston. As we described in Sec. II,
the number of samples in a bump varies between 48 to
65 samples, with the mode of the distribution being equal
to 57. In our experiments, we set K (the number of bins we
use to partition the signatures) to 3, and B (the number of bins
we use to calculate the empirical measure hBx (·)) to 5.
The number of features we use for the binary classification

(actionable vs. non-actionable) is equal to 90. The data set is
roughly balanced with 59% of the samples being actionable
and 41% being non-actionable. To label the data, a camera
was attached to the cars that drove in the city streets and
based on the videos recorded the labeling was then done
by experts in the City of Boston administration. From the
bumps in the dataset we have omitted the ones in ‘‘screen-
able’’ categories, such as crosswalks, expansion joints, train
tracks, speed bumps and road distortion/depression, since
their location is known to the City and can thus be matched
just by using location. We have also omitted data for bumps
described as ‘‘unidentifiable’’ or otherwise ill-conditioned.

A. FALSE ALARM RATE VS. DETECTION RATE
In Fig. 6, we compare the various supervised classification
methods. The ROC for each method captures the trade-off
between the detection rate and the probability of false alarms.
Table 1 provides the AUC for the various classification
methods.

Some remarks are in order. AdaBoost achieves better
performance than either logistic regression or SVM but is
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FIGURE 6. ROC curves for the classification methods.

TABLE 1. Area Under the ROC Curve (AUC) for various classification
methods of the Street Bump decision support system.

computationally more expensive to train. Regularization in
either SVM or logistic regression does not appear to improve
performance. As we have noted though earlier, it is critical
in the context of the clustering and classification methods
due to the (small) size of the training set for each cluster.
Random forests yield the best overall performance among
the various algorithms. We point out that with just 20%
false alarm rate, we can correctly identify almost 50% of the
actionable bumps. According to City of Boston officials, this
is a level of performance that can enable the use of our algo-
rithm in practice. Combining clustering and classification
does not improve the performance, indicating that the bumps
are not well separated into groups, which clearly shows how
challenging the problem is.

B. TOP-N BUMPS ON THE ORDERED ANOMALY LIST
Since our anomaly detection system concentrates on the most
urgent detected actionable obstacles, we limit ourselves to
reporting a top-N list of actionable bumps. In order to deter-
mine the top-N actionable bumps, we use different param-
eters λ = 1, 0.7, 0.5, 0.3, 0 in (16) and plot the anomaly
index AI values that correspond to each bump (see Fig. 8).

FIGURE 7. Parameter λ selection.

FIGURE 8. Normalized anomaly index values (λ = 0.5).

Comparing over different weights, we can observe that
the first 100 bumps usually have much larger AI values;
for the rest, the rate with which AI decreases is much lower.
Therefore, we limit ourselves to the top-100 bumps on the list.
Finally, in what follows we select the weight λ = 0.5 which
yields the highest accuracy rate (88% as shown in Fig. 7) for
detecting actionable bumps.

In Fig. 9 we limit ourselves to showing the top-27 of
the bump prioritization list generated in descending order of
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FIGURE 9. Bump list in descending AI order with weight λ = 0.5.

anomaly index AI. Note that among the top 27 bumps in this
list only a single non-actionable case is included (marked in
yellow), illustrating the accuracy of the Street Bump system.

VI. CONCLUSIONS AND FUTURE WORK
The goal of this paper is to demonstrate how the ubiquitous
availability of wireless devices can enable the development
of effective infrastructure-free approaches for solving prob-
lems in Smart Cities. In particular, we have concentrated on
the problem of detecting and classifying roadway obstacles
(bumps) so as to differentiate between actionable bumps
which correspond to obstacles that require immediate atten-
tion, and non-actionable bumps (e.g., cobblestone streets,
speed bumps) for which no immediate action is needed.
This classification enables City officials to efficiently and
effectively prioritize repairs. We developed two complemen-
tary methods to that end. The first method uses classification
algorithms. The second method introduces an anomaly index
which captures the degree of regularity of a bump, and uses
this index to differentiate between more ‘‘normal’’ bumps
(non-actionable) from the ‘‘anomalous’’ (actionable) bumps.

As a next step of this work, it is important to be able to dif-
ferentiate between different types of obstacles; for example,
to distinguish a pothole from a poorly repaired sunk casting.
The vision is that the accelerometer and GPS data collected
by the app can be used in additional applications. An example
is detecting wet or icy road conditions or obstacles causing
vehicles to experience abrupt motions in a horizontal/lateral,
rather than vertical direction. All these results, combined
with the ones by our decision support system, could poten-
tially be integrated to create a global ‘‘road smoothness’’
or ‘‘road quality’’ metric, available to all citizens through
appropriate web sites, or specialized apps, or even integrated
intomap/navigation applications (Googlemaps,Waze, Apple
maps, etc.), that can then be used to select the best route.
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