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Abstract-We consider Discrete Event Systems involving
tasks with real-time constraints and seek to control processing
times so as to minimize a cost function subject to each task
meeting its own constraint. It has been shown that the ofT-line
version of this problem can be efficiently solved by the Critical
Task Decomposition Algorithm [9]. The on-line version has been
dealt with to date using worst-case analysis so as to bypass the
complexity of random efTects. This approach, however, does not
make use of probability distributions and results in an overly
consenative solution. In this paper, we develop a new on-line
algorithm without relying on worst-case analysis, in which a
"best solution in probability" can be efficiently obtained by
estimating the probability distribution of the otT-line optimal
control. We introduce a condition termed ''non-singularity''
under which the best solution in probability leads to the on-line
optimal control. Numerical examples are included to illustrate
our results and show substantial performance improvements
over worst-case analysis.
Keywords: on-line optimal control, discrete event system, real­
time constraints

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves
the control of resources allocated to tasks according to
certain operating specifications (e.g., tasks may have real­
time constraints associated with them). The basic modeling
block for such DES is a single-server queueing system
operating on a first-come-first-served basis, whose dynamics
are given by the well-known max-plus equation

(1)

where ai is the arrival time of ta~k i, Xi is its completion
time, and Si (Ui) is its service time which may be controllable
through Ui. Examples arise in manufacturing systems, where
the operating speed of a machine can be controlled to trade
off between energy costs and requirements on timely job
completion [12]; in computer systems, where the CPU speed
can be controlled to ensure that certain tasks meet specified
execution deadlines [2],[6]; and in wireless networks where
severe battery limitations call for new techniques aimed
at maximizing the lifetime of such a network [3],[10]. A
particularly interesting class of problems arises when such
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systems are subject to real-time constraints, i.e., Xi ::; di for
each task i with a given "deadline" di . In order to meet such
constraints, one typically has to incur a higher cost associated
with control Ui. Thus, in a broader context, we are interested
in studying optimization problems of the form

N
min E. (Ji(Ui)

Ul, ... ,UN ~=l

s.t. Xi = maX(Xi-l' ai) + Si(Ui), i = 1, ... , N; (2)

Xi ::; di , Smin,i ::; Si(Ui) ::; Smax,i, i = 1, ... , N.

where Smin,i, Smax,i > 0 are the lower and upper bound
on the service time of task i respectively and Bi (Ui) is
a given cost function. Such problems have been studied
for preemptive tasks [1],[13], nonpreemptive periodic tasks
[4],[5] , and nonpreemptive aperiodic tasks [3] ,[10],[9]. The
latter case is of particular interest in wireless communications
where nonpreemptive scheduling is necessary to execute
aperiodic packet transmission tasks which also happen to be
highly energy-intensive; in such cases, the cost function in
(2) represents the energy required for a packet transmission.
One of the key challenges in dealing with (2) is to develop
computationally efficient solution approaches that can be
used in real-time settings and can be implemented in wireless
devices with very limited computational power.

In general, this is a hard nonlinear optimization problem,
complicated by the inequality constraints Xi ::; di and the
nondifferentiable max operator involved. Nonetheless, it was
shown in [9] that when (Ji(Ui) is convex and differentiable
the solution to such problems is characterized by attractive
structural properties leading to a highly efficient algorithm
termed Critical Task Decomposition Algorithm (CTDA) [9]
and Generalized CrDA [10]. The CTDA does not require
any numerical optimization problem solver, but only needs
to identify a set of "critical" tasks. The efficiency of the
CTDA is crucial for applications where small, inexpensive
devices are required to perform on-line computations with
minimal on-board resources.

The on-line version of problem (2) arises when arrival
times of tasks and task characteristics (e.g., their deadlines
and sizes) are random and not known in advance. One way
to bypass the complexity of such random effects is by using
worst-case analysis (as in [9], [11]). However, there are
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di and J.-li' is assumed to be known. Thus, open-loop control
is as good as closed-loop control for this case and we can
obtain an optimal control for all tasks off line.

