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Abstract

We address the optimal dynamic formation problem in mobile leader-follower networks where an optimal formation is generated to
maximize a given objective function while continuously preserving connectivity. We show that in a convex mission space, the connectivity
constraints can be satisfied by any feasible solution to a mixed integer nonlinear optimization problem (MINLP). For the class of optimal
formation problems where the objective is to maximize coverage, we show that the optimal formation is a tree which can be efficiently
constructed without solving a MINLP. In a mission space constrained by obstacles, we separate the formation process into intervals with no
obstacles detected and intervals where one or more obstacles are detected. In the latter case, we propose a minimum-effort reconfiguration
approach for the formation which still optimizes the objective function while avoiding the obstacles and ensuring connectivity. We include
simulation results illustrating this dynamic formation process.
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1 Introduction

The multi-agent system framework consists of a team of
autonomous agents cooperating to carry out complex tasks
within a given environment that is potentially highly dy-
namic, hazardous, and even adversarial. The overall objec-
tive of the system may be time-varying and combines ex-
ploration, data collection, and tracking to define a “mis-
sion”, see Cao et al. (2013); Shamma (2008); Choi et al.
(2009); Cassandras and Li (2005). In many cases, mobile
agents are required to establish and maintain a certain spa-
tial configuration, leading to a variety of formation control
problems. These problems are generally approached in two
ways: in the leader-follower setting, an agent is designated
as a team leader moving on some given trajectory with the
remaining agents tracking this trajectory while maintaining
the formation; in the leaderless setting the formation must
be maintained without any such benefit. Examples of forma-
tion control problems may be found in Yamaguchi and Arai
(1994); Desai et al. (1999); Ji and Egerstedt (2007); Wang
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and Xin (2013) and references therein. In robotics, this is a
well-studied problem; for instance in Yamaguchi and Arai
(1994), a desired shape for a networked strongly connected
group of robots is achieved by designing a quadratic spread
potential field on a relative distance space. In Desai et al.
(1999), a leader and several followers move in an area with
obstacles which necessitate the transition from an initial for-
mation shape to a desired new shape; however, the actual
choice of formations for a particular mission is not addressed
in Desai et al. (1999), an issue which is central to our ap-
proach in this paper. In Ji and Egerstedt (2007) the authors
consider the problem of preserving connectivity when the
nodes have limited sensing and communication ranges; this
is accomplished through a control law based on the gradi-
ent of an edge-tension function. More recently, in Wang and
Xin (2013), the goal is to integrate formation control with
trajectory tracking and obstacle avoidance using an optimal
control framework.

In this paper, we take a different viewpoint of formations.
Since agent teams are typically assigned a mission, there is
an objective (or cost) function associated with the team’s
operation which depends on the spatial configuration (for-
mation) of the team. Therefore, we view a formation as
the result of an optimization problem which the agent team
solves in either centralized or distributed manner. We adopt
a leader-follower approach, whereby the leader moves ac-
cording to a trajectory that only he/she controls. During the
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mission, the formation is preserved or must adapt if the mis-
sion (hence the objective function) changes or if the compo-
sition of the team is altered (by additions or subtractions of
agents) or if the team encounters obstacles which must be
avoided. In the latter case in particular, we expect that the
team adapts to a new formation which still seeks to optimize
an objective function so as to continue the team’s mission by
attaining the best possible performance. The problem is com-
plicated by the fact that such adaptation must take place in
real time. Thus, if the optimization problem determining the
optimal formation is computationally demanding, we must
seek a fast and efficient control approach which yields pos-
sibly sub-optimal formations, but guarantees that the initial
connectivity attained is preserved. Obviously, once obsta-
cles are cleared, the team is expected to return to its nominal
optimal formation.

Although the optimal dynamic formation control framework
proposed here is not limited by the choice of tasks assigned
to the team, we will focus on the dynamic coverage con-
trol problem because its static version is well studied and
amenable to efficient distributed optimization methods; see
Cortes et al. (2004); Cassandras and Li (2005); Caicedo-
Nuez and Zefran (2008); Caicedo-Nunez and Zefran (2008);
Breitenmoser et al. (2010); Zhong and Cassandras (2011) ,
while also presenting the challenge of being generally non-
convex and sensitive to the agent locations during the exe-
cution of a mission. The local optimality issue, which de-
pends on the choice of objective function, is addressed in
Sun et al. (2014); Schwager et al. (2008); Gusrialdi et al.
(2013), while the problem of connectivity preservation in
view of limited communication ranges is considered in Ji
and Egerstedt (2007); Zhong and Cassandras (2011).

The contribution of this paper is to formulate an optimiza-
tion problem which jointly seeks to position agents in a two-
dimensional mission space so as to optimize a given objec-
tive function while at the same time ensuring that the leader
and remaining agents maintain a connected graph dictated by
minimum distances between agents, thus resulting in an opti-
mal formation. The minimum distances may capture limited
communication ranges as well as constraints such as main-
taining desired relative proximity between agents. We show
that the solution to this problem guarantees such connectiv-
ity. For the class of optimal coverage control problems, we
show that an optimal formation is a tree whose construction
is much more computationally efficient than that of a general
connected graph. The formation becomes dynamic as soon
as the leader starts moving along a trajectory which may ei-
ther be known to all agents in advance or determined only by
the leader. Thus, it is the team’s responsibility to maintain
an optimal formation. We show that this is relatively simple
as long as no obstacles are encountered. When one or more
obstacles are encountered (i.e., they come within the sens-
ing range of one or more agents), then we propose a scheme
for adapting with minimal effort to a sequence of new for-
mations which maintain connectivity while still seeking to
optimize the original team objective.

The paper is organized as follows. In Sec. II, we formulate a
general optimal formation control problem and, for a convex
feasible space, derive a mixed integer nonlinear optimiza-
tion problem whose solution is shown to ensure connectivity
while maintaining an optimal formation. In Sec. III, we fo-
cus on optimal coverage control problems, prove that a tree
is an optimal formation, and propose an algorithm to con-
struct such a tree in a convex mission space. In Sec. IV, we
address the optimal formation problem in a mission space
with obstacles. We propose an algorithm to first obtain a
connected formation and then optimize it while maintaining
connectivity. Simulation results are included in Sec. V.

2 Optimal Formation Problem

Consider a set of N +1 agents with a leader labeled 0 and
N followers labeled 1 through N in a mission space Ω∈R2.
Agent i is located at si(t)∈R2 and let s(t) = (s0(t), ...,sN(t))
be the full agent location vector at t. The leader follows a
predefined trajectory s0(t) over t ∈ [0,T ] which is generally
not known in advance by the remaining agents. We model
the agent team as a directed graph G (s) = (N ,E ,s), where
N = {0,1, ...,N} is the set of agent indices and let NF =
{1, . . . ,N}⊂N be the set of follower indices. In this model,
the set of edges E = {(i, j) : i, j ∈N } contains all possible
agent pairs for which constraints may be imposed.

