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Abstract- It has been shown that the energy efficiency
of wireless networks can be greatly improved by utilizing
transmission control techniques, which dynamically adjust the
transmission speed subject to real-time operating constraints.
In this paper, we focus on the uplink transmission scheduling
problem for minimizing the total transmission cost in the setting
that multiple nodes share the spectrum and transmit to the same
destination. Our formulation is more general than that in [1],
where the FlowRight algorithm is proposed, in the sense that
we allow each individual task have its own deadline. We identify
several structural properties of the optimal control to the two-
node uplink scheduling problem, including: i) the optimal rates
only change at known event times; ii) at each rate changing
point, there exists an explicit relationship between the event type
and the rate changing direction; and iii) at each rate changing
point, the directions of rate change are reverse. These properties
are helpful to establish an efficient decomposition approach
towards solving the general transmission scheduling problem.

Index Terms- wireless networks, energy-efficiency, real-time,
optimization

I. INTRODUCTION

Energy efficiency is extremely important in order to extend
the lifetime of wireless networks. It is well known that there
exists an explicit relationship between transmission power
and channel capacity [2]; transmission power can be adjusted
by changing the transmission rate, provided that appropriate
coding schemes are used. This provides an option to conserve
the transmission energy of a wireless node by slowing down
the transmission rate. Increased latency is a direct side
effect caused by the low transmission rate and it can affect
other Quality-of-Service (QoS) metrics as well. For example,
excessive delay may cause buffer overflow, which increases
the packet dropping rate. The existence of this trade-off
between energy and latency motivates Dynamic Transmission
Control techniques for designing energy-efficient wireless
systems.

To the best of our knowledge, the earliest work that cap-
tures the trade-off between energy and latency in transmis-
sion scheduling is [3], in which Collins and Cruz formulated
a Markov decision problem for minimizing transmission
cost subject to some power constraints. By assuming a
linear dependency between transmission cost and time, their
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model did not consider the potential of more energy saving
by varying the transmission rate. Berry [4] considered a
Markov decision process in the context of wireless fad-
ing channels to minimize the weighted sum of average
transmission power and a buffer cost, which corresponds
to either average delay or probability of buffer overflow.
Using dynamic programming and assuming the transmission
cost to be a convex function of time, Berry discovered
some structural properties of the optimal adaptive control
policy, which relies on information on the arrival state,
the queue state, and the channel state. In [5] and [6], Ata
developed optimal dynamic power control policies subject
to a QoS constraint for Markovian queues in wireless static
channels and fading channels respectively. In his work, the
optimization problem was formulated to minimize the long-
term average transmission power, given a constraint of buffer
overflow probability in equilibrium; dynamic programming
and Lagrangian relaxation approaches were used in deriving
the optimal policies, which can be expressed as functions of
the packet queue length and the channel state.

Another line of research does not rely on the Markovian
assumption; instead, it assumes that each packet is associated
with an arrival time (generally random) and a deadline that
must be met. A relatively new problem which is referred to as
the "downlink scheduling" problem, has been studied initially
in [7] with follow-up work in [8] where a "homogeneous"
case is considered assuming all packets have the same
deadline and number of bits. By identifying some properties
of this convex optimization problem, Gamal et al. proposed
the "MoveRight" algorithm in [8] to solve it iteratively.
However, the rate of convergence of the MoveRight algo-
rithm is only obtainable for a special case of the problem
when all packets have identical energy functions; in general
the MoveRight algorithm may converge slowly. Yu et al.
[9] formulated a problem to minimize the overall energy
dissipation of the sensor nodes in the aggregation tree subject
to a latency constraint. They solved the problem using
an extended MoveRight algorithm. However, the extended
MoveRight algorithm inevitably inherits the limitations of the
MoveRight algorithm. In [10], we have considered a more
general Downlink Transmission Scheduling (DTS) problem
which is formulated assuming that each packet has a different
deadline and number of bits. By analyzing the structure of the

1-4244-0171-2/06/$20.00 ©2006 IEEE. 2997

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:48 from IEEE Xplore.  Restrictions apply. 



45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

optimal sample path, we proposed the Generalized Critical
Task Decomposition Algorithm (GCTDA) which solves the
problem efficiently using a two-fold decomposition approach
and is numerically shown to be typically an order of magni-
tude faster than the MoveRight algorithm in [8].

