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Abstract— This paper is devoted to the development of an
optimal acceleration/speed profile for autonomous vehicles in
free flow mode approaching a traffic light without stopping. The
design objective is to achieve both short travel time and low
energy consumption as well as avoid idling at a red light. This is
achieved by taking full advantage of the traffic light information
based on infrastructure-to-vehicle communication. The direct
adjoining approach is used to solve both free and fixed terminal
time optimal control problems subject to state constraints. We
show that we can derive a real-time online analytical solution,
distinguishing our method from most existing approaches based
on numerical calculations. Extensive simulations are executed
to compare the performance of autonomous vehicles under the
proposed speed profile and human driving vehicles. The results
show quantitatively the advantages of the proposed algorithm
in terms of energy consumption and travel time.

I. INTRODUCTION

Connected and automated vehicles (CAVs), commonly
known as self-driving or autonomous vehicles, provide an
intriguing opportunity for enabling users to better monitor
transportation network conditions and to improve traffic flow.
Their proliferation has rapidly grown, largely as a result
of Vehicle-to-X (or V2X) technology [1] which refers to
an intelligent transportation system where all vehicles and
infrastructure components are interconnected with each other.
Such connectivity provides precise knowledge of the traffic
situation across the entire road network, which in turn helps
optimize traffic flows, enhance safety, reduce congestion, and
minimize emissions. Controlling a vehicle to improve energy
consumption has been studied extensively, e.g., see [2], [3],
[4], [5]. By utilizing road topography information, an energy-
optimal control algorithm for heavy diesel trucks is devel-
oped in [4]. Based on Vehicle-to-Vehicle (V2V) communi-
cation, a minimum energy control strategy is investigated
in car-following scenarios in [5]. Another important line of
research focuses on coordinating vehicles at intersections to
increase traffic flow while also reducing energy consumption.
Depending on the control objectives, work in this area can
be classified as dynamically controlling traffic lights [6] and
as coordinating vehicles [7], [8], [9], [10]. More recently, an
optimal control framework is proposed in [11] for CAVs to
cross one or two adjacent intersections in an urban area. The
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state of art and current trends in the coordination of CAVs
is provided in [12].

Our focus in this paper is on an optimal control approach
for a single autonomous vehicle approaching an intersection
in terms of energy consumption and taking advantage of
traffic light information. The term “ECO-AND” (short for
“Economical Arrival and Departure”) is often used in the
literature to refer to this problem [13]. Its solution is made
possible by vehicle-to-infrastructure (V2I) communication,
which enables a vehicle to automatically receive signals
from upcoming traffic lights before they appear in its visual
range. Clearly, an autonomous vehicle can take advantage of
such information in order to go beyond current “stop-and-
go” to achieve “stop-free” driving. Along these lines, the
problem of avoiding red traffic lights is investigated in [14],
[15], [16], [17], [18]. Avoiding red lights with probabilistic
information at multiple intersections is considered in [16],
where the time horizon is discretized and deterministic
dynamic programming is utilized to numerically compute the
optimal control input. The work in [17] devises an optimal
speed profile given the feasible target time, which is within
some green light interval. A velocity pruning algorithm is
proposed in [18] to identify feasible green windows, and a
velocity profile is optimized numerically in terms of energy
consumption.

Here, we investigate the optimal control problem of au-
tonomous vehicles approaching a traffic light where the
objective function is a weighted sum of both travel time and
energy consumption. The problem is challenging due to the
following reasons. First, finding a feasible green light inter-
val leads to a Mixed Integer Programming (MIP) problem
formulation. In general, solving MIP problems requires a
significant amount of computation, and the optimality of the
solution is not guaranteed due to the non-convexity of the
problem involved with integer variables. The second reason
comes from state constraints related to speed limits. The
inclusion of bounds on state variables poses a significant
challenge for most optimization methods. To overcome the
above difficulties, we devise a two-step method. Specifi-
cally, we first address the problem without the traffic light
constraint, which means that the terminal time is free, and
the mixed integer constraints are removed. If the terminal
time obtained from the free terminal time optimal control
problem is within some green light interval, then the problem
is solved. However, if the terminal time falls within some red
light interval, then the optimal terminal time could be either
the end of the previous green light interval or the beginning
of the next green light interval by using the monotonicity
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property of the objective function. Then, we transform the
original problem into a fixed terminal time optimal control
problem with feasible terminal times, and comparing the
corresponding performance leads to the optimal solution of
the original problem.