In performing a mission, let H(s(t)) be an objective function
dependent on the agent locations s(t). If the locations are
unconstrained, the problem is posed as maxs(t)∈Ω H(s(t))
subject to dynamics that may characterize the motion of
each agent. If t is fixed, then this is a nonlinear parametric
optimization problem over the mission space Ω (Zhong and
Cassandras (2011)). If, in addition, agents are required to
satisfy some constraints relative to each other’s position,
then a formation is defined as a graph that satisfies these
constraints. We then introduce a Boolean variable c(si,s j)
to indicate whether two agents satisfy these constraints:

c(si,s j) =

{
1 all constraints are satisfied

0 otherwise
(1)

and if c(si,s j) = 1 we say that agents i and j are con-
nected. A loop-free path from the leader to agent i, πi =
{0, . . . ,a,b, . . . , i}, is defined as an ordered set where neigh-
boring agents are connected such that c(sa,sb) = 1. Let Πi
be the set of all possible paths from i connected to the leader.
The graph G (s) is connected if Πi 6= /0 for all i ∈NF . We
can now formulate an optimal formation problem with con-
nectivity preservation as follows, for any fixed t ∈ [0,T ]:

max
s(t)∈Ω

H(s(t))

s.t. si(t) ∈ F ⊆Ω, i ∈NF

s0(t) is given
G (s(t)) is connected

(2)
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Fig. 1. A mission space example where the triangle is the leader and
the purple line is a predefined trajectory. The circles are followers
and the rectangle is an obstacle. The formation is maintained in
[0, t1], but at t2 a new formation is needed.

For the sake of generality, we impose the constraint si(t) ∈
F ⊆Ω for all follower agents to capture the possibility that
a formation is constrained. The feasible space F can be con-
vex (e.g., followers may be required to be located on one
side of the leader relative to a line in Ω that goes through
s0(t)) or non-convex (e.g., followers may be forbidden to en-
ter polygonal regions, possibly physical obstacles, and F is
the set Ω excluding all interior points of these regions). The
solution to this problem is an optimal formation at time t and
is denoted by G ∗(s(t)). Given a time interval [t1, t2], the for-
mation is maintained in [t1, t2] if si(t)−si(t1) = s0(t)−s0(t1)
holds for all t ∈ [t1, t2], i ∈NF ; otherwise, it is a new for-
mation. Figure 1 shows an example of optimal dynamic for-
mation control in a mission space with obstacles. Clearly,
this is a challenging problem. To begin with, the last con-
straint in (2) is imprecise and may be different in a convex
or non-convex feasible space. In addition, the computational
complexity of obtaining a solution may be manageable in
determining an initial formation but becomes infeasible if a
new formation G ∗(s(t)) is required during the real-time ex-
ecution of a mission. We first propose a general approach to
solve this problem in a convex feasible space for arbitrary
H(s(t)). In the next section, we will limit ourselves to the
class of optimal coverage problems in both convex and non-
convex feasible spaces and show how to take advantage of
the specific structure of H(s(t)) in such cases.

In a convex feasible space, the simplest connection con-
straints are of the form di j(t) ≡ ‖si(t)− s j(t)‖ ≤ Ci j for
some pair (i, j), i, j ∈ {0,1, ...,N}, where Ci j > 0 is a given
scalar. This may be the minimum distance needed to estab-
lish communication or di j may be used to enforce a specific
desired geometric shape in the formation. Techniques based
on the graph Laplacian are often used to solve this kind
of problem, e.g., Olfati-Saber and Murray (2004); Merris
(1994). However, our goal is to determine a formation which
solves the optimization problem in (2) for a given H(s(t)).
Thus, we describe next an approach to transform the last
constraint in (2) into a mixed integer nonlinear optimization
problem by introducing a set of flow variables over G (s).
The leader 0 is assumed to be a source node which sends N
units of flow through the graph G (s) to all other agents. Let
ρi j ∈Z+, i∈N , j ∈NF be an integer flow amount through
link (i, j). Note that, in general, ρi j 6= ρ ji and that either
ρi j > 0 or ρ ji > 0 implies that c(si,s j) = 1. We can then de-

fine a flow vector ρ = (ρ01,ρ11, . . . ,ρN1, . . . ,ρ0N , . . . ,ρNN).
Observe that ρi0, i ∈N is not a flow variable in ρ since the
leader is not allowed to receive any flows from the follow-
ers. For each follower j, we define an auxiliary variable N j
to be the net flow at node j:

N j = ∑
i∈N

ρi j− ∑
i∈NF

ρ ji (3)

Using this notation, we introduce next a number of linear
constraints that represent a connected graph. First, the leader
provides N units of flow:

∑
i∈NF

ρ0i = N (4)

Next, each follower j must receive a net flow N j = 1 in order
to ensure that there is one path from the leader to j:

N j = ∑
i∈N

ρi j− ∑
i∈NF

ρ ji = 1, j ∈NF (5)

To prohibit self loops, we require that

ρii = 0, i ∈NF (6)

Finally, the maximal flow capacity is upper bounded by the
source amount N:

ρi j ≤ N, i ∈N , j ∈NF (7)

Observe that (4) and (5) are linearly dependent since ∑ j N j =
N. Thus, the constraint (4) is redundant and may be omitted.

Theorem 1 If there exists a flow vector ρ such that con-
straints (5)-(7) hold, then there exists a connected graph
G (s). Moreover, the number of possible graphs is finite.

Proof: See Appendix.

Observe that ρi j > 0 indicates a connection between agents i
and j. This can be combined with the constraint di j(t)≤Ci j
to write ρi j(di j(t)−Ci j) ≤ 0 for all edges (i, j) in G (s).
Moreover, the convex set F can be expressed through lin-
ear constraints. Thus, the optimal formation problem with
connectivity preservation at any fixed t ∈ [0,T ] becomes a
Mixed Integer Nonlinear Problem (MINLP):

min
s(t),ρ

−H(s(t),ρ)

s.t. si(t) ∈ F ⊆Ω, i = 0, . . . ,N

∑
i∈N

ρi j− ∑
i∈NF

ρ ji = 1, j ∈NF

ρi j(di j(t)−Ci j)≤ 0, i ∈N , j ∈NF

ρii = 0, i ∈NF

ρi j ≤ N, i ∈N , j ∈NF

(8)
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Note that any agent position vector s(t) specifies a graph at
time t. The role of ρ is to ensure that this graph is connected
by satisfying the constraints in (8), thus creating an opti-
mal formation. However, there is no advance information
regarding what the optimal formation looks like and how the
optimal formation changes over time as the leader moves in
a time interval [0,T ] unless H(s(t)) is given some specific
structure. For the rest of this paper, we focus on a class of
problems which impose a particular structure on H(s(t)).