The above results consider the transmission control prob-
lem of a single transmitter (the destinations can be multiple
though). The problem becomes more challenging when mul-
tiple wireless nodes share the spectrum and transmit simul-
taneously to a common receiver. This is referred to as the
"uplink" scheduling problem [1], where Uysal-Bikikoglu et
al. proposed the "FlowRight" algorithm that converges to the
optimal solution when each task has a common deadline. In
this paper, we consider the uplink scheduling problem in the
more general case that each task has its individual deadline.
By using sample path analysis techniques, we are able to
identify a number of interesting structural properties of the
optimal uplink schedule. Our results in this paper are helpful
in designing efficient sample path decomposition approaches
for explicitly solving the general uplink scheduling problem.

The organization of this paper is as follows: we formulate
the uplink scheduling problem in Section II; Section III
presents several structural properties of the optimal control;
conclusions and future research are discussed in Section IV.

II. PROBLEM FORMULATION

The uplink transmission scheduling problem can be de-
scribed as follows. Several wireless nodes sharing the RF
spectrum transmit packets to a common destination. We
model each transmitter as a single-server queueing system
operating on a first-come-first-served basis, whose dynamics
are given by the well-known max-plus equation

Xi = max(xi-, ai) + si

where ai is the arrival time of task i = 1, 2,..., xi is the
time when task i completes service, and si is its (generally
random) service time.

The service time si is controlled by the transmission
rate, which is determined by transmission power and coding
scheme. Since each packet can be considered as a com-
munication task, we will use the term "task", rather than
"packet" in what follows. Using the same setting as in the
DTS problem in [10], each task in the uplink problem is also
associated with three parameters: arrival time, deadline, and
the number of bits. By controlling the transmission rate at
each node, the objective of the uplink problem is to minimize
the total energy consumption of all nodes while guaranteeing
hard deadline satisfaction for each individual task.

Before formulating the optimization problem, we first
derive the cost function in multiaccess fading channels.
Note that this cost function was first established in [1]. We
summarize the procedure used in [1] for the sake of self-
sufficiency.
As shown in [11], the capacity region for a multiaccess

Additive White Gaussian Noise (AWGN) channel of N

nodes under Gaussian noise cr2 is given by:

r(Q) log (1 + EicsgiPi), for every Q c {1, ,N}
2 072 (1)

where r(Q) is the maximum sum rate of nodes in a set Q,
with other nodes' information known to the receiver; g =

(91, ., 9N) and P = (P1, ..., PN) are the channel fading
vector and power vector respectively. For notational and
analytical simplicity, we assume the number of transmitting
nodes is two and the channels are static for both nodes, i.e.,
g is time-invariant.

It has been discussed in [1] that if the codewords of
optimal coding are long enough, the boundary of the above
capacity region is achievable. We can set u 2 = 1, normalize
g, to 1, and rewrite (1) into power-rate relationships for two
nodes as follows:

Pi > f (ri) (2)
aP2 > f (r2)

Pi+aP2 > f(rl+r2)

where f(r) A 22r 1, a is a constant. Recall that our
goal is to minimize the total power consumption Ptotal =
P1 + P2, given r1 and r2, and subject to the constraints
in (2). Note that we control the transmission power under
fixed transmission rates here. Later on, we will control the
transmission rates to minimize the transmission energy.

The optimal solution to this linear program can only be
one of the two corner points (f (rl), [f (rl + r2)-f (ri)]/a)
and (f (r2)/a, f (ri + r2)-f (r2)), depending on the value
of a. Without loss of generality, we assume a > 1. It can
be easily verified that in this case the optimal solution is
(f (rl), [f (rl + r2)- f(ri)] /a) with Ptotal = f (rl + r2) +
(1 -1/a)f(ri). Therefore, the total RF transmission power
can be defined as a function of both r1 and r2

((rl, r2) = f(rl + r2) + cf(rl)
where 0 < c < 1. Note that ((r1, r2) is convex, twice
continuously differentiable, and monotonically increasing in
both r1 and r2. When c= 0, the two uplinks are symmetric
in the sense that they contribute the same amount to the total
energy consumption. This is unlikely to happen in real appli-
cations, due to the nature of wireless communications and the
difference between transmission distances. It has been shown
in [1] that in the symmetric case, a transmission schedule
utilizing time-division between two nodes is optimal.
We will now focus on the case when the two uplinks are

not symmetric, i.e., c E (0,1]. First of all, let us show that
((rl, r2) is strictly convex. We write down the explicit form
of ((rl,r2)

