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Abstract— Lifetime maximization is an important optimiza-
tion problem specific to Wireless Sensor Networks (WSNs) since
they operate with limited energy resources which are therefore
eventually depleted. This paper considers first the problem of
routing in a WSN with the objective of lifetime maximization
based on a simple model for battery dynamics. Specifically,
we discuss the equivalence of two different formulations and
solutions in the existing literature. We then revisit a related
problem, the optimal allocation of a total energy amount over all
nodes so as to maximize network lifetime. We prove that this is
equivalent to a shortest path problem on a weighted graph and
can therefore be efficiently solved. Finally, we present a more
realistic model for battery dynamics, and numerically solve the
lifetime maximization problem. The empirical results obtained
indicate that, while a static routing policy is not expected to be
optimal, such a policy is a good approximation of the optimal
dynamic routing policy.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a spatially dis-
tributed wireless network consisting of low-cost autonomous
nodes which are mainly battery powered and have sensing
and wireless communication capabilities [1]. Power con-
sumption is a key issue in WSNs, since it directly impacts
their lifetime in the likely absence of human intervention for
most applications of interest. According to [2], the major-
ity of power consumption is due to the radio component.
Due to limited on-board power, nodes rely on short-range
communication and form a multi-hop network to deliver
information to a base station. Routing can be a challenging
problem in WSNs. It aims to deliver data from the data
sources (e.g., sensors) to a data sink (e.g., base station) in an
energy-efficient and reliable way. A survey of state-of-the-
art routing algorithms is provided in [3]. One of the non-
standard metrics of interest is the network lifetime which
we seek to maximize. First, this is specifically intended for
battery-powered networks such as a WSN. Second, there
has been no firm definition of the term “lifetime” for such
a network. For example, while some researchers, e.g., [4]
define the network lifetime as the time until the first node
depletes its battery, it may just as well be defined as the time
until the data source cannot reach the data sink [5].

The lifetime maximization problem in WSNs falls within
the category of “energy-aware” routing problems. Early work
on energy-aware routing problems, e.g. [6] and [7], focuses
on finding routes that result in low cost or high residual
battery energy. An explicit lifetime maximization problem
is formulated in [4] in the form of a linear programming
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(LP) problem. Approximation heuristics that can be solved
distributively in the network are also provided. Starting from
a different perspective – a model for the battery dynamics,
[8] formulates an optimal control problem for lifetime max-
imization with probabilistic routing.

Our contribution in this paper is to extend the results
developed in [8] in three directions. First, we show that
we can transform the set of NLP subproblems into the
LP formulation in [4]. Second, we show that the initial
energy allocation problem can be reformulated into a shortest
path problem on a graph where the arc weights equal
the link energy costs. This allows us to solve the initial
energy allocation problem using existing efficient network
flow algorithms, such as Dijkstra’s algorithm [9]. Third,
we look into the lifetime-maximization problem with more
realistic battery models, where some interesting first results
are obtained.

The paper is organized as follows. In Section II, we review
the lifetime maximization problems in [4] and [8], as well
as the initial energy allocation problem in [8]. In Section
III we show that although different in their forms, the two
lifetime maximization problems are equivalent. In Section
IV we show that the initial energy allocation problem can
be further reduced to a shortest path problem. In Section V
we introduce new, more realistic battery models, as well as
new approaches to solve the problem. Conclusions are given
in Section VI.

II. REVIEW OF PREVIOUS RESULTS

A. Probabilistic routing model

Consider a simple WSN with single-class data, a single
source and a single sink. Assume the WSN has N + 1
nodes, numbered 0, ..., N . Let node N be the data sink (base
station), and let node 0 be the data source. We assume that
nodes 1, ..., N −1 are located in the area between the source
node 0 and the data sink N , and are ordered according to the
distance to the sink N . That is, denoting by dij the distance
between node i and j, we have diN > djN if i < j. We
assume that any node i will forward data to node j only if
i < j.