II. PROBLEM FORMULATION

The dynamics of the vehicle are modeled by a double
integrator

ẋ (t) = v (t) , (1)
v̇ (t) = u (t) , (2)

where x (t) , v (t), and u (t) are the position, velocity, and
acceleration of the vehicle, respectively. At time t0, the initial
position and velocity are given as x (t0) = 0 and v (t0) = v0
respectively. Let us use l to denote the distance to the traffic
light, and tp the intersection crossing time of the vehicle. The
traffic light switches between green and red at an intersection
are dictated by a rectangular pulse signal f (t) with a period
T :

f (t) =

{
1 for kT ≤ t ≤ kT +DT,
0 for kT +DT < t < (k + 1)T,

where f (t) = 1 indicates that the traffic light is green, and
f (t) = 0 indicates that the traffic light is red as shown in
Fig. 1. The parameter 0 < D < 1 is the fraction of the time
period T during which the traffic light is green, and k ∈ Z≥0

is a non-negative integer.

1

kT

kT+DT

kT+T t

f(t)

Fig. 1. Traffic light signal

Our objective is to make the vehicle cross an intersection
without stopping with the aid of traffic light information as
well as to minimize both travel time and energy consumption.
Thus, we formulate the following problem:

Problem 1: ECO-AND Problem

min
u(t)

ρt (tp − t0) + ρu

∫ tp

t0

u2 (t) dt (3)

subject to

(1) and (2), (4)
x (tp) = l, (5)
vmin ≤ v (t) ≤ vmax (6)
umin ≤ u (t) ≤ umax (7)
kT ≤ tp ≤ kT +DT, (8)

for some k ∈ Z≥0. In (3), the term J t = tp − t0 is the
travel time while Ju =

∫ tp
t0
u2 (t) dt captures the energy

consumption; see [19].

In order to normalize these two terms for the purpose
of a well-defined optimization problem, first note that the
maximum possible value of J t is l/vmin. Depending on
the relationship between vmin, vmax, umax and l, there are
two different cases for the maximum possible value of Ju.
Following some calculations (details can be found in [20]),
we can specify the two weighting parameters ρt and ρu as
follows: ρt = ρvmin

l and

ρu =


1−ρ

(vmax−vmin)umax

if l ≥ vmin
vmax−vmin

umax

+ 1
2
(vmax−vmin)

2

umax
1−ρ(√

v2min+2umaxl−vmin

)
umax

otherwise

capturing the normalized trade-off between the travel time
and energy consumption by setting 0 ≤ ρ ≤ 1. When ρ = 0,
the problem reduces to minimizing the energy consumption
only; when ρ = 1, we seek to minimize the travel time only.

In (6)-(7), the parameters vmin ≥ 0 and vmax > 0
are the minimum and maximum allowable speeds for road
vehicles, respectively, while the parameters umin and umax

are the maximum allowable deceleration and acceleration,
respectively. Note that when u < 0, the vehicle decelerates
due to braking and when u > 0 the vehicle accelerates.
Finally, the integer constraint (8) reflects the requirement that
tp belongs to an interval when the light is green (see Fig. 1).

III. MAIN RESULTS

Problem 1 is a Mixed Integer Programming (MIP) prob-
lem. Existing approaches to such problems turn out to be
computationally very demanding for off-line computation,
not to mention obtaining analytical solutions in a real-time
on-line context. We propose a two-step approach, which
allows us to efficiently obtain an analytical solution on line,
under the assumption that the vehicle operates in free flow
mode. The first step is to solve Problem 1 without the integer
constraint (8). If the optimal arrival time t∗p is within some
green light interval, then the problem is solved. However, if

kT +DT < t∗p < kT + T,

for some k, then we solve Problem 1 twice with the con-
straint (8) replaced by tp = kD + DT and tp = kT + T ,
respectively. We compare the performance obtained with
different terminal times, and the solution produced by the one
with better performance naturally yields the optimal solution.

In the following, we first seek the optimal solution to
Problem 1 without the constraint (8), which is termed “free
terminal time optimal control problem”.