((rl, r2) = f (rl + r2) + cf (rl)
= 22(rl+r2) + c22r1 _ (c + 1)

After some simple algebra (we omit the details), we establish
that the two eigenvalues of V2k(ri, r2) are positive. This
shows that V2((ri, r2) is positive definite and ((r1, r2) is
strictly convex. Although we have used the explicit form
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of ((rl, r2) to show its strict convexity, our analysis will
not rely on the form of ((rl, r2), as long as it is strictly
convex, twice continuously differentiable, and monotonically
increasing in both r1 and r2. Also note that when there
are more than two nodes, the power/rate region becomes
a more complicated polyhedron with more corner points.
However, the function ( will still possess the properties
above. Therefore, our results can be extended to the case
when more than two nodes are transmitting as well.

Let us now consider the two-node case and formulate
optimization problem PI:

pmax(di,Nd2,M)
min / ((r1(t), r2(t))dt

ri (t), xj,j, r2 (t), x2,SJ min(aj,j,a2,1)
i .N, j= .M

s.t.I r2(t)dt = v,, i 1,... N,
Jmax(aj,j,x,jji-)

X1,0 = °, xl,i < dj,j
FX2 vi

|~~~~r2 (t)dt= 7/2,j,j=1 .......,M
max(a2 ,j,x2,j-1)

X2,0 = 0, X2,j < d2j

where r1(t) is the transmission rate at nodes 1, v1j, is
the number of bits of task i at node 1, aj,j is the arrival
time of task i at node 1, dj,j is the deadline of task i
at node 1, xj,j is the departure time of task i at node 1,
and r2 (t), V2,j, a2,j, d2,j, X2,j are the corresponding ones for
node 2 respectively. In this paper, we consider the off-line
control case in which the task information at both nodes
is known a priori. Note that in Pt above we control the
departure times of each task and the transmission rates at
both nodes.

Problem PI is a complicated nonlinear optimization prob-
lem with nondifferentiable constraints. A simpler form of
the problem was formulated in [1], where the tasks at
each node have the same deadline. In [1], Uysal-Bikikoglu
et al. solve the problem using the FlowRight algorithm,
which is based on the MoveRight algorithm in [8]. The
FlowRight algorithm is an iterative algorithm that converges
to the optimal solution, rather than providing the exact form
solution. Note that the FlowRight algorithm cannot even
guarantee convergence when solving PI above, since, with
the presence of task-dependent deadlines, the monotonicity
property of the FlowRight algorithm no longer exists and the
information now may flow to the left.

III. PROPERTIES OF OPTIMAL UPLINK SCHEDULING

Although Pt is hard to solve, we will proceed by exploring
structural properties that may lead to an efficient approach
utilizing the decomposition idea developed in [10]. The first
question we address is when the optimal rate changes, i.e.,
should the optimal rate of a node dynamically vary all the
time or only change at some specific times? The question has
been partially answered for tasks with common deadlines in
[1], where Uysal-Bikikoglu et al. showed that the optimal
transmission rate is static between adjacent task arrivals.

In what follows, we will show that a similar result can be
obtained in our setting where each task has its own deadline.

Let A1, D1, A2, D2 be the sets of arrival times and dead-
lines of tasks at node 1 and node 2 respectively. By ordering
all the arrival times and deadlines of tasks at both nodes, we
obtain a sequence of event times -r =.Tl....., TS}, where
S is the cardinality of A1 U D1 U A2 U D2.
We begin with an important auxiliary lemma.
Lemma 3.1: Let B1, B2, Ti, T2 (E R+, Ti < T2, rl(t)

R+ -+ R+, r2 (t): R+ + R+. Consider the following
optimization problem:

min f2 ( (r (t), r2 (t))dt
ri (t), r2 (t)

s.t. T2 ri (t)dt = BI

fr2r2(t)dt = B2
Then, the unique solution to this problem is:

r(t) and r2* (t) B2
T2 -Ti T2 -Ti

Proof: Due to space limitation, we omit the proof which
can be found in [12]. U

This lemma asserts that during any time interval, if the
number of bits that need to be transmitted at each node
is fixed, then static rates are the unique optimal solution.
Therefore, dynamically adjusting the transmission rates will
not pay off. Based on this result, we are able to establish
the following with r1(t) and r2(t) denoting the solution of
problem Pt.