However, in practice, arrival times may be unknown. In
fact, usually ai and di cannot be known until task i arrives
and J..Li cannot be acquired until task i completes. Only their
probability distribution can be assumed known or estimated
in advance from past history. Due to these uncertainties,
closed-loop control is preferable, which necessitates an on­
line optimization approach. In this manner, we have the
opportunity to observe new information and update controls
by solving on-line problems at a set of decision points.
Generally, decision points can be arbitrarily selected and
could be task departure times, arrival times or instants when
some other specific events occur. From a practical standpoint,
updating controls upon each arrival time can be problematic
when arrivals are bursty, in which case it is even possible
that the calculation of new controls takes longer than an
inter-arrival time and this can lead to unstable behavior. In
this paper, we choose task start times, i.e., max(xk-l, ak),
k = 1,2, ..., to be these decision points.

Assume the current decision time is max(xk~l, ak) and
the related on-line control is Tk. The objective of the on-line
problem is to minimize the expected cost of the current task
k and all future incoming tasks, that is

where J.-lk()k (Tk) is the cost of the current task k and
Sk is a state vector defined to include all determin­
istic task information available at the current decision
time. For example, assume there are Q tasks in queue
and the arrival times ak, ... ,ak+Q-l and the deadlines
dk' ... , dk+Q-l can be observed. Then, the state vector is
Sk = [ak, ... ,ak+Q-l,dk, ... ,dk+Q-l]T. Thus, L(Tk,Sk)
is the optimal cost of all future incoming tasks under control
Tk when the state is Sk. If the number of incoming tasks
is infinite, then L(Tk, Sk) cannot be obtained and it is
necessary to approximate it by the optimal cost of the next
N (sufficiently large) tasks, denoted by L(Tk' Sk). We will
give a precise definition of L(Tk, Sk) in Section IV.

In formulating the on-line problem, we also need to con­
sider the effect of the control Tk on the real-time constraints.
A larger Tk may result in a lower expected cost, but it may
also cause a higher probability of violating the deadlines
of some future tasks. To establish a guarantee for real-time
constraints, we need to set up an acceptable lower bound
p on the probability of satisfying all constraints. In other
words, we need to quantify how likely is the existence of
some Ti E [Tmin, Tmaxl for i > k such that Xi ~ di for
i ~ k when the control Tk is applied. Note that since Tmin is
the minimum processing time per operation, it follows that
departure times Xi for i > k are minimized when Ti = Tmin.

Therefore, the event [there exists Ti E [Tn1in, TIuax] such that
Xi ~ di for i ~ k] is equivalent to the event [Xi ~ di for
i ~ k when Ti = Tmin]. The former obviously implies the
latter by the previous observation and the latter implies the

several disadvantages of a worst-case analysis approach: (i)
the probability distribution information cannot be utilized;
(ii) the decisions made based on worst-case analysis are too
conservative, especially when the time horizon is very short
(available future information is limited); (iii) only arrival
times of tasks are assumed to be uncertain. If other task
information is also uncertain, such as their deadlines and
sizes, worst-case analysis will become more complicated and
conservative; (iv) it fails when the release time jitter [6] is
hard or impossible to estimate in advance (e.g., when inter­
arrival time probability distributions have infinite support as
in the common exponential distribution case).

In this paper, we develop a new optimal control approach
to solve the on-line problem without relying on worst­
case analysis. In this approach, all task information may be
uncertain and real-time constraints are imposed so that the
probability that Xi ~ di in (2) is greater than a prespecified
value. Since this probability cannot be analytically calculated
when task characteristics are all random, this is a hard
stochastic optimization problem. It is necessary to invoke
simulation&.based methods to estimate various quantities of
interest, which renders highly questionable the feasibility
of a realistic on-line algorithm. In fact, we show that a
typical such approach is of complexity 0 (IMN 2 ) where
N is the number of tasks involved, M is the number
of sample paths simulated for estimation purposes, and I
is the number of iterations required for the optimization
algorithm to converge. We introduce a condition termed non­
singularity, under which the solution to the on-line problem
is obtained in 0 (AIN + M log lv'E) complexity, leading to a
much faster process amenable to on-line control.

In Section II, we formulate the on-line optimization
problem. In Section III, we study the feasible control set
for this problem, whose determination is complicated by
the probabilistic real-time constraints. In Section IV, we
introduce the non-singularity condition and its ramifications,
leading to an algorithm for deriving a complete solution of
the problem referred to as the "best solution in probability".
Simulation results are given in Section V illustrating the on­
line capability of the proposed approach and we close with
conclusions presented in Section VI.