In [4] and other routing algorithms, the routing control
is not at a dynamic, per-packet level. Given the information
generation rate, the routing algorithms determine the flow
rate on each link so as to maximize the lifetime. On the
per-packet level, one way to implement such flow rate
is to use probabilistic routing. At each node i, pij (t) is
the probability of forwarding the information to node j,

and
∑

i<j≤N pij (t) = 1. Then, 1
T

∫ T

0
pij (t) dt equals the

proportion of flow going through node i that enters link (i, j).
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As pointed out in [8], probabilistic routing has a security
advantage over cost based fixed routing when facing attacks.
For example, an intruder may falsify cost information such
that it becomes a packet “sink-hole” enticing all neighboring
nodes to direct their output to the intruder. The neighboring
nodes will also broadcast the low cost, thus attracting more
flow to the intruder. Probabilistic routing allows portions of
the flow to go through different paths, thus diversifying the
risk.

B. LP formulation

In [4], a linear programing (LP) formulation for lifetime
maximization is proposed. The lifetime T of a WSN is
defined as the first time a node runs out of battery. The
assumption is that the energy in a battery depletes linearly
with respect to the quantity of information forwarded, and
does not depend on the chemical dynamics of the battery
itself. The LP formulation in [4] can accommodate multiple
classes and multiple data sources/sinks. We apply the LP for-
mulation to the aforementioned network where there exists
only a single source and single class.

Define qij as the amount of information (bits) transferred
from node i to node j over the lifetime T . Denote by et

ij

the energy (Joules) needed for node i to transmit 1 bit to
node j, and er

ji is the energy needed for node i to receive

1 bit from node j. Both et
ij and er

ji are assumed known for

each link (i, j). Generally, et
ij is an increasing function of

the distance between node i and node j, and er
ji is usually

constant (denoted by er). Denote by Ei the known initial
amount of energy deposit at node i and R0 the information
generation rate (bits/seconds) at the source node. The LP
problem is formulated as follows:

Problem 1 ([4]):

max
{qij ,T}

T

s.t.
∑

j>i

et
ijqij +

∑

j:i<j

er
jiqji ≤ Ei, 0 ≤ i ≤ N − 1 (1)

∑

j>i

qij −
∑

j<i

qji = 0, 1 ≤ i ≤ N − 1 (2)

∑

j>0

q0j = TR0 (3)

qij ≥ 0, 0 ≤ i < j ≤ N
In Problem 1, {qij , T } are control variables. (1) is the

constraint of energy usage at each node. (2) is the flow
conservation constraint at non-source nodes, and (3) specifies
the flow generation at the source node. Problem 1 does
not attempt to solve for the routing probabilities directly.
Instead, it solves for the total quantity of information one
node sends to another. From the routing probability point
of view, any probabilistic routing vector {pij (t)}, constant
or time-variant, can be optimal as long as the total quantity
transferred from node i to node j is q∗ij :

∫ T

0

pij (t)

(

∑

k>i

q∗ik

)

dt = q∗ij

Therefore, the simplest way is to construct static routing

probabilities
{

p∗ij
}

by normalizing
{

q∗ij
}

:

p∗ij =
q∗ij

∑

k>i q∗ik
, 0 ≤ i ≤ N − 1

that is, p∗ij is the proportion of data forwarded from i to j.

C. Optimal control formulation

In [8] the lifetime maximization problem is studied from
a different perspective, that is, using the dynamics of the
batteries in a WSN. This is a more general approach than
Problem 1 because it accommodates the network dynamics in
a more detailed way, modeled through differential equations.
From this point of view, it is not obvious that a static routing
probability policy suffices to be the optimal routing policy.
In modeling the battery dynamics, [8] used a simple model,
that is, the rate of energy consumption is proportional to the
load at the node. In this model, the battery is treated like
a simple linear energy storage device, omitting any internal
chemical reaction. This model is essentially the same as the
one assumed in [4].