3 Optimal coverage control problems

Multi-agent systems involve interactions between agents and
points in the mission space or between agents with each
other. We are typically interested in maximizing rewards
resulting from such interactions, thus leading to objective
functions of the general form

H(s(t)) =
∫

Ω

R(x)P(x,s(t))dx (9)

where R(x) describes some information associated with
point x ∈ Ω (e.g., its value relative to other points in
the mission space) and P(x,s) is the reward resulting
from the interaction between x ∈ Ω and agents located at
s(t) = (s0(t), ...,sN(t)). The formulation of problems aim-
ing to control s(t) so as to maximize H(s(t)) in (9) is very
general and includes, for instance, the class of consen-
sus problems, which is relatively simple compared to the
harder class (due to nonconvexity) of optimal coverage or
persistent monitoring problems (see Zhong and Cassandras
(2011); Schwager et al. (2011); Cassandras et al. (2013);
Sakurama et al. (2015)). Agents are assumed to be equipped
with some sensing and some communication capabilities.
In particular, we assume that agent i’s sensing is limited to
a set Ωi(t)⊂Ω. For simplicity, we let Ωi(t) be a circle cen-
tered at si(t) with radius δi. Thus, Ωi(t) = {x : di(x, t)≤ δi}
where di(x, t) = ‖x−si(t)‖, the standard Euclidean norm. To
further maintain simplicity (without affecting the generality
of the analysis), we set δi = δ for all agents.

In coverage problems, the function R(x) : Ω→ R captures
an a priori estimate of the frequency of event occurrences at
x and is referred to as an “event density” satisfying R(x)≥ 0
for all x ∈ Ω and

∫
Ω

R(x)dx < ∞. For the formation prob-
lems we consider here, we assume that the event density
is a constant for any x ∈ Ω. To define P(x,s(t)) in (9), let
pi(x,si(t)) be the probability that agent i detects an event
occurring at point x. This function is defined to have the fol-
lowing properties: (i) pi(x,si(t)) = 0 if x /∈ Ωi(t), and (ii)
pi(x,si(t))≥ 0 is a monotonically nonincreasing function of
di(x, t). The overall sensing detection probability is denoted
by p̂i(x,si(t)) and defined as

p̂i(x,si(t)) =
{

pi(x,si(t)) if x ∈Ωi(t)
0 if x /∈Ωi(t)

(10)

Note that p̂i(x,si(t)) may not be continuous in si(t). We may
now define the joint detection probability that an event at
x ∈Ω is detected by at least one of the N cooperating nodes
in the network:

P(x,s(t)) = 1−
N

∏
i=0

[1− p̂i(x,si(t))] (11)

where we assume that agents sense independently of each
other. In addition to sensing, the communication capabilities
of agents are defined by their relative distance: agents i and
j can establish a communication link if ‖si(t)− s j(t)‖ ≤
Ci j. For simplicity, Ci j = C for all i and j. Thus, in this
class of problems a formation is required to maintain full
communication among agents. Finally, one of the agents,
indexed by 0, is designated as the leader whose position
s0(t) is given. We are interested in formations maximizing
the total detection probability over the mission space Ω, so
that the objective in (8) is H(s(t),ρ) =

∫
Ω

R(x)P(x,s(t))dx
with R(x), P(x,s(t)) as defined above and ρ the flow vector
defined in the previous section.

This MINLP is NP-hard (Köppe (2012)) and its solution is
computationally costly, so that it is not realistic to expect re-
solving it over the course of a mission as the leader moves.
In fact, it is not always necessary to repeatedly solve this
problem over [0,T ]. Theorem 2 presents a condition under
which we only need to solve the problem at t = 0. This
simply formalizes the rather obvious fact that if no new
constraints (e.g., obstacles) are encountered over t ∈ (0,T ],
then the optimal formation at t = 0 can be preserved by
maintaining fixed relative positions for all agents.

Theorem 2 Assume that R(x) = R for all x ∈ F . Let s(0)
be an optimal solution of problem (8) at t = 0 and that
s0(t) is known to all followers for all t ∈ (0,T ]. If si(t) =
si(0)+s0(t)−s0(0), i ∈NF and Ωi(t)⊂ F, i ∈N , then s(t)
maximizes H(s(t)) in (9) with P(x,s(t)) in (11).

Proof: See Appendix.

The implication of Theorem 2 is that when a mission space
has no obstacles in it or the leader follows a trajectory where
no obstacles are encountered by any agent, our problem is
reduced to one of ensuring that all agents accurately track
the leader’s trajectory. We may discretize time so that agents
update their locations at 0 < t1 < · · · < tK = T . Assuming
that problem (8) is solved at t = 0, an optimal formation is
obtained and we subsequently strive to maintain this forma-
tion until a significant “event” occurs such as an agent fail-
ure, a change in objective function H(s(t)), or encountering
obstacles; at such a point, some amount of reconfiguration
is required while still aiming to maximize H(s(t)).

Figures 2 and 3 show two examples of optimal formation
obtained by solving (8) at time t with s0(t) located at the
center of the mission space. To get Fig. 3, we simply add
constraints six ≤ s0x in (8) and the methodology remains the
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same. Moreover, any such linear constraint can be accom-
modated. In these examples, the optimal formation graphs
G ∗(s) are trees (The definition of a tree can be found in
Bertsimas and Tsitsiklis (1997)). Clearly, if we know that
an optimal formation is a tree, the problem is much simpler
to solve. We will show next that this is indeed the case for
formations constructed to solve optimal coverage problems.

Fig. 2. Optimal formation for
5 followers and a leader in a
bounded mission space.

Fig. 3. Optimal formation for 9
followers and a leader. Follow-
ers are constrained to the left of
the leader.

Theorem 3 Assume that the feasible space is F = Ω = R2,
C < 2δ , R(x) = R for all x ∈ F and pi(x,si(t)) = p(x,si(t)).
Then, an optimal formation G ∗(s)(t) for problem (8) with
the objective function (9) with P(x,s(t)) in (11) is a tree
with the distance between connected agents given by C.

Proof: See Appendix, which includes three Lemmas re-
quired for the proof.

This theorem enables us to construct an optimal solution
rather than solving the MINLP problem, thus dramatically
decreasing computation. Algorithm 1, which is of complex-
ity O(N2), is an example of a simple procedure through
which such a tree can be constructed.

Algorithm 1 Tree Construction Procedure
Input: The leader agent’s position s0
Output: A tree G (s) where di j =C for c(si,s j) = 1
Initialization: U = {0}
Do the following procedure:

1: For any agent j, j ∈N \U , select an agent i ∈U and
locate s j such that di j =C and d jz >C for all z ∈U \ i.
Update U = U ∪{ j}.

2: Repeat step 1 until U = N .