II. ON-LINE PROBLEM FORMULATION

In what follows, we concentrate on the control Ui being the
processing rate and set Ui = 1/Ti where Ti is the processing
time per operation in a task. If a task consists of J..ti operations
(i.e., the size of the task), then we have Si(Ui) = J.-liTi and
Oi(Ui) = J.-liOi(Ti). Then, the off-line problem (2) becomes:

N
min L. J.-liOi(Ti)

Tt, ... ,TN t=l

s.t. Xi = maX(X'i-l, ai) + J.-liTi, i = 1, , N; (3)

Xi ~ di , Tmin ~ Ti ~ Tmax , i = 1, , N.

where f},j, (Tj,) is assumed to be monotonically decreasing
and convex in Ti and Tmin and Tmax are the minimal and
maximal processing time per operation respectively. This off­
line problem is deterministic because all task information ai,

minE{J.-lk()k(Tk) + L(Tk, Sk)}
l'k

(4)
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TABLE I. SOLUTION OF THE PROBLEM (7)

Once we obtain the M exact feasible upper bounds
-1 -M (1) (M) ATk' ... , Tk ' we sort them as Tk ::; ... ::; Tk and FM(Tk)

1) Find the first task 1such that dl - J-LlTmin ~ dl- 1 beginning from
1 == k + 1. If there is no such l, then set 1 == k + N:

2) Tk = dl - E~=2 J.LiTmin - Iuax(akl Xk-l).

Lemma 1 implies that the probabilistic constraint P[Xi ~

di , V i == k, ... , k + N] ? p in the on-line problem (6) is
equivalent to the constraint Tk ::; Tk. Therefore, the feasible
control set becomes

(9)Tmin ::; Tk ::; min(Tmax, Tk)'

To determine Tk through (8) for any given p, we need F(Tk).
However, F(Tk) is unknown and cannot be derived in closed
form. One way to estimate it is through a Monte Carlo
simulation method as follows. Suppose a sample path is
generated based on tasks indexed by i = k + 1, ... , k + N
with arrivals ai, deadlines di , and number of operations
J..Li. Given this information, (7) becomes a deterministic
optimization problem. Note that, given the state Sk for
Q tasks already in queue, only data for N - Q future
tasks need to be randomly generated; in addition, these
data can be generated a priori when probability distributions
are available, thus substantially reducing the burden of this
process during on-line execution. Now, suppose there are M
sample Pe:tths generated this way indexed by j == 1, ... , M
and let Tk be the sol!Jtion of (7) in the jth sample path. Let
Zj (Tk) == 1 [Tk ? Tk], where 1[.] is an indicator function.

Then, F(Tk) can be estimated by FM(Tk) = L.~l~j('Tk). Let

fk,M == sUPT {T : T == FM1(P)}, where FM1
(.) is the inverse

f~nction of FM(·). By the strong law of large numbers,
FM(Tk) converges to F(Tk) = p w.p.1 as M --+ 00, as
long as the M sample pathes are independently generated.
Combining this with Tk,M == FM

1(P) and Tk == F- 1(p), we
also conclude that ff,M converges to Tk w.p.1 as M --+ 00.

Moreover, we can show that this convergence is such that
Tk,M approaches Tk exponentially fast as !v! increases.

Lemma 2: For any t > 0, there always exists C > 0 such
that p[ ITk - fk,MI ? t] ~ 2e-CM

.

Thus, we may use Tk,M as an estimate of Tk in (9) so
as to specify the feasible set of the on-line problem. To do
so, however, we n~ed an efficient solution of (7) which will
provide us with Tk, j = 1, ... , M, and hence FM(Tk). This
is accomplished through the simple algorithm in Table I in
O(N) complexity. Note that in Step 1), if dl-J.-tlTmin ? dl- b

then Tk is independent of all tasks after task l and the solution
involves only tasks prior to l.

following lemma, we show that F(Tk) is the complementary
cumulative distribution function of Tk.. (The proofs in this
paper are omitted; the full proofs can be found in [7].)

Lemma 1: F(Tk) = P[Tk ~ Tk].
Let F- 1(.) denote the inverse function of F(·) and

Tk=sup{T:T=F- 1(p)} (8)
T

maxTk Tk

s.t. Xk = max(xk-l, ak) + J..LkTk ~ dk; (7)

Xi = max(xi-l, ai) + J..LiTmin :::; di , i E [k + 1, k + N].