A. Free Terminal Time Optimal Control Problem

The free terminal time optimal control problem is given
below.

Problem 2: Free Terminal Time Optimal Control Problem

min
u(t)

ρt (tp − t0) + ρu

∫ tp

t0

u2 (t) dt (9)
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subject to

(1) and (2), (10)
x (tp) = l, (11)
vmin ≤ v (t) ≤ vmax, (12)
umin ≤ u (t) ≤ umax, (13)

where ρt and ρu are given in Section II.
From the objective function (9), it can be seen that a

minimum energy consumption solution should avoid braking,
that is, u (t) ≥ 0 for t ∈ [t0, tp]. We will show this fact in
the following lemma.

Lemma 1: The optimal solution u∗(t) to Problem 2 satis-
fies u∗ (t) ≥ 0 for all t ∈

[
t0, t

∗
p

]
.

Due to space constraints, the proof is omitted but may be
found in [20].

In addition, it follows from this lemma that whenever
v (τ) = vmax (which may not be possible in some cases),
we must have u (t) = 0 for all t ∈ [τ, tp]. Based on
these observations, we can derive necessary conditions for
the solution to Problem 2, which are summarized in the
following theorem.

Theorem 1: Let x∗ (t), v∗ (t), u∗ (t), t∗p be an optimal
solution to Problem 2 and assume that ρt 6= 0 and ρu 6= 0.
Then, the optimal control u∗ (t) satisfies

u∗ (t) = arg min
0≤u(t)≤umax

ρuu
2 +

ρt

v∗
(
t∗p
) (t− τ)u, (14)

where τ is the first time on the optimal path when v (τ) =
vmax if τ < tp; τ = t∗p otherwise.

Due to space constraints, the proof is omitted but may be
found in [20].

Recall that the theorem was proved under the assumption
that ρt 6= 0 and ρu 6= 0. The special cases when either ρt = 0
or ρu = 0 are considered in the following two corollaries.

Corollary 1: Let x∗ (t), v∗ (t), u∗ (t), t∗p be an optimal
solution to Problem 2 when ρt = 0. Then, the optimal control
u∗ (t) satisfies u∗ (t) = 0 for all t ∈ [t0, t

∗
p].

Corollary 2: Let x∗ (t), v∗ (t), u∗ (t), t∗p be an optimal
solution to Problem 2 when ρu = 0. Then, the optimal
control u∗ (t) satisfies

u∗ (t) =

{
umax for t ∈ [t0, τ) ,
0 for t ∈

[
τ, t∗p

]
,

(15)

where τ is the first time on the optimal path when v∗(τ) =
vmax.

The proofs of the above two corollaries are straightforward
by setting ρt = 0 and ρu = 0, respectively, in (14) in
Theorem 1.

Based on the vehicle dynamics (1) and (2), the initial
conditions x (t0) = 0 and v (t0) = v0, and the terminal
condition x∗

(
t∗p
)

= l, the optimal control law (14) and the
optimal time t∗p can be uniquely determined. In the following,
we will classify the results into different cases depending on
the values of the model parameters. In order to do so, we

define two functions:

f (v0) = l − v2max − v20
2umax

− umaxv
2
max

ρu
ρt

+
1

6
u3maxv

2
max

ρ2u
ρ2t
,

g (v0) = l − 2v0

√
(vmax − v0) vmax

ρu
ρt

− 4

3
(vmax − v0)

√
(vmax − v0) vmax

ρu
ρt
.

Depending on the signs of these two functions, the optimal
solution consisting of u∗ (t) and t∗p can be classified as shown
in Table I, where all detailed calculations are omitted due to
space constraints but may be found in [20]. Referring to this
table, the optimal control is parameterized by the following
function

Φ (t|a, b, c) =

 umax when t ≤ a
c(t− b) when a < t < b
0 when t ≥ b

The dash in Φ means that the variable t cannot reach the
upper bound and/or the lower bound, and therefore that case
is inapplicable here. The parameters shown in Table I are
defined as follows:

t1 = t0 +

(
1− u2max

ρu
ρt

)
vmax − v0

umax
, t3 = t0 +

v1 − v0
umax

,

t2 = t1 + 2umaxvmax
ρu
ρt
, t4 = t0 + 2

√
(vmax − v0) vmax

ρu
ρt

where

v1 =

√√√√ 2umaxl + v20

1 +
4u2

max

1− ρu
ρt
u2
max

ρu
ρt

+ 8
3

u4
max

(1− ρu
ρt
u2
max)

2

ρ2u
ρ2t

and v2 is the solution of the following equation:

l =
2

3
(v0 + 2v2)

√
(v2 − v0) v2

ρu
ρt
.

