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Abstract—We present an optimal control framework for per-
sistent monitoring problems where the objective is to control
the movement of multiple cooperating agents to minimize an
uncertainty metric in a given mission space. In a one-dimensional
mission space, we show that the optimal solution is for each agent
to move at maximal speed from one switching point to the next,
possibly waiting some time at each point before reversing its
direction. Thus, the solution is reduced to a simpler parametric
optimization problem: determining a sequence of switching
locations and associated waiting times at these switching points
for each agent. This amounts to a hybrid system which we
analyze using Infinitesimal Perturbation Analysis (IPA) to obtain
a complete on-line solution through a gradient-based algorithm.
We also show that the solution is robust with respect to the
uncertainty model used. This establishes the basis for extending
this approach to a two-dimensional mission space.

I. INTRODUCTION

Enabled by recent technological advances, the deployment
of autonomous agents that can cooperatively perform com-
plex tasks is rapidly becoming a reality. In particular, there
has been considerable progress reported in the literature on
robotics and sensor networks regarding coverage control [1],
[2], [3], surveillance [4], [5] and environmental sampling [6],
[7] missions. In this paper, we are interested in generating
optimal control strategies for persistent monitoring tasks;
these arise when agents must monitor a dynamically changing
environment which cannot be fully covered by a stationary
team of available agents. Persistent monitoring differs from
traditional coverage tasks due to the perpetual need to cover a
changing environment, i.e., all areas of the mission space must
be visited infinitely often. The main challenge in designing
control strategies in this case is in balancing the presence of
agents in the changing environment so that it is covered over
time optimally (in some well-defined sense) while still satis-
fying sensing and motion constraints. Examples of persistent
monitoring missions include surveillance, patrol missions with
unmanned vehicles, and environmental applications where
routine sampling of an area is involved.

In this paper, we address the persistent monitoring problem
by proposing an optimal control framework to drive agents so
as to minimize a metric of uncertainty over the environment.
In coverage control [2], [3], it is common to model knowledge
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of the environment as a non-negative density function defined
over the mission space, and usually assumed to be fixed
over time. However, since persistent monitoring tasks involve
dynamically changing environments, it is natural to extend
this model to a function of both space and time to capture
uncertainty in the environment. We assume that uncertainty at
a point grows in time if it is not covered by any agent sensors.
To model sensor coverage, we define a probability of detecting
events at each point of the mission space by agent sensors.
Thus, the uncertainty of the environment decreases with a
rate proportional to the event detection probability, i.e., the
higher the sensing effectiveness is, the faster the uncertainty
is reduced..

While it is desirable to track the value of uncertainty over
all points in the environment, this is generally infeasible due to
computational complexity and memory constraints. Motivated
by polling models in queueing theory, e.g., spatial queueing
[8],[9], and by stochastic flow models [10], we assign sampling
points of the environment to be monitored persistently (this is
equivalent to partitioning the environment into a discrete set
of regions.) We associate to these points “uncertainty queues”
which are visited by one or more “servers”. The growth in
uncertainty at a sampling point can then be viewed as a flow
into a queue, and the reduction in uncertainty (when covered
by an agent) can be viewed as the queue being visited by
mobile servers as in a polling system. Moreover, the service
flow rates depend on the distance of the sampling point to
nearby agents. From this point of view, we aim to control the
movement of the servers (agents) so that the total accumulated
“uncertainty queue” content is minimized.

Control and motion planning for agents performing persis-
tent monitoring tasks have been studied in the literature. In
[1] the focus is on sweep coverage problems, where agents
are controlled to sweep an area. In [6], [11] a similar metric
of uncertainty is used to model knowledge of a dynamic
environment. In [11], the sampling points in a one-dimensional
environment are denoted as cells, and the optimal control
policy for a two-cell problem is given. Problems with more
than two cells are addressed by a heuristic policy. In [6], the
authors proposed a stabilizing speed controller for a single
agent so that the accumulated uncertainty over a given path
in the environment is bounded, along with an optimal con-
troller that minimizes the maximum steady-state uncertainty,
assuming that the agent travels along a closed path and does
not change direction. The persistent monitoring problem is
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also related to robot patrol problems, where a team of robots
are required to visit points in the workspace with frequency
constraints [12], [13], [14].

Although one-dimensional persistent monitoring problems
are of interest in their own right (e.g., see [15]), our ultimate
goal is to optimally control a team of cooperating agents
in a two or three-dimensional environment. The contribution
of this paper is to take a first step toward this goal by
formulating and solving an optimal control problem for a
team of agents moving in a one-dimensional mission space
described by an interval [0, L] ⊂ R in which we minimize
the accumulated uncertainty over a given time horizon and
over an arbitrary number of sampling points. Even in this
simple case, determining a complete explicit solution is com-
putationally hard, as seen in [16] where the single-agent case
was first considered. However, we show that the problem
can be reduced to a parametric optimization problem. In
particular, the optimal trajectory of each agent is to move
at full speed until it reaches some switching point, dwell on
the switching point for some time (possibly zero), and then
switch directions. In addition, we prove that all agents should
never reach the end points of the mission space [0, L]. Thus,
each agent’s optimal trajectory is fully described by a set of
switching points {θ1, . . . , θK} and associated waiting times
at these points, {w1, . . . , wK}. As a result, we show that
the behavior of the agents operating under optimal control
is described by a hybrid system. This allows us to make use
of generalized Infinitesimal Perturbation Analysis (IPA), as
presented in [17],[18], to determine gradients of the objective
function with respect to these parameters and subsequently
obtain optimal switching locations and waiting times that fully
characterize an optimal solution. It also allows us to exploit
robustness properties of IPA to extend this solution approach
to a stochastic uncertainty model. Our analysis establishes
the basis for extending this approach to a two-dimensional
mission space (in ongoing research). In a broader context, our
approach brings together optimal control, hybrid systems, and
perturbation analysis techniques in solving a class of problems
which, under optimal control, can be shown to behave like
hybrid systems characterized by a set of parameters whose
optimal values deliver a complete optimal control solution.

The rest of the paper is organized as follows. Section II
formulates the optimal control problem. Section III character-
izes the solution of the problem in terms of two parameter
vectors specifying switching points in the mission space and
associated dwelling times at them. Using IPA in conjunction
with a gradient-based algorithm, a complete solution is also
provided. Section IV provides some numerical results and
Section V concludes the paper.

II. PERSISTENT MONITORING PROBLEM FORMULATION

We consider N mobile agents moving in a 1-dimensional
mission space of length L, for simplicity taken to be an interval
[0, L] ⊂ R. Let the position of the agents at time t be sn(t) ∈
[0, L], n = 1, . . . , N , following the dynamics:

ṡn(t) = un(t) (1)

i.e., we assume that the agent can control its direction and
speed. Without loss of generality, after some rescaling with
the size of the mission space L, we further assume that the
speed is constrained by |un (t)| ≤ 1, n = 1, . . . , N . For the
sake of generality, we include the additional constraint:

a ≤ s(t) ≤ b, a ≥ 0, b ≤ L (2)

over all t to allow for mission spaces where the agents may
not reach the end points of [0, L], possibly due to the presence
of obstacles. We also point out that the agent dynamics in
(1) can be replaced by a more general model of the form
ṡn(t) = gn(sn)+bnun(t) without affecting the main results of
our analysis (see also Remark 1 in the next section.) Finally,
an additional constraint may be imposed if we assume that
the agents are initially located so that sn (0) < sn+1 (0), n =
1, . . . , N −1, and we wish to prevent them from subsequently
crossing each other over all t:

sn (t)− sn+1 (t) ≤ 0 (3)

We associate with every point x ∈ [0, L] a function pn(x, sn)
that measures the probability that an event at location x is
detected by agent n. We also assume that pn(x, sn) = 1 if x =
sn, and that pn(x, sn) is monotonically nonincreasing in the
distance |x−sn| between x and sn, thus capturing the reduced
effectiveness of a sensor over its range which we consider to
be finite and denoted by rn (this is the same as the concept of
“sensor footprint” found in the robotics literature.) Therefore,
we set pn(x, sn) = 0 when |x − sn| > rn. Although our
analysis is not affected by the precise sensing model pn(x, sn),
we will limit ourselves to a linear decay model as follows:

pn(x, sn) =

{
1− |x−sn|rn

, if |x− sn| ≤ rn
0, if |x− sn| > rn

(4)

Next, consider a set of points {αi}, i = 1, . . . ,M , αi ∈ [0, L],
and associate a time-varying measure of uncertainty with each
point αi, which we denote by Ri(t). Without loss of generality,
we assume 0 ≤ α1 ≤ · · · ≤ αM ≤ L and, to simplify notation,
we set pn,i(sn(t)) ≡ pn(αi, sn(t)). This set may be selected
to contain points of interest in the environment, or sampled
points from the mission space. Alternatively, we may consider
a partition of [0, L] into M intervals whose center points are
αi = (2i−1)L

2M , i = 1, . . . ,M . We can then set pn(x, sn (t)) =
pn,i(sn (t)) for all x ∈ [αi − L

2M , αi + L
2M ]. Therefore, the

joint probability of detecting an event at location x ∈ [αi −
L

2M , αi + L
2M ] by all the N agents simultaneously (assuming

detection independence) is:

Pi (s(t)) = 1−
Q∏
n=1

[1− pn,i(sn (t))] (5)

where we set s(t) = [s1 (t) , . . . , sN (t)]T. We define un-
certainty functions Ri(t) associated with the intervals [αi −
L

2M , αi + L
2M ], i = 1, . . . ,M , so that they have the following

properties: (i) Ri(t) increases with a prespecified rate Ai if
Pi (s(t)) = 0, (ii) Ri(t) decreases with a fixed rate B if
Pi (s(t)) = 1 and (iii) Ri(t) ≥ 0 for all t. It is then natural
to model uncertainty so that its decrease is proportional to the
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Figure 1. A queueing system analog of the persistent monitoring problem.

probability of detection. In particular, we model the dynamics
of Ri(t), i = 1, . . . ,M , as follows:

Ṙi(t) =

{
0 if Ri(t) = 0, Ai ≤ BPi (s(t))
Ai −BPi (s(t)) otherwise

(6)
where we assume that initial conditions Ri(0), i = 1, . . . ,M ,
are given and that B > Ai > 0 (thus, the uncertainty strictly
decreases when there is perfect sensing Pi (s(t)) = 1.)