The optimal solution of this problem is denoted by Tk and
can be interpreted as the exact feasible upper bound of Tk
for a problem when all ai, di and J..Li are known. In fact, if
there are Q tasks in queue at the kth decision time (generally
Q :::; N), only information on these tasks is known. All
remaining ai, di and J..Li for i > k + Q are random, so
Tk is also a random variable. Strictly speaking, we should
write Tk (Sk) but omit this dependence for simplicity. In the

III. FEASIBLE CONTROL SET

Before solving the on-line problem (6), we need to identify
the feasible control set for Tk. The difficulty in doing so
comes from the last constraint where P[Xi :::; di , V i ==
k, ... , k + N] is a function of the control Tk since Xi for
i == k, ... , k + N only depends on Tk. For convenience,
let F(Tk) denote this probability when Tk is selected. We
establish a property of F(Tk) in Lemma 1 below based on
the fol1owing auxiliary problem:

former by selecting Ti == Tmin for all i > k. Based on the
discussion above, let

J(Tk, Sk) = J-Lk(}k(Tk) +t(Tk, Sk) (5)

and we define the on-line problem as follows:

min E{ J(Tk, Sk)}
Tk

s.t. Xk = max(ak, Xk~l) + J..LkTk; (6)

Xi = max(ai, Xi-I) + J..LiTmin, i = k + 1, ... , k + N;

P[Xi ~ di ,V i == k, ... , k +N] ? p.

where the last two constraints capture the requirement
P(there exists Ti E [Tmin, Tmax] such that Xi :::; di for
i ? k] ? p as explained above.

It should be noted that the optimal solution of problem (6)
depends only on the state Sk when all stochastic processes
(describing arrival times, deadlines, and task sizes) are sta­
tionary and corresponding probability distributions can be
accurately obtained in advance. If the state space is finite, it
is possible to compute the optimal solution of problem (6)
for each state off line. We allow, however, the state space
to be infinite because ai and di are generally real-valued
variables. Even if we can discretize the state space, observe
that it still grows exponentially when more information is
observed. Moreover, if probability distributions are not a
priori available, they need to be estimated based on observed
data, hence an on-line algorithm is necessary. Finally, we
should mention that in the remainder of this paper we assume
that problem (6) is feasible, i.e., the last constraint is satisfied.
If that is not the case, our analysis is still valid but only
after an admission control problem is first solved, where
the objective is to ensure that as many tasks as possible
meet their deadlines by rejecting some tasks; this problem is
treated in [8].
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1 -2 -3 -4-5
k k k k k

TABLE II. DETERMINING Tr,M

1) Randomly generate M sample paths;

2) Obtain Tk by applying the algorithm in Table I for j = 1, ... , M;

3) Sort Tf, ...,Tr to derive Fl\tl(Tk) and then Tk,M = F;/ (p).

P [J(7k' Sk) ::; J(7k' Sk)] ~ 0.5
A natural question that arises is whether it is possible for

a better solution Tk i= Tk to exist such that, for all Tk E

[Tmin, min(Tmax , Tk)],

The interpretation here is that if some control action Tk is
more likely better than Tr (in the sense of resulting in lower
cost), then the expected cost under 7k will be lower than
the one under 7f. This is consistent with common sense in
that any action A more likely better than B should result
in A's expected performance being better than B's. Only
"singularities" such as J(Tk) ~ J(Tf) with an unusually low
probability for some (Tk, Tr) can affect the corresponding
expectations so that this condition may be violated. It is
straightforward to verify this NSC for several common cases;
for example, consider minx E(x- y)2, where Y is a uniform
random variable over [a, b]. The optimal solution (a + b)/2
satisfies the NSC. Based on the NSC, we define the "Best
Solution in Probability" below:

Definition 1: 7k is the Best Solution in Probability(BSIP)
if and only if Tk satisfies, for all 7k E [7min, min(Tmax , Tk)],

P [J (T~, Sk) ::; J (Tk , Sk)] 2 q, for some q > 0.5. (11)

The lemma below shows that any such Tk coincides with Tk.
Lemma 3: If Tk satisfies (11), then Tk = Tk.
Based on Lemma 3, we can define the BSIP as the one sat­

isfying (16). Moreover, if there exists a BSIP Tk, then based
on the NSC, it satisfies E {J(Tk' Sk)} ::; E {J(Tk, Sk)} for
all 7k E [Tmin, min(Tmax, Tk)], that is, Tk is also the optimal
solution of the on-line problem (6). In the following, we will
prove the existence of the BSIP using a construction method.
Then, an algorithm is developed to determine the BSIP in
o(MN) complexity. To begin with, we exploit a property
of £(7k, Sk) based on the convexity of fJi (7i).

