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Abstract— Timeout control is a simple mechanism used when
direct feedback is either impossible, unreliable, or too costly,
as is often the case in distributed systems. Its effectiveness is
determined by a timeout threshold parameter and our goal
is to quantify the effect of this parameter on the behavior of
such systems. In this paper, we consider a basic communi-
cation system with timeout control, model it as a stochastic
flow system, and use Infinitesimal Perturbation Analysis to
determine the sensitivity of a “goodput” performance metric
with respect to the timeout threshold parameter. In conjunction
with a gradient-based scheme, we show that we can determine
an optimal value of this parameter. Some numerical examples
are included.

I. INTRODUCTION

Timeout control is a simple mechanism used in many
systems where direct feedback is either impossible, unreli-
able, or too costly. A timeout event is scheduled using a
timer which expires after some timeout threshold param-
eter. This defines an expected time by which some other
event should occur. If no information arrives within this
period, a “timeout event” occurs and incurs certain reactions
which are an integral part of the controller. This simple
reactive control policy has been used for stabilizing sys-
tems ranging from manufacturing to communication systems
[12], Dynamic Power Management (DPM) [3],[11],[21] and
software systems [8],[9] among others. Despite its wide
usage, quantifications of its effect on system behavior have
not yet received the attention they deserve. In fact, timeout
controllers are usually designed based on heuristics which
may lead to poor results; e.g., see [1],[12],[20]. There is
limited work intended to find optimal timeout thresholds; for
example, in Automatic Guided Vehicles [19], DPM [11], [3],
[4], and finally communication systems [10],[16],[17]. All
such approaches are limited by their reliance on the distri-
butional information about the stochastic processes involved.
In distributed systems, where usually control decisions must
be made with limited information from remote components,
timeouts provide a key mechanism through which a con-
troller can infer valuable information about the unobservable
system states. In fact, as pointed out in [28], timeouts
are indispensable tools in building up reliable distributed
systems. Defining θi as the timeout threshold associated
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Fig. 1. Timeout controlled distributed system

with an action Ai, a proper response to a timeout event is
normally related to the state and action at time t − θi. A
simple example is repeating Ai at t because no desirable
response has been observed in [t− θi, t). Thus, a controller
must have some information about both current and past
states and actions of the system. Figure 1 shows a high-level
model for timeout-controlled distributed systems. The control
is shown as the input u(S, z) where S is the information
available to the controller, consisting of its own state Xc,
observable system state X1, and their associated histories
X̃c and X̃1. The feedback signal z carries information about
the state of the remote system and is subject to random
communication delays. The controller adjusts u(S, z) as a
result of its input: z and timeout events that it generates.
We view the overall controller-system model as a general
Stochastic Hybrid System (SHS), where the “system” may
be time-driven, event-driven or hybrid in itself. Note that
the “controller” in Fig. 1 may be located at a central point
communicating with remote components or locally at each
component with its own view of the rest of the “system.”

In this paper, we set forth a line of research aimed at
quantifying how timeout threshold parameters affect the
system state and ultimately its behavior and performance.
Here, we limit ourselves to a setting in Fig. 1 where the
“system” is a Discrete Event System (DES), so that the
controller output includes a response to either a timeout
event or an event carrying information through z. How-
ever, since stochastic DES models can be very complicated
to analyze, we rely on recent advances which abstract a
DES into a SHS and, in particular, the class of Stochastic
Flow Models (SFMs). A SFM treats the event rates as
stochastic processes of arbitrary generality except for mild
technical conditions. Many performance gradient estimates
can be obtained through IPA techniques for general SHS
[7],[24],[22],[27],[13],[15],[6],[23]. In addition, a fundamen-
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tal property of IPA in SFMs (as in DES) is that the derivative
estimates obtained are independent of the probability laws of
the stochastic rate processes and require minimal information
from the observed sample path. Our goal here is to use
a similar approach for online optimal timeout control in
various systems within the framework of Fig. 1. As a starting
point, we adopt a basic communication system to show how
a SFM of a timeout-controlled distributed system can be
obtained and then used to optimize the timeout threshold.