Viewing persistent monitoring as a polling system, each
point αi (equivalently, ith interval in [0, L]) is associated with
a “virtual queue” where uncertainty accumulates with inflow
rate Ai (similar models have been used in some data havesting
problems, e.g., [19]). The service rate of this queue is time-
varying and given by BPi (s(t)), controllable through the
agent position at time t. Figure 1 illustrates this polling system
when N = 1. This interpretation is convenient for characteriz-
ing the stability of such a system over a mission time T : For
each queue, we may require that

∫ T
0
Ai <

∫ T
0
Bpi(s(t))dt.

Alternatively, we may require that each queue becomes empty
at least once over [0, T ]. We may also impose conditions such
as Ri(T ) ≤ Rmax for each queue as additional constraints for
our problem so as to provide bounded uncertainty guarantees,
although we will not do so in this paper. Note that this analogy
readily extends to two or three-dimensional settings.

The goal of the optimal persistent monitoring problem we
consider is to control the movement of the N agents through
un (t) in (1) so that the cumulative uncertainty over all sensing
points {αi}, i = 1, . . . ,M is minimized over a fixed time
horizon T . Thus, setting u (t) = [u1 (t) , . . . , uN (t)] we aim
to solve the following optimal control problem P1:

min
u(t)

J =
1

T

∫ T

0

M∑
i=1

Ri(t)dt (7)

subject to the agent dynamics (1), uncertainty dynamics (6),
control constraint |un(t)| ≤ 1, t ∈ [0, T ], and state constraints
(2), t ∈ [0, T ]. Note that we require a ≤ rn and b ≥ L− rm,
for at least some n,m = 1, . . . , N ; this is to ensure that there
are no points in [0, L] which can never be sensed, i.e., any
i such that αi < a − rn or αi > b + rn would always lie
outside any agent’s sensing range. We will omit the additional
constraint (3) from our initial analysis, but we will show that,
when it is included, the optimal solution never allows it to be
active.

III. OPTIMAL CONTROL SOLUTION

We first characterize the optimal control solution
of problem P1 and show that it can be reduced to a
parametric optimization problem. This allows us to utilize
an Infinitesimal Perturbation Analysis (IPA) gradient
estimation approach [17] to find a complete optimal solution
through a gradient-based algorithm. We define the state
vector x (t) = [s1 (t) , . . . , sN (t) , R1 (t) , . . . , RM (t)]T

and the associated costate vector λ (t) =
[λs1 (t) , . . . , λsN (t) , λ1 (t) , . . . , λM (t)]T. In view of
the discontinuity in the dynamics of Ri(t) in (6), the optimal
state trajectory may contain a boundary arc when Ri(t) = 0
for some i; otherwise, the state evolves in an interior arc.
We first analyze the system operating in such an interior arc
and omit the constraint (2) as well. Using (1) and (6), the
Hamiltonian is

H (x, λ,u) =

M∑
i=1

Ri (t)+

N∑
n=1

λsn (t)un (t)+

M∑
i=1

λi (t) Ṙi(t)

(8)
and the costate equations λ̇ = −∂H∂x are

λ̇i (t) = − ∂H

∂Ri (t)
= −1, i = 1, . . . ,M (9)

λ̇sn (t) = − ∂H

∂sn (t)

= −B
rn

∑
i∈z−

n (t)

λi (t)
∏
d 6=n

[1− pd,i(sd (t))]

+
B

rn

∑
i∈z+

n (t)

λi (t)
∏
d6=n

[1− pd,i(sd (t))] (10)

where we have used (4), and the sets z−n (t) and z+
n (t) are

defined as

z−n (t) = {i : sn (t)− rn ≤ αi ≤ sn (t)}
z+
n (t) = {i : sn (t) < αi ≤ sn (t) + rn} (11)

for n = 1, . . . , N . Note that z−n (t), z+
n (t) identify all

points αi to the left and right of sn (t) respectively that are
within agent n’s sensing range. Since we impose no terminal
state constraints, the boundary conditions are λi (T ) = 0,
i = 1, . . . ,M and λsn (T ) = 0, n = 1, ..., N. Applying the
Pontryagin minimum principle to (8) with u?(t), t ∈ [0, T ),
denoting an optimal control, we have

H (x?, λ?,u?) = min
un∈[−1,1], n=1,...,N

H (x, λ,u)

and it is immediately obvious that it is necessary for an optimal
control to satisfy:

u?n(t) =

{
1 if λsn (t) < 0
−1 if λsn (t) > 0

(12)

This condition excludes the possibility that λsn (t) = 0 over
some finite singular intervals [20]. We will show that if
sn (t) = a > 0 or sn (t) = b < L, then λsn (t) = 0 for
some n ∈ {1, . . . , N} may in fact be possible for some finite
arc; otherwise λsn (t) = 0 can arise only when un (t) = 0.

The implication of (9) with λi (T ) = 0 is that λi (t) = T−t
for all t ∈ [0, T ] and all i = 1, . . . ,M and that λi (t) is
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monotonically decreasing starting with λi (0) = T . However,
this is only true if the entire optimal trajectory is an interior
arc, i.e., all Ri(t) ≥ 0 constraints for all i = 1, . . . ,M remain
inactive. On the other hand, looking at (10), observe that when
the two end points, 0 and L, are not within the range of an
agent, we have |F−n (t)| = |F+

n (t)|, since the number of indices
i satisfying sn (t) − rn ≤ αi ≤ sn (t) is the same as that
satisfying sn (t) < αi ≤ sn (t) + rn. Consequently, for the
one-agent case N = 1, (10) becomes

λ̇s1 (t) = −B
r1

∑
i∈F−

1 (t)

λi(t) +
B

r1

∑
i∈F+

1 (t)

λi(t) (13)

and λ̇s1 (t) = 0 since the two terms in (13) will cancel out, i.e.,
λs1 (t) remains constant as long as this condition is satisfied
and, in addition, none of the state constraints Ri(t) ≥ 0, i =
1, . . . ,M , is active. Thus, for the one agent case, as long as the
optimal trajectory is an interior arc and λs1 (t) < 0, the agent
moves at maximal speed u?1 (t) = 1 in the positive direction
towards the point s1 = b. If λs1 (t) switches sign before any of
the state constraints Ri(t) ≥ 0, i = 1, . . . ,M , becomes active
or the agent reaches the end point s1 = b, then u?1 (t) = −1
and the agent reverses its direction or, possibly, comes to rest.

In what follows, we examine the effect of the state con-
straints which significantly complicates the analysis, leading
to a challenging two-point-boundary-value problem. However,
we will establish the fact that the complete solution boils down
to determining a set of switching locations over [a, b] and
waiting times at these switching points, with the end points, 0
and L, being always infeasible on an optimal trajectory. This
is a much simpler problem that we are subsequently able to
solve.

We begin by recalling that the dynamics in (6) indicate a
discontinuity arising when the condition Ri(t) = 0 is satisfied
while Ṙi(t) = Ai − BPi (s(t)) < 0 for some i = 1, . . . ,M .
Thus, Ri = 0 defines an interior boundary condition which is
not an explicit function of time. Following standard optimal
control analysis [20], if this condition is satisfied at time t for
some j ∈ {1, . . . ,M},

H
(
x(t−), λ(t−),u(t−)

)
= H

(
x(t+), λ(t+),u(t+)

)
(14)

where we note that one can choose to set the Hamiltonian to
be continuous at the entry point of a boundary arc or at the
exit point. Using (8) and (6), (14) implies:

N∑
n=1

λ?sn
(
t−
)
u?n
(
t−
)

+ λ?j
(
t−
)

[Aj (t)−BPj(s(t))]

=

N∑
n=1

λ?sn
(
t+
)
u?n
(
t+
)

(15)

In addition, λ?sn (t−) = λ?sn (t+) for all n = 1, . . . , N and
λ?i (t−) = λ?i (t+) for all i 6= j, but λ?j (t) may experience a
discontinuity so that:

λ?j
(
t−
)

= λ?j
(
t+
)
− πj (16)

where πj ≥ 0 is a multiplier associated with the constraint
−Rj(t) ≤ 0. Recalling (12), since λ?sn (t) remains unaffected,
so does the optimal control, i.e., u?n(t−) = u?n(t+). Moreover,

since this is an entry point of a boundary arc, it follows from
(6) that Aj −BPj (s(t)) < 0. Therefore, (15) and (16) imply
that λ?j (t−) = 0 and λ?j (t+) = πj ≥ 0. Thus, λi (t) always
decreases with constant rate −1 until Ri (t) = 0 is active,
at which point λi (t) jumps to a non-negative value πi and
decreases with rate −1 again. The value of πi is determined
by how long it takes for the agents to reduce Ri (t) to 0 once
again. Obviously,

λi (t) ≥ 0, i = 1, . . . ,M , t ∈ [0, T ] (17)

with equality holding only if t = T, or t = t−0 with Ri (t0) =
0, Ri (t′) > 0, where t′ ∈ [t0 − δ, t0), δ > 0. The actual
evaluation of the costate vector over the interval [0, T ] requires
solving (10), which in turn involves the determination of all
points where the state variables Ri(t) reach their minimum
feasible values Ri(t) = 0, i = 1, . . . ,M . This generally
involves the solution of a two-point-boundary-value problem.
However, our analysis thus far has already established the
structure of the optimal control (12) which we have seen to
remain unaffected by the presence of boundary arcs when
Ri(t) = 0 for one or more i = 1, . . . ,M . We will next prove
some additional structural properties of an optimal trajectory,
based on which we show that it is fully characterized by a
set of non-negative scalar parameters. Determining the values
of these parameters is a much simpler problem that does not
require the solution of a two-point-boundary-value problem.