Define ri (t) as the residual energy of node i at time t and
Gi (t) as the rate of inflow information at node i. Let vij be:

vij = et
ij − et

iN , i < j < N

v0N = et
0N

viN = et
iN + er

where et
ij and er are the communication parameters used in

Problem 1. Let pij (t) be the instantaneous routing prob-
ability at time t. The lifetime maximization problem is
formulated as an optimal control problem as follows:

Problem 2 ([8]):

min
{ri(t),T,Gi(t),pij(t)}

∫ T

0

−1dt

s.t. ṙi (t) = −Gi (t)





∑

i<j<N

pij (t) vij + viN



 , (4)

0 ≤ i ≤ N − 1

Gi (t) =
∑

0≤j<i

pji (t)Gj (t) , (5)

1 ≤ i ≤ N − 1

G0 (t) = R0 (6)
∑

i<j≤N

pij (t) = 1, 0 ≤ i ≤ N − 1 (7)

pij (t) ≥ 0, 0 ≤ i < j ≤ N

with boundary conditions specifying the initial energy and
the terminal condition:

ri (0) = Ei, 0 ≤ i ≤ N − 1

min
i

ri (T ) = 0, 0 ≤ i ≤ N − 1 (8)

In Problem 2, the control variables are
{ri (t) , T, Gi (t) , pij (t)}. (4) captures the battery dynamics.
(5) is the flow conservation constraint at non-source nodes,
and (6) specifies the flow generation at the source node.
(7) is the normalization constraint for routing probabilities.
Problem 2 is a difficult optimal control problem especially
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due to the boundary condition (8) and the non-linear
dynamics and constraints with respect to control variables.
However, Theorem 1 in [8] proved that there exists a
static optimal solution to Problem 2. That is, the optimal
routing probabilities

{

p∗ij (t)
}

remain constant during the

whole network lifetime. Therefore, {Gi (t) , ṙi (t)} are also
constant. Define the static routing probabilities as {pij}
and the flow rate at node i as Gi. We can then drop ri (t).
Instead, the lifetime of node j can be specified by:

tj = Ej



Gj





∑

j<k<N

pjkvjk + vjN









−1

So the only difficulty here is the non-differentiable boundary
condition (8). To deal with this problem, in [8], all N pos-
sible cases are considered according to which node depletes
its battery first. Hence, the lifetime maximization problem is
alternatively formulated as a set of non-linear optimization
problems:

Problem 3 ([8]): For each 0 ≤ i ≤ N − 1 :

min
{pjk}

Gi





∑

i<j<N

pijvij + viN



 (9)

s.t. tj = Ej



Gj





∑

j<k<N

pjkvjk + vjN









−1

, (10)

0 ≤ j ≤ N − 1

Gj =
∑

0≤k<j

pkjGk, 1 ≤ j ≤ N − 1 (11)

G0 = R0 (12)

tj ≤ ti, j 6= i (13)
∑

k<j≤N

pkj = 1, 0 ≤ k ≤ N − 1 (14)

pkj ≥ 0, 0 ≤ k < j ≤ N (15)

The objective here is to maximize ti, equivalent to min-
imizing the load on node i, as specified in (9). Problem 3
is a set of N non-linear programming (NLP) problems that
are to be solved in parallel. The optimal lifetime is obtained
through:

T ∗ = max {t∗i }

i∗ = arg max {t∗i }

and the optimal routing probability is obtained from the

corresponding
{

p∗jk

}

i∗
.

III. REDUCING PROBLEM 3 TO PROBLEM 1

One of the important contributions of [8] is proving the
optimality of static routing probabilities, based on a simple
model for the battery dynamics: the instantaneous energy
depletion rate is linear with respect to the data flow rate.
However, the simplified optimization problem is a NLP with
N cases. In fact, we can show that this set of N NLP
problems can be reduced to Problem 1.