The contributions of this work are twofold: (a) We believe
this is the first effort to combine a SFM with IPA to find
optimal timeout thresholds. Two related attempts in [25],[18]
used buffer capacity to control the average timeout rate; here,
we directly control the timeout parameter and handle the fact
that the associated SFM involves stochastic delay differential
equations. (b) We extend previous works on timeout control
by removing any dependence on distributional information.

This paper is organized as follows. In Section II we
present the DES we consider and obtain a stochastic timed
automaton model. Section III is dedicated to the stochastic
flow abstraction of this DES, where the associated SFM is
obtained. Our IPA results are included in Section IV, leading
to a determination of an optimal timeout threshold for a
“goodput” metric. Numerical examples are shown in Section
V and we conclude with Section VI.

II. TIMEOUT CONTROL IN A COMMUNICATION LINK

Consider a network link consisting of a transmitter and
a receiver node connected through a channel with random
transmission delays. After each packet is sent to the receiver,
the transmitter expects an acknowledgement (shortly, ACK)
from the receiver to indicate its receipt. It keeps a copy
of each sent packet and initiates a Retransmission TimeOut
(RTO) timer expecting an ACK while this timer is running
down. The RTO timer is assumed to start with an initial
value θ known as the timeout threshold. While the transmitter
receives the ACKs in a timely fashion, it keeps on transmit-
ting more packets according to some transmission policy π1.
However, when a RTO timer goes off while its associated
ACK is not received by the transmitter, a timeout event
occurs which is a strong indication of network overload and
congestion. In this case, the transmitter switches to a back-
off transmission policy π2 in order to reduce the network
load. This is usually done by employing a mechanism to
reduce the transmission rate helping the network to alleviate
congestion. The system switches back to π1 as soon as the
transmitter receives a timely ACK. This is a scheme used
in almost all communication protocols, e.g. in TCP [1]. We
make the following two assumptions:
Assumption 1. The communication link is lossless.
Assumption 2. There are always new data to be transmitted.

Assumptions 1,2 should not be seen as limitations of
the analysis, since we can remove them at the expense
of more state variables complicating the exposition. By
Assumption 1, a timeout event doubly degrades channel
performance metrics like “goodput” (the throughput fraction
that excludes useless traffic): first, with each timeout event,

a previously sent packet should be retransmitted limiting
the rate of new data transmissions; second, since the timed-
out packets are still in the network and use resources, they
slow down other packets in the channel. A queueing model

Fig. 2. System model with timeout control. Timed-out packets and
corresponding packets to re-transmit are shown in grey.

of the system described above is shown in Fig. 2. The
transmitter has a priority queue processing re-transmitted
packets first, while the network queue has a simple FIFO
mechanism. Considering a sample path of this DES over a
finite interval [0, T ] indexed by ω, at each time t ∈ [0, T ]
let the number of transmitted packets be A(t; θ, ω) and the
number of departures (ACKs) the transmitter has observed
be D(t; θ, ω). Hence, the number of transmitted packets sent
but not yet acknowledged at each time is defined as

X(t; θ, ω) = A(t; θ, ω)−D(t; θ, ω), t ∈ [0, T ]. (1)

where X(t; θ, ω) ∈ {0, 1, . . .}. We call a time period in
which X(t; θ, ω) > 0, a Non-Empty Period (NEP); other-
wise, we call it an Empty Period (EP) associated with the
network queue in Fig. 2. We model the transmitter with a
never-empty buffer whose service (or transmission) process
is governed by the policies π1 and π2. The round-trip channel
delay (the time from the transmission of a packet until the
receipt of its associated ACK) is modeled using a queue with
arbitrary service distribution. We have modeled the timeout
mechanism by making a copy from the timed-out packet and
putting it back in the transmitter buffer with a higher priority.
We denote the number of timeout events that have occurred
in [0, t) ⊂ [0, T ] by Γ(t; θ, ω).

The purpose of this paper is to find an optimal timeout
threshold θ∗ maximizing the communication link goodput at
the transmitter, defined as

JT (θ) = Eω[L(T, θ, ω)] = Eω[A(T, θ)− 2Γ(T, θ)], (2)

where Eω[·] is the expectation operator. Below, we write L(θ)
and omit T, ω for simplicity. We also omit the sample path
index ω from the arguments of all stochastic processes.