Let us turn our attention to the constraints sn(t) ≥ a and
sn(t) ≤ b and consider first the case where a = 0, b = L, i.e.,
the agents can move over the entire [0, L]. We shall make use
of the following technical condition:

Assumption 1: For any n = 1, . . . , N , i = 1, . . . ,M , t ∈
(0, T ), and any ε > 0, if sn(t) = 0, sn(t − ε) > 0, then
either Ri(τ) > 0 for all τ ∈ [t − ε, t] or Ri(τ) = 0 for all
τ ∈ [t−ε, t]; if sn(t) = L, sn(t−ε) < L, then either Ri(τ) > 0
for all τ ∈ [t− ε, t] or Ri(τ) = 0 for all τ ∈ [t− ε, t].

This condition excludes the case where an agent reaches an
endpoint of the mission space at the exact same time that any
one of the uncertainty functions reaches its minimal value of
zero. Then, the following proposition asserts that neither of the
constraints sn(t) ≥ 0 and sn(t) ≤ L can become active on an
optimal trajectory. The assumption is used only in Proposition
III.1 for technical reasons and does not alter the structure of
the optimal controller.

Proposition III.1: Under Assumption 1, if a = 0, b = L,
then on an optimal trajectory: s?n (t) 6= 0 and s?n (t) 6= L for
all t ∈ (0, T ), n ∈ {1, . . . , N} .

Proof. Suppose at t = t0 < T an agent reaches the left
endpoint, i.e., s?n (t0) = 0, s?n

(
t−0
)
> 0. We will then establish

a contradiction. Thus, assuming s?n (t0) = 0, we first show
that λ?sn

(
t−0
)

= 0 by a contradiction argument. Assume that
λ?sn

(
t−0
)
6= 0, in which case, since the agent is moving toward

sn = 0, we have u?n
(
t−0
)

= −1 and λ?sn
(
t−0
)
> 0 from (12).

Then, λ?sn (t) may experience a discontinuity so that

λ?sn
(
t−0
)

= λ?sn
(
t+0
)
− πn (18)

where πn > 0 is a scalar constant. It follows that λ?sn
(
t+0
)

=
λ?sn

(
t−0
)

+ πn > 0. Since the constraint sn (t) = 0 is not an
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explicit function of time, we have

λ?sn
(
t−0
)
u?n
(
t−0
)

= λ?sn
(
t+0
)
u?n
(
t+0
)

(19)

On the other hand, u?n
(
t+0
)
> 0, since agent n must

either come to rest or reverse its motion at sn = 0,
hence λ?sn

(
t+0
)
u?n
(
t+0
)
> 0. This violates (19), since

λ?sn
(
t−0
)
u?n
(
t−0
)

< 0. This contradiction implies that
λ?sn

(
t−0
)

= 0. Next, consider (10) and observe that in (11)
we have F−n (t0) = ∅, since αi > s?n (t0) = 0 for all
i = 1, . . . ,M . Therefore, recalling (17), it follows from (10)
that

λ̇sn
(
t−0
)

=
B

rn

∑
i∈z+

n (t−0 )

λi
(
t−0
) ∏
d 6=n

[
1− pd,i(sd

(
t−0
)
)
]
≥ 0

Under Assumption 1, there exists δ1 > 0 such that during the
interval (t0 − δ1, t0) no Ri (t) ≥ 0 becomes active, hence no
λi(t) encounters a jump for i = 1, . . . ,M . It follows that
λ?i (t) > 0 for i ∈ F+

n (t) and λ̇?sn (t) is continuous with
λ̇?sn (t) > 0 for t ∈ (t0 − δ1, t0). Again, since s?n (t0) = 0,
there exists some δ2 ≤ δ1 such that for t ∈ (t0 − δ2, t0), we
have u?n (t) < 0 and λ?sn (t) ≥ 0. Thus, for t ∈ (t0 − δ2, t0),
we have λ?sn (t) ≥ 0 and λ̇?sn (t) > 0. This contradicts the
established fact that λ?sn

(
t−0
)

= 0 and we conclude that
s?n (t) 6= 0 for all t ∈ [0, T ], n = 1, . . . , N . Using a similar
line of argument, we can also show that s?n (t) 6= L. �

Proposition III.2: If a > 0 and (or) b < L, then on an
optimal trajectory there exist finite length intervals [t0, t1] such
that sn (t) = a and (or) sn (t) = b, for some n ∈ {1, . . . , N},
t ∈ [t0, t1], 0 ≤ t0 < t1 ≤ T .

Proof. Proceeding as in the proof of Proposition III.1,
when s?n (t0) = a we can establish (19) and the fact that
λ?sn

(
t−0
)

= 0. On the other hand, u?n
(
t+0
)
> 0, since the agent

must either come to rest or reverse its motion at sn (t0) = a.
In other words, when sn (t0) = a on an optimal trajectory,
(19) is satisfied either with the agent reversing its direction
immediately (in which case t1 = t0 and λ?sn

(
t+0
)

= 0) or
staying on the boundary arc for a finite time interval (in which
case t1 > t0 and u?n (t) = 0 for t ∈ [t0, t1]). The exact same
argument can be applied to sn (t) = b. �

The next result establishes the fact that on an optimal
trajectory, every agent either moves at full speed or is at rest.

Proposition III.3: On an optimal trajectory, either u?n (t) =
±1 if λ?sn (t) 6= 0, or u?n (t) = 0 if λ?sn (t) = 0 for t ∈ [0, T ],
n = 1, . . . , N .

Proof. When λ?sn (t) 6= 0, we have shown in (12) that
u?n (t) = ±1, depending on the sign of λ?sn (t). Thus, it
remains to consider the case λ?sn (t) = 0 for some t ∈ [t1, t2],
where 0 ≤ t1 < t2 ≤ T . Since the state is in a singular arc,
λ?sn (t) does not provide information about u?n (t). On the other
hand, the Hamiltonian in (8) is not a explicit function of time,
therefore, setting H (x?, λ?,u?) ≡ H?, we havedH

?

dt = 0,

which gives

dH?

dt
=

M∑
i=1

Ṙ?i (t) +

N∑
n=1

λ̇?sn (t)u?n (t)

+

N∑
n=1

λ?sn (t) u̇?n (t) +

M∑
i=1

λ̇?i (t) Ṙ?i (t)

+

M∑
i=1

λ?i (t) R̈?i (t) = 0 (20)

Define S (t) = {n|λsn (t) = 0, n = 1, . . . , N} as the set of
indices of agents that are in a singular arc and S̄ (t) =
{n|λsn (t) 6= 0, n = 1, . . . , N} as the set of indices of all other
agents. Thus, λ?sn (t) = 0, λ̇?sn (t) = 0 for t ∈ [t1, t2] , n ∈
S (t). In addition, agents move with constant full speed, either
1 or −1, so that u̇?n (t) = 0, n ∈ S̄ (t). Then, (20) becomes

dH?

dt
=

M∑
i=1

[1 + λ̇?i (t)]Ṙ?i (t) +
∑
n∈S̄(t)

λ̇?sn (t)u?n (t)

+

M∑
i=1

λ?i (t) R̈?i (t) = 0 (21)

From (9), λ̇?i (t) = −1, i = 1, . . . ,M, so 1 + λ̇?i (t) = 0,
leaving only the last two terms above. Note that λ̇?sn (t) =

− ∂H?

∂s?n(t) and writing R̈?i (t) =
dṘ?i (t)
dt we get:

−
∑
n∈S̄(t)

u?n (t)
∂H?

∂s?n (t)
+

M∑
i=1,Ri 6=0

λ?i (t)
dṘ?i (t)

dt
= 0

Recall from (6) that when Ri (t) 6= 0 we have Ṙi (t) = Ai −

B[1−
N∏
n=1

[1− pi(sn (t))]], so that

∂H?

∂s?n (t)

= −B
M∑

i=1,Ri 6=0

λ?i (t)
∂pi (s?n (t))

∂s?n (t)

N∏
d 6=n

(1− pi (s?d (t))) (22)

dṘ?i (t)

dt

= −B
N∑
n=1

u?n (t)
∂pi (s?n (t))

∂s?n (t)

N∏
d6=n

(1− pi (s?d (t))) (23)
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which results in

B

M∑
i=1
Ri 6=0

λ?i (t)
∑
n∈S̄(t)

u?n (t)
∂pi (s?n (t))

∂s?n (t)

N∏
d6=n

(1− pi (s?d (t)))

−B
M∑
i=1
Ri 6=0

λ?i (t)

N∑
n=1

u?n (t)
∂pi (s?n (t))

∂s?n (t)

N∏
d6=n

(1− pi (s?d (t)))

= −B
M∑
i=1
Ri 6=0

λ?i (t)
∑
n∈S(t)

u?n (t)
∂pi (s?n (t))

∂s?n (t)

×
N∏
d6=n

(1− pi (s?d (t))) = 0 (24)

Note that ∂pi(s
?
1(t))

∂s?n(t) = ± 1
r1

or 0, depending on the relative
position of s?1 (t) with respect to αi. Moreover, (24) is invariant
to M or the precise way in which the mission space [0, L] is
partitioned, which implies that

λ?i (t)
∑
n∈S(t)

u?n (t)
∂pi (s?n (t))

∂s?n (t)

N∏
d 6=n

(1− pi (s?d (t))) = 0

for all i = 1, . . . ,M , t ∈ [t1, t2] . Since λ̇?i (t) = −1, i =
1, . . . ,M , it is clear that to satisfy this equality we must have
u?n (t) = 0 for all t ∈ [t1, t2] , n ∈ S (t). In conclusion, in a
singular arc with λ?sn (t) = 0 for some n ∈ {1, . . . , N} , the
optimal control is u?n (t) = 0. �

Next, we consider the case where the additional state con-
straint (3) is included. We can then prove that this constraint is
never active on an optimal trajectory, i.e., agents reverse their
direction before making contact with any other agent.