Lemma 4: £(Tk,Sk) is convex with respect to Tk.
Next, recalling (5) and (10), we consider another auxil­

iary problem: minTk J(Tk,Sk), whose optimal solution is
denoted by Tk. The domain of the function £(7k, Sk) is
[7min, min(7max , Tk)], in which Tk is a random variable and
its value depends on the related sample path. Thus, Tk may
be less than 7:, that is, a feasible solution of the on-line
problem (6) may not guarantee all the real-time constraints
in £(Tk, Sk) for some specific sample path. In order to derive
E {J (7k, Sk)} for any 7k such that 7k > Tk for some sample
paths, we have to assign an appropriate value to J (Tk, Sk)
when Tk > Tk. The common way is to set J (Tk ,Sk) ==

solution of (6). Assuming the total number of iterations is
I, the total complexity of solving the on-line problem is
O(IMN2 ) where I, M and N are usually very large. Such
huge complexity is not suitable for on-line control.

In the following, we will bypass much of this complexity
by developing an efficient algorithm based on the condition
defined below.

Non-singularity Condition (NSC):

P[J(7~,Sk)::; J(7f,Sk)] 20.5

===} E [J(T~, Sk)] ::; E [J( T~/, Sk)]

(10)
A ~k+N
L(Tk,Sk) := min Lr- J-li()i(Ti)

Tk+l, ... ,Tk+N ~-k+1

s.t. Xi = max(ai, Xi-I) + J-liTi, i = k, , k + N;

Tmin ::; Ti ::; Tmax , Xi ::; di , i = k, ,k + N.

IV. BEST SOLUTION IN PROBABILITY

In this section, we provide a solution of the on-line
problem (6) under a condition we term "non-singularity". To
do so, we first need to define L(Tk, Sk) in (5). As already
mentioned, L(Tk, Sk) is the optimal cost of the next N tasks
under the control Tk and the state Sk, which can be obtained
from the solution of the problem

I

~P ----I---r---l
I.-----.
~
:~
I I
I I
I I
I I
I I
I I
I I

"p I I
o '--_:-.. -e-_k•M_ 1_ .....

1
__......

is obtained as illustrated in Fig. 1 and Tf 1\4 is immediately

derived through F;/(p). In summary, f:,M' and hence an
estimate of the feasible control set in (9), is obtained through
the algorithm in Table IT in O(MN +MlogM) complexity.

for any sample path specified by ai, di and J-ti, i = k, ... , k+
N. We note that this is of the same form as the off-line
problem (2) and could be solved very efficiently through the
CTDA [9] mentioned earlier if all ai, di and J-ti were known.

Clearly, a closed-form expression for E{ J(Tk, Sk)} in (6)
cannot be derived and has to be estimated. If we proceed via
Monte Carlo simulation, there are three notable difficulties:
(i) it is costly to evaluate £(Tk, Sk) for each Tk. Assume we
randomly generate AI sample paths (i.e., realizations of ai,
di and J-ti, i == k, ... , k +N) and solve problem (10) for each
sample path. Since problem (10) can be solved in O(N2

)

by using the CTDA [9], the complexity of this process is
O(MN 2

); (ii) both dE( J(Tk, Sk)) / dTk and dJ(Tk, Sk)/dTk
are hard to compute because J(Tk,Sk) involves £(Tk,Sk)
that has no closed form. Only finite differences can be
obtained, which costs two time-consuming evaluations; (iii)
it may take many iterations to converge to the optimal
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J(Tk,Sk) +a(Tk) ·l[Tk > Tk], where a(Tk) > 0 is a penalty
function for Tk > Tk, monotonically non-decreasing in Tk,
which ensures J(Tk,Sk) > J(Tk,Sk) for all Tk > Tk. Thus,
we have Tk :::; Tk. As seen next, our approach is based
on obtaining Tk not by computing E{J (Tk, Sk)} but rather
Tk and its cumulative distribution function. Since fk :::; Tk,
an advantage of this approach is that we need not concern
ourselves with the penalty a(Tk), thus saving the effort of
specifying an appropriate such function. We can obtain fk
by solving the problem below