Associated with the DES of Fig. 2 is an event set E =
{a1, a2, q1, q2, d} where a1, a2 are transmission events while
the system operates according to policies π1, π2, respectively.
Regardless of policy, with each transmission at time t a
potential timeout is scheduled at t + θ. If the ACK for
this transmission is observed within [t, t + θ), the potential
timeout scheduled becomes a disabled timeout event, denoted
by q1; otherwise, it is an actual timeout, denoted by q2. Both
q1 and q2 help us determine which policy should be used.
Finally, d is the event of an ACK receipt by the transmitter.
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To determine which of the the policies π1, π2 should be
used at any time, we introduce a new state variable

Y (t; θ) = A(t− θ; θ)−D(t; θ), t ∈ [0, T ]. (3)

where Y (t; θ) ∈ {. . . ,−1, 0, 1, . . .} and we assume the
information on A(t; θ) for t ∈ [−θ, 0) is available at t = 0.
Notice that since A(t; θ) is a non-decreasing function of t,
we have X(t; θ)−Y (t; θ) = A(t; θ)−A(t−θ; θ) ≥ 0 for all
t ∈ [0, T ]. If Y (t; θ) > 0, some of the packets sent by time
t−θ are still in the network queue at t and unacknowledged,
hence Y (t; θ) is the current number of timed-out packets in
the network. Otherwise, |Y (t; θ)| is the number of disabled
potential timeouts in [t − θ, t). Accordingly, we say the
system is in timeout mode whenever Y (t; θ) > 0 and in
normal mode, otherwise. We also partition the sample path
into Normal Periods (NPs) and TimeOut Periods (TOPs).

III. STOCHASTIC FLOW ABSTRACTION

We use the systematic road-map proposed in [26], giv-
ing explicit criteria for each step of abstraction to ensure
consistency between the behavior of the resulting SHS and
the original DES. To this end, we first define a Stochastic
Timed Automaton (STA) [5] for the DES, i.e., a quintuple
(S, E , φ,Ψ, G) where S is a countable discrete state space,
E is the event set, φ : S × E 7→ S is a transition function,
and Ψ : S 7→ 2E is the active event set function defining
the feasible events at each discrete state S ∈ S . Finally, G
is a clock structure containing the cumulative distribution
functions of all event lifetimes for each e ∈ E .

Given a STA, a partition operator is a mapping P : S 7→ Z
dividing the state space S into non-overlapping and non-
empty subsets. Accordingly, two states S1 and S2 are in the
same subset iff P (S1) = P (S2). Moreover, S is called an
interior state of a subset P ⊂ S (denoted by S ∈ Po) if for
all feasible events e ∈ Ψ(S), we have P (φ(S, e)) = P (S) =
P; otherwise, it is a boundary state. Accordingly, a boundary
mode m is one where Pom = ∅. Following [26], there are two
criteria that guide the construction of a Hybrid Automaton
from a given Timed Automaton:

C1. For any two states S1, S2 ∈ S, if P (S1) = P (S2) = P,
then Ψ(S1) = Ψ(S2) = Ψ(P ).

C2. For each e ∈ Ψ(P), the state transition function φ(S, e)
must be non-piecewise [2] in all S ∈ Po.

Criterion C1 requires that all states in a subset P share
the same feasible event set. Criterion C2 implies that every
feasible event in an interior state S ∈ Po must have the
same effect on all the states within the subset’s interior Po.
For example, φ(S, e) = S + 1 for every S ∈ Po and some
e ∈ Ψ(S) = Ψ(P) satisfies this condition. A desired subset is
the largest set satisfying criteria C1 and C2. Considering our
case, we have already defined E = {a1, a2, q1, q2, d} and S
is defined by the state pair S(t) = (X(t), Y (t)). Thus, using
(1) and (3) to identify the effect of each event e ∈ E on
each state S, the STA of the DES is shown in Fig. 3. Next,
applying the partitioning criteria C1 and C2 to this STA, we