Proposition III.4: If the constraint (3) is included in prob-
lem P1, then on an optimal trajectory, s?n (t) 6= s?n+1 (t) for
t ∈ (0, T ], n = 1, . . . , N − 1.

Proof. Suppose at t = t0 < T we have s?n (t0) = s?n+1 (t0),
for some n = 1, . . . , N − 1. We will then establish a
contradiction. First assuming that both agents are moving (as
opposed to one being at rest) toward each other, we have
u?n
(
t−0
)

= 1 and u?n+1

(
t−0
)

= −1. From (12) and Prop
III.3, we know λ?sn

(
t−0
)
< 0 and λ?sn+1

(
t−0
)
> 0. When

the constraint sn (t) − sn+1 (t) ≤ 0 is active, λ?sn (t) and
λ?sn+1

(
t−0
)

may experience a discontinuity so that

λ?sn
(
t−0
)

= λ?sn
(
t+0
)

+ π

λ?sn+1

(
t−0
)

= λ?sn+1

(
t+0
)
− π (25)

where π > 0 is a scalar constant. It follows that λ?sn
(
t+0
)

=
λ?sn

(
t−0
)
− π < 0 and λ?sn+1

(
t+0
)

= λ?sn+1

(
t−0
)

+ π > 0.
Since the constraint sn (t) − sn+1 (t) ≤ 0 is not an explicit
function of time, we have

λ?sn
(
t−0
)
u?n
(
t−0
)

+ λ?sn+1

(
t−0
)
u?n+1

(
t−0
)

= λ?sn
(
t+0
)
u?n
(
t+0
)

+ λ?sn+1

(
t+0
)
u?n+1

(
t+0
)

(26)

On the other hand, u?n
(
t+0
)
6 0 and u?n+1

(
t+0
)
>

0, since agents n and n + 1 must either come to
rest or reverse their motion after making contact, hence
λ?sn

(
t+0
)
u?n
(
t+0
)

+ λ?sn+1

(
t+0
)
u?n+1

(
t+0
)
> 0. This violates

(26), since λ?sn
(
t−0
)
u?n
(
t−0
)

+ λ?sn+1

(
t−0
)
u?n+1

(
t−0
)
< 0.

This contradiction implies that sn (t)−sn+1 (t) = 0 cannot be
active and we conclude that s?n (t) 6= s?n+1 (t) for t ∈ [0, T ],
n = 1, . . . , N−1. Moreover, if one of the two agents is at rest
when s?n (t0) = s?n+1 (t0), the same argument still holds since
it is still true that λ?sn

(
t−0
)
u?n
(
t−0
)

+λ?sn+1

(
t−0
)
u?n+1

(
t−0
)
<

0. �
Based on this analysis, the optimal control u?n (t) depends

entirely on the sign of λ?sn (t) and, in light of Propositions
III.1-III.3, the solution of the problem reduces to determining:
(i) switching points in [0, L] where an agent switches from
u?n (t) = ±1 to either ∓1 or 0; or from u?n (t) = 0 to either ±1,
and (ii) if an agent switches from u?n (t) = ±1 to 0, waiting
times until the agent switches back to a speed u?n (t) = ±1.
In other words, the full solution is characterized by two
parameter vectors for each agent n: θn = [θn,1, . . . , θn,Γn ]T

and wn = [wn,1 . . . , wn,Γn ]T, where θn,ξ ∈ (0, L) denotes
the ξth location where agent n changes its speed from ±1
to 0 and wn,ξ ≥ 0 denotes the time (which is possibly
null) that agent n dwells on θn,ξ. Note that Γn is generally
not known a priori and depends on the time horizon T . In
addition, we always assume that agent n reverses its direction
after leaving the switching point θn,ξ with respect to the
one it had when reaching θn,ξ. This seemingly excludes the
possibility of an agent’s control following a sequence 1, 0, 1
or −1, 0,−1. However, these two motion behaviors can be
captured as two adjacent switching points approaching each
other: when |θn,ξ − θn,ξ+1| → 0, the agent control follows the
sequence 1, 0, 1 or −1, 0,−1, and the waiting time associated
with u?n (t) = 0 is wn,ξ + wn,ξ+1.

For simplicity, we will assume that sn(0) = 0, so that it
follows from Proposition III.1 that u?n(0) = 1, n = 1, . . . , N .
Therefore, θn,1 corresponds to the optimal control switching
from 1 to 0. Furthermore, θn,ξ with ξ odd (even) always
corresponds to u?n(t) switching from 1 to 0 (−1 to 0.) Thus,
we have the following constraints on the switching locations
for all ξ = 2, . . . ,Γn:{

θn,ξ ≤ θn,ξ−1, if ξ is even
θn,ξ ≥ θn,ξ−1, if ξ is odd. (27)

It is now clear that the behavior of each agent under the
optimal control policy is that of a hybrid system whose
dynamics undergo switches when u?n (t) changes from ±1
to 0 and from 0 to ∓1 or when Ri(t) reaches or leaves
the boundary value Ri = 0. As a result, we are faced
with a parametric optimization problem for a system with
hybrid dynamics. This is a setting where one can apply the
generalized theory of Infinitesimal Perturbation Analysis (IPA)
in [17],[18] to conveniently obtain the gradient of the objective
function J in (7) with respect to the vectors θ and w, and
therefore, determine (generally, locally) optimal vectors θ? and
w? through a gradient-based optimization approach. Note that
this is done on line, i.e., the gradient is evaluated by observing
a trajectory with given θ and w over [0, T ] based on which θ
and w are adjusted until convergence is attained using standard
gradient-based algorithms.

Remark 1. If the agent dynamics in (1) are replaced by
a model such as ṡn(t) = gn(sn) + bnun(t), observe that
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(12) still holds. The difference lies in (10) which would
involve a dependence on dgn(sn)

dsn
and further complicate the

associated two-point-boundary-value problem. However, since
the optimal solution is also defined by parameter vectors
θn = [θn,1, . . . , θn,Γn ]T and wn = [wn,1 . . . , wn,Γn ]T for each
agent n, we can still apply the IPA approach presented in the
next section.

A. Infinitesimal Perturbation Analysis (IPA)
Our analysis thus far has shown that, on an optimal trajec-

tory, the agent moves at full speed, dwells on a switching point
(possibly for zero time) and never reaches either boundary
point, i.e., 0 < s?n(t) < L. Thus, the nth agent’s movement
can be parameterized through θn = [θn,1, . . . , θn,Γn ]T and
wn = [wn,1 . . . , wn,Γn ]T where θn,ξ is the ξth control switch-
ing point and wn,ξ is the waiting time for this agent at the ξth
switching point. Therefore, the solution of problem P1 reduces
to the determination of optimal parameter vectors θ?n and w?n,
n = 1, . . . , N . As we pointed out, the agent’s optimal behavior
defines a hybrid system, and the switching locations translate
to switching times between particular modes of this system.
This is similar to switching-time optimization problems, e.g.,
[21],[22],[23], except that we can only control a subset of
mode switching times. We make use of IPA in part to exploit
robustness properties that the resulting gradients possess [24];
specifically, we will show that they do not depend on the
uncertainty model parameters Ai, i = 1, . . . ,M , and may
therefore be used without any detailed knowledge of how
uncertainty affects the mission space.

1) Single-agent solution with a = 0 and b = L: To
maintain some notational simplicity, we begin with a single
agent who can move on the entire mission space [0, L] and
will then provide the natural extension to multiple agents
and a mission space limited to [a, b] ⊂ [0, L]. We present
the associated hybrid automaton model for this single-agent
system operating on an optimal trajectory. Our goal is to
determine ∇J(θ, w), the gradient of the objective function J
in (7) with respect to θ and w, which can then be used in a
gradient-based algorithm to obtain optimal parameter vectors
θ?n and w?n, n = 1, . . . , N . We will apply IPA, which provides
a formal way to obtain state and event time derivatives with
respect to parameters of hybrid systems, from which we can
subsequently obtaining ∇J(θ, w).

Hybrid automaton model. We use a standard definition of
a hybrid automaton (e.g., see [25]) as the formalism to model
the system described above. Thus, let q ∈ Q (a countable
set) denote the discrete state (or mode) and x ∈ X ⊆ Rn
denote the continuous state. Let υ ∈ Υ (a countable set)
denote a discrete control input and u ∈ U ⊆ Rm a continuous
control input. Similarly, let δ ∈ ∆ (a countable set) denote
a discrete disturbance input and d ∈ D ⊆ Rp a continuous
disturbance input. The state evolution is determined by means
of (i) a vector field f : Q × X × U × D → X , (ii) an
invariant (or domain) set Inv : Q × Υ × ∆ → 2X , (iii)
a guard set Guard : Q × Q × Υ × ∆ → 2X , and (iv) a
reset function r : Q × Q × X × Υ × ∆ → X . The system
remains at a discrete state q as long as the continuous (time-
driven) state x does not leave the set Inv(q, υ, δ). If x reaches

a set Guard(q, q′, υ, δ) for some q′ ∈ Q, a discrete transition
can take place. If this transition does take place, the state
instantaneously resets to (q′, x′) where x′ is determined by
the reset map r(q, q′, x, υ, δ). Changes in υ and δ are discrete
events that either enable a transition from q to q′ by making
sure x ∈ Guard(q, q′, υ, δ) or force a transition out of q by
making sure x /∈ Inv(q, υ, δ). We will classify all events
that cause discrete state transitions in a manner that suits the
purposes of IPA. Since our problem is set in a deterministic
framework, δ and d will not be used.