Tk'.~~~+N {L:::: ILiOi(ri )} (12)

s.l. Xi == max(ai, Xi-I) + J-LiTi, i == k, ,k + N;

Tmin ~ Ti ~ Tmax , Xi ~ di , i == k, , k + N.

where Tk is the optimal solution of (12) for task k. Problem
(12) can be regarded as an off-line problem like (3) with ai,

di and J-Li, i == k, ... , k+N, the given arrival times, deadlines
and number of operations. This can be efficiently solved by
the CTDA [9]. Moreover, since only the optimal solution
for task k is needed, we can obtain fk in O(N) complexity
without solving the whole problem (12) [9]. Since ai, di and
J-Li are random, fk is also a random variable. As in the case of
the auxiliary problem (7), strictly speaking, we should write
Tk(Sk) but omit this dependence for simplicity.

The solution Tk has the following properties which are
easily established as a corollary of Lemma 4:

Corollary I: Assume Tmin ~ T~ < Tr ~ Tmax . Then,

Tk ~ T~ ====} J(T~,Sk) ~ J(T~,Sk);

Tk ~ T~ ===} J(Tr,Sk) ~ J(Tk,Sk).
By Corollary 1, we can obtain an additional property of Tk.

Lemma 5: Assume Tmin :::; Tk < Tk :::; Tmax . Then,

P [J(T~,Sk) S J(T~,Sk)] ~ P[Tk ~ T~];

P[J(T~,Sk) ~ J(T!:,Sk)] ~ P[Tk ~ T~'].

Define G(Tk) == P [fk ~ Tk] and Tr == sUPr {T : T ==
C-I(0.5)}, where C- I(.) is the inverse function of C(·).
Using Lemma 5, we can establish the following result.

Theorem 1: For any Tk E [Tmin,Tmax],

P [J(T~, Sk) :::; J(Tk, Sk)] 2: 0.5 (13)
Based on Theorem 1, we can obtain T~ through the

cumulative distribution function of fk, G(Tk). Although Ttt
satisfies (13), it still may not be the BSIP since the feasible
control set in (9) also requires that Tk ~ Tk. Theorem 2
below provides the complete final solution.

Theorem 2: The BSIP Tk satisfies Tk == min(T~, Tk).
This result provides the BSIP in terms of Tr and Tk. Just as

Tk in the previous section had to be estimated by estimating
F(Tk), similarly we need to estimate Tr by estimating G(Tk)
which is not available in closed form. Once again, we can
resort to a Monte Carlo simulation method, in which we
generate M sample paths where a sample path is generated
based on tasks indexed by i === k, ... , k +N with arrivals ai,

deadlines di , and number of operations J-Li. As in the estima­
tion of F(Tk) in the previous section, given the state Sk for
Q tasks already in queue, only data for N - Q future tasks

TuC08.1

are needed and could in fact be available from prior off-line
generation. Suppose there are M sample paths indexed by
j == 1, ... ,M and let Tk denote the solution of mini~zing
J(Tk) in the jth sample path. Then, set Zj(Tk) == l[Tk ~ Tk]

A :L~ Z·(rk}
and G(Tk) can be estimated by GM(Tk) == J=lM J ..... • Let

fC M == sUPr {T : T == GA"l(0.5)}. Based on· the strong

la~ of large number, GM(r!:) converges to G(r;) w.p.l
as M -+ +00. Combining this with fC,M == GAl(0.5)
and Tr == G-I (0.5), fr,M also converges to Tr w.p.l as
M -+ +00. Furthermore, using the Chernoff bound and an
argument similar to that in Lemma 2, we can show that fr M

approaches Tr exponentialIy fast as M increases, that is,'
Lemma 6: For any € > 0, there always exists C > 0 such

that p[ IT~ - fr,MI 2: €J ~ 2e-CM
.

The analysis above leads to the algorithm in Table III
through which we can obtain the estimate frM of TC. In Step
2), we only solve M off-line problems (for e~ch sample path)
without any iterative process which a traditional stochastic
programming method would require, hence having to solve
1M off-line problems where 1 is the number of iterations.
Each such problem can be very efficiently solved in O(N)
complexity using the CTDA [9]. Note that CTDA's worst
case complexity is in fact O(N2), but the problem at hand
involves solving for Tk only, i.e., the first task and not all
k, ... ,k + N tasks, which reduces to O(N). In Step 3),
we obtain GM(Tk) by sorting T~, ... ,Ttf similar to Fig. 1.
Deriving f~M is accomplished in O(M N +M log !v!) com­
plexity, whi~h is clearly a vast improvement over 0(1M N 2

).