Fig. 3. Stochastic Timed Automaton (STA) model of the DES. Transition
events: a1-Black; a2-Green; q1-Blue; q2-Purple; d-Red.

identify five aggregate sets (modes) as follows:

M(t; θ) =


0 if X(t; θ) = Y (t; θ) = 0
1 if X(t; θ) > 0, Y (t; θ) ≤ 0
2 if X(t; θ) = 0, Y (t; θ) < 0
3 if X(t; θ) > Y (t; θ) > 0
4 if X(t; θ) = Y (t; θ) > 0

(4)

with Ψ(P0) = {a1}, Ψ(P1) = {a1, q1, d}, Ψ(P2) =
{a1, q1}, Ψ(P3) = {a2, q2, d} and Ψ(P4) = {a2, d}.
Abstracting the DES into a SFM consists of five steps:

1) Abstracting DES states: We assign the continuous
state flow processes {x(t; θ)} and {y(t; θ)} to the discrete
states X(t; θ) and Y (t; θ), respectively. Also, we replace
X(t; θ), Y (t; θ) by x(t; θ), y(t; θ) in (4).

2) Abstracting events into flow rates: For all t ∈ [0, T ] we
define the transmission flow rate processes {αi(t; θ)}, i =
1, 2 as the flows associated with the a1 and a2 events,
respectively. When the emphasis is only on time rather
than the transmission policy, we will write α(t; θ) with the
understanding that α(t; θ) = αi(t; θ) if policy πi applies as
t ∈ [0, T ]. Next, we define the actual network discharge
process {d(t; θ)} associated with the event d in the DES by
defining the maximal network discharge rate process {β(t)}
which is independent of θ. Then, considering Fig. 2, when
X(t; θ) > 0 the departure process is dictated by the network
processing rate, i.e., d(t; θ) = β(t) when x(t; θ) > 0; when
x(t; θ) = 0, we have d(t; θ) = α(t; θ) ≤ β(t). Finally, we let
the disabled timeout flow rate process {γ1(t; θ)} and actual
timeout flow rate process {γ2(t; θ)} abstract the occurrence
frequencies of the events q1 and q2, respectively. Since, in
the DES, q1 and q2 events occur after a time delay θ from
their associated transmission events, we set:

γ1(t; θ) =
{
α(t− θ; θ) if M(t) = 0, 1, 2
0 otherwise (5)

γ2(t; θ) =
{
α(t− θ; θ) if M(t) = 3, 4
0 otherwise (6)

3) Obtaining (differential) flow equations for SFM modes:
Using the state equations (1) and (3) it is easy to derive
the associated flow conservation equations that dictate the
time-driven dynamics in each SFM mode. Omitting details
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(however, see [14]) we get

ẋ(t; θ)= fx(t; θ)=
{

0 M(t) = 0, 2
α(t; θ)− β(t) otherwise (7)

ẏ(t; θ)=fy(t; θ)=


0 M(t) = 0
α(t− θ; θ)− β(t) M(t) = 1, 3
α(t− θ; θ)− α(t; θ) M(t) = 2
α(t; θ)− β(t) otherwise

(8)

4) Obtaining mode transitions: Considering Fig. 3, along
with (4), (7), and (8), we can readily determine the exogenous
events or endogenous events (guard conditions) that define
all mode transitions. Recall (see [7]) that an event occurring
at time τk is (i) Exogenous if it causes a discrete state
transition independent of θ ∈ Θ and satisfies dτk

dθ = 0, and
(ii) Endogenous, if there exists a continuously differentiable
function gk : Rn ×Θ→ R such that τk = min{t > τk−1 :
gk (x (θ, t) , θ) = 0}. We define an event set of the SFM as

ESFM = {eβ , [x(t; θ) = 0], [y(t; θ) = 0], [x(t; θ) = y(t; θ)],
[α(t; θ) > α(t− θ; θ)], [α(t; θ) > β(t)]}

where eβ is an exogenous event occurring if there is an
uncontrollable jump in β(t), and the remaining are all
endogenous events each corresponding to a condition asso-
ciated with some gk (x (θ, t) , θ) = 0 as defined above. The
last event can be due to eβ but this case is already covered.
Thus, we consider [α(t; θ) > β(t)] as endogenous.