We show in Fig. 2 a partial hybrid automaton model of the
single-agent system where a = 0 and b = L. Since there is
only one agent, we set s (t) = s1 (t), u (t) = u1 (t) and θ = θ1

for simplicity. Due to the size of the overall model, Fig. 2 is
limited to the behavior of the agent with respect to a single
αi, i ∈ {1, . . . ,M} and ignores modes where the agent dwells
on the switching points (these, however, are included in our
extended analysis in Section III-A2.) The model consists of 14
discrete states (modes) and is symmetric in the sense that states
1 − 7 correspond to the agent operating with u(t) = 1, and
states 8−14 correspond to the agent operating with u(t) = −1.
States where u (t) = 0 are omitted since we do not include
the waiting time parameter w = w1 here. The events that
cause state transitions can be placed in three categories: (i)
The value of Ri(t) becomes 0 and triggers a switch in the
dynamics of (6). This can only happen when Ri(t) > 0 and
Ṙi(t) = Ai−Bpi(s(t)) < 0 (e.g., in states 3 and 4), causing a
transition to state 7 in which the invariant condition is Ri(t) =
0. (ii) The agent reaches a switching location, indicated by the
guard condition s(t) = θξ for any ξ = 1, . . . ,Γ. In these cases,
a transition results from a state z to z+7 if z = 1, . . . , 6 and to
z−7 otherwise. (iii) The agent position reaches one of several
critical values that affect the dynamics of Ri(t) while Ri(t) >
0. Specifically, when s(t) = αi − r, the value of pi(s(t))
becomes strictly positive and Ṙi(t) = Ai − Bpi(s(t)) > 0,
as in the transition 1 → 2. Subsequently, when s(t) = αi −
r(1−Ai/B), as in the transition 2→ 3, the value of pi(s(t))
becomes sufficiently large to cause Ṙi(t) = Ai−Bpi(s(t)) <
0 so that a transition due to Ri(t) = 0 becomes feasible at
this state. Similar transitions occur when s(t) = αi, s(t) =
αi + r(1 − Ai/B), and s(t) = αi + r. The latter results in
state 6 where Ṙi(t) = Ai > 0 and the only feasible event is
s(t) = θξ, ξ odd, when a switch must occur and a transition
to state 13 takes place (similarly for state 8).

IPA review. Before proceeding, we provide a brief review
of the IPA framework for general stochastic hybrid systems
as presented in [17]. The purpose of IPA is to study the
behavior of a hybrid system state as a function of a parameter
vector θ ∈ Θ for a given compact, convex set Θ ⊂ Rl.
Let {τk(θ)}, k = 1, . . . ,K, denote the occurrence times of
all events in the state trajectory. For convenience, we set
τ0 = 0 and τK+1 = T . Over an interval [τk(θ), τk+1(θ)), the
system is at some mode during which the time-driven state
satisfies ẋ = fk(x, θ, t). An event at τk is classified as (i)
Exogenous if it causes a discrete state transition independent
of θ and satisfies dτk

dθ = 0; (ii) Endogenous, if there exists a
continuously differentiable function gk : Rn × Θ → R such
that τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0}; and (iii)
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Figure 2. Hybrid automaton for each αi. Red arrows represent events when the control switches between 1 and −1. Blue arrows represent events when Ri

becomes 0. Black arrows represent all other events.

Induced if it is triggered by the occurrence of another event
at time τm ≤ τk. IPA specifies how changes in θ influence
the state x(θ, t) and the event times τk(θ) and, ultimately,
how they influence interesting performance metrics which are
generally expressed in terms of these variables.

Given θ = [θ1, . . . , θΓ]T, we use the Jacobian matrix
notation: x′(t) ≡ ∂x(θ,t)

∂θ , τ ′k ≡
∂τk(θ)
∂θ , k = 1, . . . ,K, for

all state and event time derivatives. It is shown in [17] that
x′(t) satisfies:

d

dt
x′ (t) =

∂fk (t)

∂x
x′ (t) +

∂fk (t)

∂θ
(28)

for t ∈ [τk, τk+1) with boundary condition:

x′(τ+
k ) = x′(τ−k ) +

[
fk−1(τ−k )− fk(τ+

k )
]
τ ′k (29)

for k = 0, . . . ,K. In addition, in (29), the gradient vector for
each τk is τ ′k = 0 if the event at τk is exogenous and

τ ′k = −
[
∂gk
∂x

fk(τ−k )

]−1(
∂gk
∂θ

+
∂gk
∂x

x′(τ−k )

)
(30)

if the event at τk is endogenous (i.e., gk (x (θ, τk) , θ) = 0),
defined as long as ∂gk

∂x fk(τ−k ) 6= 0.
IPA equations. To clarify the presentation, we first note

that i = 1, . . . ,M is used to index the points where un-
certainty is measured; ξ = 1, . . . ,Γ indexes the compo-
nents of the parameter vector; and k = 1, . . . ,K indexes
event times. In order to apply the three fundamental IPA
equations (28)-(30) to our system, we use the state vec-
tor x (t) = [s (t) , R1(t), . . . , RM (t)]T and parameter vector
θ = [θ1, . . . , θΓ]T. We then identify all events that can

occur in Fig. 2 and consider intervals [τk(θ), τk+1(θ)) over
which the system is in one of the 14 states shown for each
i = 1, . . . ,M . Applying (28) to s(t) with fk (t) = 1 or −1
due to (1) and (12), the solution yields the gradient vector
∇s(t) = [ ∂s∂θ1 (t), . . . , ∂s

∂θM
(t)]T, where

∂s

∂θξ
(t) =

∂s

∂θξ
(τ+
k ), for t ∈ [τk, τk+1) (31)

for all k = 1, . . . ,K, i.e., for all states z(t) ∈ {1, . . . , 14}.
Similarly, let ∇Ri(t) = [∂Ri∂θ1

(t), . . . , ∂Ri∂θM
(t)]T for i =

1, . . . ,M . We note from (6) that fk (t) = 0 for states z(t) ∈
Z1 ≡ {7, 14}; fk (t) = Ai for states z(t) ∈ Z2 ≡ {1, 6, 8, 13};
and fk (t) = Ai−Bpi(s(t)) for all other states which we fur-
ther classify into Z3 ≡ {2, 3, 11, 12} and Z4 ≡ {4, 5, 9, 10}.
Thus, solving (28) and using (31) gives:

∇Ri (t) = ∇Ri(τ+
k )

−

{
0 if z (t) ∈ Z1 ∪ Z2

B
(
∂pi(s)
∂s

)
∇s
(
τ+
k

)
· (t− τk) otherwise

(32)

where ∂pi(s)
∂s = ± 1

r as evaluated from (4) depending on the
sign of αi − s(t) at each associated automaton state. Details
on the derivation of a simple recursive expression for ∇Ri (t)
above can be found in Appendix A.

Objective Function Gradient Evaluation. Based on our
analysis, the objective function (7) in problem P1 can now be
written as J(θ), a function of θ instead of u (t) and we can
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rewrite it as

J(θ) =
1

T

M∑
i=1

K∑
k=0

∫ τk+1(θ)

τk(θ)

Ri (t, θ) dt

where we have explicitly indicated the dependence on θ. We
then obtain:

∇J(θ) =
1

T

M∑
i=1

K∑
k=0

(

∫ τk+1

τk

∇Ri (t) dt

+Ri (τk+1)∇τk+1 −Ri (τk)∇τk) (33)

Observing the cancelation of all terms of the form Ri (τk)∇τk
for all k (with τ0 = 0, τK+1 = T fixed), we finally get

∇J(θ) =
1

T

M∑
i=1

K∑
k=0

∫ τk+1(θ)

τk(θ)

∇Ri (t) dt. (34)

The evaluation of ∇J(θ) therefore depends entirely on
∇Ri (t), which is obtained from (47)-(48) in Appendix A
and the observable event times τk, k = 1, . . . ,K, given
initial conditions s (0) = 0, Ri (0) for i = 1, . . . ,M and
∇Ri(0) = 0. Since ∇Ri (t) itself depends only on the event
times τk, k = 1, . . . ,K, the gradient ∇J(θ) is obtained
by observing the switching times in a trajectory over [0, T ]
characterized by the vector θ.

2) Multi-agent solution where a ≥ 0 and b ≤ L: Next,
we extend the results obtained in the previous section to the
general multi-agent problem where we also allow a ≥ 0 and
b ≤ L. Recall that we require 0 ≤ a ≤ rn and L−rm ≤ b ≤ L,
for at least some n,m = 1, . . . , N since, otherwise, controlling
agent movement cannot affect Ri(t) for all αi located outside
the sensing range of agents. We now include both parameter
vectors θn = [θn,1, . . . , θn,Γn ]T and wn = [wn,1, . . . wn,Γn ]T

for each agent n and, for notational simplicity, concatenate
them to construct θ = [θ1, . . . , θN ]

T and w = [w1, . . . , wN ]
T.

The solution of problem P1 reduces to the determination of
optimal parameter vectors θ? and w? and we will use IPA to
evaluate ∇J(θ, w) = [dJ(θ,w)

dθ
dJ(θ,w)
dw ]T. Similar to (34), it is

clear that this depends on ∇Ri(t) =
[
∂Ri(t)
∂θ

∂Ri(t)
∂w

]T
and the

event times τk, k = 1, . . . ,K, observed on a trajectory over
[0, T ] with given θ and w.