Finally, combining Tables II and lIT we can obtain an
estimate of the BSIP Tk as min(fk,M , f!:,M). Of course,
it remains an open problem whether the NSC is satisfied
in this particular problem. If so, the BSIP is an estimate
of the optimal solution of the on-line problem (6) which
we have seen converges to the true solution exponentially
fast. Otherwise, the BSIP is a sub-optimal solution which
we expect to be quite close to optimal.

TABLE III. DETERMINING ft,M

1) Randomly generate M sample paths;

2) Obtain Tt minimizing J(Tk, Sk) in the jth sample path by applying
CTDA for j = 1, ... , M;

3) Sorting f"f, ... ,ff to derive (]M (Tk) and then f~,M = C"i.,l (0.5).

v. SIMULATION RESULTS

In this section, we compare the performance of our on­
line algorithm to the method based on worst-case analysis, in
which Tmin == 1, Tmax == 10, the arrival time ai is uniformly
distributed in some release jitter interval [ai, ai + 4], the
deadline di is uniformly distributed in [ai + 20, ai + 40],
J-Li is a random integer uniformly distributed in {I, ... , 5}
and 8{Ti) == l/{Ti - 0.5)2. We select p == 1, Le., all tasks
are required to meet their deadlines. A total of 1600 tasks
are processed and we always look ahead N == 100 tasks
at each decision point. All information on tasks that arrived
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before the current decision time is available, while only a
probability distribution is known for future tasks. In the
worst-case analysis, the probability distribution is not utilized
and we set ai, di and IJi for all future tasks as the earliest
arrival time ai ' the tightest deadline ai +20 and largest size
5 respectively to guarantee the real-time constraints. Then,
the control for the current task k is obtained by solving an
off-line problem with ai, ai + 20 and 5 as the values of
arrival times, deadlines and sizes respectively for all tasks
arriving after the decision time.

Define the following three costs: (i) C*( i) is the sum
of the optimal costs from task 1 to task i for the ideal
model, i.e., when all ai, di and IJi are known in advance,
(ii) CW (i) is the sum of costs from task 1 to task i by
applying worst-case analysis, and (iii) Cb(i) is the sum of
costs from task 1 to task i by applying our on-line algorithm
where we choose M == 500. Based on these costs, we can
define two relative performance ratios: ,Ab(i) = Cb(2:;-(~'(i)

and ,xW(i) == cW~~~*(i). The comparison results are shown
in Figs. 2 and 3. Observe that the relative ratio of the worst­
case analysis method converges to ,xw (1600) == 2.06 and the
one of our on-line algorithm to ,xb(1600) == 0.13, an order
of magnitude better. In particular, the solution obtained by
our on-line algorithm has a 13% larger cost than the ideal
optimal cost, while the worst-case analysis method results
in a much more conservative solution, whose cost is 206%
larger than the ideal cost.

VI. CONCLUSIONS

We have revisited the on-line version of optimization prob­
lems encountered in discrete event systems processing tasks
with hard real-time constraints. In this case, arrival times of
tasks and their deadlines and sizes are unknown in advance.
Rather than a worst-case analysis (pursued elsewhere), we
make use of probability distributions, which generally leads
to less conservative solutions. We propose a condition termed
"non-singularity condition" (NSC) based on which we obtain
an algorithm that provides a "best solution in probability".
This solution estimates the on-line optimal control (and
converges to it exponentially fast) if the non-singularity
condition holds and otherwise provides suboptimal solutions.
Empirical results to date indicate significant performance
improvements over worst-case analysis.

Future work is aiming at studying the validity and range
of the NSC, that is, identifying the kinds of problem that
satisfy it. Another natural direction is to develop an efficient
way to improve the best solution in probability when the
NSC is not satisfied. Moreover, we assume that information
on probability distributions for task arrivals, deadlines, and
sizes is known beforehand. However, in some applications
only rough information of this type may be available. We
plan to incorporate a learning algorithm to estimate these
probability distributions based on past history and study their
convergence properties when stationarity applies.
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