Theorem 1: Problem 3 can be reduced to Problem 1
without loss of optimality.

Proof: First, we combine the N subproblems. Note that

ti = Ei



Gi





∑

i<j<N

pikvik + viN









−1

,

where Ei is a given quantity. Because ti is positive, we can
rewrite the objective (9) of subproblem i as:

max
{pjk}

ti

Since the optimal lifetime T ∗ is given by T ∗ = max {t∗i },
without loss of optimality, we can add the following con-
straint into subproblem i:

T ≤ ti

and rewrite again the objective to be

max
{pjk}

T

Then, subproblem i’s optimal solution must satisfy T ∗ = t∗i
for some i trivially. Because in subproblem i, we have

t∗j ≤ t∗i = T ∗

we can rewrite constraints (10), (13) as:

ti = Ei

[

Gi

(

∑

i<k<N

pikvik + viN

)]−1

T ≤ Ej



Gj





∑

j<k<N

pjkvjk + vjN









−1

, j 6= i

so as to eliminate all {tj , j 6= i}. Combining the
two constrains above and multiplying both sides by

Gj

(

∑

j<k<N pjkkjk + kjN

)

, we simply have:

TGj





∑

j<k<N

pjkvjk + vjN



 ≤ Ej

Hence, for each subproblem i, we end up with the same
optimization problem because index i does not appear in
the problem. Therefore the N identical subproblems collapse
into one NLP problem. To show that it can be transformed
into a LP problem, we multiply both sides of constraints (11)
and (12) by T , and multiply both sides of constraints (14)
and (15) by TGk, respectively. Because Gk is the flow rate
at node k, TGk is the total number of bits transmitted at
node k. Introduce new variables {qij , 0 ≤ k < j ≤ N} such
that qij = TGipij . Then, we can rewrite the optimization
problem as:

max
{pjk}

T

∑

j<k<N

qjket
jk +

∑

0<k<j

erqkj ≤ Ej , 0 ≤ j ≤ N − 1

∑

j<k<N

qjk =
∑

k<j

qjkj , 1 ≤ j ≤ N − 1

∑

0<k<N

q0k = TR0
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qkj ≥ 0, 0 ≤ k < j ≤ N

which is the same formulation as Problem 1.

Theorem 1 has reduced the original N non-linear sub-
problems into one single linear program, which can be solved
efficiently and even in distributed fashion [10].

IV. THE INITIAL ENERGY ALLOCATION PROBLEM

A. Formulation

The initial energy allocation problem as formulated in [8]
is simply Problem 3 with the {Ei} set as control variables
and added constraints:

∑

0≤i≤N−1

Ei = Ē

Ei ≥ 0, 0 ≤ i ≤ N − 1

In [8], Theorem 2 proved that in the optimal solution,
all nodes deplete their batteries at the same time. Hence,
the initial energy allocation problem can be decomposed
into two parts: (1) an NLP (called NLPMIN) that computes
the optimal routing probabilities; (2) a simple calculation to
allocate the battery energy proportional to the node energy
load. The NLPMIN problem is as follows:

Problem 4 ([8]-NLPMIN):

min
pij

∑

0≤i≤N−1

Gi





∑

i<j<N

pijvij + vi,N





s.t. Gj =
∑

0≤k<j

pkjGk, 1 ≤ j ≤ N − 1

G0 = R0
∑

i<j≤N

pij = 1, 0 ≤ i ≤ N − 1

pij ≥ 0, 0 ≤ i < j ≤ N
After solving Problem 4, the optimal initial energy allo-

cation can be obtained from:

E∗
i = Ē ·

G∗
i

(

∑

i<j<N p∗ijvij + vi,N

)

∑

0≤i≤N−1 G∗
i

(

∑

i<j<N p∗ijvij + vi,N

)

that is, the initial energy allocation is proportional to the con-
sumption rate. Hence all nodes will deplete energy together.