Theorem 3.1: Both r1(t) and r2(t) are constant during
two adjacent event times in the sequence -r {T1,... , TS}.

Proof: We use a contradiction argument to prove it.
Suppose that both r1 (t) and r2 (t) vary during a time interval
[Tk-1, Tk). Then, the total number of bits sent by node 1 and
node 2 during this time interval are given below:

B1 jk r* (t)dt and B2 jTk r2(t)dt.
kZ-1 kZ-1

Invoking Lemma 3.1, to minimize the total energy during
[Tk-1, Tk) of transmitting B1 and B2 bits at node 1 and
node 2 respectively, i.e., f7Tk ((r1(t),r2(t))dt, static rates
provide the unique optimal solution. This contradicts the
assumption that r1*(t) and r2(t) vary during [Tk-1,Tk). U
Theorem 3.1 and its proof is very similar to Lemma 2 in

[1]. The difference is that our result here applies to the more
general case when each task has its own deadline. Similar
to Lemma 2 in [1], Theorem 3.1 shows that the optimal
transmission rates at both nodes only change at points in
event time sequence -r. Therefore, the cost in Pt can be
reduced to the following expression:

s

E (r1,,l,k r2,k-1)(Tk- Tk-1)
k=2

where rl,k-1 and r2,k,1 are the transmission rates during
time interval [Tk-1, T) at node 1 and node 2 respectively.
Note that the optimal transmission rates certainly may stay
unchanged at task arrivals and deadlines.
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Having shown that the optimal transmission rates are static
during certain time intervals, we now further explore the
special properties of the optimal solution to PI.
Lemma 3.2: Suppose the optimal transmission rates

change at an event time Tk in -r, 1 < k < S. If Tk E Ai U Di,
1= I or 2, then the optimal transmission rate must change

at node i.
Proof: See [12]. i
Lemma 3.2 implies that at any time Tk of rate change

at either or both nodes, the optimal transmission rate of
the node that Tk belongs to must change. The next result
discusses how the rate changes at this node.

Theorem 3.2: Suppose the optimal transmission rates
change at time Tk in -, 1 < k < S. If Tk E Ai U Di,

1= I or 2, then the following holds:
i) Tk is an arrival time at node i if and only if node i's

optimal transmission rate increases at Tk.
ii) Tk is a deadline at node i if and only if node i's optimal

transmission rate decreases at Tk.
Proof: Without loss of generality, let us assume i = 1. We

will first show the sufficient conditions for both parts. Then,
we will show the necessary conditions using the sufficiency.

Sufficiency prooffor part i): By assumption, rlk 1 < r k.
Since Tk is either a task arrival or a deadline of node 1, we
only need to show that it cannot be a task deadline. We use
a contradiction argument to prove it. Suppose Tk is a task
deadline at node 1. Consider a solution r (t) and r (t) of
node 1 and node 2 respectively:

where { r/ t E [T-1, k+l),

where
rk -T(TkTk-1) + rl,k(Tk+l -

kl,Tk±1Tk 1
Tk)

r2l 2t ={ 2,k I
k (5)

where

k r2,k i(Tk Tk-1) + r2,k(Tk+1 -Tk) (6)
Tk+1 -Tk-1

Note that rj (t) and r' (t) are identical to r1 (t) and r2 (t)
respectively, except that they use a constant speed (averaged
over r1 k r * at node 1 and r2,k 1, r2,k at node 2) to1'k1 1,k 2
transmit in time interval [Tk-1, Tk+l). The optimal control
r1k 1 and r1,k certainly are feasible in the sense that they
guarantee deadline Tk. Because r ,k is a convex combination
ofr1,k-1 and r1,k' r1,k-1 < r/,k < r1,k. Since r',k > r1 k-1
implies a faster task completion time, rj(t) can guarantee
deadline Tk as well. Since Tk is a task deadline at node
1, r'(t) is clearly feasible for node 2. Therefore, r'(t) and
r' (t) are a feasible solution of PI. Because r' (t) (r'(t), re-
spectively) and r1 (t) (r2 (t), respectively) transmit the same
amount of bits during time interval [Tk-1, Tk+l) (as seen
from (4) and (6)), we can invoke Lemma 3.1 to establish that
rj (t) and r' (t), which are static during [Tk -1, Tk+ 1 ), incur
a lower cost than the latter in the same time interval. Since

they are identical except in [Tk-1, Tk+l), r'(t) and r'(t)
outperform r1 (t) and r2 (t). This contradicts the optimality
of the latter. Therefore, Tk can only be a task arrival time at
node 1.