The parameters δ1, δ2, δ3, δ4 specifying in Table I the optimal
time t∗p when the vehicle arrives at the traffic light in each
of the four possible cases are given below:

δ1 = t2 +
f (v0)

vmax
, δ2 = t3 + 2umax

v1
1− ρu

ρt
u2max

ρu
ρt
,

δ3 = t4 +
g(v0)

vmax
, δ4 = t0 + 2

√
(v2 − v0) v2

ρu
ρt
.

Remark 1: This remark pertains to the underlying criteria
for the optimal solution classification in Table I. The first
row determines whether or not the maximum acceleration
umax will be used for a given initial speed v0. The optimality
conditions tell us that the vehicle starts with the maximum
acceleration when the initial speed is relatively low. The
second row determines if the road length l is large enough for
a vehicle to reach its maximum speed for a given initial speed
v0. In general, the optimal control contains three phases:
full acceleration, linearly decreasing acceleration, and no
acceleration. The first column specifies the case where all
three phases are included with switches defined by t1, t2.
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TABLE I
OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 2

v0
vmax

< 1− u2max
ρu
ρt

1− u2max
ρu
ρt
≤ v0

vmax

f (v0) ≥ 0 f (v0) < 0 g (v0) ≥ 0 g (v0) < 0

u∗ Φ
(
t|t1, t2, ρt

2ρuvmax

)
Φ
(
t|t3,−, ρt

2ρuv1

)
Φ
(
t|−, t4, ρt

2ρuvmax

)
Φ
(
t|−,−, ρt

2ρuv2

)
t∗p δ1 δ2 δ3 δ4

The second column corresponds to the case of low initial
speeds and short-length roads. Under optimal control in this
case, the vehicle starts with full acceleration, but the road
length is so short that the maximum speed cannot be reached.
Therefore, the optimal control contains only the first two
phases. The third column corresponds to the case of large
initial speeds and long-length roads. The vehicle starts with
linearly decreasing acceleration, and then proceeds with no
acceleration when the speed reaches the limit vmax. Here, the
optimal control contains only the last two phases. The last
column corresponds to the case of large initial speeds and
short-length roads. Therefore, the vehicle uses only linearly
decreasing acceleration.

B. Fixed Terminal Time Optimal Control Problem

In this section, we consider the case where the optimal
time t∗p obtained in the free terminal time optimal control
problem (Problem 2) is within some red light interval, that
is,

kT +DT < t∗p < kT + T.

In this case, the candidate optimal arrival time t∗p in Prob-
lem 1 is either kT + DT or kT + T . Therefore, we can
compare the performance obtained under either one of these
two terminal times, and select the one with better perfor-
mance to determine the optimal arrival time for Problem 1.
In both cases, the travel time is now fixed, hence the only
objective is to minimize the energy consumption. Thus, we
have the following problem formulation:

Problem 3: Fixed Terminal Time Optimal Control Prob-
lem

min
u(t)

∫ tp

t0

u2 (t) dt (16)

subject to

(1) and (2) (17)
x (tp) = l (18)
tp = kT +DT or kT + T (19)
vmin ≤ v (t) ≤ vmax (20)
umin ≤ u (t) ≤ umax (21)

1) Arrival Time tp = kT + DT : In this case, it is clear
that the vehicle must use less time than the one specified by
t∗p in Problem 2 and more acceleration. Define a function

h (v0) =

{
v0tp + 1

2umaxt
2
p − l for tp ≤ vmax−v0

umax

vmaxtp − 1
2
(vmax−v0)2

umax
− l for tp > vmax−v0

umax

Observe that the terminal time tp = kT +DT is possible if
and only if h (v0) ≥ 0. The main result for this case is given
in the following theorem.