B. Shortest path problem transformation

We can show that the initial energy allocation problem is
equivalent to a shortest path problem on a weighted graph.
The WSN in our problem can be modeled as a directed graph
with a source (node 0) and a destination (node N ). An arc
(i, j) is a unidirectional transmission link from node i to j.
The weight wij of arc (i, j) is defined as:

wij = et
ij + er

ji

that is, the energy consumption to transmit 1 bit of informa-
tion from node i to node j.

Information is generated from the source (node 0), and
routed to the sink (node N ) via paths on the graph. A path
P is denoted by a sequence of nodes

{

0, nP
1 , nP

2 , ..., N
}

where nP
i < nP

j if i < j. The cost of the path P , denoted
by CP is the sum of the weight of the links it goes through:

CP =
∑

i

wnP
i

nP
i+1

Therefore, for each bit of information, the total energy cost
to deliver it from node 0 to node N on path P is CP .

Theorem 2: In the optimal solution to Problem 4, if there
exist multiple paths from node 0 to node N where nodes in
the path are allocated positive energy, then they all have the
same cost.

Proof: We can prove the result by contradiction.
Suppose in the optimal solution there exist two distinct paths
P ∗

1 and P ∗
2 such that CP∗

1
> CP∗

2
. First, we can remove

from the network the nodes not allocated any energy without
loss of optimality, as they are not used. Let the amount of
information passing through P ∗

1 and P ∗
2 be qP∗

1
and qP∗

2
,

respectively. Then, we have:

qP∗

1
CP∗

1
+ qP∗

2
CP∗

2
= Ē

qP∗

1
+ qP∗

2
= R0T

∗

where T ∗ is the optimal lifetime. Let ε > 0 be a small
positive number. Because CP∗

1
> CP∗

2
, we have

(

qP∗

1
− ε
)

CP∗

1
+
(

qP∗

2
+ ε
)

CP∗

2
< Ē

which implies that by time T ∗, there is still unused energy
left in some nodes so the original solution is not optimal.
The theorem is thus proven.

Theorem 2 implies that to solve the initial energy allo-
cation problem, we just need to find a shortest path from
node 0 to node N on the network. This is because arc
weights correspond to energy consumed. Thus, the shortest
path on the graph weighted by the transmission energy costs
guarantees the lowest cost to deliver every bit of data from
node 0 to node N . Also, when there exist multiple paths
with the same lowest cost, we only need to pick one of
them. Then, we can allocate the energy to the nodes on the
path. Let the shortest path be {0, n∗

1, n
∗
2, ...n

∗
l , N}, where l

is the number of intermediate nodes. We know that the flow
on this path is R0. Therefore, the load (energy consumption
rate) on each node is:

L0 = R0e
t
0n∗

1

Ln∗

i
= R0

(

et
n∗

i
n∗

i+1
+ er

n∗

i−1
n∗

i

)

, 1 ≤ i ≤ l − 1

Ln∗

l
= R0

(

et
n∗

l
N + er

n∗

l−1
n∗

l

)

So the optimal initial energy allocation is:

E∗
i =







0 i /∈ {0, n∗
1, n

∗
2, ...n

∗
l }

Ē ·
Li

∑

j∈{0,n∗

1
,n∗

2
,...n∗

l }
Lj

i ∈ {0, n∗
1, n

∗
2, ...n

∗
l }

(16)

Shortest path problems can be solved very efficiently using
existing algorithms, such as Dijkstra’s algorithm. When a
network has multiple sources

{

n1
0, ..., n

C
0

}

, where C is the
number of distinct sources, we can first compute the shortest
path to sink for each source:

{

n1
0, n

1
1, n

1
2, ..., n

1
l , N

}
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b(t)

r(t)

k[b(t)-r(t)] u(t)

Fig. 1: The Kinetic Battery Model

{

n2
0, n

2
1, n

2
2, ..., n

2
l , N

}

...
{

nC
0 , nC

1 , nC
2 , ..., nC

l , N
}

Note that these paths may join each other at some point,
therefore, the topology will be a tree rooted at the sink. Next,
we compute the load

{

Lnc
i

}

at each node for each path, and
superimpose them at nodes where multiple paths go through.
Finally, we will obtain a set of nodes with load {Li}. We
can then use (16) to allocate the initial energy.