Sufficiency prooffor part ii): By assumption, rk 1
rl . Since Tk is either a task arrival or a deadline of node
1, we only need to show that it cannot be a task arrival. We
use a contradiction argument to prove it. Suppose Tk is a task
arrival at node 1. Again, consider solution r' (t) and r' (t)
of node 1 and node 2 in (3) and (5) respectively. Note that
rj (t) and r' (t) are identical to r1 (t) and r2 (t) respectively,
except that they use a constant speed (averaged over rk-1
rl,k at node 1 and r2 -1 r at node 2) to transmit in
time interval [Tk-1, Tk+l). The optimal control rl ,k-1 and
rl,k certainly are feasible in the sense that causality is not
violated, i.e., tasks will not be transmitted before their arrival
times. Because r1,k is a convex combination of rk-1 and

rl,k, rk-1 > rl,k > rl,k. Since r' k < r,k 1 implies a
slower task completion time, rj (t) does not violate causality
as well. Since Tk is a task arrival at node 1, r'(t) is clearly
feasible for node 2. Therefore, r' (t) and r'(t) are a feasible
solution of PI. Because rj (t) (r' (t), respectively) and r1 (t)
(r2 (t), respectively) transmit the same amount of bits during
time interval [Tk-1, Tk+1) (as seen from (4) and (6)), we can
invoke Lemma 3.1 to establish that r' (t) and r' (t), which are
static during [Tk-1, Tk+1), incur a lower cost than the latter
in the same time interval. Since they are identical except in
[Tk-1,Tk+1), r (t) and r (t) outperform r*(t) and r2(t).
This contradicts the optimality of the latter. Therefore, Tk
can only be a task deadline at node 1.

After proving the sufficiency, we will proceed to show
the necessity, which is a direct result from sufficiency.
The sufficiency of part i) shows that if node l's optimal
transmission rate increases at Tk, then Tk is an arrival time
at node 1. Using a simple contrapositive argument, we can
establish that if Tk is not an arrival time at node 1, i.e., Tk
is a deadline at node 1, then node I's optimal transmission
rate decreases or remains unchanged at Tk. Using Lemma
3.2, node 1's optimal transmission rate must change at Tk.
Therefore, we can obtain the necessity of part ii): if Tk is a
deadline at node 1, then node 1's optimal transmission rate
decreases at Tk. Similarly, using the sufficiency of part ii)
and a contrapositive argument, we can establish that if Tk
is an arrival at node 1, then node 1's optimal transmission
rate increases or remain unchanged at Tk. Again, invoking
Lemma 3.2, the latter case cannot happen. This gives the
necessity of part i) and completes the proof. U

So far, Theorem 3.1 shows that the optimal transmission
rates at both nodes can only change at task arrivals or
deadlines. Lemma 3.2 indicates that at any time Tk of rate
change, the optimal transmission rate of the node that Tk
belongs to does not remain unchanged. Theorem 3.2 further
explores the structure of the optimal sample path of Pt. It
basically establishes that at a rate changing point Tk, there
exists a relationship between the directions of optimal rate
changes (i.e., increasing or decreasing) and the types of Tk
(i.e., an arrival or a deadline) at the node that Tk belongs to.
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Specifically, the necessity of Theorem 3.2 shows that if Tk
is an arrival, then the optimal transmission rate at the node
that Tk belongs to will increase; if Tk is a deadline, then the
optimal transmission rate at the node that Tk belongs to will
decrease. Note that at this point we do not know the rate
changing event times Tk yet; however, Theorem 3.2 applies
to all Tk-

After obtaining Theorem 3.2, a natural question arises:
what happens to the optimal transmission rate at the other
node?

Theorem 3.3: Suppose i) the optimal transmission rates
change at a time Tk in -, 1 < k < S, and ii) neither r1 (t) nor
r2*(t) is constant zero throughout [Tk-1, Tk+l). Then, they
must change toward opposite directions, i.e., if one increases,
the other decreases, and vice versa.