From (7) and Fig. 3 the transitions 0 → 1 and 2 → 1
occur when α(t; θ) − β(t) switches from ≤ 0 to > 0, i.e.,
when [α(t; θ) > β(t)] occurs or eβ causes this sign change.
Conversely, returning to M(t) = 0, 2 in (7) involves 4 → 0
and 1 → 2 which are due to [x(t; θ) = 0]. Other cases can
be similarly analyzed (See [14] for details). Figure 4 shows
the Stochastic Hybrid Automaton (SHA) of the SFM.

Fig. 4. Stochastic hybrid automaton for the SFM.

5) Abstracting the clock structure: Our analysis is inde-
pendent of policies π1 or π2 but in order to get concrete
results and motivated by the common Additive Increase
Multiplicative Decrease (AIMD) schemes, we let

α̇(t; θ) = fα(t; θ) =
{
ra if M(t) = 0, 1, 2
−rmα(t; θ) otherwise (9)

where ra > 0, rm > 0 are chosen such that α(t; θ) matches
the transmission rate in the DES as close as possible. We
assume the initial condition α(0; θ) = 0 for simplicity.

Lemma 1. If π1 and π2 are given by (9), the transition
4→ 3 is infeasible.

All proofs are omitted but can be found in [14].
Remark 1: This result is a byproduct of the choice of
policies in (9) and not the underlying SFM. That is, the
transition 4→ 3 is in general feasible for other π1, π2.

Finally, returning to the goodput performance metric in
(2), since γ2(t; θ) is the rate at which the flow content in the
network times out, we write the SFM version of (2) as

J(θ) = E

[∫ T

0

[α(t; θ)− 2γ2(t; θ)]dt

]
(10)

IV. INFINITESIMAL PERTURBATION ANALYSIS

Let {τk(θ)}, k = 1, . . . ,K, denote the event times in a
state trajectory. For convenience, we set τ0 = 0 and τk+1 =
T . Next, let τ ′k = ∂τk

∂θ . More generally, we use z′ ≡ ∂z
∂θ

for all variables z(θ) that depend of θ. To keep the notation
manageable, we drop θ from function arguments except for
J(θ) and L(θ, ω). The purpose of IPA is to estimate dJ(θ)

dθ =
dE[L(θ,ω)]

dθ by means of dL(θ,ω)
dθ which is an unbiased estimate

of dJ(θ)
dθ under certain (generally mild) conditions [7].

Recall, from (6), that γ2(t) = 0 except when M(t) = 3, 4.
Let T ⊂ [0, T ] such that t ∈ T iff M(t) ∈ {3, 4} and set
T = ∪Ni=1Ti for some N < K, i.e., Ti is the ith TOP in
a sample path over [0, T ]. For each Ti, define the index set
Λi = {k : [τk, τk+1) ∈ Ti}. We can then write:

L(θ, ω) =
K∑
k=0

∫ τk+1

τk

α(t)dt− 2
N∑
i=1

∑
k∈Λi

∫ τk+1

τk

α(t− θ)dt.

Omitting details (however, see [14] for complete analysis),
we can write the IPA derivative as

dL(θ, ω)
dθ

=
K∑
k=0

α′(t)dt− 2
N∑
i=1

∑
k∈Λi

∫ τk+1

τk

α′(t− θ)dt

+ 2
N∑
i=1

[
(1− τ ′ui

)α(τui
− θ)− (1− τ ′li)α(τli − θ)

]
(11)

where li and ui are the first and last indices in Λi.
Before proceeding, we provide a brief review of the IPA

framework for general stochastic hybrid systems as presented
in [7]. If s(t) is the state vector of the SFM, IPA specifies
how changes in θ influence s(t) and the event times τk
and, ultimately, how they influence interesting performance
metrics. Let us assume that over an interval [τk, τk+1), the
SFM is at some mode during which the time-driven state
satisfies ṡ = fk(s, θ, t) for some fk : Rn × Rm × [0, T ) →
Rn. Let s′(t) ≡ ∂s(t)