Note that the feasible space F is assumed to be R2 in Theo-
rem 3. This implies that a tree is optimal as long as no agent’s
position is limited by a constraint such as an obstacle or the
finite boundaries of the mission space. To address this is-
sue, we define a union coverage area set by Au(s) =∪N

i=0Ωi.
Then Au(s)⊂R2 due to the fact that the sensing range of any
agent is limited (see the definition of Ωi). A tree solution,
say G (s) obtained by Algorithm 1 may be globally optimal
if Au(s)⊂ F or infeasible otherwise. For the latter case, we
can obtain a local optimum by the following gradient-based

algorithm

sk+1
i = sk

i +ζk
∂H(s)

∂ sk
i

, k = 0,1, . . . (12)

where the step size sequence {ζk} is selected (e.g., Bertsekas
(1995)) to ensure convergence and the calculation of ∂H(s)

∂ sk
i

can be found in Zhong and Cassandras (2011).

4 Optimal Dynamic Formation Control in a Mission
Space with Obstacles

We have thus far solved an optimal dynamic formation prob-
lem with connectivity constraints in a convex feasible space
F by solving a MINLP or simply constructing a tree when
Theorem 3 applies. In the latter case, we can construct a solu-
tion with minimal computation, as in Algorithm 1. However,
this method may fail when F is non-convex, e.g., when F
cannot be described through linear or nonlinear constraints.
In this section, we address the optimal dynamic formation
problem in a mission space with obstacles, thus considering
a non-convex feasible space.

We model the obstacles as m non-self-intersecting polygons
denoted by M j, j = 1, . . . ,m. The interior of M j is denoted
by M̊ j, so that the overall feasible space is F = Ω \ (M̊1 ∪
. . .∪ M̊m), i.e., the space Ω excluding all interior points of
the obstacles. In this setting, we seek to ensure the following
two requirements. First, the distance between two connected
agents must be ≤C. We define c1(si,s j) to indicate whether
this requirement is satisfied:

c1(si,s j) =

{
1 ‖si− s j‖ ≤C

0 otherwise.

Second, the connected agents are required to have a line
of sight with respect to each other. We define c2(si,s j) to
indicate this requirement:

c2(si,s j) =

{
1 αsi +(1−α)s j ∈ F for all α ∈ [0,1]

0 otherwise.

Agents i and j satisfying c1(si,s j) = 1 as well as c2(si,s j) =
1 are referred to as connected. We also define c(si,s j) =
c1(si,s j)c2(si,s j).

A version of this connectivity preservation problem was ad-
dressed in Zhong and Cassandras (2011), where agents are
required to remain connected with a fixed base while at
the same time maximizing the objective function in (9). A
gradient-based algorithm, termed Connectivity Preservation
Algorithm (CPA), was developed for agent position updat-
ing and it was shown that, given an initially connected net-
work and if only one agent updates its position at any given
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Fig. 4. An example of a connected network at t and constructed
connected network by Algorithm 2 at t + ε .

time, the CPA preserves connectivity. The algorithm is ap-
plied iteratively over one agent at a time and it converges to
a (generally local) optimum. The CPA exploits the existence
of distributed optimization algorithms for optimal coverage
to attain optimal agent locations while also preserving con-
nectivity to a base (details on the CPA and its complexity
are provided in Zhong and Cassandras (2011)).

Our approach here is to take advantage of the CPA. In our
problem, however, the conditions for applying the CPA do
not generally hold; this is because the leader’s motion does
not take connectivity with its neighbors into account and
the presence of an obstacle, for example, may cause it to
disconnect from one or more followers. This is illustrated
in Fig. 4: At time t, the agent network shown (represented
by three orange circles and an orange triangle as the leader)
is connected. At t + ε , the leader (triangle) moves to s0(t +
ε) and if agent 2 moves to the point shown in yellow (as
expected by Theorem 2), then it becomes disconnected from
the leader because of the obstacle present. We propose an
algorithm next to construct a connected graph, which may
no longer be optimal in the sense of problem (8) but it
does provide a valid initial condition for invoking the CPA
described above (this is illustrated in Fig. 4 as the solid green
graph). This immediately allows us to iteratively apply the
CPA so as to obtain a new (locally optimal) formation.

Clearly, it is also possible to invoke (8) as soon as a for-
mation reconfiguration is needed. However, the set F is
no longer convex and the computational complexity of this
problem makes it infeasible for the on-line adaptation re-
quired, whereas the approach we propose and the use of
the CPA render this process computationally manageable.
In particular, whereas the MINLP is generally NP hard, in
the CPA each agent i determines its new position through
a gradient-based scheme using only its neighbor set and its
downstream and upstream agent sets relative to the leader
(formally defined in the next section). When the number of
agents increases, note that the the number of neighbors of i
may not be affected. The overall increase in complexity is
linear in the network size.

Before proceeding, we identify the precise instants when
formation reconfiguration is necessary due to obstacles en-

countered by agents as the mission unfolds over [0,T ]. We
define two states that the agent team can be in: (i) The
constrained state occurs when the sensing capability of an
agent is hindered by an obstacle, captured by the condi-
tion

(⋃N
i=0 Ωi

)⋂(⋃m
i=1 M̊i

)
6= /0, and (ii) The free state cor-

responding to
(⋃N

i=0 Ωi
)⋂(⋃m

i=1 M̊i
)
= /0. Thus, the inter-

val [0,T ] is partitioned into free and constrained intervals
with transitions at times t0

f < t1
c < t1

f < ... < t i
c < t i

f < ...tz
f <

T . When the agent network enters a free state at time tk
f ,

k = 0, . . . ,z, since
(⋃N

i=0 Ωi(t)
)⋂(⋃m

i=1 M̊i
)
= /0 for all t ∈

[tk
f , t

k+1
c ) and F = Ω\(M̊1∪ . . .∪M̊m), so Ωi(t)∈ F for any i

over t ∈ [tk
f , t

k+1
c ), the optimal formation is maintained based

on Theorem 2. Next, we consider how to generate optimal
formations in constrained states.

Given a connected graph G (s), we have defined a
loop-free path connecting agent i to the leader as
πi = {0, . . . ,a,b, . . . , i}; we have also defined Πi to be the
set of all possible paths connecting i to the leader. Let πi,k

be the kth path in Πi and we use π
j

i,k to denote the jth
element in πi,k. Let Di = ∪ j,kwi(π j,k) be the set of agents
downstream from i (further away from the leader 0) where

wi(π j,k) =

{
π

l+1
j,k if i ∈ π j,k, i 6= j and i = π l

j,k

/0 otherwise
(13)

We also define the set of upstream agents from i as Ui =
{ j : i ∈D j, j ∈ 0, . . . ,N}. The length of a path πi,k is defined

as Ψ(πi,k) = ∑
|πi,k|−1
l=1 ‖s

π l
i,k
−s

π
l+1
i,k
‖, where |πi,k| is the cardi-

nality of πi,k. For agent i, the shortest path connected to the
leader is

π
∗
i = arg min

πi,k∈Πi
Ψ(πi,k)

For example in Fig. 4, in path π3,1 = {0,2,3} we have 3
∈ D2, 0 ∈ U2, Ψ(π3,1) = ‖s0 − s2‖+ ‖s2 − s3‖; for path
π3,2 = {0,1,2,3}, we have Ψ(π3,2) = ‖s0−s1‖+‖s1−s2‖+
‖s2 − s3‖. Therefore, π∗3 = π3,1 is the shortest path from
agent 3 to the leader.