Theorem 2: Let x∗ (t), v∗ (t), u∗ (t) be an optimal solu-
tion to Problem 3 with tp = kT + DT . Then, the optimal
control u∗ (t) satisfies

u∗ (t) = arg min
0≤u(t)≤umax

u2+
u∗ (t0)

2
(t− τ)u

v0 − v∗ (tp) + (τ − t0)u∗ (t0)

where τ is the first time on the optimal path when v (τ) =
vmax if τ < tp; τ = t∗p otherwise.
Due to space constraints, the proof is omitted but may be
found in [20].

Given the terminal time kT +DT and the road length l,
the value of v0 can be classified into one of the five cases as
shown in Table II. Note that if Case i is infeasible for some
v0 and the given parameters, we can treat Jui as infinity. The

TABLE II
OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 3 WITH

tp = kT +DT

Optimal Control Performance
Case I u∗(t) = umax until v(t) = vmax or tp Ju1
Case II u∗ (t0) = umax and v∗ (tp) = vmax Ju2
Case III u∗ (t0) = umax and v∗ (tp) < vmax Ju3
Case IV u∗0 < umax and v∗ (tp) = vmax Ju4
Case V u∗0 < umax and v∗ (tp) < vmax Ju5

performance associated with each case in Table II as well as
the detailed calculations are omitted due to space constraints
but may be found in [20]. After obtaining the performance
for each case with tp = kT + DT , we select the one with
the smallest energy consumption, that is,

JkT+DT
u = min {Ju1 , . . . Ju5 } ,

with the corresponding optimal acceleration profile.
2) Arrival Time tp = kT + T : In this case, the vehicle

must use less acceleration than in the free terminal time case.
Depending on the initial speed v0, there are three cases to
consider. First, if l = v0 (kT + T − t0), then the vehicle can
cruise through the intersection with the constant speed v0
without any acceleration (Case VI in Table III). The energy
consumption in this case is Ju6 = 0. If, on the other hand,
l > v0 (kT + T − t0), then the problem can be solved using
the result of the case tp = kT+DT analyzed above. Finally,
if l < v0 (kT + T − t0), then the vehicle must decelerate to
reach the traffic light while in its green state. Therefore, the
control input is only subject to the constraint umin ≤ u (t) ≤
0. The main result in this case is given in the following
theorem.

Theorem 3: Let x∗ (t), v∗ (t), u∗ (t) be an optimal solu-
tion to Problem 3 with tp = KT + T . Then, the optimal
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solution u∗ (t) satisfies

u∗ (t) = arg min
umin≤u(t)≤0

u2+
u∗ (t0)

2
(τ − t)u

v∗ (tp)− v0 − (τ − t0)u∗ (t0)
,

where τ is the first time on the optimal path when v (τ) =
vmax if τ < tp; τ = t∗p otherwise.
Due to space constraints, the proof is omitted but may be
found in [20].

TABLE III
OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 3 WITH

tp = kT + T

Optimal Control Performance
Case VI u∗(t) = 0 and v∗(t) = v0 Ju6
Case VII u∗ (t0) = umin and v∗ (tp) = vmin Ju7
Case VIII u∗ (t0) = umin and v∗ (tp) > vmin Ju8
Case IX u∗ (t0) < umin and v∗ (tp) = vmin Ju9
Case X u∗ (t0) < umin and v∗ (tp) < vmin Ju10

The classification of all possible solutions with tp = kT +
T is shown in Table III. The performance associated with
each case in this table as well as the detailed calculations are
omitted due to space constraints but may be found in [20].
After obtaining the energy consumption from Ju6 through
Ju10, we can select JkT+T

u = min {Ju6 , . . . , Ju10}, where Jui
can be treated as infinity if Case i is infeasible. Finally, we
can compare the two values of the performance obtained,
that is,

JkT+DT = ρt (kT +DT ) + ρuJ
kT+DT
u

JkT+T = ρt (kT + T ) + ρuJ
kT+T
u

and determine the optimal performance to be the one with a
smaller value.