∂θ ∈ Rn × Rm be the Jacobian matrix
for all state derivatives. It is shown in [7] that, for any
t ∈ [τk, τk+1), s′(t) satisfies:

d

dt
s′(t) =

∂fk(t)
∂s

s′(t) +
∂fk(t)
∂θ

(12)

for t ∈ [τk, τk+1) with boundary condition:

s′(τ+
k ) = s′(τ−k ) + τ ′k

[
fk−1(τ−k )− fk(τ+

k )
]

(13)
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for k = 0, . . . ,K. For an exogenous event ek at τk, τ ′k =
0 but for every endogenous event we have a continuously
differentiable function gk : Rn × Θ → R such that τk =
min{t > tk−1 : gk (s(t; θ), θ) = 0}. It is shown in [7] that

τ ′k = −
[
∂gk
∂s

fk(τ−k )
]−1(

∂gk
∂θ

+
∂gk
∂s

s′(τ−k )
)

(14)

if ek ∈ ESFM at τk is endogenous and defined
as long as ∂gk

∂s fk(τ−k ) 6= 0. Let us define
s(t) = [α(t), α(t − θ), β(t), x(t), y(t)]T so that for
a switching function gk (s(t; θ), θ) = 0 we have
∂gk

∂s = [ ∂gk

∂α(t) ,
∂gk

∂α(t−θ) , . . . ,
∂gk

∂y(t) ].

A. Event-time Derivatives: We find τ ′k for each event in
ESFM . First, τ ′k = 0 for the exogenous event eβ ∈ ESFM .
The following lemma derives τ ′k for the endogenous events:

Lemma 2. Under policies π1, π2 defined in (9), if ek is

(i)[α(τk) > β(τk)]: τ ′k =
−α′(τ−k )
ra − β̇(τ−k )

(ii)[x(τk) = 0]: τ ′k =
−x′(τ−k )

α(τk)− β(τk)

(iii)[y(τk) = 0] : τ ′k =


−y′(τ−k )

α(τk−θ)−α(τk) if φ(2, ek) = 0
−y′(τ−k )

α(τk−θ)−β(τk) otherwise

(iv)[x(τk) = y(τk)]: τ ′k =
x′(τ−k )− y′(τ−k )
α(τk − θ)− α(τk)

B. State Derivatives: In view of (11) and Lemma 2, we
determine the state derivatives α′(t), α′(t − θ), x′(t) and
y′(t), t ∈ [0, T ]. Since α(t − θ) is only a shifted version
of α(t), it boils down to finding α′(t), x′(t), and y′(t) and
saving α′(t) until t+ θ to be used for α′(t− θ). This can be
done by solving (12) for t ∈ [τk, τk+1), k = 0, . . . ,K − 1,
with initial conditions provided by (13). Starting with α(t),

α(t) = α(τk) +
∫ t

τk

fα(τ)dτ

which after differentiating with respect to θ gives

α′(t) = α′(τ+
k ) +

∫ t

τk

f ′α(τ)dτ. (15)

By (9), f ′α(τ) is

f ′α(τ) =
{

0 if M(τ) = 0, 1, 2
−rmα′(τ) otherwise (16)

Rewriting f ′α(τ) = ∂
∂θ

dα(t)
dt = d

dtα
′(τ), (16) shows that in

NPs, α′(t) remains constant, whereas in TOPs, it decays ex-
ponentially with factor rm. Similarly, for any t ∈ [τk, τk+1)
and any τ ∈ [τk, t) we find

f ′x(τ) =
{

0 if M(τ) = 0, 2
α′(τ) otherwise

f ′y(τ) =


0 if M(τ) = 0
α′(τ − θ)− α̇(τ − θ) if M(τ) = 1, 3
α′(τ − θ)− α̇(τ − θ)− α′(τ) if M(τ) = 2
α′(τ) otherwise

Next, we use (13) which provides the initial conditions
for the state derivatives at the beginning of each interval
[τk, τk+1). First, if τk is exogenous we get τ ′k = 0 which
eliminates the jump terms in (13). Thus, we only concentrate
on the endogenous events. Below, we make use of the
definition r(τk) = ra + rmα(τk). We also use the transition
function φ(m1, e) = m2, e ∈ ESFM to indicate that while
in mode m1, e causes a transition into mode m2.