Let πi and π j be two paths. Then, we define πi + π j =
{πi,πk}, where πk = π j \ πi, as an ordered set. Note that
πi + π j is generally different from π j + πi because of the
order involved. Given a connected graph G (s), We define

Q(G (s)) = π
∗
1 + . . .+π

∗
N (14)

to be an ordered set containing a permutation of the agent
set {0,1, ...,N} constructed so as to start with the shortest
path π∗1 from 0 to agent 1, followed by π∗2 \π∗1 and so on.
It immediately follows from this construction that the first
element of Q(G (s)) is 0 and that |Q(G (s))|= N+1. There-
fore, we can rewrite Q(G (s)) as

Q(G (s)) = {0,q2, . . . ,qN+1}
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where q j ∈NF , j = 2, . . . ,N +1. For example, in Fig. 4, at
time t, Q(G (s(t))) = {0,1,2,3}. We show next that Q(G (s))
has the following property regarding the order of its ele-
ments.

Lemma 4 If qi is the ith element of Q(G (s)) constructed
from a connected graph G (s), then there exists q j ∈ Uqi
such that q j is the jth element of Q(G (s)), and j < i for all
qi ∈NF .

Proof: If for all q j ∈ Uqi , j > i, we cannot find a subset
of Q(G (s)) that includes {q j,qi}, q j ∈Uqi , then there is no
path connected to qi. This contradicts the assumption that
Q(G (s)) is constructed from a connected graph. �

We also define a projection of x ∈ R2 on a set A ∈ R2 as

PA(x) = argmin
y∈A
‖x− y‖

Next, let Y (si) = {y : y ∈ R2, c(si,y) = 1). Recalling the
definition of c(·, ·), Y (si) is the set of points with which si
can establish a connection. For any subset of agents V ⊂
N , let Σ(V ) =

⋃
i∈V Y (si) be the union of all connection

regions for agents in V . For example, in Fig. 4, the grey
area is Σ(V ) for V = {0,1} at time t + ε .

We are now ready to deal with the situation where the for-
mation is in a constrained state and may lose connectivity
at time t + ε given that the graph G (s(t)) is connected. In
particular, suppose that when the leader is about to move to
s0(t+ε) and informs the followers, at least one of the agents
will lose connectivity with the formation. Our task is to ob-
tain an optimal formation at t + ε and this is accomplished
in two steps: (i) Construct a connected graph G (s(t + ε))
for time t+ε , and (ii) Use this connected graph G (s(t+ε))
as an input to invoke the CPA. Step (i) is crucial because of
the fact that the CPA relies on an initially connected graph
before it can be executed to seek (locally) optimal agent lo-
cations which still preserve connectivity. This first step is
carried out by constructing a connected graph through Al-
gorithm 2. We use ∆L(t) = s0(t + ε)− s0(t) to denote the

Algorithm 2 Connected Graph Construction Algorithm
Input: Graph G (s(t)), s0(t + ε)
Output: Graph G (s(t + ε))
Initialization: Ui,Di for i ∈N , V = {0}, Q(G (s(t))) =
{0,q2, . . . ,qN+1} using (14)
For agent i = q j, j = 2, . . . ,N +1
Do the following procedure:

1: Generate a candidate next location for i: ŝi = si(t)+∆L.
2: If c(ŝi,sv(t + ε)) = 0 for all agents v ∈ Ui

⋂
V , go to

Step 3; else, go to Step 4.
3: Project si onto Σ(Ui

⋂
V ). Set ŝi = PΣ(Ui

⋂
V )(si).

4: Set si(t + ε) = ŝi.
5: Add i to V

position change vector of the leader from t to t + ε , where

we assume that followers have the ∆L(t) information avail-
able at t.

Theorem 4 G (s(t + ε)) obtained by Algorithm 2 is con-
nected.

Proof: See Appendix.

Obviously, Algorithm 2 does not provide a unique way to
construct a connected graph. For example, the formation
could be adjusted to a line or a star configuration with s0(t+
ε) as the center of the star. However, this would entail a
major formation restructuring whereas in Algorithm 2 we
seek to retain the closest possible formation to the original
(optimal) one by setting candidate locations as seen in Step
1. If such a candidate is not feasible, then the agent will move
a minimal distance (in the projection sense) to be connected.

Once step (i) above is completed by obtaining this connected
graph G (s(t)), step (ii) is performed by invoking the CPA
to optimize the agent locations within the new formation.
Clearly, once obstacles are cleared and the agent team re-
enters a free state, we may revert to the original optimal
formation. As for the complexity of this algorithm, in order
to initialize Q(G (s(t))), the time complexity for finding the
shortest path is O(N2). In addition, to make a projection,
agents need O(N2) comparisons, while the complexity of the
CPA algorithm is O(N). Therefore, the overall complexity
is O(N2) in this case.

5 Simulation Results

In this section, we provide a simulation example illustrat-
ing what the optimal formation maximizing coverage in a
mission space with obstacles looks like and how it changes
at some significant instants (a video of the implementation
of our optimal formation control approach for a team of
small mobile robots in a laboratory setting can be found at
http://www.bu.edu/codes/research/distributed-control/.)

We choose the event density functions to be uniform, i.e.,
R(x) = 1. The mission space is a 60× 50 rectangle. The
distance constraint is C = 10 and the sensing range of each
agent is δ = 8. At every step, the leader moves to the right
one distance unit per unit of time. The mission space is
colored from dark to lighter as the joint detection probability
decreases (the joint detection probability is ≥ 0.50 for green
areas, and near zero for white areas). The leader (labeled
“L”) moves along a predefined trajectory (the purple dashed
line). There are 8 followers, indicated by numbers, which
are restricted to locations on the left side of the leader during
any movement.