IPA equations. We begin by recalling the dynamics of
Ri (t) in (6) which depend on the relative positions of all
agents with respect to αi and change at time instants τk such
that either Ri(τk) = 0 with Ri(τ−k ) > 0 or Ai > BPi (s(τk))
with Ri(τ

−
k ) = 0. Moreover, using (1) and our earlier

Hamiltonian analysis, the dynamics of sn (t), n = 1, . . . , N ,
in an optimal trajectory can be expressed as follows. Define
Θn,ξ = (θn,ξ−1, θn,ξ) if ξ is odd and Θn,ξ = (θn,ξ, θn,ξ−1) if
ξ is even to be the ξth interval between successive switching
points for any n = 1, . . . , N , where θn,0 = sn(0). Then, for
ξ = 1, 2, . . .,

ṡn (t) =

 1 sn(t) ∈ Θn,ξ, ξ odd
−1 sn(t) ∈ Θn,ξ, ξ even
0 otherwise

(35)

where transitions for sn (t) from ±1 to ∓1 are incorporated
by treating them as cases where wn,ξ = 0, i.e., no dwelling

at a switching point θn,ξ (in which case ṡn (t) = 0.) We can
now concentrate on all events causing switches either in the
dynamics of any Ri (t), i = 1, . . . ,M , or the dynamics of
any sn(t), n = 1, . . . , N . From (29), any other event at some
time τk in this hybrid system cannot modify the values of

∇Ri(t) =
[
∂Ri(t)
∂θ

∂Ri(t)
∂w

]T
or ∇sn(t) =

[
∂sn(t)
∂θn

∂sn(t)
∂wn

]T
at

t = τk.
First, applying (28) to sn(t) with fk (t) = 1, −1 or 0 due

to (35), the solution yields

∇sn(t) = ∇sn(τ+
k ), for t ∈ [τk, τk+1) (36)

for all k = 1, . . . ,K, n = 1, . . . , N. Similarly, applying (28)
to Ri (t) and using (6) gives:

∂Ri
∂θn,ξ

(t) =
∂Ri
∂θn,ξ

(
τ+
k

)
−

{
0 if Ri(t) = 0, Ai < BPi (s(t))

G
∂sn(τ+

k )
∂θn,ξ

otherwise
(37)

and
∂Ri
∂wn,ξ

(t) =
∂Ri
∂wn,ξ

(
τ+
k

)
−

{
0 if Ri(t) = 0, Ai < BPi (s(t))

G
∂sn(τ+

k )
∂wn,ξ

otherwise
(38)

where G = B
∏
d6=n

(1− pi (sd (t)))
(
∂pi(sn)
∂sn

)
(t− τk)

Details on the derivation of simple recursive expressions for
the components of ∇sn(τ+

k ) and ∇Ri(τ+
k ) in (36)-(38) can

be found in Appendix B.
Objective Function Gradient Evaluation. Proceeding as

in the evaluation of ∇J(θ) in Section III-A1, we are now
interested in minimizing the objective function J(θ, w) in (7)
with respect to θ and w and we can obtain ∇J(θ, w) =

[dJ(θ,w)
dθ

dJ(θ,w)
dw ]T as

∇J(θ, w) =
1

T

M∑
i=1

K∑
k=0

∫ τk+1(θ,w)

τk(θ,w)

∇Ri (t) dt

This depends entirely on ∇Ri (t), which is obtained from
(37) and (38) and the event times τk, k = 1, . . . ,K, given
initial conditions sn (0) = a for n = 1, . . . , N , and Ri (0) for
i = 1, . . . ,M . In (37), ∂Ri

∂θn,ξ

(
τ+
k

)
is obtained through (50)

and (52) found in Appendix B, whereas
∂sn(τ+

k )
∂θn,ξ

is obtained
through (36) and (49), (57), (63) found in Appendix B. In (38),
∂Ri
∂wn,ξ

(
τ+
k

)
is again obtained through (50) and (52), whereas

∂sn(τ+
k )

∂wn,ξ
is obtained through (49) and (67) which are also

found in Appendix B.
Remark 2. Observe that the evaluation of ∇Ri (t), hence

∇J(θ, w), is independent of Ai, i = 1, . . . ,M , i.e., the values
in our uncertainty model. In fact, the dependence of ∇Ri (t)
on Ai, i = 1, . . . ,M , manifests itself through the event times
τk, k = 1, . . . ,K, that do affect this evaluation, but they,
unlike Ai which may be unknown, are directly observable
during the gradient evaluation process. Thus, the IPA approach
possesses an inherent robustness property: there is no need
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to explicitly model how uncertainty affects Ri(t) in (6).
Consequently, we may treat Ai as unknown without affecting
the solution approach (the values of ∇Ri (t) are obviously
affected). We may also allow this uncertainty to be modeled
through random processes {Ai(t)}, i = 1, . . . ,M ; in this
case, however, the result of Proposition III.3 no longer applies
without some conditions on the statistical characteristics of
{Ai(t)} and the resulting ∇J(θ, w) is an estimate of a
stochastic gradient.)

B. Objective Function Optimization

We now seek to obtain θ? and w? minimizing J(θ, w)
through a standard gradient-based optimization scheme of the
form

[θl+1, wl+1]T = [θl, wl]T − [ηθ, ηw] ∇̃J(θl, wl) (39)

where {ηlθ}, {ηlw} are appropriate step size sequences and
∇̃J(θl, wl) is the projection of the gradient ∇J(θl, wl) onto
the feasible set (the set of θl+1 satisfying the constraint (27),
a ≤ θl+1 ≤ b, and wl ≥ 0). The optimization scheme
terminates when |∇̃J(θ, w)| < ε (for a fixed threshold ε) for
some θ and w. Our IPA-based algorithm to obtain θ? and w?

minimizing J(θ, w) is summarized in Algorithm 1 where we
have adopted the Armijo method in step-size selection (see
[26]) for {

[
ηlθ, η

l
w

]
}.

One of the unusual features in (39) is the fact that the
dimension Γ?n of θ?n and w?n is a priori unknown (it depends
on T ). Thus, the algorithm must implicitly determine this
value along with θ?n and w?n. One can search over feasible
values of Γn ∈ {1, 2, . . .} by starting either with a lower
bound Γn = 1 or an upper bound to be found. The latter
approach results in much faster execution and is followed in
Algorithm 1. An upper bound is determined by observing that
θn,ξ is the switching point where agent n changes speed from
1 to 0 for ξ odd and from −1 to 0 for ξ even. By setting
these two groups of switching points so that their distance
is sufficiently small and waiting times wn = 0 for each
agent, we determine an approximate upper bound for Γn as
follows. First, we divide the feasible space [a, b] evenly into
N intervals: [a+ n−1

N (b− a) , a+ n
N (b− a)], n = 1, . . . , N .

Define Dn = a + 2n−1
2N (b− a) to be the geometric center

of each interval and set θn,ξ = Dn − σ if ξ is even and
θn,ξ = Dn + σ if ξ is odd, so that the distance between
switching points θn,ξ for ξ odd and even is 2σ, where σ > 0
is an arbitrarily small number, n = 1, . . . , N. In addition, set
wn = 0. Then, T must satisfy

θn,1−sn (0)+2σ (Γn − 1) ≤ T ≤ θn,1−sn (0)+2σΓn (40)

n = 1, . . . , N , where Γn is the number of switching points
agent n can reach during (0, T ], given θn,ξ as defined above.
From (40) and noting that Γn is an integer, we have

Γn =

⌈
1

2σ
[T − θn,1 + sn (0)]

⌉
(41)

where d·e is the ceiling function. Clearly, reducing σ increases
the initial number of switching points Γn assigned to agent n
and Γn → ∞ as σ → 0. Therefore, σ is selected sufficiently

small while ensuring that the algorithm can be executed
sufficiently fast.

As Algorithm 1 repeats steps 3-6, wn,ξ ≥ 0 and distances
between θn,ξ for ξ odd and even generally increase, so that the
number of switching points agent n can actually reach within
T decreases. In other words, as long as σ is sufficiently small
(hence, Γn is sufficiently large), when the algorithm converges
to a local minimum and stops, there exists ζn < Γn, such that
θn,ζn is the last switching point agent n can reach within
(0, T ], n = 1, . . . , N. Observe that there generally exist ξ
such that ζn < ξ ≤ Γn which correspond to points θn,ξ that
agent n cannot reach within (0, T ]; the associated derivatives
of the cost with respect to such θn,ξ are obviously 0, since
perturbations to these θn,ξ will not affect sn (t), t ∈ (0, T ]
and thus the cost J(θ, w). When |∇̃J(θ, w)| < ε, we achieve
a local minimum and stop, at which point the dimension of
θ?n and w?n is ζn.

Algorithm 1 : IPA-based optimization algorithm to find θ?

and w?
1: Pick σ > 0 and ε > 0.
2: Define Dn = a + 2n−1

2N (b− a) , n = 1, . . . , N, and set{
θn,ξ = Dn − σ if ξ even
θn,ξ = Dn + σ if ξ odd .

Set w = [w1, . . . , wN ] = 0., where wn =
[wn,1, . . . , wn,ξn ] and Γn =

⌈
1

2σ [T − θn,1 + sn (0)]
⌉

3: repeat
4: Compute sn(t), t ∈ [0, T ] using sn(0), (12), θ and w

for n = 1, . . . , N
5: Compute ∇̃J(θ, w) and update θ, w through (39)
6: until |∇̃J(θ, w)| < ε

7: Set θ?n =
[
θ?n,1, . . . , θ

?
n,ζn

]
and w?n =

[
w?n,1, . . . , w

?
n,ζn

]
,

where ζn is the index of θn,ζn , which is the last switching
point agent n can reach within (0, T ], n = 1, . . . , N

IV. NUMERICAL EXAMPLES

In this section we present some examples of persistent mon-
itoring problems in which agent trajectories are determined
using Algorithm 1. The first four are single-agent examples
with L = 20, M = 21, α1 = 0, αM = 20, and the
remaining sampling points are evenly spaced over [0, 20]. The
sensing range in (4) is set to r = 4, the initial values of the
uncertainty functions in (6) are Ri(0) = 4 for all i, and the
time horizon is T = 400. In Fig. 3(a) we show results where
the agent is allowed to move over the entire space [0, 20] and
the uncertainty model is selected so that B = 3 and Ai = 0.1
for all i = 0, . . . , 20, whereas in Fig. 3(b) the feasible space
is limited to [a, b] with a = r = 4 and b = L − r = 16.
The top plot in each example shows the optimal trajectory
s?(t) obtained, while the bottom shows the cost J(θl, wl) as
a function of iteration number. In Fig. 4, the trajectories in Fig.
3(a),(b) are magnified for the interval t ∈ [0, 75] to emphasize
the presence of strictly positive waiting times at the switching
points.