Proof: See [12]. U
Theorem 3.3 shows that if one node's optimal transmission

rate changes at Tk and the other node is not fully idling
during [Tk-1, Tk+l), then the directions of rate change are
opposite. This result is intuitive since the theorem suggests
that a node should transmit using a high (low, respectively)
rate when the other node's transmission rate is slow (fast,
respectively).

The next result is helpful to determine the optimal trans-
mission rates once the "critical" time instances at which the
rates change, are known.
Lemma 3.3: Suppose the optimal transmission rate of

node 1 or 2 changes at time Tk E Ai U Di 1
or 2. Then, the following holds:

i) If Tk is an arrival time of task i, i = arg minj{aij
ai,j = Tk}, then x1,i-l < Tk-

ii) If Tk is a deadline of task i, i arg maxj {d1j : d1j
Tk}, then x1,i = Tk.

Proof: Without loss of generality, we assume Tk is an
event time at node 1.

i) Tk = al,i and task i is the one with the smallest index
among all tasks that arrive at Tk (we assume it is possible
that multiple tasks arrive at the same time). We need to
show x1, i-1 < a1,i. We use a contradiction argument to
prove the result. Suppose that the optimal departure time
of task i -1 is later than al,i, i.e., x1,i- > a1,i. Let
B1 and B2 be the number of bits transmitted by node 1 and
node 2 during time interval [Tk-1, X*1i) using the optimal
schedule respectively. Recall that, by assumption, the optimal
rate changes at Tk e [Tk X,1,i- 1).
Now consider feasible rates

r1 (t)

r2 (t)

{
{

B1
Xj* -Tk-1~Xlvi-1 Z-

rl* (t):
B2

Xj* -Tk-1~Xlvi-1 Z-

r2*(t),

t Ei [Tk-1, Xl,i-l),
O.W.

tEi [Tk-1, X*,i-l),
O.W.

which are identical to r1 (t) and r2 (t) respectively, except
in time interval [Tk-1,X*i-1). Note that r'(t) and r'(t)
are feasible since there is no deadline in time interval
(Tk-1,X1ji-1) tasks transmitted during (Tk-l,x1,i-1) have
arrived by Tk-1 so that causality is not violated, and they

use static rates that transmit the same amount of data in
this time interval. Invoking Lemma 3.1, r (t), r (t) incur
a lower cost than r* (t), r2 (t) in [Tk-11X,i-1). Since the
former is identical to the latter elsewhere, this contradicts
the optimality of the latter and in turn, the assumption of
X* i-1 > al,j.

ii) Tk= dj,j and task i is the one with the largest index
among all tasks whose deadlines are Tk (we assume different
tasks may have a common deadline). We need to show x1*ji =
d1,j. Note that due to the real-time constraint, x1*,i < d1,j. We
use a contradiction argument to prove the result. Suppose that
the optimal departure time of task i is earlier than dj,j, i.e.,
x*,i <dj,j. Consider time interval [X*,i, Tk+l), during which
node 1 and node 2 transmit B1 and B2 bits respectively using
the optimal schedule. Recall that by assumption, the optimal
rate changes at Tk E [xl*jTk+l). Now consider feasible
rates

r1 (t)

r2 (t)

k+1 t E [Xl,i, Tk+l),
rl*(t), o.w.

|-xi:tE [,i, Tk+l),
{ r2*(t) o.w.

which are identical to r* (t) and r2 (t) respectively, except in
time interval [Xl*,i, Tk+l). Note that r' (t), r' (t) are feasible
since i) there is no task arrival or deadline in [X*,i, Tk+l)
which belongs to a task transmitted during the same time
interval, and ii) they utilize static rates that send the same
amount of bits as the ones transmitted by r1*(t) and r2(t)
respectively. Invoking Lemma 3.1, static rates rj (t), r' (t)
incur a lower cost than r* (t), r2* (t) in [X*,i, Tk+l) . Since the
former is identical to the latter elsewhere, this contradicts
the optimality of the latter and in turn, the assumption of
x*,i < dj,j.