V. LIFETIME MAXIMIZATION WITH BATTERY DYNAMICS

The maximum lifetime analysis thus far is based on
a simplistic model for the battery dynamics. However, in
reality batteries do not satisfy such a simple linear model. For
example, [11] shows that the lifetime of an alkaline battery
decreases nonlinearly with respect to the work load. Hence,
to perform a more accurate routing optimization, we need to
incorporate more detailed battery dynamics into the system
model.

A. The Kinetic Battery Model

Recent research on battery characteristics [11] points out
that the simple linear discharge model is not a good approxi-
mation of battery capacity, due to the rate capacity effect and
recovery effect. A Kinetic Battery Model (KBM) is proposed
and shown in Figure 1. In Figure 1, a battery is modeled
as two charge wells. One is the available-charge well (R-
well) that directly connects to the output. The amount of
energy in the R-well is denoted by r (t). There is another
well called the bound-charge well (B-well), which supplies
electrons only to the R-well. The amount of energy in the
B-well is denoted by b (t), and electrons flow from the B-
well to the R-well only when r (t) < b (t), at a rate of
k [b (t) − r (t)] per unit time. u (t) is the workload on the
battery at time t. The battery depletes when r (t) reaches
zero. That is, it cannot provide available electrons. With the
KBM, we can modify Problem 2 to accommodate the new
dynamics:

ṙi (t) = −Gi (t)





∑

i<j<N

pij (t) vij + viN





+ k [bi (t) − ri (t)] , 0 ≤ i ≤ N − 1

ḃi (t) = −k [bi (t) − ri (t)]

with boundary conditions:

ri (0) = Er
i

bi (0) = Eb
i , 0 ≤ i ≤ N − 1

min
i

ri (T ) = 0, 0 ≤ i ≤ N − 1

Due to the KBM, ṙi (t) and ḃi (t) are explicit functions
of ri (t) and bi (t). Therefore, we cannot use Theorem 1
in [8], nor can we expect the optimal solution to be static.
One way to solve optimal control problems numerically is
to convert the continuous-time problem into a discrete-time
one, and solve it using an LP formulation [12]. Time-optimal
problems pose an additional layer of difficulty, since the
number of discrete time slots is not determined so the number
of variables is unknown. In [12], a workaround for minimum-
time optimal control problems is proposed. Due to the non-
standard terminal condition mini ri (T ) = 0 and the time-
maximizing objective, we borrow the concept but tailor the
workaround to solve our routing problem:

1) Choose an initial fixed terminal time T .
2) Solve a discrete time optimal control problem that

maximizes residual energy with a fixed terminal time
T . The optimal control problem can be formulated as
an LP:

max
{ri(t),bi(t),qij(t)}

min
0≤i<N

ri (T )

s.t. ri (t + 1) = ri (t) + k̄ [bi (t) − ri (t)]

−





∑

j>i

et
ijqij (t) +

∑

j:i<j

er
jiqji (t)





bi (t + 1) = bi (t) − k̄ [bi (t) − ri (t)]
∑

j>i

qij (t) =
∑

j<i

qji (t)

∑

j>0

q0j (t) = R0

ri (0) = Er
i

bi (0) = Eb
i

qij (t) ≥ 0, 0 ≤ i < j ≤ N, 0 ≤ t ≤ T − 1

ri (t) , bi (t) ≥ 0, 0 ≤ i < N

where qij (t) is the amount of data transmitted from
node i to j during time slot [t, t + 1).