Figures 5-10 show snapshots of the process at selected events
of interest over [0,T ]. Figure 5 shows the initial configura-
tion at t = 0, where the agent team is located in a convex
feasible space. As shown in Sec. III, in this case, the opti-
mal formation can be obtained by solving a MINLP. In the
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results shown, we have used TOMLAB, a MATLAB-based
optimization solver. For the non-convex objective function
defined in (9), the solution is usually a local maximum; we
sought to find the best local (possibly global) optimum pos-
sible by implementing a multi-start algorithm on the solver.
This is done at the start of the mission, when an off-line
computationally intensive procedure is possible. Moreover,
this local maximum can be improved by applying the CPA;
in fact, in this example the use of the CPA led to an im-
provement from H(s) = 741.5 to H(s) = 816.7, as shown in
Fig. 6. Thus, in general, supplying the CPA with an initial
connected graph obtained by solving the MINLP enables it
to converge to a better value. For example, Fig. 12 is a lo-
cal maximum attained by starting with a star-like connected
graph shown in Fig. 11 with the objective function value
H(s) = 781.1 (although this is still worse than the value in
Fig. 6). In the time interval [0,5], the formation is main-

Fig. 5. At t = 0, an optimal for-
mation is obtained by MINLP
with H(s) = 741.5

Fig. 6. The optimal formation
in Fig. 5 is improved by CPA.
H(s) = 816.7

Fig. 7. At t = 5, agent 5 needs
projection in Step 3 of Algo. 2

Fig. 8. At t = 6, agent 5 makes
projection and CPA applies to
Fig. 7

Fig. 9. At t = 12, structure of the
optimal formation changes

Fig. 10. At t = 35, the end of the
mission

Fig. 11. A star-like connected
graph

Fig. 12. Apply CPA to Fig. 11.
H(s) = 781.1

tained. At t = 5, agent 5 is located at a vertex of an obstacle
and will therefore lose connectivity as the leader moves to
the next step at t = 6. At this point, agent 5 will determine

its next position s5(6) by applying a projection at Step 3 of
Algorithm 2. Note that only agent 5 needs to perform this
projection, rather than the whole team of agents, hence the
computational effort is minimal. Figure 8 captures the opti-
mal formation following Fig. 7.

Observe that over the period [0,12), although the optimal
formation remains a tree, it is no longer the same as the orig-
inal one. However, for each agent i, its downstream node set
Di and upstream node set Ui remain unchanged. At t = 12,
clearly, the structure of the formation has been changed. This
is a consequence of either the projection step in Algorithm
2 or the CPA. At the end of the mission at t = 35, the forma-
tion is shown in Fig. 10. The agents seek to form a line to
go through the narrow region of the mission space while at
the same time maximizing coverage. During the remaining
interval [12,35], the process is similar to what is seen over
[5,12].

As we pointed out in the last section, constructing a con-
nected graph can be accomplished in a variety of ways. As
shown in Fig. 11, a star-like graph is an inferior formation
to that of Fig. 6; this is expected since the latter was ob-
tained specifically to maximize the objective function in (9).
In addition, a reconfiguration process as shown in Fig. 12
requires agents to move longer distances, hence consuming
more energy.

6 Conclusions and future work

We have addressed the issue of optimal dynamic formation
of multi-agent systems in mission spaces with constraints.
When the agent team is in a free state (no obstacles in the
mission space affecting them), a locally optimal solution of a
MINLP can provide an initial formation that agents maintain
or it is a good initial point for using the CPA (developed in
prior work Zhong and Cassandras (2011)) to obtain a better
local optimum. When the feasible space is non-convex and
connectivity is lost, we have developed an algorithm to con-
struct a connected graph as an input for the CPA while seek-
ing to maintain the original formation with minimal effort.
We have also shown that for the class of optimal formation
problems where the objective is to maximize coverage, the
optimal formation is (under certain conditions) a tree which
can be efficiently constructed without solving a MINLP.

An interesting direction for future research is to deal with
moving obstacles, assuming that agents have a model for
the obstacle dynamics Schouwenaars et al. (2001). More-
over, we would like to investigate optimal dynamic forma-
tion control for more general classes of objective functions,
beyond the coverage control problem.

A Proof of Theorem 1

In what follows, the binary operator + is used to concatenate
two paths into a new path: If πa = {π1

a , . . . ,π
m
a } and πb =

{π1
b , . . . ,π

n
b}, then πa +πb = {π1

a , . . . ,π
m
a ,π

1
b , . . . ,π

n
b}.
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We use a contradiction argument. Assume that at least one
follower is not connected to the leader. Then the followers
are divided into two sets: N1 = {k : Πk 6= /0}, which can
connect to the leader and N2 = { j : Π j = /0}, which are not.
Then ρk j = 0 must be true for all k ∈ N1 and j ∈ N2. This is
because if ρk j > 0, then there exists a path π j = {πk}+{ j}
where πk ∈ Πk, which contradicts the fact that j ∈ N2. In
addition, obviously ρ0 j = 0 for j ∈ N2. Summing the left-
hand-sides of all constraints (5) for j ∈ N2, we obtain

∑
j∈N2

N j = ∑
j∈N2

(
∑

k∈N

ρk j− ∑
k∈NF

ρ jk

)

= ∑
j∈N2

[
∑

k∈N1

ρk j + ∑
k∈N2

ρk j +ρ0 j−

(
∑

k∈N1

ρ jk + ∑
k∈N2

ρ jk

)]
=− ∑

j∈N2

∑
k∈N1

ρ jk ≤ 0

(A.1)

Next, summing the right-hand-sides of the constraints (5)
over j ∈N2 we get ∑ j∈N2

N j = |N2| ≥ 1, contradicting (A.1).
Therefore, the assumption is wrong and the graph G (s) is
connected. The additional constraints (6)-(7) are necessary
to ensure that the number of feasible flow vectors ρ is finite.
Clearly, (6) prohibits self-loops while (7) prevents an infinite
number of solutions where edges (i, j) in G (s) may take any
unbounded flow value ρi j > 0. �

B Proof of Theorem 2

Let us introduce a local polar coordinate system for each
agent i, so that the origin of i’s such system is si and the
axes are parallel to those in the mission Cartesian coordinate
system. Given any point x = (xx,xy) ∈ F , let l = (ri,θi) be
the polar coordinates in i’s local coordinate system. Then,
the transformation that maps (ri,θi) onto the global coordi-
nate system is x = si(t)+[ri cosθi ri sinθi]

T . Upon switching
to this local coordinate system, the sensing probability be-
comes pi(x,si(t)) = pi(ri) if ri < δ . Since Ωi(t)⊂ F for all
t ∈ [0,T ], the local sensing range of si(t), which is denoted
by ΩL

i = {(ri,θi) : ri ≤ δ ,0 ≤ θi ≤ 2π}, is time-invariant.
Therefore, recalling (11), the objective function in (9) is

H(s(t)) =
∫

Ω

R(x)P(x,s(t))dx = R
∫
⋃N

i=0 Ωi(t)
P(x,s(t))dx

= R
∫
⋃N

i=0 ΩL
i

ri{1−
N

∏
i=0

[1− pi(ri)]}dridθi

so that the objective function value remains fixed for any
t ∈ [0,T ]. Since for any agents i and j, by assumption, si(t)−
s j(t) = si(0) + s0(t) − s0(0) − (s j(0)+ s0(t)− s0(0)) =
si(0)− s j(0), and s(0) is an optimal solution of (8), it fol-
lows that G (s(0)) is connected, therefore, G (s(t)) is also
connected and we conclude that s(t) maximizes H(s(t)). �

C Proof of Theorem 3

Before we prove Theorem 3, we provide some notation and
prove three lemmas. For simplicity, we omit t from si(t)
in what follows. For any i ∈ N , we define the maximal
detection quality

Mi = R
∫

Ωi

pi(x,si)dx (C.1)

Lemma 1 If pi(x,si) = p(x,si) for all i ∈N , then Mi = M
for all i ∈N .