In Fig. 3(c) we show results for a case similar to Fig. 3(a)
except that the values of Ai are selected so that A0 = A20 =
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(a) a = 0, b = 20. Ai = 0.1, i = 0, . . . , 20. J? = 17.77.
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(b) a = 4, b = 16. Ai = 0.1, i = 0, . . . , 20. J? = 39.14.
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(c) a = 0, b = 20. A0 = A20 = 0.5, Ai = 0.1, i = 1, . . . , 19.
J? = 39.30.
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(d) a = 0, b = 20. Ai (∆ti) v U (0.075, 0.125), ∆ti v
0.1e−0.1t. J? = 17.54.

Figure 3. One agent example. L = 20, T = 400. For each example, top plot: optimal trajectory; bottom plot: J versus iterations.

0.5, while Ai = 0.1, i = 1, . . . , 19. Note that the waiting
times at the switching points are now longer and even though
it seems that the switching points are at the two end points,
they are actually very close but not equal to these end points,
consistent with Proposition III.1. In Fig. 3(d), on the other
hand, the values of Ai are allowed to be random, thus dealing
with a persistent monitoring problem in a stochastic mission
space, where we can test the robustness of the proposed
approach. In particular, each Ai is treated as a piecewise
constant random process {Ai(t)} such that Ai(t) takes on
a fixed value sampled from an uniform distribution over
(0.075, 0.125) for an exponentially distributed time interval
with mean 10 before switching to a new value. Note that the
behavior of the system in this case is very similar to Fig. 3(a)
where Ai = 0.1 for all i = 0, . . . , 20 without any change in
the way in which ∇J(θl, wl) is evaluated in executing (39).
As already pointed out, this exploits a robustness property of
IPA which makes the evaluation of ∇J(θl, wl) independent
of the values of Ai. In general, however, when Ai(t) is time-
varying, Proposition III.3 may no longer apply, since an extra
term

∑
i Ȧi (t) would be present in (24). In such a case, u?n (t)

may be nonzero when λ?n (t) = 0 and the determination of
an optimal trajectory through switching points and waiting
times alone may no longer be possible. In the case of 3(d),

Ai(t) changes sufficiently slowly to maintain the validity of
Proposition III.3 over relatively long time intervals, under the
assumption that w.p. 1 no event time coincides with the jump
times in any {Ai(t)}.

In all cases, we initialize the algorithm with σ = 5
and ε = 2 × 10−10. The running times of Algorithm 1
are approximately 10 sec using Armijo step-sizes. Note that
although the number of iterations for the examples shown
may vary substantially, the actual algorithm running times do
not. This is simply because the Armijo step-size method may
require several trials per iteration to adjust the step-size in
order to achieve an adequate decrease in cost. In Fig. 3(a),(d),
the red line shows the cost as a function of iteration number
using a constant step size and the two lines converge to the
same approximate optimal value. Non-smoothness in Fig. 3(d)
comes from the fact that it is a stochastic process. Note that in
all cases the initial cost is significantly reduced indicating the
importance of optimally selecting the values of the switching
points and associated waiting times (if any).

Figure 5 shows two two-agent examples with L = 40, M =
41 and evenly spaced sampling points over [0, L], Ai = 0.01,
B = 3, r = 4, Ri(0) = 4 for all i and T = 400. In Fig. 5(a)
the agents are allowed to move over the whole mission space
[0, L], while in Fig. 5(b) they are only allowed to move over



12

0 10 20 30 40 50 60 70
0

5

10

15

20

(a) a = 0, b = 20.

0 10 20 30 40 50 60 70
0

5

10

15

20

(b) a = 4, b = 16.

Figure 4. Magnified trajectory for sub-figure (a) and (b) in Fig. 3, t ∈ [0, 75].

[a, b] where a = r and b = L− r. We initialize the algorithm
with the same σ and ε as before. The algorithm running time is
approximately 15 sec using Armijo step-sizes, and we observe
once again significant reductions in cost.

V. CONCLUSION

We have formulated an optimal persistent monitoring prob-
lem with the objective of controlling the movement of multiple
cooperating agents to minimize an uncertainty metric in a
given mission space. In a one-dimensional mission space, we
have shown that the optimal solution is reduced to the deter-
mination of two parameter vectors for each agent: a sequence
of switching locations and associated waiting times at these
switching points. We have used Infinitesimal Perturbation
Analysis (IPA) to obtain sensitivities of the objective function
with respect to all the parameters and, therefore, obtain a
complete on-line (locally optimal) solution through a gradient-
based algorithm. We have also shown that the solution is robust
with respect to the uncertainty model used. Our ongoing work
aims at incorporating constraints such as Ri(T ) ≤ Rmax

to the problem formulation, thus ensuring that an optimal
persistent monitoring solution provides certain performance
guarantees. We are also investigating the use of receding hori-
zon controllers that provide computationally fast approximate
solutions. Finally, our work to date has established the basis for
extending this approach to a two-dimensional mission space.
Specifically, one idea is to decompose such a two-dimensional
mission space into regions each one of which is monitored by
agents moving on a one-dimensional trajectory, thus taking
direct advantage of the results in this paper.

APPENDIX A
IPA DERIVATION FOR SINGLE-AGENT SOLUTION

In order to determine ∇s
(
τ+
k

)
and ∇Ri(τ+

k ) which are
needed to evaluate ∇Ri (t) in (32), we use (29), which in-
volves the event time gradient vectors ∇τk = [∂τk∂θ1

, . . . , ∂τk∂θΓ
]T

for k = 1, . . . ,K (the value of K depends on T .) Looking at
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(a) a = 0, b = 20. J? = 17.77.
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Figure 5. Two agent example. L = 40, T = 400. Top plot: optimal
trajectory. Bottom plot: J versus iterations.

Fig. 2, there are three readily distinguishable cases regarding
the events that cause discrete state transitions:

Case 1: An event at time τk which is neither Ri = 0 nor
s = θξ, for any ξ = 1, . . . ,Γ. In this case, it is easy to see
that the dynamics of both s(t) and Ri(t) are continuous, so
that fk−1(τ−k ) = fk(τ+

k ) in (29) applied to s (t) and Ri(t),
i = 1, . . . ,M gives:{

∇s
(
τ+
k

)
= ∇s

(
τ−k
)

∇Ri(τ+
k ) = ∇Ri(τ−k ), i = 1, . . . ,M

(42)

Case 2: An event Ri = 0 at time τk. This corresponds
to transitions 3 → 7, 4 → 7, 10 → 14 and 11 → 14 in
Fig. 2 where the dynamics of s(t) are still continuous, but the
dynamics of Ri(t) switch from fk−1(τ−k ) = Ai−Bpi(s(τ−k ))
to fk(τ+

k ) = 0. Thus, ∇s
(
τ−k
)

= ∇s
(
τ+
k

)
, but we need to

evaluate τ ′k to determine ∇Ri(τ+
k ). Observing that this event

is endogenous, (30) applies with gk = Ri = 0 and we get

∂τk
∂θξ

= −
∂Ri
∂θξ

(
τ−k
)

Ai −Bpi(s(τ−k ))
, ξ = 1, . . . ,Γ, k = 1, . . . ,K

It follows from (29) that

∂Ri
∂θξ

(
τ+
k

)
=
∂Ri
∂θξ

(
τ−k
)
−

[Ai −Bpi(s(τ−k ))]∂Ri∂θξ

(
τ−k
)

Ai −Bpi(s(τ−k ))
= 0
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Thus, whenever an event occurs at τk such that Ri(τk)
becomes zero, ∂Ri

∂θξ

(
τ+
k

)
is always reset to 0 regardless of

∂Ri
∂θξ

(
τ−k
)
.

Case 3: An event at time τk due to a control sign change
at s = θξ, ξ = 1, . . . ,Γ. This corresponds to any transition
between the upper and lower part of the hybrid automaton in
Fig. 2. In this case, the dynamics of Ri(t) are continuous and
we have ∂Ri

∂θξ

(
τ+
k

)
= ∂Ri

∂θξ

(
τ−k
)

for all i, ξ, k. On the other
hand, we have ṡ(τ+

k ) = u(τ+
k ) = −u(τ−k ) = ±1. Observing

that any such event is endogenous, (30) applies with gk =
s− θξ = 0 for some ξ = 1, . . . ,Γ and we get

∂τk
∂θξ

=
1− ∂s

∂θξ

(
τ−k
)

u(τ−k )
(43)

Combining (43) with (29) and recalling that u(τ+
k ) = −u(τ−k ),

we have

∂s

∂θξ
(τ+
k ) =

∂s

∂θξ
(τ−k ) + [u

(
τ−k
)
− u(τ+

k )]
1− ∂s

∂θξ

(
τ−k
)

u(τ−k )
= 2

where ∂s
∂θξ

(
τ−k
)

= 0 because ∂s
∂θξ

(0) = 0 = ∂s
∂θξ

(t) for all
t ∈ [0, τk), since the position of the agent cannot be affected
by θξ prior to this event.