3) If the LP in Step 2 is feasible, increase T . If the LP
in Step 2 is infeasible, reduce T .

4) Stop when the LP is feasible for T but infeasible for
T + 1. We have obtained the maximum lifetime T .

B. Numerical Example for Kinetic Battery Model

We consider a simple 7-node network as an example as
shown in Fig. 2a. Node 0 is the data source, and node 6 is
the sink. We set the initial energy of node 0 to be: Eb

0 =
200, Er

0 = 200. For the rest of the nodes 1 ≤ i ≤ 5, Eb
i =

100, Er
i = 100. The data generation rate at the source is

R0 = 5 (packets/time slot). The battery parameter k̄ = 0.05.
From the optimal control-LP workaround outlined in the

previous section, we have obtained the maximum lifetime
T ∗ = 262 (time slots). More interesting is to see how the
routing under KBM differs from static routing with simple
battery dynamics. Figure 2b shows the flow rate originating
from node 0 to nodes 1, 2 and 3, and Fig. 2c shows the flow
rate originating from node 3 to nodes 4, 5 and 6. We see
that the flow rates all exhibit non-linear behavior.

We then examine how the energy is consumed at nodes.
Figure 2d shows the depletion of energy at node 0 and
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Fig. 2: A numerical example with 7 nodes

node 3. Interestingly, we see that despite a small non-linear
segment early on, the rest of the curves exhibit linearity and
parallelism between ri (t) and bi (t). Referring to Fig. 1, we
can see that the difference bi (t) − ri (t) remains constant
only when k̄ [bi (t) − ri (t)] equals the load. This implies
an approximately constant load might have been the case at
these nodes, and suggests that the optimal (dynamic) solution
may be approximated by a static solution. Therefore, we
hypothesize that there may exist an optimal solution which
has static flow rates (routing probabilities). To test this, we
add the following constraint to force static flow rates:

qij (t + 1) = qij (t) , 0 ≤ i < j ≤ N, 0 ≤ t ≤ T −1 (17)

and re-solve the problem. Table I compares the solutions be-
tween the original dynamic optimization and the optimization
with added constraints (17). First, we immediately see that
both optimization problems provide the same lifetime! We
compare the mean flow at links (0, 1..3) and (3, 4..6), where
the mean is computed by:

q̄ij =
1

T

T−1
∑

t=0

q̄ij (t)

The comparison in Table I shows that the mean flow in both
problems are very close, suggesting that the optimality of
dynamic routing can at least be very well approximated by
static routing whose link flow equals the mean flow in the
dynamic routing. Further theoretical investigation is needed
to explore the potential optimality of static routing policies,
in effect replacing the dynamic solutions by equivalent fixed
averages which are easier to obtain.

VI. CONCLUSIONS

The maximum lifetime routing problem was investigated
in [4] and [8], the former based on an LP formulation and
the latter on an optimal control formulation. We show that
when the model for battery dynamics is a simple one, both

Dynamic Forced Static
T ∗

262 262

q̄01 0.6666 0.6603

q̄02 2.0474 2.0412

q̄03 2.2860 2.2985

q̄34 0.9796 1.0098

q̄35 0.0000 0.0000

q̄36 1.3064 1.2887

TABLE I: Comparison of dynamic routing and static routing
under Kinetic Battery Model

approaches are equivalent. In addition, we have shown that
the initial energy allocation problem can be reformulated into
a shortest path problem on a graph, allowing efficient solving
of such problems.

When the battery model is no longer a simplistic one, we
have to incorporate detailed dynamics into the formulation.
The interesting empirical results we have obtained are that,
while a static routing policy is not expected to be optimal, it
turns out that such a policy can be a good approximation of
the optimal dynamic routing policy. It is possible that average
routing probabilities replacing dynamically varying ones are
indeed optimal, a question which is the subject of ongoing
research.
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