Proof: In the local polar coordinate system, Mi is given by

Mi = R
∫

ΩL
i

ri pi(ri)dθidri = R
∫ 2π

0

∫ C

0
ri pi(ri)dθidri

= 2πR
∫ C

0
ri pi(ri)dri

(C.2)

where pi(ri) = p(ri) if pi(x,si) = p(x,si), so the statement
holds and Mi is spatially invariant. �

Lemma 2 Assume that (i) the feasible space is F = Ω =R2,
C≤ 2δ and R(x) =R for all x∈F , and (ii) pi(x,si) = p(x,si)
for all i ∈N . Then, the global optimal solution to problem
(8) when N = 1 is any position vector (s0,s1) such that
‖s0− s1‖=C and the flow variable is ρ = (1,0).

Proof: Recalling the sensing model (10) and the assumption
pi(x,si) = p(x,si), the objective function in (9) for N = 1 is

H(s) =
∫

F
R(x)P(x,s)dx

= R
∫

Ω0

p(x,s0)dx+R
∫

Ω1

p(x,s1)dx

−R
∫

Ω0∩Ω1

p(x,s0)p(x,s1)dx

(C.3)

where the first two terms are the constants M0 = M1 = M by
Lemma 1 and we define a function M2(si,s j) to represent
the third term:

M2(si,s j) = R
∫

Ωi(si)∩Ω j(s j)
p(x,si)p(x,s j)dx (C.4)

Using M and M2(si,s j) in (C.3), we get

H(s) = 2M−M2(s0,s1) (C.5)

Let sC = (s0,sC) and sz = (s0,sz) be two feasible solutions
where ‖s0− sC‖=C and ‖s0− sz‖= z, 0≤ z <C. We will
show that H(sC) is a global optimal solution, i.e., H(sC)>
H(sz) holds for any z. To facilitate this proof, we establish
a Cartesian coordinate system where s0 = (0,0), sC = (C,0)
and sz = (z,0), as shown in Fig. C.1. Accordingly, we define
the sensing range intersections Aa = Ω0(s0)∩Ω1(sC) and
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𝐴𝑏

𝑥

𝑦

𝑧 𝐶

𝛿

𝐴𝑎

Ω0(𝑠0) Ω1(𝑠𝑧) Ω1(𝑠𝐶)

Fig. C.1. The sensing ranges of agents 0 and 1 where sC = (C,0),
sz = (z,0) and z≥ 2δ −C.

𝑧 𝐶0

xx

𝐴𝑎

𝐴𝑎1

𝐴𝑎2

𝐴𝑎2
′

𝐶 + 𝑧

2

Fig. C.2. Subsets of Aa when z< 2δ−C. Aa =Aa1∪Aa2 where Aa1
is the green shape. A′a2 (the blue-line green-filled shape) and Aa2
(the blue-line write-filled shape) are symmetric with x= (C+z)/2.

Ab = Ω0(s0)∩Ω1(sz). Note that Aa ⊂ Ab due to the fact that
z <C. It follows from (C.5) that

H(sC)−H(sz)

=R
∫

Ab

p(x,s0)p(x,sz)dx−R
∫

Aa

p(x,s0)p(x,sC)dx

=R
∫

Aa

p(x,s0)[p(x,sz)− p(x,sC)]dx

+R
∫

Ab\Aa

p(x,s0)p(x,sz)dx

(C.6)

Observing that if z >C, sz is an infeasible solution, we will
prove next that H(sC)−H(sz)> 0 for any 0≤ z <C. Define
a function p̃(x,sz,sC) = p(x,sz)− p(x,sC) and observe that it
has the following properties which are direct consequences
of the monotonicity of the function p(·) in ‖x− si‖, i =C,z:

P1 : p̃(x,sz,sC)


> 0 if xx < (z+C)/2

= 0 if xx = (z+C)/2

< 0 if xx > (z+C)/2

P2 : p̃(x,sz,sC) = −p̃(x′,sz,sC) if ‖x− sz‖ = ‖x′− sC‖ and
‖x− sC‖= ‖x′− sz‖.

We then consider two cases: z≥ 2δ −C and 0≤ z < 2δ −C,
corresponding to Fig. C.1 and Fig. C.2, respectively.

(1) If z ≥ 2δ −C, then for any point x ∈ Aa we have
xx < (z+C)/2. Using P1, we get p̃(x,sz,sC)> 0. It fol-
lows that H(sC)−H(sz) in (C.6) is positive since all

integrands are positive:

H(sC)−H(sz) =R
∫

Aa

p(x,s0)p̃(x,sz,sC)dx

+R
∫

Ab\Aa

p0(x,s0)p1(x,sz)dx > 0

(C.7)

(2) If 0 ≤ z < 2δ −C, then we divide the set Aa into two
subsets Aa1 = {x|xx ≤ (z+C)/2,x ∈ Aa} and Aa2 =
{x|xx > (z+C)/2,x∈ Aa}. In the set Aa1, we can find a
subset A′a2 = {(z+C− xx,xy),(xx,xy) ∈ Aa2} which is
symmetric to Aa2 around an axis through xx =(z+C)/2
(see Fig. C.2). Then, for any point x ∈ Aa2, there exists
a point x′ ∈ A′a2 such that ‖x− sz‖ = ‖x′ − sC‖ and
‖x−sC‖= ‖x′−sz‖. Using P2, we obtain p̃(x,sz,sC) =
−p̃(x′,sz,sC). Hence,∫

Aa2∪A′a2

p(x,s0)p̃(x,sz,sC)dx = 0 (C.8)

Let A1
a1 = Aa1 \ A′a2, therefore Aa = Aa2 ∪ A1

a1 ∪ A′a2.
Accordingly, (C.6) is positive

H(sC)−H(sz) = R
∫

Aa2∪A′a2

p(x,s0)p̃(x,sz,sC)dx

+R
∫

A1
a1

p(x,s0)p̃(x,sz,sC)dx

+R
∫

Ab\Aa

p(x,s0)p(x,sz)dx > 0

(C.9)

since the first term is zero due to (C.8), the second term is
positive by P1 and the third term is positive because of the
positive integrand. Thus, in both cases (C.7) and (C.9) yield
H(sC)> H(sz), i.e., any vector (s0,s1) such that ‖s0−s1‖=
C is the global optimal solution. �

Lemma 2 establishes the fact that if there are only two agents
in the feasible space, the optimal solution is obtained when
the two agents are located at a distance of C from each other.
Using the definition of Aa, we define MC as

MC = R
∫

Aa

p(x,s0)p(x,sC)dx (C.10)

and obtain a final lemma:

Lemma 3 For agents i and j, if ‖si − s j‖ = C, then
M2(si,s j) = MC.