Lemma 3. For any event time τk,

α′(τ+
k ) = α′(τ−k )+



−y′(τ−k )

α(τk−θ)−β(τk)r(τk) if φ(1, ek) = 3
y′(τ−k )

α(τk−θ)−β(τk)r(τk) if φ(3, ek) = 1
x′(τ−k )−y′(τ−k )

α(τk−θ)−α(τk)r(τk) if φ(1, ek) = 4
x′(τ−k )

α(τk)−β(τk)r(τk) if φ(4, ek) = 0
0 otherwise

Fig. 5. Stochastic hybrid automaton for IPA estimator.

Lemma 4. For any event time τk,

x′(τ+
k ) =

{
0 if φ(4, ek) = 0 or φ(1, ek) = 2
x′(τ−k ) otherwise

Lemma 5. For any event time τk,

y′(τ+
k ) =



y′(τ−k ) + α′(τk)[α(τk−θ)−β(τk)]

ra−β̇(τk)
if φ(0, ek) = 1

y′(τ−k )− x′(τ−k ) if φ(1, ek) = 2
y′(τ−k ) if φ(1, ek) = 3

or φ(3, ek) = 1
x′(τ−k ) if φ(1, ek) = 4

or φ(3, ek) = 4
0 otherwise

To summarize, the IPA estimator in (11) requires the event
time derivatives in Lemma 2 and α′(τ), x′(τ) and y′(τ)
whose initial conditions are given through Lemmas 3,4,5.
Defining h(τk) = (1 − τ ′k)α(τk − θ), a hybrid automaton
is shown in Fig. 5 that captures this estimator as a SHS
operating in parallel with the one in Fig. 4 and includes
the IPA derivative itself shown as L̇′(t). Note that despite
the need for information about the SFM state at t − θ,
implementing the IPA estimator is simple.
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V. NUMERICAL EXAMPLES

We present an example where the IPA estimator is im-
plemented in conjunction with a gradient-based optimization
algorithm of the form θn+1 = θn − ηnHn(θn, ω), where
Hn(θn, ω) is the IPA estimate of dJ/dθ based on a sample
path ω with the timeout threshold set at θn and using
an appropriate step size sequence {ηn}. This allows us to
determine the optimal timeout value θ∗ that maximizes the
average goodput defined as J̄(θ) = 1

T J(θ). The transmission

Fig. 6. Left: J̄(θ) and the results of the optimization for starting points
θ = 0 and 5. Right: IPA vs. FD derivative

policy follows the AIMD scheme (9). In particular, in a
NP, starting from 1, the transmitter increases its rate with
a factor ra = 1 while with each timeout it halves this
rate. To approximate this in the SFM we used ra = 1 and
rm = − log(0.5). The network service process is chosen as
exponential with rate µ = 20. For each θ ∈ {0, 0.25, . . . , 6},
we estimated the average goodput and obtained the IPA
derivatives by averaging the results of 5 sample paths with
length T = 24000 each. We applied the IPA estimator using
the actual DES sample path data, as every event e ∈ ESFM
has a directly observable DES counterpart. The goodput
performance function is shown in Fig. 6. It has a maximum
at θ∗ ≈ 1 with J(θ∗) = 10.88. Figure 6 shows the IPA
derivatives of the performance function along with finite
difference (FD) approximations. The IPA estimator crosses
J ′(θ) = 0 at θ ≈ 1.25. For both starting points, the results of
our optimization algorithm show that the algorithm converges
to θ ≈ 1.25 in under 12 iterations.

VI. CONCLUSIONS

We considered the problem of timeout control in dis-
tributed systems. Posing the problem in a general stochastic
hybrid setting, we have studied a basic communication
system with timeout control as a DES abstracted into a
SFM. We used IPA to estimate the sensitivity of a “goodput”
performance metric with respect to the timeout threshold pa-
rameter. Finally, using a gradient-based scheme, we showed
that we can determine an optimal value of this parameter.
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