In this case, we also need to consider the effect of pertur-
bations to θj for j < ξ, i.e., prior to the current event time τk
(clearly, for j > ξ, ∂s

∂θj
(τ+
k ) = 0 since the current position of

the agent cannot be affected by future events.) Observe that
since gk = s − θξ = 0, we have ∂gk

∂θj
= 0 for j 6= ξ and (30)

gives ∂τk
∂θj

= −1
u(τ−

k )
∂s
∂θj

(
τ−k
)
, so that using this in (29) we get:

∂s

∂θj
(τ+
k ) =

∂s

∂θj
(τ−k )−

[
u
(
τ−k
)
− u(τ+

k )
]
∂s
∂θj

(
τ−k
)

u
(
τ−k
)

= − ∂s

∂θj

(
τ−k
)

(44)

Combining the above results, the components of ∇s(τ+
k )

where τk is the event time when s(τk) = θξ for some ξ,
are given by

∂s

∂θj
(τ+
k ) =


− ∂s
∂θj

(
τ−k
)

if j = 1, . . . , ξ − 1

2 if j = ξ
0 if j > ξ

(45)

It follows from (31) and the analysis of all three cases above
that ∂s

∂θξ
(t) for all ξ is constant throughout an optimal trajec-

tory except at transitions caused by control switching locations
(Case 3). In particular, for the kth event corresponding to
s(τk) = θξ, t ∈ [τk, T ], if u (t) = 1, then ∂s

∂θξ
(t) = −2 if

ξ is odd, and ∂s
∂θξ

(t) = 2 if ξ is even; similarly, if u (t) = −1,
then ∂s

∂θξ
(t) = 2 if ξ is odd and ∂s

∂θξ
(t) = −2 if ξ is even. In

summary, we can write:

∂s

∂θξ
(t) =

{
(−1)

ξ · 2u (t) t ≥ τk
0 t < τk

, ξ = 1, . . . ,Γ (46)

Finally, we can combine (46) with our results for ∂Ri∂θξ
(t) in all

three cases above. Letting s(τl) = θξ, we obtain the following

expression for ∂Ri
∂θξ

(t) for all k ≥ l, t ∈ [τk, τk+1):

∂Ri
∂θξ

(t) =
∂Ri
∂θξ

(
τ+
k

)
+


0 if z(t) ∈ Z1 ∪ Z2

(−1)
ξ+1 2B

r u
(
τ+
k

)
· (t− τk) if z(t) ∈ Z3

− (−1)
ξ+1 2B

r u
(
τ+
k

)
· (t− τk) if z(t) ∈ Z4

(47)

with boundary condition

∂Ri
∂θξ

(τ+
k ) =

{
0 if z

(
τ+
k

)
∈ Z1

∂Ri
∂θξ

(τ−k ) otherwise (48)

APPENDIX B
IPA DERIVATION FOR MULTI-AGENT SOLUTION

The evaluation of the components of ∇sn
(
τ+
k

)
and

∇Ri(τ+
k ) in (36)-(38) using (29) involves the event time

gradient vectors ∇τk =
[
∂τk
∂θ

∂τk
∂w

]T
for k = 1, . . . ,K, which

will be determined through (30). There are three possible cases
regarding the events that cause switches in the dynamics of
Ri (t) or sn(t) as mentioned above:

Case 1: An event at time τk such that Ṙi (t) switches from
Ṙi (t) = 0 to Ṙi (t) = Ai − BPi (s(t)). In this case, it is
easy to see that the dynamics of both sn(t) and Ri(t) are
continuous, so that fk−1(τ−k ) = fk(τ+

k ) in (29) applied to
sn (t) and Ri(t), i = 1, . . . ,M , n = 1, . . . , N , and we get

∇sn
(
τ+
k

)
= ∇sn

(
τ−k
)
, n = 1, . . . , N (49)

∇Ri(τ+
k ) = ∇Ri(τ−k ), i = 1, . . . ,M (50)

Case 2: An event at time τk such that Ṙi (t) switches from
Ṙi (t) = Ai −BPi (s(t)) to Ṙi (t) = 0, i.e., Ri(τk) becomes
zero. In this case, we need to first evaluate ∇τk from (30) in
order to determine ∇Ri(τ+

k ) through (29). Observing that this
event is endogenous, (30) applies with gk = Ri = 0 and we
get

∇τk = −
∇Ri(τ−k )

Ai
(
τ−k
)
−BPi

(
s(τ−k )

) (51)

It follows from (29) that

∇Ri(τ+
k ) = ∇Ri(τ−k )−

[Ai
(
τ−k
)
−BPi (s(t))]∇Ri

(
τ−k
)

Ai
(
τ−k
)
−BPi

(
τ−k
)

= 0 (52)

Thus, ∇Ri(τ+
k ) is always reset to 0 regardless of ∇Ri(τ−k ).

In addition, (49) holds, since the the dynamics of sn(t) are
continuous at time τk.

Case 3: An event at time τk such that the dynamics of
sn (t) switch from ±1 to 0, or from 0 to ±1. Clearly, (50)
holds since the the dynamics of Ri(t) are continuous at this
time. However, determining ∇sn

(
τ+
k

)
is more elaborate and

requires us to consider its components separately, first
∂sn(τ+

k )
∂θn

and then
∂sn(τ+

k )
∂wn

.

Case 3.1: Evaluation of
∂sn(τ+

k )
∂θn

.
Case 3.1.1: An event at time τk such that the dynamics of

sn(t) in (35) switch from ±1 to 0. This is an endogenous
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event and (30) applies with gk = sn − θn,ξ = 0 for some
ξ = 1, . . . ,Γn and we have:

∂τk
∂θn,ξ

=
1− ∂sn

∂θn,ξ

(
τ−k
)

un(τ−k )
(53)

and (29) yields

∂sn
∂θn,ξ

(τ+
k ) =

∂sn
∂θn,ξ

(τ−k ) + [un
(
τ−k
)
− 0]

1− ∂sn
∂θn,ξ

(
τ−k
)

un(τ−k )

= 1 (54)

As in Case 3 of Section III-A1, we also need to consider
the effect of perturbations to θj for j < ξ, i.e., prior to the
current event time τk (clearly, for j > ξ, ∂sn

∂θj
(τ+
k ) = 0 since

the current position of the agent cannot be affected by future
events.) Observe that ∂gk

∂θj
= 0, therefore, (30) becomes

∂τk
∂θn,j

= −
∂sn
∂θn,j

(
τ−k
)

un(τ−k )
(55)

and using this in (29) gives:

∂sn
∂θn,j

(τ+
k ) =

∂sn
∂θn,j

(τ−k )−

[
un
(
τ−k
)
− 0
]
∂sn
∂θn,j

(
τ−k
)

un
(
τ−k
) = 0

(56)
Thus, combining the above results, when sq(τk) = θq,ξ for
some ξ and the agent switches from ±1 to 0, we have

∂sn
∂θn,j

(τ+
k ) =

{
0, if j 6= ξ
1, if j = ξ

(57)

Case 3.1.2: An event at time τk such that the dynamics
of sn(t) in (35) switch from 0 to ±1. This is an induced
event since it is triggered by the occurrence of some other
endogenous event when the agent switches from ±1 to 0 (see
Case 3.1.1 above.) Suppose the agent starts from an initial
position sn (0) = a with un (0) = 1 and τk is the time the
agent switches from the 0 to ±1 at the switching point θn,ξ.
If θn,ξ is such that un

(
τ+
k

)
= 1, then ξ is even and τk can

be calculated as follows:

τk = (θn,1 − a) + wn,1 + (θn,1 − θn,2) + wn,2 + . . .

+ (θn,ξ−1 − θn,ξ) + wn,ξ

= 2

 ξ−1∑
v=1, v odd

θn,v −
ξ−2∑

v=2, v even

θn,v

+

ξ∑
v=1

wn,v

− θn,ξ (58)

Similarly, if θn,ξ is the switching point such that un
(
τ+
k

)
=

−1, then ξ is odd and we get:

τk = 2

 ξ−2∑
v=1, v odd

θn,v −
ξ−1∑

v=2, v even

θn,v

+

ξ∑
v=1

wn,v + θn,ξ

(59)
We can then directly obtain ∂τk

∂θn,ξ
as

∂τk
∂θn,ξ

= −sgn(u
(
τ+
k

)
) (60)

Using (60) in (29) gives:

∂sn
∂θn,ξ

(τ+
k ) =

∂sn
∂θn,ξ

(τ−k )

+
[
0− u

(
τ+
k

)]
· [−sgn(u

(
τ+
k

)
)]

=
∂sn
∂θn,ξ

(τ−k ) + 1 (61)

Once again, we need to consider the effect of perturbations to
θj for j < ξ, i.e., prior to the current event time τk (clearly,
for j > ξ, ∂sn

∂θj
(τ+
k ) = 0.) In this case, from (58)-(59), we

have {
∂τk
∂θn,j

= 2, if j odd
∂τk
∂θn,j

= −2, if j even
(62)

and it follows from (29) that for j < ξ:

∂sn
∂θn,j

(τ+
k )

=


∂sn
∂θn,j

(τ−k ) + 2, if un
(
τ+
k

)
= 1, j even,

or un
(
τ+
k

)
= −1, j odd

∂sn
∂θn,j

(τ−k )− 2, if un
(
τ+
k

)
= 1, j odd,

or un
(
τ+
k

)
= −1, j even

(63)

Case 3.2: Evaluation of
∂sn(τ+

k )
∂wn

.

Case 3.2.1: An event at time τk such that the dynamics of
sn(t) in (35) switch from ±1 to 0. This is an endogenous
event and (30) applies with gk = sn − θn,ξ = 0 for some
ξ = 1, . . . ,Γn. Then, for any j ≤ ξ, we have:

∂τk
∂wn,j

=
− ∂sn
∂wn,j

(
τ−k
)

un(τ−k )
(64)

Combining (64) with (29) and since un
(
τ−k
)

= ±1, we have

∂sn
∂wn,j

(τ+
k ) =

∂sn
∂wn,j

(τ−k ) + [un
(
τ−k
)
− 0]
− ∂sn
∂wn,j

(
τ−k
)

un(τ−k )

= 0 (65)

Case 3.2.2: An event at time τk such that the dynamics of
sn(t) in (35) switch from 0 to ±1. As in Case 3.1.2, τk is
given by (58) or (59), depending on the sign of uq

(
τ+
k

)
. Thus,

we have ∂τk
∂wn,j

= 1, for j ≤ ξ. Using this result in (29) and
observing that ∂sn

∂wn,j
(τ−k ) = 0 from (65), we have

∂sn
∂wn,j

(τ+
k ) =

∂sn
∂wn,j

(τ−k ) + [0− un
(
τ+
k

)
] · 1

= −un
(
τ+
k

)
, for j ≤ ξ (66)

Combining the above results, we have for Case 3.2:

∂sn
∂wn,j

(τ+
k ) =

{
0, if un

(
τ−k
)

= ±1, un
(
τ+
k

)
= 0

∓1, if un
(
τ−k
)

= 0, un
(
τ+
k

)
= ±1

(67)
Finally, note that ∂sn

∂wn,ξ
(t) = 0 for t ∈ [0, τk), since the

position of the agent n cannot be affected by wn,ξ prior to
such an event.
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