Proof: We establish a Cartesian coordinate system where the
original point is si, the x-axis is in the same line as s j− si,
as shown in Fig. C.3. Then, it immediately follows that the
result of the integration for M2(si,s j) = MC.

Proof of Theorem 3: We prove the result by induction and
the use of Lemmas 1-3. When N = 1, by Lemma 2, the
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Ω0(𝑠0) Ω1(𝑠1)

0 𝐶

𝑥

𝑦

𝛿 𝑥′

Ω𝑖(𝑠𝑖)

Ω𝑗(𝑠𝑗)
𝛿

𝑦′

𝑠𝑖

𝑠𝑗

Fig. C.3. Two Cartesian coordinate systems x− y and x′− y′

optimal formation is obtained by connecting the two agents
with the distance between them being C. Next, we assume
that when N = k the optimal formation Gk(s) is a tree with
the distance between the connected agents being C. Without
loss of generality, these k agents are labeled 1, ...,k.

As Gk(s) is a tree, |E | = k− 1, i.e., there are k− 1 pairs
of connected agents. Let Ω(Ei) = Ωai ∩Ωbi where (ai,bi) =
Ei ∈ E , i = 1, . . . ,k−1. In addition, it is impossible for more
than two agents to be connected to each other because there
is no cycle in the tree, which implies that Ωi1 ∩ . . .∩Ωip = /0
for any ip ∈ {0, ...k} and p > 2.

When N = k+1, the optimal formation Gk+1(s) is obtained
by connecting the new agent to Gk(s) with the distance be-
tween connected agents being C. Assume that the new agent
is labeled h = k+1. Agent h may establish connection with
p (p ≥ 1) agents at the same time (examples are shown in
Figs. C.4-C.5). Accordingly, we denote the position of agent
h as sp

h if it connects to p agents and let sp = (s0, . . . ,sk,s
p
h).

Next, we will show that H(s1)> H(sp) for any p≥ 1.

𝑠1 𝑠ℎ
1

Fig. C.4. Agent h connected to
agent 1

𝑠"#𝑠#

𝑠$

Fig. C.5. Agent h connected to
agents 1 and 2

Similar to M2(si,s j), we define a function

M3(si,s j,sh) = R
∫

Ω(Ei)∩Ωh

pi(x,sai)p j(x,sbi)ph(x,sh)

and we can write the objective function H(sp) for N + 1
agents as follows:

H(sp) = (k+2)M− ∑
m,n6=h

M2(sm,sn)

−
p

∑
i=1

M2(si,s
p
h)+

p−1

∑
i=1

M3(sai ,sbi ,s
p
h)

(C.11)

where (ai,bi) = Ei. For p = 1,2, H(s1) and H(s2) are

H(s1) = (k+2)M− ∑
m,n6=h

M2(sm,sn)−M2(s1,s1
h).

H(s2) = (k+2)M− ∑
m,n6=h

M2(sm,sn)−M2(s1,s2
h)−M2(s2,s2

h)

+M3(sai ,sbi ,s
2
h)

In Figs. C.4-C.5, a1 = 1 and a2 = 2. Note that M2(s1,s1
h) =

M2(s1,s2
h)=MC due to the fact that ‖s1−s1

h‖= ‖s1−s2
h‖=C

and invoking Lemma 3. Therefore,

H(s1)−H(s2) = M2(s2,s2
h)−M3(s1,s2,s2

h)

= R
∫

Ω1∩Ω2∩Ωh

p1(x,si)ph(x,s2
h)[1− p2(x,s j)]dx

+R
∫

Ω1∩Ωh\Ω1∩Ω2∩Ωh

p1(x,s1)ph(x,s2
h)dx > 0

(C.12)

since both integrands are positive. Next, we obtain H(s1)−
H(sp):

H(s1)−H(sp)

=
p−1

∑
i=1

(
M2(si+1,s

p
h)−M3(sai ,sbi ,s

p
h)
)

=(p−1)(H(s1)−H(s2))

(C.13)

This is true due to the fact that ‖si − sp
h‖ = C for

i = 1, . . . , p− 1, thus M2(si+1,s
p
h) = MC using Lemma 3,

and M3(sai ,sbi ,s
p
h) = M3(s1,s2,s

p
h).

We conclude that if agent h = k+1 is connected to p agents
of the tree, then H(s1)−H(sp) = (p−1)(H(s1)−H(s2))>
0. In other words, the optimal solution is obtained when
the newly added agent is connected to a single agent and
the resulting formation Gk+1(s) is still a tree. Moreover, the
distance between agent h and the agent it is connected to,
say j, is C, which can be proved with the same argument as
that used in Lemma 2, i.e., we can perturb sh from d jh =C
to d jh <C and show that d jh =C is the optimal solution. In
addition, by Lemma 3, connecting h to any feasible agent j
results in the same objective function value. �

Corollary For an optimal formation with N+1 agents, the
objective function is H(s) = (N+1)M−NMC where M and
MC are as defined in Lemma 1 and (C.10).

D Proof of Theorem 4

Since G (s(t)) is connected, Ui 6= /0 for i ∈NF . We then use
induction to prove that the graph constructed by agents in
V remains connected at Step 5 in every iteration. Initially,
V = {0} which is connected. Next, assuming there are n
agents in V and the graph they form is connected, we will

11



prove that after adding the (n+1)th agent, say i, the graph
remains connected.

The addition of i to V occurs at Step 5. There are two pos-
sible sequences for reaching this step: 1-2-4 and 1-2-3-4.
At Step 2, Ui

⋂
V 6= /0 because of the property of Q(G (s))

in Lemma 4. It follows that before i performs the proce-
dure, there is at least one upstream agent in V . In the
1-2-4 sequence, there exists some m ∈ V ∩Ui such that
c(ŝi,sm(t + ε)) = 1. Therefore, all agents in V including i
will be connected. In the 1-2-3-4 sequence, at Step 3, agent
i’s position is projected onto the connection ranges of all
v ∈ V ∩Ui. It follows that the graph formed by agents in
{V , i} is connected. Step 5 adds agents to V one by one un-
til V =N , therefore, the graph G (s(t+ε)) is connected. �
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