Although Lemma 3.3 is helpful, the optimal schedule is
not yet fully determined after the "critical" time instances of
rate change are known. The difficulty is that when a node's
optimal rate changes at the arrival time of task i, we still
need to find out the time when task i-1 departs. According
to Lemma 3.3, task i -1 departs at a time no later than
the arrival time of task i. Because the optimal rate at node
1 decreases to zero after task i -1 departs, using Theorem
3.1, task i -1 can only depart at a time in r. One way
of finding this time is to try all the possible arrivals and
deadlines before the arrival time of task i and sift the one
with the minimum cost. However, smarter ways may exist
due to the special properties of the problem.
Lemma 3.4: Consider tasks i-1 and i at node 1 1 or 2.

If i-1 < a, < d1,i- , then task i-1 must depart upon
a task arrival at the other node.

Proof: Without loss of generality, we assume 1 = 1. The
lemma states that if i) the optimal departure time of task i-1
at node 1 is earlier than the arrival time of task i and ii) the
deadline of task i -1 is not earlier than the arrival time of
task i, then the optimal departure time of task i-1 must be
a task arrival time at node 2.
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Since task i-1 departs at x1 -1 and node 1 idles between
i1 and aj,j, x1 i-1 is a time of rate change. According

to Theorem 3.1, x1 i1 E ir. In order to show x1 i1 is an
arrival time of node 2, we only need to prove it cannot be
other types of event times. We consider two cases:

Case 1: x* -1 is either the arrival time or the deadline of
task j at node 1.
We use a contradiction argument to show this case is im-

possible. Suppose it is true. Invoking Theorem 3.2, because
node l's optimal schedule decreases at x1 i-1,

Xj,j_j d1j .(7)

Using part ii) of Lemma 3.3,

X*j d1,j. (8)
We will use contradiction arguments to show that (7) and (8)
cannot hold. We discuss three cases:

Case 1.1: j > i -1. If it is true, (7) and (8) show that
tasks {i, ..., j} need to be sent in no time using the optimal
schedule. This contradicts the feasibility of the optimal rates.

Case 1.2: .j 1. (8) contradicts the assumption that
X* i-1 < aj,j < dj,j_l-

Case 1.3: j i- 1. If it is true, (7) and (8) show that
tasks {j 1... -1} need to be sent in no time using
the optimal schedule. This contradicts the feasibility of the
optimal rates.

Case 2: x1, i-l is a task deadline at node 2.
We use a contradiction argument to prove it. Suppose it is

true. Invoking Theorem 3.2, node 2's optimal rate decreases
at x1,i-. Using Theorem 3.3, node l's optimal rate should
increase at x1, i-. This contradicts the assumption that node
l's rate decreases at x1, i-1 (because by assumption, x1,i-l <
aj,j so that node 1 idles between [x1,i-1 al,i)).

Therefore, task i -1 must depart upon a task arrival at
node 2. i

The above results identify a number of structural prop-
erties of the optimal sample path of PI. We first establish
in Theorem 3.1 that the optimal transmission rates at both
nodes can only change at points in an ordered time sequence
containing all arrival times and deadlines. The next result,
Lemma 3.2, shows that at any time Tk of rate change, the
optimal transmission rate of the node that Tk belongs to
must change. Then, Theorem 3.2 establishes that there is
a relationship between the directions of rate change and the
times of rate change at the node that Tk belongs to. Theorem
3.3 shows that when optimal transmission rates change and
both nodes do not idle, the rates change toward opposite
directions. Finally, Lemmas 3.3 and 3.4 help us to determine
the optimal transmission rate when the rate changing points
are known.

After obtaining the above structural results, solving PI
boils down to identifying those event times Tk E T- at which
the optimal transmission rates actually change. Since the
structure of the optimal sample path of PI is very similar
to that of the DTS problem in [10], we expect an efficient
algorithm, which is similar to the GCTDA algorithm, to be

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we study the uplink transmission scheduling

problem, which is aiming at minimizing the total transmis-
sion energy in AWGN multiaccess channels subject to a
real-time constraint for each task. The problem is hard to
solve for wireless devices since it is a complex nonlinear
optimization problem. By analyzing the optimal sample path
of this uplink scheduling problem for the two-node case, we
discover several structural properties of the optimal control.
These results are very helpful in developing an efficient
algorithm that decomposes the optimal sample path and
solves the problem. This algorithm, although still unknown at
this point, will depend on full task information at both nodes.
Our future work also includes developing on-line controllers
that require minimal information sharing between nodes.
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