Remark 2: This remark pertains to some practical issues
of the ECO-AND solution. First, we assume that the vehicle
goes straight through the intersection (no turns). When
vehicles turn at the intersection, the arrival speed should be
constrained for purposes of safety and ride comfort. Second,
when multiple lanes are available, we assume that the vehicle
can safely change to a lane without vehicles ahead of it
that might affect its free flow mode operation. Finally, when
t∗p = kT , the vehicle is commanded to approach a traffic
light at the exact time the traffic light changes from red to
green. Since this may provide discomfort to the driver and/or
passengers, a safety buffer δ may be added to the start of
green lights, i.e., t∗p = kT + δ.

IV. NUMERICAL EXAMPLES

We have simulated the system defined by the vehicle
dynamics (1) and (2) and associated constraints and optimal
control problem parameters with values given as follows.
The minimum and maximum speeds are 2.78 m/s and
22.22 m/s. The maximum acceleration and deceleration are
set to 2.5 m/s2 and −2.9 m/s2, respectively.

In the following, the weights in (3) are set using ρ =
0.9549, that is, ρt = 0.0133, and ρu = 9.2798 × 10−4. In
this case, the values 1 − u2max

ρu
ρt

= 0.5630, and vm+vM
2vM

=
0.5626, are almost the same. Thus, if we randomly generate
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Fig. 2. Case I in Table I with v0 = 10.8869.
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Fig. 3. Case III in Table I with v0 = 18.6182.

the initial speed v0 from a uniform distribution on the interval
[vmin, vmax], different initial speeds fall roughly equally into
the two different cases in the first row in Table I. The total
cycle time for the traffic light is 60 s with different patterns.
We first test the optimal controller on a road of length 200 m.
Figure 2 depicts the case when the initial speed is relatively
low. The vehicle starts with full acceleration and, when the
speed limit is reached, it switches to no acceleration. The
vehicle arrives at the traffic light within the first green light
cycle. When the initial speed is relatively large, the vehicle
should not start with full acceleration. This is the case shown
in Fig. 3.

In the above two figures, the traffic light starts at a green
state. The following figure shows a case when the traffic
light starts at a red state. It can be inferred from the first two
plots that the arrival time obtained from the free terminal
time optimal control problem should be within the red light
interval. Figure 4 shows a case when the initial speed is low.
The optimal arrival time obtained from the free terminal time
optimal control is 12.1860 seconds. However, the traffic light
in the first 40 seconds is red. The optimal time for the vehicle
to arrive at the intersection is 40 seconds. The vehicle has
adequate time to accelerate, therefore, it does not start with
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Fig. 4. Case V in Table II with v0 = 4.2634.

full acceleration, and it is unnecessary to accelerate to the
maximum speed.

In order to compare the performance between (i) au-
tonomous vehicles under the optimal control developed and
(ii) a human driver, we arbitrarily define the following rules
as the behavior of an aggressive human driver:

• Full acceleration when the traffic light is green;
• No acceleration/deceleration when the traffic light is

red.
We calculate the performance defined in (3) of both

autonomous vehicles and human drivers for the different
scenarios encountered from Fig. 2 to Fig. 4, and summarize
the results in Table IV. The improvement is more than
10% for the case in Fig. 4. The improvement is calculated
as the performance difference between the human driver
and autonomous vehicle divided by the performance of the
human driver. It is particularly challenging for a human driver
to make a decision when he/she faces a steady red traffic
light. Also note that the weighting parameter ρ is chosen

TABLE IV
PERFORMANCE COMPARISON BETWEEN HUMAN DRIVER (HD) AND

AUTONOMOUS VEHICLE (AV)

HD AV Improvement
Fig. 2 0.1611 0.1574 2.3%
Fig. 3 0.1294 0.1263 2.4%
Fig. 4 0.5965 0.5310 10.98%

to be in favor of travel time rather than energy efficiency.
Therefore, the performance improvement would be larger
when we decrease the weighting parameter ρ, which provides
a trade-off between energy consumption and travel time.

V. CONCLUSIONS

This paper provided the optimal acceleration/deceleration
profile for autonomous vehicles approaching an intersec-
tion based on the traffic light information, which could be
obtained from an intelligent infrastructure via V2I com-
munication. The solution for the above problem had the
key feature of avoiding idling at a red light. Comparing
with similar problems solved by numerical calculations,

we provided a real-time analytical solution. The proposed
algorithm offered better performance in terms of travel time
and energy consumption when compared with vehicles with
aggressive human driver behavior, which has been verified
through extensive simulations.
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